KR0163806B1 - Method for fe-si magnet core - Google Patents

Method for fe-si magnet core Download PDF

Info

Publication number
KR0163806B1
KR0163806B1 KR1019950058504A KR19950058504A KR0163806B1 KR 0163806 B1 KR0163806 B1 KR 0163806B1 KR 1019950058504 A KR1019950058504 A KR 1019950058504A KR 19950058504 A KR19950058504 A KR 19950058504A KR 0163806 B1 KR0163806 B1 KR 0163806B1
Authority
KR
South Korea
Prior art keywords
powder
weight
magnetic powder
silane
magnetic
Prior art date
Application number
KR1019950058504A
Other languages
Korean (ko)
Other versions
KR970033294A (en
Inventor
최승덕
양충진
손영근
변갑식
Original Assignee
신창식
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신창식, 재단법인산업과학기술연구소 filed Critical 신창식
Priority to KR1019950058504A priority Critical patent/KR0163806B1/en
Publication of KR970033294A publication Critical patent/KR970033294A/en
Application granted granted Critical
Publication of KR0163806B1 publication Critical patent/KR0163806B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

고주파용 Fe-Si 압분자심의 제조방법이 제공되며, 이 방법은 용융상태의 Fe-Si 합금을 급속냉각기를 이용하여 미세결정질의 급속냉각형 분말로 제조하고 그 분말을 적절한 입도로 분쇄, 열처리하여 자성분말로 제조하고, 그 자성분말을 실란계의 커플링제를 사용하여 표면처리하고 이 표면처리된 자성분말에 지방족 카본산 에스테르를 첨가한 열경화성 수지를 혼합하고 압축하여 압축성형체를 형성, 이 압축성형체를 가열경화처리하는 단계를 거쳐 연자기특성이 뛰어나고, 특히 투자율이 높고 철손이 낮은 고주파용 Fe-Si 압분자심을 얻을 수 있다.There is provided a method for producing a high frequency Fe-Si powder core, which is a molten state of Fe-Si alloy using a rapid cooler to prepare a microcrystalline rapid cooling powder, the powder is crushed and heat treated to an appropriate particle size Prepared by magnetic powder, the magnetic powder is surface-treated with a silane coupling agent and mixed with the thermosetting resin to which aliphatic carboxylic acid ester is added to the surface-treated magnetic powder, and compressed to form a compression molded product. Through the step of heat curing, it is possible to obtain a high-frequency Fe-Si powder core having excellent soft magnetic properties, particularly high permeability and low iron loss.

Description

고주파용 철-규소 압분자심 제조방법Manufacturing method of iron-silicon powder core for high frequency

본 발명은 고주파용 Fe-Si 압분자심 제조방법에 관한 것으로, 보다 상세하게는 Fe-Si 압분자심용 분말 제조시 급속냉각기술을 이용함으로써, 분쇄성 및 성형성이 양호하고 또 열처리를 통하여 연자기 특성이 뛰어난 분말을 이용한 고주파용 Fe-Si 압분자심의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing high-frequency Fe-Si powder core, and more particularly, by using a rapid cooling technology in the production of Fe-Si powder core core powder, good crushability and formability and softening through heat treatment The present invention relates to a method for manufacturing a high frequency Fe-Si green powder core using a powder having excellent magnetic properties.

고주파용 Fe-Si 압분자심은 노이즈필터 등의 자심재료로 널러 사용되고 있으며, 이 같은 Fe-Si 압분자심에서 요구되는 가장 중요한 특성은 고주파 영역에서 투자율이 높아야 하며 철손이 낮아야 한다. 특히 고주파영역에서 사용할 경우 높은 철손이 문제된다.High-frequency Fe-Si powder cores are widely used as magnetic core materials such as noise filters. The most important characteristics required for such Fe-Si powder cores should be high permeability in the high frequency range and low iron loss. Especially when used in the high frequency range, high iron loss is a problem.

종래에는 고주파용 Fe-Si 압분자심의 재료로 쓰이는 Fe-Si 합금분말의 제조시 통상적으로 물분무법(water atomization 법)이나 가스분무법(gas atomization 법)에 의하거나 Fe와 Si의 혼합물을 용융한 합금을 분쇄하는 방법을 이용하고 있었다.Conventionally, in the production of Fe-Si alloy powder, which is used as a material for high-frequency Fe-Si powder cores, an alloy in which a mixture of Fe and Si is melted by water spraying (gas atomization) or gas spraying (gas atomization) Was used to crush.

그러나, 물분무법으로 제조할 경우, 미세한 분말로 제조하기 위하여 분무압력이 너무 높아야 하고 또 분무하는 물의 양이 너무 많아야 하며, 그 결과 불규칙한 형상의 금속분말이 얻어졌으며 또 물을 사용함으로써 녹이 발생할 위험이 크고 건조공정이 어려운 등의 문제점이 있었다.However, when the water spray method is used, the spray pressure must be too high and the amount of water to be sprayed is too high to produce a fine powder. As a result, an irregular metal powder is obtained, and there is a risk of rust from water. There were problems such as large and difficult drying process.

가스분무법으로 분말을 제조할 경우, 미세한 분말로 제조하기 위하여 분무압력이 너무 높아야 하고, 또 분무하는 가스의 양이 너무 많아야 하며, 특히 미세한 분말을 얻기가 극히 어려웠다.When the powder is prepared by the gas spraying method, the spray pressure must be too high to produce the fine powder, and the amount of gas to be sprayed must be too large, and in particular, it is extremely difficult to obtain a fine powder.

분쇄법으로 분말을 제조할 경우, 합금에 편석이 생기기 쉬워 특성이 불균일하여 합금괴를 일부러 부수어야 하는 등 효율이 대단히 나빴다. 또한 분쇄중에 결함이 생기기 때문에 연자가 특성이 저하되었다.When the powder is produced by the grinding method, segregation is likely to occur in the alloy, so that the characteristics are uneven, and the efficiency is very poor, such as intentionally breaking the alloy ingot. In addition, because the defects occur during grinding, the softness of the softening is deteriorated.

본 발명은 상기와 같은 종래 방법의 문제점을 해결하기 위하여 목적하는 조성의 Fe-Si 압분자심용 분말을 단일공정에 의한 급속냉각 기술을 이용함으로써 분쇄성 및 성형성이 양호하여 적절한 열처리를 통하여 연자기 특성의 뛰어난 고주파용 Fe-Si 압분자심 제조방법을 제공하는데 그 목적이 있다.The present invention is to solve the problems of the conventional method as described above by using a rapid cooling technology of the Fe-Si powdered metal core powder of the desired composition by using a single step rapid cooling technology and good moldability through the appropriate heat treatment soft magnetic An object of the present invention is to provide an excellent method for producing Fe-Si powder core for high frequency.

본 발명에 의하면,According to the invention,

용융상태의 Fe-Si 합금을 8-35m/sec의 속도로 급속냉각하여 미세결정질의 급속냉각형 분말로 제조하고, 그 분말을 적절한 입도로 분쇄하여 미세분말로 만들고, 그 미세분말을 300-900℃온도에서 0.5-2시간 열처리하여 자성분말로 제조하고, 그 자성분말에 커플링제를 자성분말의 중량 기준으로 0.5-2.0중량% 첨가하여 상기 자성분말을 표면처리하고, 그 표면처리된 자성분말에 지방족 카본산 에스테르를 열경화성 수지의 중량 기준으로 5-30중량% 첨가한 열경화성 수지를 자성분말의 중량 기준으로 1-5중량% 혼합하고 1-10ton/㎠의 압력으로 압축하여 압축성형체를 형성한 다음, 그 압축성형체를 진공드라이오븐(dry oven)에 넣고 120-180℃의 온도에서 1-4시간 가열경화처리하는 고주파용 철-규소 (Fe-Si) 압분자심 제조방법이 제공된다.The molten Fe-Si alloy is rapidly cooled at a speed of 8-35 m / sec to produce a microcrystalline rapid cooling powder, and the powder is pulverized into an appropriate particle to make a fine powder, and the fine powder is 300-900. Heat-treated at 0.5 ° C. for 0.5-2 hours to prepare a magnetic powder. To the magnetic powder, a coupling agent was added 0.5-2.0 wt% based on the weight of the magnetic powder to surface-treat the magnetic powder, and to the surface-treated magnetic powder. After mixing 5-5% by weight of the aliphatic carboxylic acid ester based on the weight of the thermosetting resin, 1-5% by weight based on the weight of the magnetic powder was mixed and compressed to a pressure of 1-10ton / cm 2 to form a compression molded article. A high-frequency iron-silicon (Fe-Si) powder core manufacturing method is disclosed in which the compression molded product is placed in a vacuum dry oven and heat-cured at a temperature of 120-180 ° C. for 1-4 hours.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서는 종래의 고주파용 Fe-Si 압분자심용 복합자성분말 제조시 사용되던 물분무법이나 가스분무법 또는 분쇄법을 사용하는 대신 기특허출원된(대한민국 특허출원 제93-61335호) 축출형 용융회전법을 사용한 급속냉각기술을 이용하여 Fe-Si 합금을 8-35m/sec의 급속냉각기의 회전체 속도(wheel speed)로 냉각시킴으로써 미세결정질(1-50㎛)의 급속냉각형 분말을 얻을 수 있다. 이때, 급속냉각기의 회전체 속도가 8m/sec 이하에서는 용융상태의 합금을 축출해내는 힘이 약하여 분말을 얻기 어렵고 회전체 속도가 35m/sec 이상이 되어도 상관은 없으나 작업상 문제가 있으므로 회전체 속도를 8-35m/sec로 하는 것이 바람직하다.In the present invention, instead of using a water spray method, a gas spray method or a pulverization method used in manufacturing a conventional high-frequency Fe-Si powdered core composite powder for pulverization (ex. Korean Patent Application No. 93-61335) Fast cooling powder of microcrystalline (1-50㎛) can be obtained by cooling the Fe-Si alloy at the wheel speed of the 8-35m / sec rapid cooler using the rapid cooling technique using the method. . At this time, if the rotor speed of the rapid cooler is 8 m / sec or less, the force of discharging the alloy in the molten state is weak to obtain powder, and the rotor speed may be more than 35 m / sec. Is preferably 8-35 m / sec.

분말의 입자형태는 플레이크(flake)상으로 헥산(Hexane), 아세톤(Aceton), 알코올(Alcohol) 등의 유기용매나 아르곤 가스 등의 불활성분위기 혹은 공기중에서 분쇄과정을 통하여 250 메쉬(mesh)이하의 입도로 제조할 수 있다. 또, 산화하기 쉬운 Si 등의 산화에 의해 자성이 저하되는 현상은 거의 없어 연자기 특성향상에 유익하다.The particle shape of the powder is flakes of 250 mesh or less through crushing in organic solvents such as hexane, acetone and alcohol, inert atmosphere such as argon gas or air. It can be produced by particle size. In addition, there is almost no phenomenon that the magnetism is degraded by oxidation of Si or the like which is easy to oxidize, which is advantageous in improving soft magnetic properties.

상기와 같이 분쇄된 급냉분말을 진공 혹은 아르곤(Ar)이나 수소가스 분위기중에서 300-900℃ 온도에서 0.5-2시간 열처리를 행한다. 이같은 열처리에 따라 분쇄중 생긴 결함이 제거되고 그 결과 연자기 특성이 향상된다. 열처리 온도가 300℃ 이하이면 열처리 효과가 적고, 900℃ 이상에서는 온도가 너무 높아 분말끼리 소결되는 현상이 일어나므로 다시 부수어야만 한다. 또, 열처리 시간을 30분 이하로 하면 열처리효과가 적고 2시간 이상이면 열처리 효과에 비해 경제적으로 손해이므로 열처리는 0.5-2시간 행하는 것이 바람직하다.The quenched powder pulverized as described above is subjected to a heat treatment for 0.5-2 hours at a temperature of 300-900 ° C. in a vacuum or argon (Ar) or hydrogen gas atmosphere. This heat treatment eliminates defects generated during grinding, resulting in improved soft magnetic properties. If the heat treatment temperature is 300 ° C. or less, the heat treatment effect is small. At 900 ° C. or more, the temperature is too high, so that powders are sintered and have to be broken again. If the heat treatment time is 30 minutes or less, the heat treatment effect is less. If the heat treatment time is 2 hours or more, the heat treatment is economically disadvantageous compared to the heat treatment effect. Therefore, the heat treatment is preferably performed for 0.5-2 hours.

상기와 같이 제조된 자성분말을 커플링제(Coupling Agent)를 사용하여 표면처리를 한다. 이 표면처리는 자성분말에 윤활성을 부여하고, 분산성 및 성형가공성을 향상시킴으로써 압분자심의 연자기특성 및 기계적 강도의 향상을 가져오게 된다.The magnetic powder prepared as described above is subjected to a surface treatment using a coupling agent. This surface treatment gives lubricity to magnetic powder and improves dispersibility and molding processability, thereby bringing about improvement of soft magnetic properties and mechanical strength of the green powder core.

본 발명에서 사용한 커플링제로는 실란(silane)계로서, r-아미노프로필 트리에톡시 실란(gamma-aminopropyl triethoxy silane), r-글리시드옥시프로필 트리메톡시 실란(gamma-glycidoxy propyl trimethoxy silane), r-메타크릴옥시프로필 트리메톡시 실란(gamma-methacryloxy propyl trimethoxy silane) 등이 적합하며, 그 첨가량은 자성분말의 중량 기준으로 0.5-2.0중량%가 바람직한데 그 이유는 0.5% 이하에서는 커플링제 처리효과가 불충분하고, 2.0% 이상에서는 미반응의 커플링제가 남아 오히려 자속밀도를 감소시키는 등의 악영향을 주기 때문이다.The coupling agent used in the present invention is a silane-based, r-aminopropyl triethoxy silane (gamma-aminopropyl triethoxy silane), r-glycidoxy propyl trimethoxy silane (gamma-glycidoxy propyl trimethoxy silane), r-methacryloxypropyl trimethoxy silane is suitable, and the amount of addition is preferably 0.5-2.0% by weight based on the weight of the magnetic powder. This is because the effect is insufficient, and at 2.0% or more, an unreacted coupling agent remains, which adversely affects the magnetic flux density.

본 발명에 있어서, 자성분말의 표면처리는 실란계 커플링제가 액상이므로 그대로 직접 혼합해도 좋지만, 자성분말에 균일하게 피복되도록 하기 위하여 알콜이나 아세톤 등의 용제를 혼합하여 사용하는 것이 바람직하다. 이때의 표면처리는 실온 혹은 100℃ 미만에서 행하는 것이 보통이다.In the present invention, the surface treatment of the magnetic powder may be directly mixed as it is because the silane coupling agent is a liquid, but it is preferable to use a solvent such as alcohol or acetone in order to uniformly coat the magnetic powder. Surface treatment at this time is usually performed at room temperature or less than 100 degreeC.

상기와 같은 커플링제로 표면처리한 자성분말에 지방족 카본산 에스테르(Ester)를 첨가한 열경화성 수지를 자성분말의 중량 기준으로 1-5중량% 혼합하는데, 열경화성 수지에 지방족 카본산 에스테르를 첨가하면 분말과 수지간의 마찰과 수지내부의 극성기(dipole)간에 생기는 상호작용을 감소시켜 주어 자성분말의 충진량이 증가하므로 자속밀도가 향상된다.1-5% by weight of the thermosetting resin to which the aliphatic carboxylic acid ester (Ester) is added to the magnetic powder surface-treated with the coupling agent as described above is based on the weight of the magnetic powder, and when the aliphatic carboxylic acid ester is added to the thermosetting resin, The friction between the resin and the resin and the interaction between the dipoles in the resin are reduced, so that the amount of filling of the magnetic powder increases, thereby increasing the magnetic flux density.

상기한 지방족 카본산 에스테르는 스테아린산 에칠, 올레인산 에칠, 리놀산 메칠 등이 있으며, 그 첨가량은 열경화성 수지의 중량 기준으로 5-30중량%가 바람직한데, 그 이유는 5% 이하에서는 그 효과가 적고, 30% 이상에서는 오히려 자속밀도에 악영향을 주기 때문이다.The aliphatic carboxylic acid esters include stearic acid ethyl, oleic acid ethyl, linoleic acid methyl, etc., and the amount of the aliphatic carboxylic acid ester is preferably 5-30% by weight based on the weight of the thermosetting resin, because the effect is less than 5%, 30 This is because the percentage of magnetic flux is adversely affected at more than%.

또한 열경화성 수지는 특별히 한정되어 있지는 않으나 에폭시 수지가 바람직하며, 열경화성 수지의 양이 5중량% 이상에서는 수지의 양이 너무 많아 성형에 좋지 못한 영향을 주며 자속밀도가 떨어지고 1중량% 이하에서는 얻어진 압분자심의 강도가 저하되므로 열경화성 수지의 양은 자성분말에 대하여 1-5중량%가 바람직하다.In addition, the thermosetting resin is not particularly limited, but an epoxy resin is preferable, and when the amount of the thermosetting resin is 5% by weight or more, the amount of the resin is too large, which adversely affects molding, and the magnetic powder density is lowered and the obtained green powder is less than 1% by weight. Since the strength of the shim decreases, the amount of the thermosetting resin is preferably 1 to 5% by weight based on the magnetic powder.

상기와 같이 제조된 복합자성분말을 1-10ton/㎠의 압력으로 성형하여 성형체를 제조하는 것이 바람직한데, 성형압이 1ton/㎠이하에서는 성형압이 낮아 강도를 유지하기 어렵고 10ton/㎠ 이상에서는 성형압이 높아 금형의 손상이 심하다.It is preferable to form a molded body by molding the composite powder prepared as described above at a pressure of 1-10ton / ㎠, the molding pressure is less than 1ton / ㎠ it is difficult to maintain the strength because the molding pressure is lower than 10ton / ㎠ The pressure is high and the mold is severely damaged.

상기 방법으로 얻어진 성형체를 진공 드라이 오븐(dry oven)에 넣고 120-180℃의 온도에서 1-4시간 가열하여 경화시켜 고주파용 Fe-Si 압분자심을 제조한다. 경화온도 및 경화시간의 설정은 에폭시 수지가 완전히 3차원적으로 망상구조를 갖는 범위에서 적절히 결정되어야 한다.The molded article obtained by the above method is placed in a vacuum dry oven and cured by heating at a temperature of 120-180 ° C. for 1-4 hours to produce a Fe-Si powder core for high frequency. The setting of the curing temperature and the curing time should be appropriately determined in the range in which the epoxy resin has a network structure completely three-dimensionally.

이하, 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

[실시예 1]Example 1

Fe 인곳트(ingot)와 Si을 Fe-3.5∼6.5 wt%(이하 %)Si 조성으로 칭량한 후 아르곤(Ar) 분위기 중에서 플라즈마 아크로 완전 용융한 후 축출형 용융회전기에 의해 리본 형상의 급냉분말을 제조하였으며, 이때의 냉각속도, 즉 냉각회전체의 회전속도는 16m/sec로 하였다.Fe ingot and Si were weighed with Fe-3.5 to 6.5 wt% (hereinafter%) Si composition and completely melted with a plasma arc in an argon (Ar) atmosphere. The cooling speed at this time, that is, the rotation speed of the cooling rotor was 16 m / sec.

이와 같이하여 제조된 급냉리본을 평균두께가 10-20㎛이며, X-선 회절분석을 행한 결과 모두 결정질 조직으로 나타났다.The quench ribbon thus prepared had an average thickness of 10-20 µm, and X-ray diffraction analysis showed that all were crystalline.

상기와 같이 제조된 급냉분말을 아르곤 분위기중에서 로터밀(rotor mill)을 사용하여 분쇄한 후 ASTM E11에서 규정한 100메쉬(mesh) 및 400메쉬의 체(sieve)를 사용, 분급하여 38-150㎛ 입도의 분말을 얻었다. 이들 분말을 진공중에서 500℃에서 30분 열처리를 행하여 자성분말을 얻었다. 자성분말의 표면처리를 위하여 커플링제로서 r-아미노프로필 트리에톡시 실란을 0.5중량%로 에칠알콜(ethyl alcohol)에 희석시킨 후 자성분말을 함침시켜 자성분말 표면에 골고루 묻도록 교반한 후, 건조시켜 알콜을 제거시켰다.The quenched powder prepared as described above was pulverized using a rotor mill in argon atmosphere, and then classified using a mesh of 100 mesh and 400 mesh as specified in ASTM E11. A powder of particle size was obtained. These powders were heat-treated at 500 ° C. for 30 minutes in a vacuum to obtain magnetic powder. For surface treatment of magnetic powder, r-aminopropyl triethoxy silane as a coupling agent was diluted in 0.5% by weight of ethyl alcohol, impregnated with magnetic powder, and stirred to evenly coat the surface of magnetic powder, and then dried. Alcohol was removed.

커플링제가 표면처리된 상기 각 자성분말을 자성분말 97.5중량%에 스테아린산 에칠이 20중량% 첨가된 에폭시 수지 2.5중량%를 혼합한 후 그 혼합물을 8ton/㎠의 수직압력으로 코아형태로 압축성형하여 얻어진 성형체를 진공 드라이 오븐에서 150℃의 온도로 1시간 가열 경화처리하여 Fe-Si 압분자심을 얻었다.Each of the magnetic powders on which the coupling agent was surface-treated was mixed with 97.5% by weight of the magnetic powder and 2.5% by weight of an epoxy resin containing 20% by weight of stearic acid ethyl, and the mixture was compression molded into a core form at a vertical pressure of 8 ton / cm 2. The obtained molded product was heat-cured at a temperature of 150 ° C. in a vacuum dry oven for 1 hour to obtain a Fe—Si powder core.

상기와 같이 제조된 압분자심에 대하여 1㎑의 고주파에서 0.1T의 자속밀도일 때의 연자기 특성을 측정하고 그 값을 하기 표 1에 나타내엇다(발명예1-4). 한편, 상기와 같이하여 얻은 급속냉각형 분말에 대하여 후속공정처리(미세분말의 열처리-표면처리-열경화성수지처리)를 하지 않고 압분자심을 제조한 다음 연자기특성을 측정하여 하기 표 1에 나타내었다(비교예 1).The soft magnetic properties of the magnetic powder core prepared as described above at a magnetic flux density of 0.1T at a high frequency of 1 Hz were measured and the values thereof are shown in Table 1 below (Invention Example 1-4). On the other hand, for the rapid-cooled powder obtained as described above to prepare the powder core without the subsequent process treatment (heat treatment-surface treatment-thermosetting resin treatment of fine powder) and then the soft magnetic properties are shown in Table 1 below (Comparative Example 1).

상기 표1에 나타난 바와 같이 본 발명에 따라 제조된 압분자심이 우수한 연자기 특성을 나타냄을 알 수 있다.As shown in Table 1, it can be seen that the green powder core prepared according to the present invention exhibits excellent soft magnetic properties.

[실시예 2]Example 2

Fe 인곳트(ingot)와 Si을 Fe-6.5% Si 조성으로 칭량한 후 아르곤 분위기 중에서 플라즈마 아크로 완전 용융한 후 축출형 용융회전기에 의해 리본 형상의 급냉분말을 제조하였으며, 이때의 냉각속도, 즉 냉각회전체의 회전속도는 16m/sec로 하였다.Fe ingot and Si were weighed in a Fe-6.5% Si composition and completely melted with a plasma arc in an argon atmosphere, and then a ribbon-shaped quench powder was manufactured by an ejection-type melting rotor. The rotation speed of the rotating body was 16 m / sec.

이와 같이하여 제조된 급냉리본은 평균두께가 10-20㎛이며, X-선 회절분석을 행한 결과 모두 결정질 조직으로 나타났다.The quench ribbon thus prepared had an average thickness of 10-20 µm, and all of the quench ribbons were crystalline structures as a result of X-ray diffraction analysis.

상기와 같이 제조된 급냉분말을 아르곤 분위기중에서 로터 밀(rotor mill)을 사용하여 분쇄한 후 ASTM E11에서 규정한 100메쉬(mesh) 및 400메쉬의 체(sieve)를 사용·분급하여 38-150㎛ 입도의 분말을 얻었다. 이들 분말을 진공중에서 400-900℃에서 0.5-2시간 열처리를 행하여 자성분말을 얻었다. 자성분말의 표면처리를 위하여 커플링제로서 r-아미노프로필 트리에톡시 실란 0.5중량%를 에칠알콜(ethyl alcohol)에 희석시킨 후 자성분말을 함침시켜 자성분말 표면에 골고루 묻도록 교반한 후 건조시켜 알콜을 제거시켰다.The quenched powder prepared as described above was pulverized using a rotor mill in an argon atmosphere, and then 100-mesh and 400-mesh sieves specified in ASTM E11 were used and classified to 38-150 μm. A powder of particle size was obtained. These powders were heat-treated in vacuum at 400-900 ° C. for 0.5-2 hours to obtain magnetic powder. For surface treatment of magnetic powder, 0.5% by weight of r-aminopropyl triethoxy silane as a coupling agent was diluted in ethyl alcohol, and then impregnated with magnetic powder to stir evenly on the surface of the magnetic powder, and then dried and dried. Was removed.

커플링제가 표면처리된 상기 각 자성분말을 자성분말 97.5중량%에 스테아린산 에칠이 20중량% 첨가된 에폭시 수지 2.5중량%를 혼합한 후, 그 혼합물을 8ton/㎠의 수직압력으로 코아형태로 압축성형하여 얻어진 성형체를 진공 드라이 오븐에서 150℃의 온도로 1시간 가열 경화처리하여 Fe-Si 압분자심을 얻었다.Each of the magnetic powders on which the coupling agent was surface-treated was mixed with 97.5% by weight of the magnetic powder and 2.5% by weight of an epoxy resin containing 20% by weight of stearic acid ethyl, and then the mixture was compression molded into a core form at a vertical pressure of 8ton / cm 2. The obtained molded product was heat-cured for 1 hour at a temperature of 150 ° C. in a vacuum dry oven to obtain a Fe—Si powder core.

상기와 같이 제조된 압분자심에 대하여 1㎑의 고주파에서 0.1T의 자속밀도일 때의 연자기 특성을 측정하고 그 값을 하기 표 1에 나타내었다(발명예5-8). 한편, 상기와 같이 하여 얻은 급속냉각형 분말에 대하여 후속공정처리(미세분말의 열처리-표면처리-열경화성수지처리)를 하지 않고 압분자심을 제조한 다음 연자기특성을 측정하여 하기 표 2에 나타내었다(비교예 2).The soft magnetic properties of the magnetic powder cores prepared as described above at a magnetic flux density of 0.1T at a high frequency of 1 kHz were measured and their values are shown in Table 1 below (Invention Example 5-8). On the other hand, for the rapid-cooled powder obtained as described above, the powder powder core was prepared without subsequent process treatment (heat treatment-surface treatment-thermosetting resin treatment of fine powder), and the soft magnetic properties were measured and shown in Table 2 below. (Comparative Example 2).

상기 표2에 나타난 바와 같이 본 발명에 따라 제조된 압분자심이 우수한 연자기 특성을 나타냄을 알 수 있다.As shown in Table 2, it can be seen that the green powder core prepared according to the present invention exhibits excellent soft magnetic properties.

Claims (7)

용융상태의 Fe-Si 합금을 8-35m/sec의 속도로 급속냉각하여 미세결정질의 급속냉각형 분말로 제조하는 단계; 상기 급속냉각형 분말을 적절한 입도의 미세분말로 분쇄하고 그 미세분말을 300-900℃온도에서 0.5-2시간 열처리하여 자성분말로 제조하는 단계; 상기 자성분말에 커플링제를 자성분말의 중량 기준으로 0.5-2.0-중량% 첨가하여 그 자성분말을 표면처리하는 단계; 상기 표면처리된 자성분말에 지방족 카본산 에스테르를 열경화성수지의 중량 기준으로 5-30중량% 첨가한 열경화성 수지를 자성분말의 중량 기준으로 1-5중량% 혼합하고 1-10ton/㎠의 압력으로 압축하여 압축성형체를 형성하는 단계; 상기 압축성형체를 진공드라이오븐(dry oven)에 넣고 120-180℃의 온도에서 1-4시간 가열경화처리하는 단계;를 포함하는 고주파용 철-규조(Fe-Si) 압분자심 제조방법.Rapidly cooling the molten Fe-Si alloy at a speed of 8-35 m / sec to prepare a microcrystalline rapid cooling powder; Grinding the rapid cooling powder into fine powder having an appropriate particle size and heat-treating the fine powder at 300-900 ° C. for 0.5-2 hours to prepare a magnetic powder; Adding 0.5-2.0-% by weight of a coupling agent to the magnetic powder based on the weight of the magnetic powder to surface-treat the magnetic powder; 1-5% by weight of the thermosetting resin added 5-30% by weight of the aliphatic carboxylic acid ester on the basis of the weight of the thermosetting resin to the surface-treated magnetic powder and compressed to a pressure of 1-10ton / ㎠ To form a compression molded body; The compression molded product is placed in a vacuum dry oven (dry oven) and heat-cured for 1-4 hours at a temperature of 120-180 ℃; high-frequency iron-diameter (Fe-Si) powder core manufacturing method comprising a. 제1항에 있어서, 상기 급속냉각형 분말의 분쇄는 유기용매나 불활성분위기 혹은 공기 중에서 행하며, 분쇄된 미세분말의 입도는 250메쉬(mesh)이하임을 특징으로 하는 고주파용 철-규소(Fe-Si) 압분자심 제조방법.The method of claim 1, wherein the rapid cooling powder is pulverized in an organic solvent, an inert atmosphere or air, and the fine particle size of the pulverized fine powder (Fe-Si) is characterized in that less than 250 mesh (mesh) ) Powdered core manufacturing method. 제1항 또는 제2항에 있어서, 상기 미세분말의 열처리는 진공 혹은 아르곤이나 수소가스 분위기중에서 행함을 특징으로 하는 고주파용 철-규소(Fe-Si) 압분자심 제조방법.3. The method of claim 1 or 2, wherein the heat treatment of the fine powder is performed in a vacuum or in an argon or hydrogen gas atmosphere. 제1항에 있어서, 상기 커플링제는 실란계임을 특징으로 하는 고주파용 철-규소(Fe-Si) 압분자심 제조방법.The method of claim 1, wherein the coupling agent is a silane-based iron-silicon (Fe-Si) powder core manufacturing method for high frequency. 제4항에 있어서, 상기 커플링제로 사용된 실란계는 r-아미노프로필 트리에톡시 실란(gamma-aminopropyl triethoxy silane), r-글리시드옥시프로필 트리메톡시 실란(gamma-glycidoxy propyl trimethoxy silane) 및 r-메타크릴옥시프로필 트리메톡시 실란(gamma-methacryloxy propyl trimethoxy silane)으로 구성되는 그룹에서 선택됨을 특징으로 하는 고주파용 철-규소(Fe-Si) 압분자심 제조방법.The method of claim 4, wherein the silane system used as the coupling agent is r-aminopropyl triethoxy silane (gamma-aminopropyl triethoxy silane), r-glycidoxy propyl trimethoxy silane (gamma-glycidoxy propyl trimethoxy silane) and Iron-silicon (Fe-Si) powder core manufacturing method for high frequency, characterized in that selected from the group consisting of r- methacryloxy propyl trimethoxy silane (gamma-methacryloxy propyl trimethoxy silane). 제1항에 있어서, 상기 열경화성 수지는 에폭시 수지임을 특징으로 하는 고주파용 철-규소(Fe-Si) 압분자심 제조방법.According to claim 1, wherein the thermosetting resin is a high-frequency iron-silicon (Fe-Si) powder core manufacturing method characterized in that the epoxy resin. 제1항에 있어서, 상기 지방족 카본산 에스테르는 스테아린산 에칠, 올레인산 에칠, 및 리놀산 메칠로 구성되는 그룹에서 선택됨을 특징으로 하는 고주파용 철-규소(Fe-Si) 압분자심 제조방법.The method of claim 1, wherein the aliphatic carboxylic acid ester is selected from the group consisting of stearic acid ethyl, oleic acid ethyl, and linoleic acid methyl.
KR1019950058504A 1995-12-27 1995-12-27 Method for fe-si magnet core KR0163806B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950058504A KR0163806B1 (en) 1995-12-27 1995-12-27 Method for fe-si magnet core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950058504A KR0163806B1 (en) 1995-12-27 1995-12-27 Method for fe-si magnet core

Publications (2)

Publication Number Publication Date
KR970033294A KR970033294A (en) 1997-07-22
KR0163806B1 true KR0163806B1 (en) 1999-01-15

Family

ID=19444975

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950058504A KR0163806B1 (en) 1995-12-27 1995-12-27 Method for fe-si magnet core

Country Status (1)

Country Link
KR (1) KR0163806B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040056536A (en) * 2002-12-24 2004-07-01 재단법인 포항산업과학연구원 METHOD OF PREPARING Fe-Ni POWDER COMPACTING CORE FOR HIGH FREQUNCY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396045B1 (en) * 2000-01-28 2003-08-27 (주)창성 Silicon steel powder processing method for soft magnetic core material and soft magnetic core processing method using this powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040056536A (en) * 2002-12-24 2004-07-01 재단법인 포항산업과학연구원 METHOD OF PREPARING Fe-Ni POWDER COMPACTING CORE FOR HIGH FREQUNCY

Also Published As

Publication number Publication date
KR970033294A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
JP5412425B2 (en) Composite magnetic material and method for producing the same
US6635122B2 (en) Methods of making and using annealable insulated metal-based powder particles
US6827557B2 (en) Amorphous alloy powder core and nano-crystal alloy powder core having good high frequency properties and methods of manufacturing the same
CN113724958B (en) Preparation method for producing iron-based soft magnetic iron core based on reduced iron powder alloying
EP0757840B1 (en) Heat treating of magnetic iron powder
KR20070085168A (en) Method for producing powder compound cores made from nano-crystalline magnetic material
JP2007092162A (en) Highly compressive iron powder, iron powder for dust core using the same and dust core
EP0383035B1 (en) Iron-silicon alloy powder magnetic cores and method of manufacturing the same
CN110718348A (en) High BsPreparation method of high-frequency low-loss nanocrystalline magnetic powder core
JP2002170707A (en) Dust core having high electric resistance and its manufacturing method
KR100396045B1 (en) Silicon steel powder processing method for soft magnetic core material and soft magnetic core processing method using this powder
KR0163806B1 (en) Method for fe-si magnet core
JPS6321807A (en) Electromagnetic component made from amorphous alloy powder and manufacture thereof
JPH0534814B2 (en)
KR100256358B1 (en) The manufacturing method for sintering magnetic alloy with fe-si line
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
KR0128136B1 (en) Prodocing method of al-ni-co magnetic powder
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
KR20040042214A (en) FABRICATION PROCESS OF SMD CORE USING Fe-Si ALLOY POWDER
KR0128137B1 (en) Producing method of al-ni-co complex magnetic powder
CN111745152B (en) Soft magnetic alloy powder, electronic component, and method for producing same
KR100499013B1 (en) Fe-Si alloy powder cores and fabrication process thereof
KR100344009B1 (en) Nano-crystal alloy powder cores for high frequency range and method for making the same
KR20040056536A (en) METHOD OF PREPARING Fe-Ni POWDER COMPACTING CORE FOR HIGH FREQUNCY
KR20180061508A (en) Fabricationg method of soft magnet powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020116

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee