KR0160093B1 - Method of forming oxide film - Google Patents

Method of forming oxide film Download PDF

Info

Publication number
KR0160093B1
KR0160093B1 KR1019950024136A KR19950024136A KR0160093B1 KR 0160093 B1 KR0160093 B1 KR 0160093B1 KR 1019950024136 A KR1019950024136 A KR 1019950024136A KR 19950024136 A KR19950024136 A KR 19950024136A KR 0160093 B1 KR0160093 B1 KR 0160093B1
Authority
KR
South Korea
Prior art keywords
oxide film
substrate
silicon layer
selectively
porous silicon
Prior art date
Application number
KR1019950024136A
Other languages
Korean (ko)
Other versions
KR970013099A (en
Inventor
이종현
Original Assignee
손병기
경북대학교센서기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손병기, 경북대학교센서기술연구소 filed Critical 손병기
Priority to KR1019950024136A priority Critical patent/KR0160093B1/en
Publication of KR970013099A publication Critical patent/KR970013099A/en
Application granted granted Critical
Publication of KR0160093B1 publication Critical patent/KR0160093B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor

Abstract

본 발명은 실리콘기판상에 산화막을 형성하는 방법에 관한 것으로서, n형실리콘기판에 선택적으로 n+불순물을 확산시켜 상기 n형 실리콘기판의 상면 소정부분에 n+확산영역을 형성하는 단계와; 양극반응을 수행하여 상기 n+확산영역을 다공질실리콘층으로 만드는 단계 및; 상기 다공질실리콘층을 산화시켜 산화막을 형성하는 단계로 이루어져 종래 여타 산화막 형성방법에 비해 값싸고 간편한 방법으로 짧은 시간에 두꺼운 산화막을 선택적으로 성장시킬 수 있는 기판상에 두꺼운 산화막을 선택적으로 형성하는 방법이다.The present invention relates to a method of forming an oxide film on a silicon substrate, the method comprising the steps of forming an n + diffusion region on a predetermined portion of the upper surface of the n-type silicon substrate by selectively diffusing n + impurities on the n-type silicon substrate; Performing an anodic reaction to make the n + diffusion region into a porous silicon layer; Comprising the step of oxidizing the porous silicon layer to form an oxide film is a method of selectively forming a thick oxide film on the substrate that can selectively grow a thick oxide film in a short time in a cheap and simple way compared to other oxide film forming method conventionally .

Description

기판상에 두꺼운 산화막을 선택적으로 형성하는 방법How to selectively form a thick oxide film on the substrate

제1도(a) 내지 (c)는 본 발명의 방법에 따른 산화막의 제조공정을 설명하기 위한 단면도.1 (a) to (c) are cross-sectional views for explaining a manufacturing process of an oxide film according to the method of the present invention.

제2도는 본 발명의 방법에 의해 선택적으로 형성된 3-스텝의 서로 다른 두께를 갖는 산화막패턴의 표면사진.2 is a photograph of the surface of an oxide film pattern having different thicknesses of 3-steps selectively formed by the method of the present invention.

제3도(a)는 본 발명의 방법에 의해 선택적으로 형성된 3-스텝의 서로다른 두께를 갖는 산화막의 단면 SEM사진.Figure 3 (a) is a cross-sectional SEM photograph of an oxide film having different thicknesses of three steps selectively formed by the method of the present invention.

제3도(b)는 제3도(a)에 나타낸 사진을 도면으로 나타낸 산화막의 단면도다.FIG. 3B is a cross-sectional view of the oxide film in which the photograph shown in FIG. 3A is illustrated.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : n형 실리콘기판 2 : n+확산영역1: n-type silicon substrate 2: n + diffusion region

3 : 다공질 실리콘층 4 : 산화된 다공질실리콘3: porous silicon layer 4: oxidized porous silicon

본 발명은 실리콘기판상에 산화막을 선택적으로 형성하는 방법에 관한 것으로서, 특히 서로 다른 두께를 가지는 두꺼운 산화막인 풀리리세스드(Fully Recessed)된 산화막을 실리콘기판의 선택된 위치에 형성하는 기판상에 두꺼운 산화막을 선택적으로 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively forming an oxide film on a silicon substrate. In particular, a thick oxide film on a substrate for forming a fully recessed oxide film, which is a thick oxide film having a different thickness, at a selected position of a silicon substrate. It relates to a method for selectively forming a.

일반적으로 마이크로웨이브 집적회로등 두꺼운 절연기판을 필요로하는 기술이 많으며, 이러한 기술에 사용하고자 실리콘기판 위에 두꺼운 산화막을 형성하고자 하는 많은 노력이 있었고, 이는 두꺼운 산화막을 실리콘기판상에 재현성 있게 형성하는 공정의 개발을 필요로 하였다.In general, there are many technologies requiring a thick insulating substrate such as a microwave integrated circuit, and there have been many efforts to form a thick oxide film on a silicon substrate for use in such a technology, which is a process of reproducibly forming a thick oxide film on a silicon substrate. Needed to develop.

현재 집적회로 공정에 이용되는 산화막은 전기적인 분리나, 게이트의 절연체, 유전체 혹은 표면보호막 등의 용도로 사용되고 있으며, 그 용도에 따라 요구되는 특성은 조금씩 차이가 있으나 높은 항복전압, 높은 유전상수, 좋은 계면특성 및 좋은 표면 평탄특성을 가져야 한다. 이러한 특성을 얻기 위하여 종래부터 열산화법으로 산화막을 실리콘기판상에 성장시키는 방법이나, CVD(chemical vapor deposition)법 혹은 SOG(spin-on-glass)법 등 증착법으로 산화막을 실리콘기판상에 증착시키는 방법이 주로 사용되고 있다.Currently, oxide film used in integrated circuit process is used for electrical separation, insulator of gate, dielectric or surface protection film, and the characteristics required by its use are slightly different but high breakdown voltage, high dielectric constant, good It should have interfacial properties and good surface flatness. In order to obtain these characteristics, conventionally, a method of growing an oxide film on a silicon substrate by thermal oxidation, or a method of depositing an oxide film on a silicon substrate by vapor deposition such as chemical vapor deposition (CVD) or spin-on-glass (SOG) This is mainly used.

그러나 종래의 열산화법에 의해 성장된 산화막은 산화막 자체의 제반특성은 우수하나 제조공정시 높은 온도를 필요로하게 된다고하는 문제점이 있으며, 종래의 증착방법은 수㎛ 이상의 산화막을 얻을 수는 있으나 산화막의 제반특성이 열악하다고 하는 문제점 뿐만 아니라 산화막을 선택적으로 증착하기가 쉽지 않다고 하는 문제점이 있다.However, the oxide film grown by the conventional thermal oxidation method has a problem that the oxide film itself has excellent characteristics, but requires a high temperature during the manufacturing process, and the conventional deposition method can obtain an oxide film of several μm or more, Not only is there a problem that the overall characteristics are poor, there is a problem that it is not easy to selectively deposit an oxide film.

본 발명은 상기한 종래 산화막형성 방법이 갖는 제반 문제점들을 해결하기 위하여 발명한 것으로서, 다공질 실리콘층을 산화하여 플리리세스드(fully recessed)된 수천Å∼수십㎛까지의 서로 다른 두께의 산화막을 임의형상으로 구현하는 기판상에 두꺼운 산화막을 선택적으로 형성하는 방법을 제공함에 그 목적이 있다.The present invention has been invented to solve various problems of the conventional oxide film forming method, and has an arbitrary shape of oxide films having different thicknesses ranging from thousands to several tens of micrometers that are completely recessed by oxidizing a porous silicon layer. It is an object of the present invention to provide a method for selectively forming a thick oxide film on a substrate to be implemented.

상기한 목적을 달성하기 위한 본 발명의 산화막 형성방법은 n형 실리콘기판에 선택적으로 n+불순물을 확산시켜 상기 n형 실리콘기판의 상면소정부분에 n+확산영역을 형성하는 단계와; 양극반응을 수행하여 상기 n+확산영역을 다공질실리콘층으로 만드는 단계 및; 상기 다공질실리콘층을 산화시켜 산화막을 형성하는 단계로 이루어진다.The oxide film forming method of the present invention for achieving the above object comprises the steps of forming an n + diffusion region in a predetermined portion of the upper surface of the n-type silicon substrate by selectively diffusing n + impurities on the n-type silicon substrate; Performing an anodic reaction to make the n + diffusion region into a porous silicon layer; Oxidizing the porous silicon layer to form an oxide film.

이하 첨부도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[실시예]EXAMPLE

제1도(a) 내지 (c)는 본 발명의 방법에 따른 산화막의 제조공정을 설명하기 위한 단면도, 제2도는 본 발명의 방법에 의해 선택적으로 형성된 3-스텝(3-step)의 서로 다른 두께를 갖는 산화막패턴의 표면사진, 제3도(a)는 본 발명의 방법에 의해 선택적으로 형성된 3-스텝(3-step)의 서로 다른 두께를 갖는 산화막의 단면 SEM 사진, 제3도(b)는 제3도(a)에 나타낸 사진을 도면으로 나타낸 산화막의 단면도로서, 먼저 제1도(a)에 도시한 바와 같이 800℃∼1000℃의 산소(O2) 분위기에서 비저항이 5∼12Ω·㎝이고 결정방향100인 n형실리콘기판(1)의 상면 소정부분에 25∼35분동안 n+불순물을 확산시켜 n+확산영역(2)을 형성한다.1 (a) to (c) are cross-sectional views for explaining the manufacturing process of the oxide film according to the method of the present invention, and FIG. 2 is a three-step different step selectively formed by the method of the present invention. Surface photograph of an oxide film pattern having a thickness, FIG. 3 (a) is a cross-sectional SEM photograph of an oxide film having a different thickness of three-step selectively formed by the method of the present invention, FIG. ) Is a cross-sectional view of the oxide film showing the photograph shown in FIG. 3 (a). As shown in FIG. 1 (a), the resistivity is 5 to 12 kPa in an oxygen (O 2 ) atmosphere of 800 ° C to 1000 ° C. N + impurities are diffused for 25 to 35 minutes to a predetermined portion of the upper surface of the n-type silicon substrate 1 in the crystal direction 100 in cm to form the n + diffusion region 2.

다음, 제1도(b)에 도시한 바와같이 20%의 불산용액(48wt% HF:C2H5OH:H2ONext, a hydrofluoric acid solution of 20% as shown in Fig. 1 (b) (48wt% HF: C 2 H 5 OH: H 2 O

=10:7:7)에서 21.5㎃∼28.5㎃의 전류를 45∼55초 동안 인가하는 것에 의해 양극반응을 수행하여 n+확산영역(2)을 다공질실리콘층(3 ; PLS)으로 만든다.= 10: 7: 7), an anodic reaction is performed by applying a current of 21.5 mA to 28.5 mA for 45 to 55 seconds to make the n + diffusion region 2 into the porous silicon layer 3 (PLS).

마지막으로 제1도(c)에 도시한 바와같이 400℃∼1100℃의 산소(O2) 분위기에서 상기 다공질실리콘층(3)을 산화시켜 3-스텝의 서로 다른 두께를 갖는 산화된 다공질 실리콘층(4)(OPSL ; oxdized porous silicon layer)을 얻었다.Finally, as shown in FIG. 1 (c), the porous silicon layer 3 is oxidized in an oxygen (O 2 ) atmosphere of 400 ° C. to 1100 ° C., thereby oxidizing the porous silicon layer having a three-step thickness. (4) (OPSL; oxdized porous silicon layer) was obtained.

상기한 실시예로서 얻어진 결과로서 선택적으로 형성된 3-스텝의 서로 다른 두께를 갖는 산화막패턴의 사진은 제2도와 같았다. 제2도에서 산화막의 두께는 각각 1㎛(A부분), 1.5㎛(B부분), 1.8㎛(C부분)이며, 산화막두께에 따라 칼라(color)가 A부분은 붉은 보라(Violet-red)색, B부분은 오렌지(Orange)색, C부분은 초록(Green)색으로 각각 나타났다.The photographs of the oxide film patterns having different thicknesses of three-steps selectively formed as a result obtained as the above-described embodiment were as shown in FIG. In FIG. 2, the thicknesses of the oxide films are 1 μm (part A), 1.5 μm (part B), and 1.8 μm (part C), respectively, and the color A is red violet depending on the thickness of the oxide film (Violet-red). Color, part B were orange, and part C was green.

제3도(a)는 본 발명의 방법에 의해 선택적으로 형성된 3-스텝의 서로다른 두께를 갖는 산화막의 단면사진, 제3도(b)는 제3도(a)에 나타낸 사진을 도면으로 나타낸 단면도로서, 제3도로부터 분명하게 알 수 있는 바와같이 본 발명의 방법에 의해 두께가 5000Å인 벌크산화막(bulk oxide)두께가 1㎛인 1-스텝 산화된 다공질 실리콘층(1-step OPSL), 두께가 1.5㎛인 2-스텝 산호된 다공질실리콘층(2-step OPSL), 두께가 1.8㎛인 3-스텝 산화된 다공질실리콘층(3-step OPSL)으로 정확하게 산화막을 형성시킬 수 있음을 알 수 있다.FIG. 3 (a) is a cross-sectional photograph of an oxide film having a different thickness of three steps selectively formed by the method of the present invention, and FIG. 3 (b) is a diagram showing the photograph shown in FIG. As a cross-sectional view, a one-step oxidized porous silicon layer (1-step OPSL) having a bulk oxide thickness of 1 μm by the method of the present invention as can be clearly seen from FIG. It can be seen that an oxide film can be accurately formed with a 2-step coral porous silicon layer (2-step OPSL) having a thickness of 1.5 µm and a 3-step oxidized porous silicon layer (3-step OPSL) having a thickness of 1.8 µm. have.

상기한 바와같이 본 발명에 따른 산화막의 형성방법은 종래 여타 산화막 형성방법에 비해 값싸고 간편한 방법으로 짧은 시간에 두꺼운 산화막을 선택적으로 성장시킬 수 있는 장점이 있다. 따라서 본 발명의 방법에 의해 얻어진 산화막은 특히 FED(field emittion display)나 파워디바이스(power device)등과 같은 높은 전압이 요구되는 소자의 절연막으로 활용하거나 실리콘 마이크로웨이브 집적회로의 제조시 전기적인 분리층이나 기판재료로 이용하기에 이상적이라고 기대되어 진다.As described above, the method of forming the oxide film according to the present invention has the advantage of selectively growing a thick oxide film in a short time by a cheap and simple method compared to other oxide film forming methods. Therefore, the oxide film obtained by the method of the present invention is particularly used as an insulating film for devices requiring high voltage, such as a field emission display (FED) or a power device, or an electrical separation layer in the manufacture of silicon microwave integrated circuits. It is expected to be ideal for use as a substrate material.

Claims (3)

n형 실리콘기판에 선택적으로 n+불순물을 확산시켜 상기 n형 실리콘 기판의 상면 소정부분에 n+확산영역을 형성하는 단계와; 양극반응을 수행하여 상기 n+확산영역을 다공질실리콘층으로 만드는 단계 및; 상기 다공질실리콘층을 산화시켜 산화막을 형성하는 단계를 포함하는 기판상에 두꺼운 산화막을 선택적으로 형성하는 방법.selectively diffusing n + impurities onto the n-type silicon substrate to form n + diffusion regions on a predetermined portion of an upper surface of the n-type silicon substrate; Performing an anodic reaction to make the n + diffusion region into a porous silicon layer; Selectively forming a thick oxide film on the substrate, comprising oxidizing the porous silicon layer to form an oxide film. 제1항에 있어서, 800℃∼1000℃의 산소(O2) 분위기에서 25∼35분동안 N+불순물을 확산시켜 N+확산영역을 형성하는 것을 특징으로 하는 기판상에 두꺼운 산화막을 선택적으로 형성하는 방법.The thick oxide film is selectively formed on a substrate according to claim 1, wherein N + diffusion is formed by diffusing N + impurities for 25 to 35 minutes in an oxygen (O 2 ) atmosphere of 800 ° C to 1000 ° C. How to. 제1항에 있어서, HF:C2H5OH:H2O=10:7:7인 불산용액에서 21.5㎃∼28.5㎃의 전류를 45∼55초 동안 인가하는 양극반응으로 다공질실리콘층을 형성하는 것을 특징으로 하는 기판상에 두꺼운 산화막을 선택적으로 형성하는 방법.The porous silicon layer according to claim 1, wherein the porous silicon layer is formed by an anode reaction applying a current of 21.5 mA to 28.5 mA for 45 to 55 seconds in a hydrofluoric acid solution having HF: C 2 H 5 OH: H 2 O = 10: 7: 7. And selectively forming a thick oxide film on the substrate.
KR1019950024136A 1995-08-04 1995-08-04 Method of forming oxide film KR0160093B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950024136A KR0160093B1 (en) 1995-08-04 1995-08-04 Method of forming oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950024136A KR0160093B1 (en) 1995-08-04 1995-08-04 Method of forming oxide film

Publications (2)

Publication Number Publication Date
KR970013099A KR970013099A (en) 1997-03-29
KR0160093B1 true KR0160093B1 (en) 1999-02-01

Family

ID=19422893

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950024136A KR0160093B1 (en) 1995-08-04 1995-08-04 Method of forming oxide film

Country Status (1)

Country Link
KR (1) KR0160093B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329751B1 (en) * 1995-12-16 2002-10-25 주식회사 하이닉스반도체 Method for forming oxide layer using porous silicon layer
JP2000294549A (en) * 1999-02-02 2000-10-20 Nec Corp Semiconductor device and manufacture of the same

Also Published As

Publication number Publication date
KR970013099A (en) 1997-03-29

Similar Documents

Publication Publication Date Title
US4209349A (en) Method for forming a narrow dimensioned mask opening on a silicon body utilizing reactive ion etching
US4400865A (en) Self-aligned metal process for integrated circuit metallization
US4510016A (en) Method of fabricating submicron silicon structures such as permeable base transistors
US4209350A (en) Method for forming diffusions having narrow dimensions utilizing reactive ion etching
US4234362A (en) Method for forming an insulator between layers of conductive material
US3849216A (en) Method of manufacturing a semiconductor device and semiconductor device manufactured by using the method
US4322883A (en) Self-aligned metal process for integrated injection logic integrated circuits
US3892606A (en) Method for forming silicon conductive layers utilizing differential etching rates
US4199384A (en) Method of making a planar semiconductor on insulating substrate device utilizing the deposition of a dual dielectric layer between device islands
KR20020094003A (en) Implantation process using sub-stoichiometric, oxygen doses at different energies
IE56041B1 (en) Method of fabricating a semiconductor device with a base region having a deep portion
US4758528A (en) Self-aligned metal process for integrated circuit metallization
US4005452A (en) Method for providing electrical isolating material in selected regions of a semiconductive material and the product produced thereby
US4722913A (en) Doped semiconductor vias to contacts
US3685140A (en) Short channel field-effect transistors
KR0160093B1 (en) Method of forming oxide film
US3933541A (en) Process of producing semiconductor planar device
US4244001A (en) Fabrication of an integrated injection logic device with narrow basewidth
US4608589A (en) Self-aligned metal structure for integrated circuits
JP3388590B2 (en) Method of manufacturing diode or Schottky clamp transistor
US3421205A (en) Fabrication of structures for semiconductor integrated circuits
KR100221543B1 (en) Manufacturing method of mmic substrate using porous silicon
KR930004024B1 (en) Manufacturing method of super conductor ic
KR100925136B1 (en) FORMATION OF PATTERNED SILICON-ON-INSULATORSOI/SILICON-ON-NOTHINGSON COMPOSITE STRUCTURE BY POROUS Si ENGINEERING
SU594838A1 (en) Method of making integrated circuit

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20041224

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee