KR0165962B1 - Organic waste water treating method and its equipment - Google Patents

Organic waste water treating method and its equipment Download PDF

Info

Publication number
KR0165962B1
KR0165962B1 KR1019960004791A KR19960004791A KR0165962B1 KR 0165962 B1 KR0165962 B1 KR 0165962B1 KR 1019960004791 A KR1019960004791 A KR 1019960004791A KR 19960004791 A KR19960004791 A KR 19960004791A KR 0165962 B1 KR0165962 B1 KR 0165962B1
Authority
KR
South Korea
Prior art keywords
tank
methane
wastewater
forming tank
acid
Prior art date
Application number
KR1019960004791A
Other languages
Korean (ko)
Other versions
KR970061792A (en
Inventor
서동우
김태열
장은영
장재희
Original Assignee
김상응
주식회사삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김상응, 주식회사삼양사 filed Critical 김상응
Priority to KR1019960004791A priority Critical patent/KR0165962B1/en
Publication of KR970061792A publication Critical patent/KR970061792A/en
Application granted granted Critical
Publication of KR0165962B1 publication Critical patent/KR0165962B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/2886Two story combinations of the Imhoff tank type

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 유기성 폐수의 처리방법과 장치에 관한 것으로서, 더욱 상세하게는 폐수처리장치내 혐기조를 산형성조, 1차 메탄 형성조, 2차 메탄 형성조의 3개조로 분리하여 산형성조에서는 유기물의 가수분해 및 유기산의 생성반응이 일어나도록 하고, 1,2차 메탄 형성조에서는 아세트산과 메탄의 생성이 동시에 일어나도록 하여 단일조내에서 고농도의 폐수유입시 발생하는 산도 저하를 방지함으로써 폐수처리의 안정화와 고효율화를 얻을 수 있는 유기성 폐수의 처리방법과 장치에 관한 것이다.The present invention relates to a method and apparatus for treating organic wastewater. More specifically, an anaerobic tank in a wastewater treatment apparatus is separated into three tanks, an acid forming tank, a primary methane forming tank, and a secondary methane forming tank. And organic acid formation reaction, and the first and second methane forming tanks produce acetic acid and methane at the same time to prevent the acidity deterioration caused by the inflow of high concentration of wastewater in a single tank. A method and apparatus for treating organic wastewater obtainable.

Description

유기성 폐수의 처리방법과 장치Organic Wastewater Treatment Method and Apparatus

제1도는 본 발명의 폐수처리장치에 대한 개략적인 구조도이고,1 is a schematic structural diagram of a wastewater treatment apparatus of the present invention,

제2도는 종래의 폐수처리장치에 대한 개략적인 구조도이다.2 is a schematic structural diagram of a conventional wastewater treatment apparatus.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1, 21 : 산형성조 2, 22 : 1차 메탄 형성조1, 21: acid forming tank 2, 22: primary methane forming tank

3 : 2차 메탄형성조 4, 24 : 기체-액체-고체 분리부3: secondary methane forming tank 4, 24: gas-liquid-solid separator

5, 25 : 교반기 6 : 간이 침전조5, 25: stirrer 6: simple settling tank

7, 27 : 유출수 유출관 8 : 가스 유출구7, 27: outflow water pipe 8: gas outlet

9. 29 : 원폐수 유입관 10 : 반송수9. 29: wastewater inlet pipe 10: return water

11 : 슬러지 입상화 층11: Sludge Granulation Layer

본 발명은 유기성 폐수의 처리방법과 장치에 관한 것으로서, 더욱 상세하게는 폐수처리장치내 혐기조를 산형성조, 1차 메탄 형성조, 2차 메탄 형성조의 3개조로 분리하여 산형성조에서는 유기물의 가수분해 및 유기산의 생성반응이 일어나도록 하고, 1, 2차 메탄 형성조에서는 아세트산과 메탄의 생성이 동시에 일어나도록 하여 단일조내에서 고농도의 폐수 유입시 발생하는 산도 저하를 방지함으로써 폐수처리의 안정화와 고효율화를 얻을 수 있는 유기성 폐수의 처리방법과 장치에 관한 것이다.The present invention relates to a method and apparatus for treating organic wastewater. More specifically, an anaerobic tank in a wastewater treatment apparatus is separated into three tanks, an acid forming tank, a primary methane forming tank, and a secondary methane forming tank. And the production reaction of organic acid, and the production of acetic acid and methane occur simultaneously in the primary and secondary methane forming tanks, thereby preventing the acidity lowering caused by the inflow of high concentration of wastewater in a single tank. A method and apparatus for treating organic wastewater obtainable.

식품폐수, 당폐수, 전분폐수, 축산폐수, 석유화학 폐수 등 고농도의 유기물을 함유하고 있는 폐수 중 알카리도가 특히 낮은 폐수에 적용되는 혐기성 처리는 호기성 처리에 비하여 에너지의 소모가 적고, 슬러지의 발생량이 적으며, 메탄 가스의 생성으로 이를 자원화할 수 있을 뿐만 아니라 영양물질의 소모가 작은 장점이 있다.Anaerobic treatment, which is applied to wastewater with low alkalinity, especially wastewater containing high concentrations of organic matter such as food wastewater, sugar wastewater, starch wastewater, livestock wastewater and petrochemical wastewater, consumes less energy and generates sludge than aerobic treatment. It is small and can not only resource it by the production of methane gas, but also has the advantage of low consumption of nutrients.

그러나, 혐기성 처리는 슬러지의 생성속도가 늦기 때문에 정상상태까지의 시간이 오래 소요되며, 호기성 처리에 비하여 반응시간이 많이 소요되고, 일부 독성물질에 심각한 영향을 받기 때문에 적용에 어려움이 많다.However, anaerobic treatment takes a long time to reach a steady state because of the slow production rate of sludge, and requires a lot of reaction time compared to aerobic treatment, and it is difficult to apply because it is seriously affected by some toxic substances.

이와같은 혐기성 처리의 예로 제이.씨. 영과 피.엘. 맥카티가 발표한 혐기성 여상법에 의한 처리 [Proc. 22nd ind. Waste conf. Prudue Univ. 1967, 559]는 접촉재를 사용하여 처리의 안정성과 슬러지의 체류시간을 향상시킬 수 있음을 제안하였고, 제이 레팅거 등은 상향류 슬러지 블란켓트를 이용한 생물학적 처리[Biotechnology and Bioengineering 22, 669∼734, 1980]에서 처리조의 하부에 슬러지 입자를 형성시켜 처리함으로써 유기물 분해능력이 향상됨을 지적하였다. 종래의 유기성 폐수처리 장치내의 혐기조는 반응기 내부에 폐수처리시 발생하는 메탄가스나 이산화탄소 가스와 반응기내 폐수를 분리하는 장치가 없이 폐수가 유입되어 혐기성 슬러지가 반응기 하부에 남고 그외의 액체는 유출되는 구조이거나 첨부도면 제2도에 나타낸 바와 같이 원폐수 유입관(29)를 통해 폐수가 산형성조(21)로 유입되어 교반기(25)를 이용하여 반응하고 이는 연결관을 통하여 메탄 형성조(22)로 유입되고 기체-액체-고체 분리 장치(24)를 이용하여 생성된 혐기성 슬러지와 폐수 및 메탄가스나 이산화탄소 가스가 분리되고 최종 유출관(27)을 통해 유출된다.An example of such an anaerobic treatment is J. mr. Spirit and P. L. Treatment by Anaerobic Filtration as published by McCarty [Proc. 22nd ind. Waste conf. Prudue Univ. 1967, 559] suggested that the use of contact materials could improve the stability of the treatment and the residence time of the sludge, and J. Lettinger et al. [Biotechnology and Bioengineering 22, 669-734]. , 1980] pointed out that the decomposition of organic matter is improved by forming and treating sludge particles at the bottom of the treatment tank. The anaerobic tank in the conventional organic wastewater treatment system has no structure for separating methane gas or carbon dioxide gas generated from the wastewater treatment in the reactor and the wastewater in the reactor, so that anaerobic sludge remains at the bottom of the reactor and other liquids flow out. Or as shown in FIG. 2 of the accompanying drawings, the wastewater flows into the acid formation tank 21 through the raw wastewater inflow pipe 29 and reacts using the stirrer 25, which is connected to the methane formation tank 22 through the connecting pipe. The anaerobic sludge and the wastewater and the methane or carbon dioxide gas which are introduced and generated using the gas-liquid-solid separation device 24 are separated and discharged through the final outlet pipe 27.

그러나, 이와같이 메탄 형성조가 1단으로 형성된 경우 효율적으로 폐수내 슬러지를 제거할 수 없고 발생하는 메탄가스 등을 적절히 이용할 수 없는 문제가 있다.However, when the methane forming tank is formed in one stage as described above, there is a problem that sludge in the wastewater cannot be efficiently removed and methane gas generated cannot be used properly.

또한, 대한민국 특허 공고 제930-1217호에서는 처리조의 중간 부분에 처리조 높이의 0.55∼0.65H 만큼의 파형 굴곡형 접촉재를 사용하여 고농도의 유기성 폐수를 1∼5일의 체류기간에 처리하는 방법을 개시한 바 있다.In addition, in Korean Patent Publication No. 930-1217, a method for treating high concentrations of organic wastewater in a residence period of 1 to 5 days by using a curved curved contact member having a height of 0.55 to 0.65H of the treatment tank height in the middle portion of the treatment tank. Has been disclosed.

그러나, 상기의 방법은 고농도의 폐수유입시 과도한 지방산의 생성으로 인해 반응조 하부에서 폐수의 pH가 적정범위 이하로 떨어져 전체적인 운전의 실패를 초래하게 된다.However, in the above method, the pH of the wastewater falls below the proper range due to excessive fatty acid generation at the high concentration of wastewater inflow, resulting in the failure of the whole operation.

따라서, 본 발명자는 상기와 같은 종래의 폐수처리시 pH 저하로 인한 운전의 실패를 해결하기 위하여 혐기조 내부를 3개의 내부조로 분리하여 첫 번째조를 유기물의 가수분해 및 유기산의 생성반응이 일어나도록 하고 나머지 2개조를 아세트산과 메탄의 생성이 동시에 일어나도록 하여 단일조로 고농도의 폐수유입시 발생하는 pH저하를 방지할 수 있음을 알게되어 본 발명을 완성하였다.Accordingly, the present inventors separate the inside of the anaerobic tank into three inner tanks in order to solve the failure of operation due to the pH drop in the conventional wastewater treatment as described above, so that the first tank is hydrolyzed and the production reaction of the organic acid occurs. The other two tanks were made to produce acetic acid and methane at the same time to complete the present invention was found to be able to prevent the pH lowering when a high concentration of wastewater inflow in a single tank.

본 발명은 유기성 폐수의 혐기성 처리시 혐기조 내부를 3개조로 분리함으로써 pH의 저하로 인한 운전의 실패를 극복하고 효율적으로 폐수를 처리하는 방법과 장치를 제공하는데 그 목적이 있다.An object of the present invention is to provide a method and apparatus for efficiently treating wastewater by overcoming a failure of operation due to a decrease in pH by separating the inside of the anaerobic tank into three tanks during anaerobic treatment of organic wastewater.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 유기성 폐수처리장치에 있어서, (i) 전체 반응조 용적의 15∼39%를 차지하고 반응조 하부에 교반기(5)가 설치되며 반응조 높이 0.7H 부분에 기체-액체-고체 분리장치(4)가 설치된 산형성조(1),According to the present invention, in the organic wastewater treatment apparatus, (i) 15-39% of the total reaction tank volume is provided, and an agitator (5) is installed at the bottom of the reaction tank, and a gas-liquid-solid separation apparatus (4) Installed acid forming tank (1),

(ii) 전체 반응조 용적의 25∼405를 차지하고 상부 0.7∼0.8H 부분에 교반기(5)가 설치된 1차 메탄 형성조(2)와,(ii) a primary methane forming tank (2), which occupies 25 to 405 of the total reaction tank volume and is provided with a stirrer (5) in the upper portion of 0.7 to 0.8 H,

(iii) 전체 반응조 용적의 25∼40%를 차지하며 0.65H 부분에 기체-액체-고체 분리장치(4)가 설치된 2차 메탄형성조(3) 및 이에 인접한 전체 반응기 크기의 1∼5% 크기의 소형 간이 침전조(9)로 이루어진 것을 그 특징으로 한다.(iii) a secondary methane-forming tank (3) with a gas-liquid-solid separator (4) in the 0.65H section, accounting for 25-40% of the total reactor volume, and 1-5% of the total reactor size adjacent thereto; It is characterized by consisting of a small simple settling tank (9).

이와같은 본 발명을 첨부도면에 의거 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail based on the accompanying drawings as follows.

본 발명은 처리의 안정화 및 고효율화를 도모할 수 있는 유기성 폐수의 혐기성 처리 방법에 관한 것으로서, 본 발명의 폐수처리장치는 첨부도면 제1도에 나타낸 바와 같이 혐기조를 세 개의 내부조로 분리한 구조이며 이는 산형성조(1), 1차 메탄 형성조(2) 및 2차 메탄 형성조(3)로 이루어진다.The present invention relates to an anaerobic treatment method of organic wastewater which can achieve stabilization and high efficiency of treatment, and the wastewater treatment apparatus of the present invention has a structure in which the anaerobic tank is separated into three inner tanks as shown in FIG. It consists of an acid formation tank 1, a primary methane formation tank 2, and a secondary methane formation tank 3.

먼저, 산형성조(1)는 당, 단백질, 기타 유기화합물을 유기산으로 전환하는 기능을 하는 반응조로서 전체 반응조 용적의 15∼39%를 차지하고, 반응조내로 원폐수(9)와 반송수(10)가 혼합되어 유입된다. 그리고, 반응조 하부에 교반기(5)를 설치하여 교반함으로써 반응조 내부의 단회로 현상을 방지항과 동시에 반응물을 혼합시켜 반응물의 부분적인 pH저하를 방지한다. 이때 교반기(5)의 교반속도는 3∼10rpm으로 유지하여 교반의 효과를 주는 동시에 저속 교반으로 반응조 하부에 높은 슬러지 밀도를 유지하도록 하고, 반응조 높이 0.7H 부분에 기체-액체-고체 분리장치(4)를 설치하여 슬러지의 유출을 축소하여 산형성조의 미생물 농도를 10000∼20000ppm으로 유지하도록 한다. 이때 산형성조(1) 내부의 pH는 5.8∼6.4의 범위로 유지하는 것이 바람직하다. 여기서, 기체라 함은 폐수처리시 발생되는 메탄가스 또는 이산화탄소 가스를 말하며, 액체는 반응기내 폐수를 의미하고, 고체는 혐기성 슬러지를 말한다.First, the acid forming tank 1 is a reaction tank that converts sugars, proteins, and other organic compounds into organic acids, and accounts for 15 to 39% of the total reaction tank volume. It is mixed and introduced. In addition, by installing and stirring the stirrer 5 at the bottom of the reaction tank, the reaction mixture is mixed at the same time as preventing the short circuit phenomenon inside the reaction tank, thereby preventing partial pH decrease of the reactants. At this time, the stirring speed of the stirrer 5 is maintained at 3 to 10 rpm to give the effect of stirring and at the same time to maintain a high sludge density at the bottom of the reactor by low-speed stirring, and the gas-liquid-solid separator at the height of 0.7H of the reactor (4 ) To reduce the outflow of sludge to maintain the concentration of microorganisms in the acid-forming tank to 10000 ~ 20000ppm. At this time, it is preferable to maintain pH in the acid formation tank 1 in the range of 5.8-6.4. Here, gas refers to methane gas or carbon dioxide gas generated during wastewater treatment, liquid refers to wastewater in the reactor, and solid refers to anaerobic sludge.

그리고, 1차 메탄 형성조(2)는 메탄을 형성함과 동시에 산형성조의 역할을 하는 반응조로서, 전체 반응조 용적의 25∼40%를 차지하고 산형성조(1)에서 상부 웨어를 통하여 유입되며 이의 상부 0.7∼0.8H(Height) 부분에 교반기(5)를 설치하여 교반함으로써 반응조 내부의 단회로 현상을 방지함과 동시에 반응물과 pH 조절용 시약을 혼합하는 효과를 나타내도록 한다. 이때 1차 메탄 형성조(2)의 메탄형성균의 활성에 가장 적합하도록 pH는 6.5∼7.0이 되도록 조절하고 교반기(5)의 교반속도는 2∼10rpm으로 유지하여 상부의 교반효과를 슬러지 밀집층까지 미치지 않도록 한다.The primary methane forming tank 2 forms methane and serves as an acid forming tank. The primary methane forming tank 2 takes up 25 to 40% of the total volume of the reaction tank and flows through the upper weir in the acid forming tank 1 and the upper portion thereof. By installing the agitator 5 in the 0.7-0.8H (Height) part, the agitator 5 is prevented from short circuit phenomenon inside the reactor, and at the same time, the reactant is mixed with the reagent for pH adjustment. At this time, the pH is adjusted to 6.5-7.0 so as to be most suitable for the activity of methane-forming bacteria in the primary methane-forming tank (2) and the stirring speed of the stirrer (5) is maintained at 2 to 10 rpm to maintain the agitation effect of the upper sludge cluster. Do not reach until.

마지막으로 2차 메탄 형성조(3)는 유기산 성분이 메탄으로 전환되는 반응이 이루어지는 반응부분으로서, 전체 반응조 용적의 25∼40%를 차지하며 2차 메탄 형성조(3) 0.65H부분에 기체-액체 분리장치(4)를 설치하여 슬러지의 농도를 높게 유지하도록 한다.Finally, the secondary methane forming tank 3 is a reaction part in which the organic acid component is converted into methane, and occupies 25 to 40% of the total volume of the reaction tank, and the gas is formed in 0.65H part of the secondary methane forming tank 3. A liquid separator 4 is installed to keep the concentration of sludge high.

1차 메탄 형성조(2)와 2차 메탄 형성조(3)의 슬러지 농도는 슬러지 입상화 층(11)을 통하여 반응기 하부로부터 높이의 0.2∼0.35H까지 슬러지 농도를 30000∼50000 ppm으로 유지하도록 한다.The sludge concentration of the primary methane forming tank 2 and the secondary methane forming tank 3 is maintained at 30000 to 50000 ppm through the sludge granulation bed 11 to maintain the sludge concentration from 0.2 to 0.35H in height from the bottom of the reactor. do.

또한 전체 반응기 크기의 1∼5% 크기의 소형 간이 침전조(6)를 설치하여 유입수의 1∼3배를 반송하여 산형성조(1)내 pH의 균형을 이루고 처리수 중의 알카리도를 이용하여 시약의 사용량을 줄이는 동시에 슬러지 체류 농도를 높이는 역할을 한다.In addition, a small simple settling tank (6) having a size of 1 to 5% of the total reactor size is installed to convey 1 to 3 times of the influent to balance pH in the acid forming tank (1) and to use reagents by using alkalinity in the treated water. Reducing sludge and increasing sludge retention.

이때, 반송수의 함량이 유입수의 1∼3배보다 적거나 많으면 pH의 불균형이 일어나며, 유기물의 제거율이 저하되는 문제가 있다. 한편, 1,2차 메탄 형성조(2,3)에서 발생된 기체는 가스유출구(8)를 통해 유출된다.At this time, if the content of the return water is less than or more than 1 to 3 times the inflow water pH imbalance occurs, there is a problem that the removal rate of the organic matter is lowered. On the other hand, the gas generated in the first and second methane forming tanks (2, 3) is discharged through the gas outlet (8).

이와같은 본 발명의 폐수처리 방법은 특히, COD 10,000ppm 이상의 고농도 폐수처리시 반응의 안정성 유지 및 pH 조절에 필요한 시약의 소모량을 줄일 수 있으며, 메탄 형성균이 가장 활발하게 작용하도록 pH가 6.7∼7.3의 범위로 안정화하여 유기물 제거를 향상시키며 약품의 소비량을 감소시킬 수 있는 유용한 방법이다.Such wastewater treatment method of the present invention, in particular, can reduce the consumption of reagents required for maintaining the stability of the reaction and pH control in high concentration wastewater treatment of more than 10,000ppm COD, pH of 6.7 ~ 7.3 so that methane-forming bacteria are most active It is a useful way to improve the removal of organic matter and to reduce the consumption of drugs by stabilizing in the range of.

이하, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, but the present invention is not limited by the Examples.

[실시예 1]Example 1

첨부도면 제1도에 나타낸 바와 같은 장치로 고농도의 유기폐수인 원사 제조공장의 폐수를 10kg COD/㎥ day의 부하량을 유입기질로 하여 90일 운전한 후 정상화된 상태에서 성분농도이 변화를 측정하였으며, 그 결과는 다음 표 1에 나타낸 바와 같다.As shown in FIG. 1, the concentration of the constituents was measured in a normalized state after 90 days of operation with a 10 kg COD / ㎥ day load of wastewater from a high concentration organic wastewater manufacturing plant as an inflow substrate. The results are shown in Table 1 below.

이때, 폐수처리장치의 산형성조(1) : 1차 메탄 형성조(2) : 2차 메탄 형성조(3)의 용적비는 1:2:2이며, 수리학적 체류시간은 0.8일이고, 반송율은 유입수의 2배로 하였다.At this time, the volume ratio of the acid forming tank (1): primary methane forming tank (2): secondary methane forming tank (3) of the wastewater treatment apparatus is 1: 2: 2: the hydraulic residence time is 0.8 days, the return rate is It was doubled in influent.

여기서 각 성분의 농도는 가스크로마토그라피를 이용하여 측정하였다.Here, the concentration of each component was measured using gas chromatography.

상기의 결과로부터 본 발명의 폐수처리장치를 이용하는 경우 90일 이후 90% 이상의 유기물질의 제거가 이루어짐을 알 수 있다.From the above results, it can be seen that more than 90% of organic substances are removed after 90 days using the wastewater treatment apparatus of the present invention.

[실시예 2∼5, 비교예 1][Examples 2 to 5 and Comparative Example 1]

상기 실시예 1에서와 동일한 방법으로 폐수처리 시험을 하였는 바, 단지 석유화학폐수를 이용하여 반응조내의 반송비를 조정하여 변화시킬 때의 유출수의 변화를 관찰하였으며, 그 결과는 다음 표 2에 나타낸 바와 같다.The wastewater treatment test was performed in the same manner as in Example 1, and the change of the effluent water was observed when only the petrochemical wastewater was adjusted by changing the return ratio in the reaction tank, and the results are shown in Table 2 below. .

여기서, 유기물 부하량은 10.5kg COD/㎥ day이다. 반송비는 유입수의 수량에 따른 반송량의 비이며, 유입수의 평균농도는 14025ppm이다.Here, the organic load is 10.5kg COD / ㎥ day. The return rate is the ratio of the return amount according to the quantity of influent, and the average concentration of the influent is 14025 ppm.

그리고, COD(Cr)는 표준습식법으로 측정하였다.And COD (Cr) was measured by the standard wet method.

상기 표2의 결과로부터 반송비가 1∼3배 범위에서 80% 이상의 높은 폐수처리 효율을 보임을 알 수 있다.It can be seen from the results of Table 2 that the return ratio shows high wastewater treatment efficiency of 80% or more in the range of 1 to 3 times.

Claims (4)

유기성 폐수처리장치에 있어서, (i) 전체 반응조 용적의 15∼39%를 차지하고 반응조 하부에 교반기(5)가 설치되며 반응조 높이 0.7H부분에 기체-액체-고체 분리장치(4)가 설치된 산형성조(1), (ii) 전체 반응조 용적의 25∼40%를 차지하고 상부 0.7∼0.8H 부분에 교반기(5)가 설치된 1차 메탄 형성조(2)와, (iii) 전체 반응조 용적의 25∼40%를 차지하며 0.65H부분에 기체-액체-고체 분리장치(4)가 설치된 2차 메탄형성조(3) 및 이에 인접한 전체 반응기 크기의 1∼5%크기의 소형 간이 침전조(6)로 이루어진 것을 특징으로 하는 유기성 폐수처리장치.In the organic wastewater treatment apparatus, (i) an acid forming tank which occupies 15 to 39% of the total volume of the reaction tank, a stirrer 5 is installed at the bottom of the reaction tank, and a gas-liquid-solid separator 4 is installed at a height of 0.7 H in the reaction tank. (1), (ii) a primary methane forming tank (2) having 25-40% of the total volume of the reactor and having a stirrer (5) installed in the upper portion 0.7-0.8H, and (iii) 25-40 of the total volume of the reactor It consists of a secondary methane-forming tank (3) having a gas-liquid-solid separator (4) installed at a portion of 0.65H and a small, simple settling tank (6) having a size of 1 to 5% of the total reactor size adjacent thereto. Organic wastewater treatment device characterized in that. 유기성 폐수를 혐기조내에서 처리하는 방법에 있어서, 산형성조내로 원폐수와 반송수를 혼합하여 유입시키고 교반속도 3∼10rpm으로 교반하여 고체상 슬러지와 액체를 분리하고, 이를 상부웨어를 통해 1차 메탄 형성조로 유입시키고 교반속도 2∼10rpm, pH 6.5∼7.0으로 하여 교반한 후, 2차 메탄 형성조내에서 액체상 유기산과 메탄가스층을 분리한 다음, 액체를 간이 침전조를 통해 산형성조내로 반송하는 것을 특징으로 하는 유기성 폐수의 처리방법.In the method of treating organic wastewater in an anaerobic tank, the raw wastewater and return water are mixed and introduced into the acid formation tank, and the solid phase sludge and the liquid are separated by stirring at a stirring speed of 3 to 10 rpm, and the first methane is formed through the upper wear. After flowing into the tank and stirring at a stirring speed of 2 to 10 rpm and a pH of 6.5 to 7.0, after separating the liquid organic acid and the methane gas layer in the secondary methane forming tank, the liquid is returned to the acid forming tank through a simple settling tank. Method of treating organic wastewater. 제1항에 있어서, 상기 1차 메탄 형성조(2)와 2차 메탄 형성조(3)의 슬러지 농도는 반응기 하부로부터 높이의 0.2∼0.35H까지 30000∼50000ppm인 것을 특징으로 하는 유기성 폐수처리장치.The organic wastewater treatment apparatus according to claim 1, wherein the sludge concentration of the primary methane forming tank 2 and the secondary methane forming tank 3 is from 30,000 to 50000 ppm from 0.2 to 0.35 H in height from the bottom of the reactor. . 제2항에 있어서, 상기 반송수는 원폐수의 1∼3배의 반송비를 유지하도록 유입되는 것을 특징으로 하는 유기성 폐수의 처리방법.The method for treating organic wastewater according to claim 2, wherein the returned water is introduced to maintain a return ratio of one to three times the original wastewater.
KR1019960004791A 1996-02-27 1996-02-27 Organic waste water treating method and its equipment KR0165962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960004791A KR0165962B1 (en) 1996-02-27 1996-02-27 Organic waste water treating method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960004791A KR0165962B1 (en) 1996-02-27 1996-02-27 Organic waste water treating method and its equipment

Publications (2)

Publication Number Publication Date
KR970061792A KR970061792A (en) 1997-09-12
KR0165962B1 true KR0165962B1 (en) 1999-01-15

Family

ID=19451867

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960004791A KR0165962B1 (en) 1996-02-27 1996-02-27 Organic waste water treating method and its equipment

Country Status (1)

Country Link
KR (1) KR0165962B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782960B1 (en) * 2006-06-12 2007-12-11 한양대학교 산학협력단 Elutriated two-phase anaerobic digestion apparatus and method of treating wastewater using thereit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766100B1 (en) * 2006-03-20 2007-10-17 (주)에이엔티이십일 An Anaerobic Digestion Reactor for High Organic Wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782960B1 (en) * 2006-06-12 2007-12-11 한양대학교 산학협력단 Elutriated two-phase anaerobic digestion apparatus and method of treating wastewater using thereit

Also Published As

Publication number Publication date
KR970061792A (en) 1997-09-12

Similar Documents

Publication Publication Date Title
Farizoglu et al. Cheese whey treatment performance of an aerobic jet loop membrane bioreactor
CN106277326B (en) A kind of aerobic-anaerobic integration granular sludge reactor and its method for handling waste water
Agrawal et al. Treatment of dilute wastewater in a UASB reactor at a moderate temperature: performance aspects
Farizoglu et al. Simultaneous removal of C, N, P from cheese whey by jet loop membrane bioreactor (JLMBR)
CN109896629B (en) Method and device for strengthening AOMBR process sludge in-situ reduction
MX2012006387A (en) Sludge treatment method and apparatus thereof and application to wastewater bio-treatment.
CN105036469A (en) Advanced treatment system for dye wastewater
CN105668922A (en) High-concentration polyester resin wastewater treatment equipment
CN102229447A (en) Anaerobic reactor for treating waste water containing emulsified liquid
CN209098459U (en) A kind of high gravity fermentation class antibiotic waste water processing system
CN209065698U (en) A kind of Lurgi furnace coal gasification sewage disposal system
CN101781055A (en) Treatment method of waste papermaking water
CN105776741A (en) Refuse pyrolysis comprehensive sewage treatment system and method
CN109485151B (en) Device and process for treating wastewater from production of ethylene glycol from synthesis gas
CN108408888A (en) Wastewater treatment device and application thereof in organic wastewater treatment
KR0165962B1 (en) Organic waste water treating method and its equipment
US6709591B1 (en) Static granular bed reactor
CN207121472U (en) A kind of aerobic integrated sewage-treating reactor device of internal circulating anaerobic
CN202054668U (en) Anaerobic reactor for treating wastewater containing emulsion
CN111252994A (en) Domestic fungus wastewater treatment method
Crawford et al. Anaerobic treatment of thermal conditioning liquors
Charmot‐Charbonnel et al. Nitrification of high strength ammonium wastewater in an aerated submerged fixed bed
CN209276328U (en) A kind of processing unit of high concentrated organic wastewater
CN209411877U (en) Efficient anaerobic denitrification organisms reactor
CN201990572U (en) Trimethylolpropane and butanol industrial sewage mixing treatment and purification system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090702

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee