KR100200978B1 - Ceramic fiber filter - Google Patents

Ceramic fiber filter Download PDF

Info

Publication number
KR100200978B1
KR100200978B1 KR1019960038223A KR19960038223A KR100200978B1 KR 100200978 B1 KR100200978 B1 KR 100200978B1 KR 1019960038223 A KR1019960038223 A KR 1019960038223A KR 19960038223 A KR19960038223 A KR 19960038223A KR 100200978 B1 KR100200978 B1 KR 100200978B1
Authority
KR
South Korea
Prior art keywords
ceramic fiber
copper oxide
ceramic
dust
fiber filter
Prior art date
Application number
KR1019960038223A
Other languages
Korean (ko)
Other versions
KR19980019946A (en
Inventor
이재춘
홍민선
김병균
Original Assignee
이재춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재춘 filed Critical 이재춘
Priority to KR1019960038223A priority Critical patent/KR100200978B1/en
Publication of KR19980019946A publication Critical patent/KR19980019946A/en
Application granted granted Critical
Publication of KR100200978B1 publication Critical patent/KR100200978B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • B01D39/2086Other inorganic materials, e.g. ceramics the material being filamentary or fibrous sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1225Fibre length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1258Permeability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 고온 배가스중의 유해한 먼지와 질소산화물, 아황산가스 등과 같은 유해가스를 동시에 처리할 수 있는 산화구리(CuO)가 담지된 알루미노 실리케이트 세라믹 섬유여과재의 제조방법에 관한 것으로 직경이 1-4㎛이며 길이가 0.1-3mm인 알루미나 실리케이트 세라믹 섬유에 비표면적이 100㎡/g 이상인 알루미나실리케이트 세라믹 결합제를 세라믹 섬유 중량에 대해 10-40중량%를 코팅시켜 제조된 기공률이 70-95%, 기공크기는 10-100㎛, 공기투과율은 40cc/min.㎠.cmH2O 이상인 세라믹 여과재에 구리를 함침시킨 후 공기중에서 소성시켜 세라믹 여과제 중량에 대해 1-40중량%의 산화구리가 알루미나실리케이트 세라믹 결합제 부착되게 하여 세라믹 섬유가 형성하는 미세기공통로에 의해 먼지포집을 수행하면서 선택적 촉매환원공정으로 산화구리 촉매에 의해 질소산화물과 아황산가스물을 동시에 제거시킬 수 있는 것을 특징으로 하는 고온 유해가스와 먼지를 동시에 제거하는 산화구리 촉매도포 세라믹 섬유여과재의 제조방법.The present invention relates to a method for producing an aluminosilicate ceramic fiber filter material carrying copper oxide (CuO) capable of simultaneously treating noxious dust in a high-temperature flue gas and harmful gas such as nitrogen oxides, sulfur dioxide and the like, Mu m and a length of 0.1 to 3 mm is coated with an alumina silicate ceramic binder having a specific surface area of 100 m < 2 > / g or more in an amount of 10-40 wt% based on the weight of the ceramic fiber, the porosity of the alumina silicate ceramic fiber is 70-95% A ceramic filter medium having an air permeability of 40 cc / min. Cm < 2 > .cmH 2 O or more is impregnated with copper and then fired in air to form copper oxide having a composition of 1-40 wt% And the dust collecting is carried out by the microfibers common to the ceramic fibers. In the selective catalytic reduction process, A method for manufacturing a copper oxide catalyst-coated ceramic fiber filter material, which is capable of simultaneously removing oxides and sulfur dioxide, and removing harmful gases and dust at the same time.

Description

고온 유해가스와 먼지를 동시에 제거하는 산화구리 촉매도포 세라믹 섬유여과재의 제조방법A method of manufacturing a ceramic oxide-coated ceramic fiber filter material which simultaneously removes harmful gases and dust at high temperatures

고온 배가스중의 질소산화물(NOx)을 제거하는 방법은 습식법과 건식법으로 나눌수 있으며 습식법은 유해가스를 동시 제거하는 등의 장점은 있으나 건식법에 비해 경제성이 낮고 부가적으로 폐수 처리시설을 구비해야하는 문제점이 있다.The method of removing nitrogen oxides (NOx) from the high temperature flue gas can be divided into a wet method and a dry method. The wet method has advantages such as simultaneous removal of harmful gas, but it is not economical compared to the dry method and has an additional wastewater treatment facility have.

그리고 건식법 중에서도 경제성, 유해가스 제거효율, 공정특성 등의 관점에서는 선택적 촉매 환원법(Selective Catalytic Reduction:SCR)이 가장 우수한 공정으로 알려져 있으며 이방법은 배출되는 가스중의 질소산화물을 90% 이상 제거할 수 있는 것으로 알려져 있다.Among the dry methods, Selective Catalytic Reduction (SCR) is known as the best process from the viewpoints of economical efficiency, harmful gas removal efficiency, process characteristics, etc. This method can remove more than 90% of nitrogen oxides in discharged gas .

그러나 선택적 촉매 환원법을 이용한 질소산화물 제거방법은 산화황산화물(SOx)이나 먼지를 포함하지 않는 배가스에 대해서는 그 기술이 어느 정도 확립되어 있으나 산화황산화물이나 먼지를 포함하는 배가스의 동시 처리를 위한 기술은 미개발 상태에 있다.However, the technique for removing NOx using the selective catalytic reduction method has been established to some extent for sulfur oxides (SOx) and exhaust gases that do not contain dust, but the technology for the simultaneous treatment of exhaust gas containing sulfur oxides and dust It is in an undeveloped state.

산화황산화물이나 먼지를 포함하는 배가스에서 효율적으로 선택적 촉매 환원법을 이용하기 위해서는 활성이 높은 촉매의 개발과 함께 배가스 중의 미연소탄소분, 중금속 등에 의한 활성저하, 삼산화황(SO3)과 같은 물질에 의한 촉매 피독 현상(Poisoning), 그리고 먼지등에 의한 촉매 기공 막힘현상(Plugging)등을 해결해야 하는 문제점이 있다.In order to efficiently utilize selective catalytic reduction in exhaust gas containing sulfur oxides and dusts, it is necessary to develop a catalyst having high activity and to reduce the activity due to unburned carbon content and heavy metals in the exhaust gas, catalysis by substances such as sulfur trioxide (SO 3 ) There is a problem in that poisoning phenomenon and plugging of the catalyst due to dust etc. must be solved.

상기한 문제점에 대한 해결 방법 중의 하나로 고온 세라믹 여과재를 이용하여 먼지와 유해가스를 동시에 처리하는 공정이 많은 관심의 대상이 되고 있는데 고온 세라믹 여과재를 이용한 먼지와 유해가스(SOx,NOx,HCl,H2,S등)를 동시에 처리하는 것은 종래의 대기오염 방지시설에 비해 많은 이점을 갖고 있다.As a solution to the above problem, a process of simultaneously treating dust and harmful gas using a high-temperature ceramic filter medium has attracted much attention. The dust and harmful gas (SOx, NOx, HCl, H 2 , S, etc.) at the same time have many advantages over conventional air pollution prevention facilities.

즉 배가스를 강제 냉각할 필요가 없고 고온에서 반응이 활성화 되며 집진과 유해가스 처리가 동시에 이루어져 시스템이 극히 단순화 되어 설치비와 운전비가 절감되는 효과가 있으며 산화황산화물과 질소산화물을 동시에 처리하는 공정중 주목할 만한 공정으로 쉘 유오피 프로세스(Shell UOP Process)가 있는데 이 공정에서는 하니콤(Honeycomb)등을 담체로 한 산화구리 촉매를 사용한다.In other words, there is no need to forcibly cool the flue gas, the reaction is activated at high temperature, the dust collecting and the harmful gas treatment are simultaneously performed, the system is simplified, and the installation cost and the operating cost are reduced, and the process of simultaneously treating the sulfur oxide oxide and nitrogen oxide There is a shell UOP process, which uses a copper oxide catalyst based on Honeycomb.

산화황산화물과 질소산화물이 함유된 배가스가 반응기로 유입되면 산화황산화물은 산화구리와 반응하여 황산구리Ⅱ(CuSO4) 형태로 되고 동시에 암모니아를 주입하여 질소산화물을 환원시킨다.When the flue gas containing oxidized sulfur oxides and nitrogen oxides enters the reactor, the oxidized sulfur oxides react with copper oxide to form copper sulfate II (CuSO 4) and simultaneously reduce nitrogen oxides by injecting ammonia.

생성된 황산구리II와 산화구리는 질소산화물과 암모니아의 반응에 촉매역활을 한다.The resulting copper sulfate II and copper oxide serve as catalysts for the reaction of nitrogen oxides with ammonia.

이 공정은 종래의 건식 탈황공정과는 달리 산화황산화물을 처리하기 위한 솔벤트(Sorbent)의 주입과정을 생략할 수 있는 장점은 있으나 촉매와 담체가 종래의 선택적 촉매 환원법 공정들과 동일한 형태로 되기 때문에 먼지의 전처리 공정이 선행되어야 하고 차압은 낮으나 효율이 80-90%로 비교적 낮은 문제점이 있었다.Unlike the conventional dry desulfurization process, this process has the advantage of omitting the process of injecting sorbents for treating sulfur oxides, but since the catalyst and the carrier are in the same form as the conventional selective catalytic reduction process The pretreatment process of dust must precede and the differential pressure is low, but the efficiency is relatively low as 80-90%.

따라서 본 발명은 상기한 종래의 문제점을 해결하기 위한 목적으로 창출된 것으로 분진(먼지)과 유해가스를 전처리과정 없이 동시에 제거되게 하였으며, 이들 오염물질을 처리하기 위한 방지시설이 차지하는 부지면적과 건설비용을 감소시킬 수 있으며 유해가스의 처리를 건식으로 수행하여 습식처리시 발생하는 폐수의 수처리시설이 불필요하여 시설의 운전비용과 건설비용이 절감되게 하였으며 고온에서 분진과 유해가스를 동시에 처리할 수 있으며 또한 방지시설을 열교환기 앞부분에 설치하기 때문에 열교환기를 비롯한 이후의 시설에 대한 관의 막힘 현상과 산성가스에 의한 부식 현상을 방지하여 시설의 수명이 연장되며 열교환기 내부에서 산성가스의 응결에 의한 영향이 감소하므로 열교환기 출구의 온도를 더 낮게 운전할 수 있어서 그만큼의 열회수량도 증가하여 발전시설의 경우 발전 효율도 증가시킬 수 있는 산화구리가 담지된 세라믹 섬유여과재를 제공하는데 있다.Accordingly, the present invention has been made for the purpose of solving the above-mentioned problems of the prior art, and it has been made possible to simultaneously remove dust (dust) and noxious gas without a pretreatment process, and the site area occupied by the prevention facility for treating these pollutants, It is possible to reduce the operation cost and the construction cost of the facility by eliminating the water treatment facility of the wastewater generated in the wet treatment by performing the treatment of the harmful gas in a dry manner and simultaneously treating the dust and the harmful gas at the high temperature, Preventing facilities are installed at the front part of heat exchanger to prevent pipe clogging and subsequent corrosion due to acid gas in subsequent facilities such as heat exchanger, so that the life of the facility is extended and the effect of condensation of acid gas inside the heat exchanger The temperature of the outlet of the heat exchanger can be operated at a lower temperature, Increase in the amount of heat recovery and to provide a ceramic fiber filter medium is supported copper oxide that can increase the power generation efficiency when the power generation facility.

제1도는 본 발명의 제2실시예에 따른 측정 결과 그래프도.FIG. 1 is a graph of a measurement result according to a second embodiment of the present invention. FIG.

제2도는 본 발명의 제3실시예에 따른 측정 결과 그래프도.FIG. 2 is a graph of a measurement result according to a third embodiment of the present invention. FIG.

제3도는 본 발명의 제4실시예에 따른 측정 결과 그래프도.FIG. 3 is a graph of a measurement result according to a fourth embodiment of the present invention. FIG.

이하 발명의 요지를 첨부된 도면에 연계시켜 그 구성과 작용효과를 상세히 설명하면 다음과 같다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

직경이 1-4㎛이며 길이가 0.1-3mm인 알루미나실리케이트 세라믹 섬유에 비표면적이 100㎡/g이상인 알루미나실리케이트 세라믹 결합제를 세라믹 섬유 중량에 대해 10-40중량%를 코팅시켜 제조된 기공률이 70-95%, 기공크기는 10-100㎛, 공기투과율은 40cc/min.㎠.H2O 이상인 세라믹 여과재에 구리를 함침시킨 후 공기중에서 소성시켜 세라믹 여과재 중량에 대해 1-40중량%의 산화구리 알루미나실리케이트 세라믹 결합재 부착되게 하여 세라믹 섬유가 형성하는 미세기공통로에 의해 먼지포집을 수행하면서 선택적 촉매 환원공정으로 산화구리 촉매에 의해 질소산화물과 아황산가스물을 동시에 제거시킬 수 있는 것이다.The alumina silicate ceramic fibers having a diameter of 1 to 4 탆 and a length of 0.1 to 3 mm are coated with an alumina silicate ceramic binder having a specific surface area of 100 m 2 / g or more in an amount of 10-40 wt% 95%, a pore size of 10-100 탆, an air permeability of 40 cc / min.cm < 2 > H 2 O or more, and then fired in air to obtain a ceramic filter material of 1-40 wt% The silicate ceramic binder is adhered to the ceramic fiber, and the dust collecting is carried out by the microfibers common to the ceramic fiber, and the nitrogen oxide and the sulfur dioxide are simultaneously removed by the copper oxide catalyst in the selective catalytic reduction process.

이와같이 된 본 발명은 세라믹 섬유 여과재가 알루미노실리케이트 내열성 무기결합재를 약 20중량% 함유하고 있는 경우 600℃에서 3시간 소성시켜 얻어진 세라믹 섬유 촉매 담체의 비표면적은 약 36㎡/g으로 나타났으며 무기결합재에 대한 기공크기 분포측정 결과 평균기공크기는 약 4.7nm로 나타났다.In the present invention, when the ceramic fiber filter material contains about 20% by weight of the aluminosilicate heat resistant inorganic binder, the specific surface area of the ceramic fiber catalyst carrier obtained by firing at 600 ° C for 3 hours was about 36 m 2 / g, The average pore size of the binder was about 4.7nm.

세라믹 섬유 여과재는 알루미노실리케이트 세라믹 섬유와 이 세라믹 섬유를 결합시키는 알루미노실리케이트 무기결합재로 구성되어 있다.The ceramic fiber filter material is composed of an aluminosilicate ceramic fiber and an aluminosilicate inorganic binder that bonds the ceramic fiber.

세라믹 섬유 자체의 비표면적은 무기결합재에 비해 무시할 만하므로 측정된 촉매담체의 비표면적은 곧 촉매 담체중의 알루미노실리케이트 무기결합재에 의해 나타나는 비표면적이라고 볼 수 있다.Since the specific surface area of the ceramic fiber itself is negligible as compared with the inorganic binder, the specific surface area of the catalyst carrier measured can be regarded as the specific surface area indicated by the aluminosilicate inorganic binder in the catalyst carrier.

한편 알루미노실리케이트 결합제만을 600℃에서 3시간 소성하여 측정된 내열성 결합제의 비표면적은 측정결과 175㎡/g으로 나타났다.On the other hand, only the aluminosilicate binder was calcined at 600 ° C. for 3 hours, and the specific surface area of the heat-resistant binder measured was 175 m 2 / g.

따라서 세라믹 섬유 여과재중에 비표면적이 크며 미세기공을 갖는 내열성 무기결합재의 양이 증가될수록 무기 결합제 표면에 부착되는 구리의 담지량도 많아지나 상대적으로 세라믹 섬유 여과재의 통기저항이 커지는 단점이 있다.Therefore, as the amount of the heat-resistant inorganic binder having a large specific surface area and micropores in the ceramic fiber filter medium increases, the amount of copper adhering to the surface of the inorganic binder also increases, but the through-hole resistance of the ceramic fiber filter medium increases.

따라서 알루미노실리케이트 세라믹 결합재를 세라믹섬유 중량에 대해 10-40중량% 되게끔 세라믹 섬유 여과재를 제조한다.Thus, a ceramic fiber filter material is prepared so that the aluminosilicate ceramic binder is 10-40 wt% based on the weight of the ceramic fiber.

상기와 같은 이유로 세라믹 섬유 여과재에 담지되는 산화구리의 양도 세라믹 섬유 여과재 중량에 대해 1-40중량%로 하는 것이 좋다.The amount of copper oxide to be supported on the ceramic fiber filter material is preferably 1-40 wt% based on the weight of the ceramic fiber filter material.

이하 본 발명을 실시예에 의해 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

이하 본 발명을 실시예에 의해 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

실시예 1.Example 1.

직경 5cm, 두께 1cm인 원판형 세라믹 섬유모놀리스(Monolith) 촉매 담체는 직경이 3㎛, 밀도가 2.65g/㎤인 알루미노실리케이트 세라믹 섬유와 본 발명에서 제조된 콜로이탈 알루미노실리케이트 무기결합재와 함께 진공성형하여 얻어진 시편을 600℃에서 1시간 소성시켜 준비하였다.The monolithic catalyst carrier having a diameter of 5 cm and a thickness of 1 cm and having a diameter of 3 탆 and a density of 2.65 g / ㎤ was mixed with the colloidal aluminosilicate inorganic binder prepared in the present invention The specimen obtained by vacuum molding was prepared by firing at 600 ° C for 1 hour.

아르키메데스 원리에 의한 촉매 담체의 밀도와 기공율을 측정결과 각각 0.34g/㎤과 87%로 나타났다.The density and porosity of the catalyst carrier by Archimedes' principle were 0.34 g / ㎤ and 87%, respectively.

세라믹 섬유모놀리스 담체를 이용한 산화구리 담체를 이용한 산화구리 담지 촉매는 초산동[Cu(NO3)2]수용액을 담체시편에 진공함침시켜 제조하였다.Copper oxide supported catalyst using copper oxide carrier using ceramic fiber monolith carrier was prepared by vacuum impregnation of carrier sample with aqueous solution of Cu (NO 3 ) 2 ].

세라믹 섬유담체 무게 기준으로 산화구리함량이 각각 5,10,20,30 및 40wt%되게끔 초산동 수용액의 농도를 변화시키면서 함침공정을 수행하여 진공함침된 시편은 건조 후 공기중에서 600℃에서 2시간 소성시킨 다음 아황산가스와 일산화질소 제거 성능시험에 사용하였다.The impregnation process was carried out by varying the concentration of aqueous acetic acid solution so that the copper oxide contents were 5, 10, 20, 30 and 40 wt%, respectively, based on the weight of the ceramic fiber carrier. And then used for sulfur dioxide gas and nitrogen monoxide removal performance test.

산화구리의 함량이 0-40중량%로 증가되는 경우에 기공률은 87%에서 82%로 직선적으로 감소하는 경향을 나타내었으며 산화구리 함량에 따른 세라믹 섬유 여과재의 부피비중은 0.34g/㎤에서 0.48g/㎤로 약 40% 증가되는 것으로 나타났으며 산화구리 함량증가에 따른 기공율의 감소와 부피비중의 증가경향은 세라믹 섬유를 결합하는 알루미노실리케이트 결합재에 산화구리 입자가 부착됨에 따라 나타나는 세라믹 섬유 여과재의 기공율 또는 기공크기의 감소로서 설명될 수 있다.When the content of copper oxide was increased from 0 to 40% by weight, the porosity tended to decrease linearly from 87% to 82%. The volume specific gravity of the ceramic fiber filter material according to the content of copper oxide was 0.48 g / / ㎤. The tendency of decrease of porosity and increase of bulk specific gravity with increasing copper oxide content was found to be due to the addition of copper oxide particles to the aluminosilicate binder bonded to the ceramic fibers. Can be described as a decrease in porosity or pore size.

즉 여과재를 형성하는 섬유가 형성하고 있는 기공사이에 구리이온을 함유한 촉매이온이 함함된 후 건조, 산화공정을 통해 산화구리 입자가 세라믹 섬유를 결합시키고 있는 알루미노실리케이트 결합재에 부착,생성되므로서 체적팽창이 일어나며 산화구리 입자함량에 비례하여 세라믹 섬유 여과재의 기공률이 감소하거나 밀도가 증가하는 경향을 보여준다.That is, since the catalyst ions containing copper ions are contained between the pores formed by the fibers forming the filter material, and the copper oxide particles adhere to the aluminosilicate binder bonding the ceramic fibers through the drying and oxidation processes, The porosity of the ceramic fiber filter material decreases or the density tends to increase in proportion to the content of copper oxide particles.

산화구리 입자함량에 따른 원판형 촉매 담체의 공기투과율 측정결과로서 면속도가 5cm/sec일때 산화구리의 함량이 0-40중량%로 증가할 때 촉매 담체의 압력차가 100mmH2O에서 160mmH2O로 약 1.6배 증가되는 경향을 나타내었다.Pressure of the catalyst carrier, when the air permeability measurement results as a surface speed of 5cm / sec when the content of copper oxide in the disk-shaped catalyst carrier of the copper oxide particle content to be increased to 0-40% by weight of the car to 160mmH 2 O in O 2 100mmH And increased by about 1.6 times.

실시예 2.Example 2.

실시예 1에 나타난 산화구리 담지 세라믹 섬유 여과재를 이용하여 아황산가스 제거실험은 동일한 산화구리 함량(15wt%)의 필터를 이용하여 유량을 3ℓ/min으로 하고 온도를 300-500℃까지 변화시키면서 수행하였으며 그 측정결과는 제1도와 같다.The sulfurous acid gas removal experiment using the copper oxide-supported ceramic fiber filter material shown in Example 1 was carried out using a filter with the same content of copper oxide (15 wt%) at a flow rate of 3 L / min and a temperature of 300 to 500 ° C The measurement result is the same as that of the first embodiment.

반응온도가 증가할수록 제거효율이 향상되는 것으로 나타났으며 99%이상 제거되는 시간이 수분에서 십이분 이상으로 분포하는 것으로 보아 초기의 아황산가스 제거효율이 매우 뛰어남을 알 수 있다.As the reaction temperature increased, the removal efficiency was improved. The removal time of more than 99% was more than 12 minutes.

이는 여과재의 기공이 수십㎛로 미세하여 가스와 산화구리 입자간의 접촉을 원활하게 하는 것으로 사료되며 따라서 산화구리의 이용을 증가시키는 것으로 사료된다.It is considered that the pores of the filter medium are fine to a few tens of micrometers, which facilitates the contact between the gas and the copper oxide particles, and thus increases the use of copper oxide.

실시예 3.Example 3.

산화구리 함량에 대해서는 온도를 500℃로 일정하게 유지하면서 산화구리 함량 변화에 따른 영향을 측정하였으며 그 결과는 도2와 같다.With respect to the content of copper oxide, the influence of the change in the content of copper oxide was measured while the temperature was kept constant at 500 ° C. The results are shown in FIG.

산화구리 함량을 5,10,20,30wt%로 변경시키면서 실험을 수행한 결과 아황산가스의 제거효율이 99%이상 지속되는 시간이 100,200,220,380sec로 나타났다.Experiments were conducted with copper oxide contents of 5, 10, 20, and 30 wt%, and the removal efficiency of sulfur dioxide was 99, 100, 200, 220, and 380 seconds, respectively.

고온가스가 세라믹 섬유 여과재를 통과할때 아황산가스의 처리효율은 고온가스의 통로와 통로에 담지된 산화구리의 양에 따라 좌우된다.As the hot gas passes through the ceramic fiber filter media, the treatment efficiency of the sulfur dioxide is dependent on the path of the hot gas and the amount of copper oxide carried in the passageway.

제2도에서 500sec 이후 5wt% 촉매 담지 세라믹 여과재의 효율이 10wt% 촉매 담지 세라믹 4.In Fig. 2, the efficiency of the 5 wt% catalyst-supported ceramic filter after 500 seconds is 10 wt%.

실시예 1에 나타난 산화구리 담지 세라믹 섬유 여과재를 이용하여 일산화질소 제거실험에서 동일한 촉매의 함량을 갖는 필터를 이용하여 암모니아/일산화질소(NH3/NO)를 1.0으로 유지하면서 실험을 수행하였으며 그 결과는 제3도와 같다.Experiments were performed while maintaining the ammonia / nitrogen monoxide (NH 3 / NO) ratio at 1.0 using a filter having the same catalyst content in the nitrogen oxide removal experiment using the copper oxide-supported ceramic fiber filter material shown in Example 1 Is the same as the third.

이 결과에 의하면 제거효율은 350-450℃ 사이에서 최대가 되며 이 범위 밖에서는 감소 하였다.According to the results, the removal efficiency reached a maximum between 350 and 450 ° C, and decreased beyond this range.

이는 보통의 선택적 촉매 환원법에 사용되는 촉매의 사용온도가 300-400℃인 것과 비교하면 유사한 결과이다.This is comparable to the use temperature of the catalyst used in the ordinary selective catalytic reduction method is 300-400 ° C.

그러므로 본 발명의 산화구리 담지 세라믹 섬유 여과재는 하니콤 담체에 비해 촉매와의 접촉이 원활히 이루어져 보다 높은 처리효율을 기대할 수 있으며 세라믹 필터의 먼지 집진 효율이 99% 이상으로 먼지(분진)와 유해가스를 동시에 처리할 수 있는 등의 효과가 있는 것이다.Therefore, the copper oxide-supported ceramic fiber filter material of the present invention can be contacted with the catalyst more smoothly as compared with the honeycomb carrier, so that higher treatment efficiency can be expected, and the dust collection efficiency of the ceramic filter is more than 99% It can be processed at the same time.

본 발명은 고온 배가스중의 유해한 먼지와 질소산화물, 아황산가스 등과 같은 유해가스를 동시에 처리할 수 있는 산화구리(CuO)가 담지된 알루미노 실리케이트 세라믹 섬유여과재의 제조방법에 관한 것이다.The present invention relates to a method for producing an aluminosilicate ceramic fiber filter material carrying copper oxide (CuO) capable of simultaneously treating noxious dust in a high-temperature flue gas and harmful gas such as nitrogen oxides, sulfurous acid gases and the like.

Claims (1)

직경이 1-4㎛이며 길이가 0.1-3mm인 알루미나실리케이트 세라믹 섬유에 비표면적이 100㎡/g이상인 알루미나실리케이트 세라믹 결합제를 세라믹 섬유 중량에 대해 10-40중량%를 코팅시켜 기공률이 70-95%, 기공크기는 10-100㎛, 공기투과율은 40cc/min.㎠.cmH2O 이상인 세라믹 여과재를 제조하고 이에 공지의 기술 수단인 구리를 함침시킨 후 공기중에서 소성시키되 세라믹 여과제 중량에 대해 1-40중량%의 산화구리가 알루미나실리케이트 세라믹 결합제 부착되게 하여 세라믹 섬유가 형성하는 미세기공통로에 의해 먼지포집을 수행하면서 선택적 촉매 환원공정으로 산화구리 촉매에 의해 질소산화물과 아황산가스물을 동시에 제거시킬 수 있게 하는 것을 특징으로 하는 고온 유해가스와 먼지를 동시에 제거하는 산화구리 촉매도포 세라믹 섬유여과재의 제조방법.An alumina silicate ceramic binder having a specific surface area of 100 m < 2 > / g or more is coated on the alumina silicate ceramic fiber having a diameter of 1-4 mu m and a length of 0.1-3 mm in an amount of 10-40 wt% , A pore size of 10-100 탆, and an air permeability of 40 cc / min. Cm < 2 > .cmH 2 O or more. The ceramic filter medium is impregnated with copper, 40% by weight of copper oxide is attached to the alumina silicate ceramic binder so that the dust collecting is carried out by the microfibers common to the ceramic fibers while simultaneously removing the nitrogen oxide and the sulfur dioxide by the copper oxide catalyst in the selective catalytic reduction process Wherein the high-temperature harmful gas and the dust are removed at the same time.
KR1019960038223A 1996-09-04 1996-09-04 Ceramic fiber filter KR100200978B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960038223A KR100200978B1 (en) 1996-09-04 1996-09-04 Ceramic fiber filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960038223A KR100200978B1 (en) 1996-09-04 1996-09-04 Ceramic fiber filter

Publications (2)

Publication Number Publication Date
KR19980019946A KR19980019946A (en) 1998-06-25
KR100200978B1 true KR100200978B1 (en) 1999-06-15

Family

ID=19472727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960038223A KR100200978B1 (en) 1996-09-04 1996-09-04 Ceramic fiber filter

Country Status (1)

Country Link
KR (1) KR100200978B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394849B1 (en) * 2000-10-20 2003-08-19 한국에너지기술연구원 Catalytic Non-woven Fabric Filters used for a Temperature Range of 150∼250℃ and Methods for Applying Catalysts to Non-woven Fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394849B1 (en) * 2000-10-20 2003-08-19 한국에너지기술연구원 Catalytic Non-woven Fabric Filters used for a Temperature Range of 150∼250℃ and Methods for Applying Catalysts to Non-woven Fabric

Also Published As

Publication number Publication date
KR19980019946A (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US9347354B2 (en) Reduction-catalyst-coated diesel particle filter having improved characteristics
US8844274B2 (en) Compact diesel engine exhaust treatment system
KR101651950B1 (en) Dual function catalytic filter
RU2660737C2 (en) Catalysed filter for treating exhaust gas
US9260995B2 (en) Cyclone particulate filtration for lean burn engines
CN107427770B (en) Catalyzed ceramic candle filter and method for cleaning process exhaust or gas
WO1993012867A1 (en) Catalytic filtration device and method
JPH02207845A (en) Catalyst for purification of exhaust gas from diesel engine
CN102413906A (en) Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine
JPH0994434A (en) Waste gas purifying filter
MX2007004564A (en) Platinum group metal-free catalysts for reducing the ignition temperature of particulates on a diesel particulate filter.
KR101831933B1 (en) Catalysed particulate filter and methods for coating particulate filter
CA2397226C (en) Process, catalyst system, and apparatus for treating sulfur compound containing effluent
US5202101A (en) Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream
JP2006272288A (en) Catalyst for purifying diesel exhaust gas
CN107427771A (en) The ceramic candle type filter and the method for cleaning tail gas or waste gas of catalysis
CN107427772A (en) The ceramic candle type filter and the method for cleaning procedure tail gas or waste gas of catalysis
JP2002361047A (en) Method for cleaning exhaust and apparatus therefor
WO2002022239A1 (en) Removal of sulfur oxides from exhaust gases of combustion processes
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
KR100200978B1 (en) Ceramic fiber filter
JP5070173B2 (en) Exhaust gas purification filter and manufacturing method thereof
KR100368034B1 (en) Device for Reducing Diesel Exhaust Emission by Using Continuously Regenerative Plasma·Catalyst Hybrid System and method thereof
EP0504476B1 (en) Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream
JP2004518521A (en) Apparatus and method for removing hydrogen sulfide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050314

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee