KR0177564B1 - Method for coating pt-deposited tio2 photocatalyst using photoreduction and photochemical reactor - Google Patents

Method for coating pt-deposited tio2 photocatalyst using photoreduction and photochemical reactor Download PDF

Info

Publication number
KR0177564B1
KR0177564B1 KR1019960001576A KR19960001576A KR0177564B1 KR 0177564 B1 KR0177564 B1 KR 0177564B1 KR 1019960001576 A KR1019960001576 A KR 1019960001576A KR 19960001576 A KR19960001576 A KR 19960001576A KR 0177564 B1 KR0177564 B1 KR 0177564B1
Authority
KR
South Korea
Prior art keywords
photocatalyst
platinum
titanium dioxide
wastewater
coated
Prior art date
Application number
KR1019960001576A
Other languages
Korean (ko)
Other versions
KR970059109A (en
Inventor
이태규
김동형
김경남
Original Assignee
손영목
한국에너지기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손영목, 한국에너지기술연구소 filed Critical 손영목
Priority to KR1019960001576A priority Critical patent/KR0177564B1/en
Publication of KR970059109A publication Critical patent/KR970059109A/en
Application granted granted Critical
Publication of KR0177564B1 publication Critical patent/KR0177564B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Abstract

본 발명은 광촉매와 광에너지를 활용한 폐수처리 등 광화학 반응을 유발시킬 수 있는 평판형 광화학 반응기와 광화학 환원법에 의한 백금의 담지제조법에 관한 것으로써, 기존의 광촉매 효율을 향상시킬 수 있는 광화학 환원반응을 이용하여 백금을 이산화티타늄에 담지시킨 후 이 백금담지촉매를 평판형 강화학 반응기에 코팅하여 폐수처리 후 광촉매 분말을 분리시키는 2차공정이나 에너지 소모를 없앤 것이다.The present invention relates to a plate-type photochemical reactor capable of inducing photochemical reactions such as wastewater treatment using photocatalyst and photoenergy and a method of supporting platinum by the photochemical reduction method, and a photochemical reduction reaction capable of improving existing photocatalyst efficiency. Platinum was supported on titanium dioxide by using this method, and the platinum supported catalyst was coated on a plate-type reinforcement reactor to eliminate the secondary process or energy consumption after the wastewater treatment to separate the photocatalyst powder.

Description

광환원법을 이용하여 백금을 담지시킨 이산화티타늄 광촉매 코팅방법과 이 광촉매가 코팅된 폐수처리용 평판형 광화학 반응기Titanium dioxide photocatalyst coating method supporting platinum by photoreduction method and plate type photochemical reactor for waste water treatment coated with this photocatalyst

제1도는 이산화티타늄에 광환원법을 이용하여 담지된 백금의 역할 설명도.1 is a diagram illustrating the role of platinum supported on titanium dioxide using the photoreduction method.

제2도는 순수 이산화티타늄과 백금이 담지된 광촉매의 활용시 촉매효율의 비교도2 is a comparative diagram of catalytic efficiency when utilizing pure titanium dioxide and platinum-supported photocatalyst

제3도는 광환원법을 이용하여 백금을 담지시킨 이산화티타늄 광촉매를 코팅한 평판형 광화학 반응기의 구성도.3 is a block diagram of a plate-type photochemical reactor coated with a titanium dioxide photocatalyst supported by platinum using a photoreduction method.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 상부 유리판(투명 유리판)1: upper glass plate (transparent glass plate)

2 : 하부 유리판(백금 담지 이산화티타늄 코팅)2: bottom glass plate (platinum supported titanium dioxide coating)

3 : 폐수 분산 유입공 4 : 처리수 배출공3: wastewater dispersion inlet hole 4: treated water outlet hole

e : 전자 h : 정공e: electron h: hole

A : 전자를 받는 물질 D : 정공을 받는 물질A: A substance receiving electrons D: A substance receiving holes

본 발명은 광환원법을 이용하여 백금을 담지시킨 이산화티타늄 광촉매 코팅 방법과 이 광촉매가 코팅된 평판형 광화학 반응기에 관한 것으로써, 보다 구체적으로는 태양에너지 또는 램프(Lamp)의 광에너지와 불균일계 반도체성 광촉매를 활용하는 수용액내의 유독물질을 무해한 물질로 분해처리하는 광화학 반응기술에 관한 것이다. 본 발명의 1차 장점은 폐수의 처리후 2차오염 또는 2차처리 설비등의 문제를 최소화시킬 수 있다는 것이다. 그리고 2차 장점은 유해물질이 완전 분해되거나, 폐수의 탈색이 완전하게 성취된다는 것이다.The present invention relates to a titanium dioxide photocatalyst coating method in which platinum is supported by a photoreduction method, and a plate-type photochemical reactor coated with the photocatalyst, and more specifically, the solar energy or the light energy of a lamp and a heterogeneous semiconductor. The present invention relates to a photochemical reaction technique for decomposing toxic substances in an aqueous solution utilizing a photocatalyst into harmless substances. The primary advantage of the present invention is that it can minimize problems such as secondary pollution or secondary treatment facilities after treatment of waste water. And the second advantage is that the hazardous substances are completely decomposed or the decolorization of the waste water is achieved completely.

각종 산업체, 드라이크리닝 공장, 심지어는 각 가정에서 배출되는 폐수에는 많은 종류와 유기물질들이 함유되어 있다. 이들 유기물질들은 지상 표면수에는 물론 지하수에서도 미량 검출되고 있으나 음용수로 활용하기 위해서나 방류수에는 반드시 제거되거나 환경기준에 적합하여야 한다. 염료공장폐수, 염색폐수, 피혁공장폐수, 제지공장폐수, 드라이크리닝 공장들의 수용액상에 용해되어 있는 디아조 화합물류, 트라이 클로로 에틸렌(Tri Chloro Ethylene), 퍼 클로로 에틸렌(Per Chloro Ethylene), 페놀(Phenol), 벤젠(Benzene), 톨루엔(Toluene), 사염화탄소, 폴리 클로로 바이 페닐(Poly Chloro Biphenyl) 그리고 디옥신(Dioxin)등과 같은 염화(Chlorinated) 유기물질 또는 탄화수소 화합물(Hyrocarbon), 방향족(Aromatic) 유독성 유기물질을 분해할 경우 지금까지는 주로 활성탄을 사용한 흡착, 미생물처리, 소각 또는 에어 스트리핑(Air Stripping)과 같은 단순한 상간의 이동처리적인 방법이 많이 채택되어 왔다.Wastewater from various industries, dry cleaning plants and even homes contains many different types and organic substances. These organic substances are detected in the surface water as well as in the ground water, but they must be removed or used to meet the environmental standards. Diazo compounds dissolved in aqueous solutions of dye plant wastewater, dye wastewater, leather wastewater, paper mill wastewater, and dry cleaning plants, trichloroethylene, perchloroethylene and phenol Chlorinated organic substances such as phenol, benzene, toluene, toluene, carbon tetrachloride, poly chloro biphenyl and dioxin, or toxic hydrocarbon compounds such as hydrocarbon and aromatic When decomposing organic materials, many simple phase transfer methods such as adsorption using activated carbon, microbial treatment, incineration or air stripping have been adopted.

이와 같은 기존의 공정들은 처리공정이 단순한 상이동 또는 처리후 2차오염을 유발할 수 있으며 미생물의 선정 또는 미생물의 생사에 따른 문제점들을 지니고 있다. 특히 염색 페수 등의 탈색은 거의 효과를 거두지 못하고 있다.Such existing processes may cause secondary pollution after the treatment process is simple phase shift or treatment and has problems due to the selection of microorganisms or the death of microorganisms. In particular, discoloration of dyed water and the like has almost no effect.

1976년 이래 광촉매를 이용한 분해반응이 오염된 물의 처리를 위한 대체방법으로 연구되어 왔으며, 최근에는 국내외에서 태양에너지 또는 램프의 광에너지와 불균일계 광촉매를 동시에 활용하여 수용액내의 유독물질을 분해처리하는 연구가 중점적으로 실시되어 왔다. 광화학반응을 활용한 처리방법은 단지 광촉매와 함께 광에너지만을 활용하여 20 ∼ 25℃ 정도의 상온에서도 완전 분해가 가능하다는 장점을 가지고 있다.Since 1976, the decomposition reaction using photocatalyst has been studied as an alternative method for the treatment of contaminated water. Recently, at home and abroad, the decomposition process of toxic substances in aqueous solution by utilizing both solar energy or light energy of lamp and heterogeneous photocatalyst simultaneously. Has been practiced. The treatment method using the photochemical reaction has the advantage that it can be completely decomposed at room temperature of about 20-25 ° C. by using only the light energy together with the photocatalyst.

적용가능한 산화 광촉매는 종류가 매우 다양하여 TiO2, V2O5, ZnO, Fe2O3, CdS, CdSe, Cr203 등을 들 수 있다. 이중에서도 이산화티타늄(TiO2) 반도체 분말과 광에너지를 활용하는 광화학반응을 이용한 폐수처리는 태양에너지 활용의 기능으로 최근 국내외에서 관심을 가지고 연구되고 있다.Applicable oxidation photocatalysts are very diverse and include TiO 2, V 2 O 5, ZnO, Fe 2 O 3, CdS, CdSe, Cr203, and the like. Among them, wastewater treatment using titanium dioxide (TiO2) semiconductor powder and photochemical reactions utilizing photoenergy has been recently studied with interest in domestic and overseas as a function of solar energy utilization.

폐수내에 분산되어 있는 이산화티타늄 광촉매의 광화학반응은 슬러리 광촉매의 주변용액내에 용해되어 있는 유독물질과 이산화티타늄의 밴드 갭 에너지(Band Gap Energy)(= 3.0∼3.2eV)에 해당하는 광에너지의 흡수(400nm)에 의하여 생성되는 음전하의 전자(Electron)와 양전하의 정공(Hole)과의 반응에 의하여 발생한다.The photochemical reaction of titanium dioxide photocatalyst dispersed in waste water absorbs the optical energy corresponding to band gap energy (= 3.0 to 3.2 eV) of toxic substances and titanium dioxide dissolved in the surrounding solution of slurry photocatalyst. 400 nm) is generated by the reaction of negatively charged electrons and positively charged holes.

그러나 이렇게 형성된 전자와 정공은 산화 또는 환원반응을 유발할 물질과 만나 시간적 여유가 없거나 대상물질이 존재하지 않으면 전자와 정공은 극도의 빠른속도로 재결합하여 분해반응을 효율적으로 진행할 수 없다. 따라서 광화학반응에 의한 폐수처리의 첫 번째 필수 요구반응은 이산화티타늄의 밴드 갭 에너지를 능가하는 파장의 광흡수로 인한 전자-정공 쌍(Electron-Hole Pair)의 생성반응이다. 폐수내의 유기물은 광촉매의 표면에서 직접 정공에 의해서나 표면의 정공과 물분자간의 산화반응에 의해 생성되는 하이드록실 라디칼(Hydroxy Radical)에 의하여 산화처리된다. 하이드록실 라디칼은 광화학반응에서 가장 중요한 강력한 유독물질의 산화제이다.However, if the electrons and holes thus formed meet with a material that will cause an oxidation or reduction reaction and there is no time for it or the target material does not exist, the electrons and holes cannot recombine efficiently by recombination at an extremely high speed. Therefore, the first essential requirement for wastewater treatment by photochemical reaction is the generation of electron-hole pairs due to the absorption of light at wavelengths exceeding the band gap energy of titanium dioxide. Organics in the wastewater are oxidized by hydroxyl radicals produced by holes directly on the surface of the photocatalyst or by oxidation reaction between the holes and water molecules on the surface. Hydroxyl radicals are the most important powerful oxidizers in photochemical reactions.

이러한 광촉매의 성능을 향상시키는 방법들로는 밴드 갭 에너지의 가시광선(Visible) 파장범위의 이동, 즉 밴드 갭 에너지를 낮추거나(낮은 광에너지의 활용), 또는 전자-정공 쌍의 재결합 속도를 지연시키는 것이다. 재결합 속도를 지연시키거나 방지함으로서 전자나 전공이 분해대상 물질과 반응을 일으킬 수 있는 시간이 충분하여지기 때문이다.Methods for improving the performance of such photocatalysts include shifting the visible wavelength range of the band gap energy, ie lowering the band gap energy (using low light energy), or delaying the recombination rate of the electron-hole pair. . This is because delaying or preventing the recombination rate allows sufficient time for the electrons or the electrons to react with the substance to be degraded.

본 발명에서는 일차적으로 후자의 전자-정공 쌍의 재결합 속도를 지연시키는 것에 목표를 두어 백금을 이산화티타늄 촉매에 담지시키고 그 효과를 활용하였다. 이의 이론적 관찰을 알기쉽게 제1도에 도시하였다. 제1도에서 백금은 전자를 잡아두는 역할을 하게되어 정공이 시간적 여유를 가지고 산화반응을 진행할 수 있도록 도움을 주게된다.In the present invention, platinum is supported on titanium dioxide catalyst and its effect is primarily aimed at delaying the recombination rate of the latter electron-hole pair. Its theoretical observation is clearly shown in FIG. In FIG. 1, platinum acts as a trapping electron, helping holes to oxidize with time.

백금과 같은 금속물질을 금속산화물에 담지시키기 위하여 제시된 일반적인 방법들은 화학석출법, 동시침전법, 함침법, 금속분말 첨가법, 진탕법, 혼련법 그리고 광석출법 등이 있다.Common methods proposed for supporting metal materials such as platinum on metal oxides include chemical precipitation, co-precipitation, impregnation, metal powder addition, shaking, kneading, and photoprecipitation.

본 발명에서 활용한 광환원법은 광석출법과 유사한 방법이나 화학성분은 다른 것으로 사용하였다. 한편, 지금까지는 본 기술의 일차단계로서 불균일계 광촉매 반응에서 광반응기에 폐수와 더불어 분말상태로 사용하여 왔기 때문에 광화학반응 최종처리수로부터 광촉매를 분리시키는 공정이 요구되고 있다. 따라서 본 발명에서는 앞의 광환원법에 의하여 제조한 고효율 광촉매를 광반응기에 코팅한 광화학반응기를 개발하였다.The photoreduction method utilized in the present invention is similar to the photoprecipitation method, but the chemical composition is used in another. On the other hand, until now, as a first step of the present technology, since the heterogeneous photocatalytic reaction has been used in powder form together with the waste water in the photoreactor, a process for separating the photocatalyst from the final photochemical reaction water is required. Accordingly, the present invention has developed a photochemical reactor in which a high efficiency photocatalyst prepared by the above photoreduction method is coated on a photoreactor.

우선 별도로 특허출원(분할)될 것이나 광화학 환원법에 의한 백금의 담지제조법을 설명하면 다음과 같다.First, a separate patent application (division) will be described, but the following describes the supported manufacturing method of platinum by the photochemical reduction method.

일정부피의 용기에 일정량의 이산화티타늄을 넣고, 6염 소백금함수산(H2PtC16·nH20, 함수물 분자수(n) = 4.8이나 6)을 1mM 에틸알코올 또는 메틸알코올에 용해한 후 용기에 넣는다. 모든 화학물질의 첨가량은 정확하게 1wt.% 질량의 백금이 담지될 수 있도록 양론적으로 계산하여 용해하였다. 이 후 혼합용액에 증류수를 다시 일정량으로 첨가한 후 용기를 봉한 후 자외선 램프 또는 수은램프로부터 빛을 조사하면서 일정시간 동안 광화학 환원반응을 유발시켰다. 이 광화학 환원반응으로 인하여 알코올은 산화되면서 용액내의 백금이온은 백금으로 환원된다. 이와같은 환원반응을 활용하여 궁극적으로 백금을 이산화티타늄 표면에 담지시키는 것이다.A certain amount of titanium dioxide is added to a container of a volume, and the hexavalent sodium platinum solution (H2PtC16 · nH20, the number of water molecules (n) = 4.8 or 6) is dissolved in 1 mM ethyl alcohol or methyl alcohol and placed in a container. The amount of all chemicals added was dissolved in stoichiometric calculations so that exactly 1 wt.% Of platinum could be loaded. Thereafter, distilled water was added to the mixed solution in a predetermined amount, and the container was sealed, followed by irradiating light from an ultraviolet lamp or a mercury lamp to cause a photochemical reduction reaction for a predetermined time. Due to this photochemical reduction reaction, the alcohol is oxidized and the platinum ions in the solution are reduced to platinum. By using such a reduction reaction, ultimately, platinum is supported on the surface of titanium dioxide.

반응이 완결된 6시간 ∼ 24시간 후에 증류수로 반복 세척하면서 마이크로필터를 사용하여 반응용액으로부터 제조된 광촉매만을 걸러낸 후 상온에서 건조시킨다. 이렇게 백금이 담지된 광촉매는 백금이 담지되지 않은 순수 이산화티타늄 광촉매에 비하여 촉매효율(Quantum yield)이 훨씬 우수하였다 (제2도 참조).After 6 hours to 24 hours after completion of the reaction, only the photocatalyst prepared from the reaction solution was filtered using a microfilter while being repeatedly washed with distilled water and dried at room temperature. The platinum-supported photocatalyst was much better in catalyst yield than the pure titanium dioxide photocatalyst without platinum (see FIG. 2).

이와같은 광촉매의 제조공정을 거쳐서 획득한 백금담지 이산화티타늄은 수용액에서 광반응을 거친 후 수용액과 광촉매분말의 분리공정을 사용하지 않아도 되게 하기 위하여 백금담지 이산화티타늄 광촉매를 코팅한 광화학 반응기를 다음 실시예와 같이 제작하였다.The platinum-supported titanium dioxide obtained through the manufacturing process of the photocatalyst is a photochemical reactor coated with a platinum-supported titanium dioxide photocatalyst in order to avoid the need for separating the aqueous solution and the photocatalyst powder after photoreaction in an aqueous solution. Produced as

[실시예]EXAMPLE

제3도는 본 발명의 평판형 광화학 반응기의 구조를 도시한 것이다.3 shows the structure of the planar photochemical reactor of the present invention.

본 발명의 반응기는 파이렉스(Pyrex)재질로서 구성되어 있으며, 일차적으로 코팅을 실시하고자 하는 대상면인 하부 유리판(2)면을 우선 탈지제와 증류수로 3 ∼ 4차례 반복세척을 하였다. 이 처리 공정후 다시 5N NaOH 용액으로 일정시간동안 엣칭을 실시한 후에 다시 증류수로 반복해서 세척을 하였다. 한편, 백금이 담지된 이산화티타늄을 5g/l의 농도로 증류수에 용해시켜 슬러리용액을 조성한 후 슬러리용액의 pH를 원하는 값으로 적정 후 격렬하게 혼합하였다. 마지막 단계로 이 슬러리 혼합용액을 다음과 같은 과정을 거쳐서 박막형 광화학 반응기를 제작하였다.The reactor of the present invention is configured as a Pyrex material, and first, the bottom glass plate 2 surface, which is the target surface to be coated, was first repeatedly washed three to four times with a degreasing agent and distilled water. After the treatment step, the etching was performed again with a 5N NaOH solution for a predetermined time, and then washed repeatedly with distilled water. On the other hand, titanium dioxide loaded with platinum was dissolved in distilled water at a concentration of 5 g / l to form a slurry solution, and then the pH of the slurry solution was titrated to a desired value and mixed vigorously. As a final step, this slurry mixed solution was manufactured as follows to prepare a thin-film photochemical reactor.

본 발명의 평판형 광화학 반응기에 있어서는 백금이 담지된 이산화티타늄 슬러리용액을 이용하여 상부유리판(1)과 하부의 두판중에서 하부유리판(2)의 평면에 담금법을 사용하여 새로운 광촉매의 코팅을 실시하였고, 이 하부 유리판(2)을 꺼낸 후 80℃ 정도의 더운공기로 건조시켰다. 이 과정을 6∼7차례 반복하여 균일하고, 안정된 박막의 코팅을 획득하였다.In the planar photochemical reactor of the present invention, a new photocatalyst was coated by using a platinum-supported titanium dioxide slurry solution on the plane of the upper glass plate 1 and the lower two plates in the plane of the lower glass plate 2. The lower glass plate 2 was taken out and dried in hot air at about 80 ° C. This process was repeated six to seven times to obtain a uniform, stable coating of the thin film.

그리고 하부유리판(2) 상기한 광환원법을 이용하여 백금을 담지시킨 이산화티타늄에 상부유리판(1)을 공간이 있게 덮어 설치하고 상단에 폐수분산유입공(3)을 형성하며 지지대(도시없음)에 의해 경사로 지지시킨 하단에 처리수 배출공(4)을 형성하여 반응기를 완성하였다.In addition, the lower glass plate 2 is installed by covering the upper glass plate 1 with space on the titanium dioxide supporting platinum using the above-described photoreduction method to form a wastewater dispersion inlet hole 3 on the upper side of the support plate (not shown). The treatment water discharge hole (4) was formed in the lower end supported by the inclined to complete the reactor.

이와같이된 본 발명의 작용효과로서 폐수를 광화학 반응으로 처리시에는 제3도에서 보는 바와같이 반응기 상단부에 폐수 분산유입공(3)을 통하여 폐수가 공급되면 반응기 내부의 광촉매가 코팅된 하부유리판(2) 위를 균일하게 흘러 내려간다. 광에너지는 투명한 상부 유리판(1)을 통하여 폐수와 광촉매 코팅층에 도달하게 된다. 이로서 처리된 폐수는 하부의 중간부분에 약간 경사지게 위치토록 설치된 지지대(도시없음)에 의해 유로가 형성된 처리수 배출공(4)을 통하여 배출된다.As the effect of the present invention as described above, when the wastewater is treated by photochemical reaction, the wastewater is supplied through the wastewater dispersion inlet hole 3 at the upper end of the reactor as shown in FIG. ) Flow down evenly. The light energy reaches the wastewater and the photocatalyst coating layer through the transparent upper glass plate 1. The wastewater treated as this is discharged through the treated water discharge hole 4 in which a flow path is formed by a support (not shown) installed so as to be slightly inclined in the lower middle portion.

이와 같은 본 발명은 광촉매와 광에너지를 활용한 폐수처리등 광화학 반응을 유발시킬 수 있는 새로운 광화학반응기로써, 폐수처리 후 광촉매 분말을 분리시키는 2차 공정이나 에너지 소모를 없앤 것으로써 해당 산업 분야에 응용될 수 있는 효과가 기대되는 것이다.The present invention is a new photochemical reactor that can cause photochemical reactions such as wastewater treatment using photocatalyst and light energy, and is applied to the industrial field by eliminating secondary process or energy consumption after separating wastewater treatment. The expected effect is expected.

Claims (2)

코팅을 실시하고져 하는 대상면을 탈지제와 증류수로 3∼4차례 반복세척하고, 다시 5N NaOH 용액으로 엣칭을 실시한 후에 증류수로 반복해서 세척 하는 전처리 단계와, 광환원법을 이용하여 백금이 담지된 이산화티타늄을 5g/l의 농도로 증류수에 용해시켜 슬러리용액을 조성한 후 이 슬러리용액의 pH를 적정하여 격렬하게 혼합하는 슬러리조성 단계와, 이 슬러리 용액을 담금법을 사용하여 대상면에 대하여 광촉매 코팅을 실시하는 단계와, 상기 코팅된 대상물을 꺼낸후 80℃ 정도의 더운공기로 6∼7차례 반복건조하는 단계로서 결합된 것을 특징으로 하는 광환원법을 이용하여 백금을 담지시킨 이산화티타늄 광촉매 코팅방법.The target surface to be coated is repeatedly washed three to four times with degreasing agent and distilled water, and then etched with 5N NaOH solution and then washed repeatedly with distilled water, and platinum-supported titanium dioxide using photoreduction method. Is dissolved in distilled water at a concentration of 5 g / l to form a slurry solution, and then a slurry composition step of mixing the slurry solution in an appropriate and vigorous manner, and applying the photocatalyst coating to the target surface by immersion method. Titanium dioxide photocatalyst coating method carrying platinum using photoreduction method characterized in that it is combined with the step of removing the coated object and repeated drying 6 times 7 times with hot air of about 80 ℃. 하부유리판(2) 평면부에는 광환원법을 이용하여 백금을 담지시킨 이산화티타늄 광촉매가 코팅되고 상부유리판(1)은 공간이 있게 덮어 설치되며 상단에 폐수분산유입공(3)이 형성되고 경사로 지지시킨 하단에 처리수 배출공(4)이 형성된 반응기의 구조로서 반응기 상단부의 폐수 분산유입공을 통하여 폐수가 광촉매가 코팅된 하부유리판 위를 균일하게 흘러내려갈 때, 광에너지는 상부 유리판을 통하여 폐수와 광촉매 코팅층에 도달하여 폐수를 처리하고 처리된 폐수는 하단부로 배출되도록 구성된 것을 특징으로 하는 광환원법을 이용하여 백금을 담지시킨 이산화티타늄 광촉매가 코팅된 폐수처리용 평판형 광화학 반응기.The flat portion of the lower glass plate 2 is coated with titanium dioxide photocatalyst supported by platinum using a photoreduction method, and the upper glass plate 1 is installed to cover the space, and the waste water dispersion inlet hole 3 is formed on the upper side and is supported by a slope. When the wastewater flows uniformly over the lower glass plate coated with the photocatalyst through the wastewater dispersion inlet hole at the upper end of the reactor having the treated water discharge hole 4 formed at the lower portion, the light energy passes through the upper glass plate. A plate-type photochemical reactor for treating wastewater coated with titanium dioxide photocatalyst by using a photoreduction method, characterized in that the wastewater is treated to reach the coating layer and the treated wastewater is discharged to the lower portion.
KR1019960001576A 1996-01-25 1996-01-25 Method for coating pt-deposited tio2 photocatalyst using photoreduction and photochemical reactor KR0177564B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960001576A KR0177564B1 (en) 1996-01-25 1996-01-25 Method for coating pt-deposited tio2 photocatalyst using photoreduction and photochemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960001576A KR0177564B1 (en) 1996-01-25 1996-01-25 Method for coating pt-deposited tio2 photocatalyst using photoreduction and photochemical reactor

Publications (2)

Publication Number Publication Date
KR970059109A KR970059109A (en) 1997-08-12
KR0177564B1 true KR0177564B1 (en) 1999-03-20

Family

ID=19450045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960001576A KR0177564B1 (en) 1996-01-25 1996-01-25 Method for coating pt-deposited tio2 photocatalyst using photoreduction and photochemical reactor

Country Status (1)

Country Link
KR (1) KR0177564B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000072137A (en) * 1999-08-14 2000-12-05 김영웅 apparatus for purification of contaminated water by using rotating member coated with titanium dioxide thin film

Also Published As

Publication number Publication date
KR970059109A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
Ahmad et al. A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: a sustainable approach
Poulios et al. Photocatalytic degradation of the textile dye reactive orange 16 in the presence of TiO2 suspensions
Saquib et al. Semiconductor mediated photocatalysed degradation of an anthraquinone dye, Remazol Brilliant Blue R under sunlight and artificial light source
Mahmoodi et al. Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst
Rashed et al. Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources
Chen et al. Heterogeneous photocatalysis in environmental remediation
Salari et al. The photooxidative destruction of CI Basic Yellow 2 using UV/S2O82− process in a rectangular continuous photoreactor
Sauer et al. Advanced oxidation processes applied to tannery wastewater containing Direct Black 38—Elimination and degradation kinetics
Kabra et al. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review
Kositzi et al. Solar photocatalytic treatment of simulated dyestuff effluents
KR100470747B1 (en) Method and apparatus for eliminating the stench and volatile organic compounds in the polluted air
Kumar et al. Photocatalysis by nanoparticles of titanium dioxide for drinking water purification: a conceptual and state-of-art review
Neelavannan et al. Photocatalytic and electrochemical combined treatment of textile wash water
Suarez-Parra et al. Visible light-induced degradation of blue textile azo dye on TiO2/CdO–ZnO coupled nanoporous films
Stambolova et al. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye
Lee et al. Detoxification of water by semiconductor photocatalysis
Pattanaik et al. TiO2 photocatalysis: progress from fundamentals to modification technology
JPH02501541A (en) Liquid washing method and device
Behnajady et al. Investigation of the effect of heat attachment method parameters at photocatalytic activity of immobilized ZnO nanoparticles on glass plate
KR0177564B1 (en) Method for coating pt-deposited tio2 photocatalyst using photoreduction and photochemical reactor
KR100485756B1 (en) Apparatus for eliminating the stench and volatile organic compounds in the polluted air
KR0177565B1 (en) Method for coating tio2 photocatalyst using photoreduction and photochemical reactor
KR0185287B1 (en) Tube typed photochemical reactor for treating waste water, coated with tio2 impregnated by platinum
Devi et al. Industrial problems and solution towards visible light photocatalysis
Pelizzetti et al. Photocatalytic processes for destruction of organic water contaminants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131108

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20151117

Year of fee payment: 18

EXPY Expiration of term