KR0154401B1 - Aluminum alloy and the manufacturing method thereof - Google Patents

Aluminum alloy and the manufacturing method thereof

Info

Publication number
KR0154401B1
KR0154401B1 KR1019950000156A KR19950000156A KR0154401B1 KR 0154401 B1 KR0154401 B1 KR 0154401B1 KR 1019950000156 A KR1019950000156 A KR 1019950000156A KR 19950000156 A KR19950000156 A KR 19950000156A KR 0154401 B1 KR0154401 B1 KR 0154401B1
Authority
KR
South Korea
Prior art keywords
alloy
ductility
temperature
aluminum alloy
manufacturing
Prior art date
Application number
KR1019950000156A
Other languages
Korean (ko)
Other versions
KR960029473A (en
Inventor
문인기
박종우
김희수
Original Assignee
김은영
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김은영, 한국과학기술연구원 filed Critical 김은영
Priority to KR1019950000156A priority Critical patent/KR0154401B1/en
Publication of KR960029473A publication Critical patent/KR960029473A/en
Application granted granted Critical
Publication of KR0154401B1 publication Critical patent/KR0154401B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Abstract

본 발명은 고온연성이 우수한 고연성 알루미늄 합금 및 그 제조방법에 관한 것으로, 일반적으로 사용되는 특수 합금원소를 다량으로 첨가하는 방법 또는 분말야금법은 제조비가 고가이기 때문에 비경제적이고 실용성이 낮은 결함이 있다.The present invention relates to a high ductility aluminum alloy having excellent high temperature ductility, and a method for manufacturing the same, and a method of adding a large amount of a special alloy element generally used or powder metallurgy has a defect that is uneconomical and low in practicality because of high manufacturing cost. .

이에 본 발명은 용해하는 단계와, 합금원소 중 Mn과 Zr을 첨가하여 완전 용해하는 단계와, 온도를 일정하게 낮추고 합금원소인 Mg를 첨가하여 용해하는 단계와, 주조를 실시하는 단계의 순서로 수행하는 고연성 알루미늄의 제조방법과, 이 때의 합금원소를 Mg 3∼7%, Mn 0.3∼1.2%, Zr 0.05∼0.25%의 함량으로 첨가하는 알루미늄 합금을 제공하여 적절한 합금설계와 제조조건에 의해 고가의 Li, Sc, Cr, Zr 및 Cu등의 합금원소를 다량으로 첨가하거나 특수한 설비를 사용하지 않고도 우수한 고온연성을 갖는 합금을 제조가능하도록 한 것이다.Accordingly, the present invention is carried out in the order of melting, the complete dissolution of Mn and Zr in the alloying elements, the temperature is constantly lowered and the melting of the alloying element by adding Mg, and casting And a method of producing high ductility aluminum, and an aluminum alloy in which the alloying elements are added in an amount of 3-7% Mg, 0.3-1.2% Mn, and 0.05-0.25% Zr. It is to be able to manufacture an alloy having excellent hot ductility without adding a large amount of alloying elements such as expensive Li, Sc, Cr, Zr and Cu or using a special equipment.

Description

고연성 알루미늄 합금 및 그 제조방법Highly ductile aluminum alloy and its manufacturing method

첨부도면은 본 발명에 의한 알루미늄 합금의 제조공정도이다.The accompanying drawings are manufacturing process diagrams of the aluminum alloy according to the present invention.

본 발명은 고온연성이 우수한 고연성 알루미늄 합금 및 그 제조방법에 관한 것으로, 특히 알루미늄 합금에 다량의 합금원소를 사용하지 않고도 첨가효율을 높이고, 고온에서 매우 우수한 신율을 가질 수 있도록 한 고연성 알루미늄 합금 및 그 제조방법에 관한 것이다.The present invention relates to a high ductility aluminum alloy having excellent high temperature ductility, and a method for manufacturing the same, in particular, a high ductility aluminum alloy capable of increasing the addition efficiency without using a large amount of alloying elements in the aluminum alloy and having a very excellent elongation at high temperature. And to a method for producing the same.

일반적으로 고온연성이 우수한 알루미늄 합금의 제조방법은 결정립 미세화와 그로 인한 고온에서의 결정립계 미끄러짐에 그 원리를 둔 것으로서 특수 합금원소를 다량으로 첨가하는 방법을 사용하거나, 또는 분말야금법이 주로 이용되여져 왔다.In general, the manufacturing method of aluminum alloy with high ductility is based on the principle of grain refinement and the resulting sliding of grain boundary at high temperature, and a large amount of special alloy element is added or powder metallurgy is mainly used. come.

상기 특수 합금원소의 다량 첨가법은 Li, Sc 첨가합금(E. L. Bradley, R. A. Emigh and J. W. Morris, Jr : Scripta Metallurgica et Materialia, Vol. 25, pp. 717∼721, 1991 참조)과 일명 Supral이라는 상품명를 갖는 Al-6Cu-0.4Zr합금(Alcan Aerospace 회사 소개책자 참조)이 그 대표적인 예로서, 다량으로 첨가된 합금원소가 제2상을 형성하여 결정립 성장을 억제함으로써 결정립이 미세화되고 그 결과 고온연성이 높아지도록 한 것이다.The method for adding a large amount of the special alloy element is Li, Sc addition alloy (EL Bradley, RA Emigh and JW Morris, Jr: Scripta Metallurgica et Materialia, Vol. 25, pp. 717-721, 1991) and has a brand name Supral Al-6Cu-0.4Zr alloy (see Alcan Aerospace company brochure) is a typical example, in which a large amount of alloying elements form a second phase to suppress grain growth, resulting in finer grains and higher hot ductility. It is.

그러나, 상기 Li, Sc 첨가 합금은 가격이 너무 비쌀 뿐만 아니라, 특히 대기중에서 반응성이 크고 인체에 유해하므로 합금제조가 어려운 문제가 있고, Supral은 고융점의 Cu와 Zr이 평형고용량 이상으로 다량 첨가되므로 용해가 어렵고, 합금원소의 회수율이 낮으며, 조대(組大)한 2차상을 형성하여 기계적 특성이 저하되는 문제점이 있다.However, the Li and Sc addition alloy is not only expensive, but also has a problem in that it is difficult to manufacture the alloy because of its high reactivity in the atmosphere and harmful to the human body, and Supral has a high melting point of Cu and Zr added in excess of the equilibrium high capacity. It is difficult to dissolve, has a low recovery rate of alloying elements, and forms a coarse secondary phase, thereby degrading mechanical properties.

또한, 이들 합금은 주조시에는 합금원소를 과포화 고용상태로 만들어 주기 위해 금속응고설비가 필요하게 되므로 대형주괴의 제조가 어려우며, 합금원소의 다량 첨가 및 제조상의 난점 때문에 제조비의 상승으로 인한 비경제적인 결함이 있다.In addition, these alloys require metal coagulation equipment to make the alloy element into supersaturated solid solution state during casting, which makes it difficult to manufacture large ingots. There is this.

한편, 분말야금법(K. Higashi외 7인 : Scripta Metallurgica et Materialia, Vol. 26 pp. 191∼196, 1992 참조)에 의한 제조법은 미리 미세하게 제조된 분말을 소결하여 제조하므로, 결정립이 매우 미세한 이점이 있지만, 별도로 고가의 분말제조설비가 필요하고, 분말 표면이 산화막으로 오염되기 쉬워 고온 인장시 기공이 다량 발생하는 문제점이 있으며, 제조가가 고가이기 때문에 실용성이 낮은 결함이 있다.On the other hand, the method of powder metallurgy (see K. Higashi et al .: 7 Scripta Metallurgica et Materialia, Vol. 26 pp. 191 to 196, 1992) is produced by sintering the finely prepared powder, so that the crystal grains are very fine. Although there is an advantage, an expensive powder manufacturing equipment is required separately, and the surface of the powder is easily contaminated with an oxide film, so that a large amount of pores are generated at high temperature tension.

이러한 종래의 문제점에 착안하여 안출한 본 발명의 목적은 적절한 합금설계와 제조조건에 의해 고가의 Li, Sc, Cr, Zr 및 Cu등의 합금원소를 다량으로 첨가하거나 특수한 설비를 사용하지 않고도 우수한 고온 연성을 갖는 고연성 알루미늄 합금 및 그 제조방법을 제공함에 있다.The object of the present invention devised in view of such a conventional problem is that the high temperature without the addition of a large amount of alloying elements such as expensive Li, Sc, Cr, Zr and Cu by using the appropriate alloy design and manufacturing conditions or using a special equipment It is to provide a high ductility aluminum alloy having a ductility and a method of manufacturing the same.

상기한 본 발명의 목적은 합금원소를 Mg 3∼7%, Mn 0.3∼1.2%, Zr 0.05∼0.25%의 함량으로 첨가함을 특징으로 하는 고연성 알루미늄 합금을 제공하고, 또한 Al을 용해하는 단계와, 합금원소 중 Mn과 Zr을 첨가하여 완전 용해하는 단계와, 온도를 일정하게 낮추고 합금원소인 Mg를 첨가하여 용해하는 단계와, 주조를 실시하는 단계와, 균질화처리단계와, 열간압연 및 냉간압연단계의 순서로 수행함을 특징으로 하는 고연성 알루미늄 합금의 제조방법을 제공함으로써 달성된다.The above object of the present invention is to provide a high ductility aluminum alloy, characterized in that the addition of alloying elements in the content of Mg 3-7%, Mn 0.3-1.2%, Zr 0.05-0.25%, and also dissolving Al And completely dissolving Mn and Zr in the alloying elements, lowering the temperature constantly and adding and dissolving Mg, an alloying element, performing casting, homogenizing, hot rolling and cold rolling. It is achieved by providing a method for producing a high ductility aluminum alloy, characterized in that performed in the order of the rolling step.

이하에서는 본 발명을 첨부도면과 여러 실시예에 의거하여 보다 상세하게 설명하고자 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and various embodiments.

본 발명에 의한 Al합금의 합금원소의 종류와 양은 Mg 3∼7%, Mn 0.3∼1.2%, Zr 0.05∼0.25%을 첨가함을 특징으로 한다.The alloy element of the Al alloy according to the present invention is characterized in that the type and amount of Mg 3-7%, Mn 0.3-1.2%, and Zr 0.05-0.25% are added.

즉, 이러한 합금원소의 성분은 Mg, Mn, Cr을 주합금 원소로 하는 5000계 Al합금에서 조대한 2차상을 생성하기 쉬운 Cr을 보다 미세석출물 생성효과가 큰 소량의 Zr으로 대체한 것으로서, 이들 원소가 각 범위내로 첨가될 때 합금이 높은 고온연성을 가지며, 이 범위를 벗어나면 고온연성이 나빠지거나 적정 제조조건이 달라질 수 있다.In other words, the components of the alloy element is to replace Cr, which is easy to form a coarse secondary phase, in a 5000-based Al alloy containing Mg, Mn, and Cr as the main alloy element with a small amount of Zr having a greater effect of generating fine precipitates. When the element is added in each range, the alloy has a high hot ductility, out of this range the hot ductility is bad or the appropriate manufacturing conditions can be changed.

상기 Mg은 고용강화 및 동적재결정 촉진원소로서 강도증가와 조직의 미세화를 위해 첨가되는데 3%이하에서는 이러한 효과가 적고, 7%이상에서는 입계석출과 지나친 가공경화 효과에 의해 냉간가공성이 저하되므로 3∼7%로 첨가량을 제한한다.The Mg is added to increase the strength and refine the structure as a solid solution strengthening and dynamic recrystallization promoting element, but less than 3%, such effect is less, and at 7% or more, cold workability is deteriorated due to grain boundary precipitation and excessive work hardening effect 3 ~ The addition amount is limited to 7%.

또한, 상기 Mn과 Zr은 미세 석출물 생성원소로서 결정립 성장을 억제하여 조직 미세화와 안정화에 기여하며, 각각 0.3%와 0.05%이상 첨가될 때 충분한 석출물이 생성되어 그 효과가 높게 나타나지만, 이들 원소가 각각 1.2%와, 0.25%를 초과하여 지나치게 첨가되면 조대상이 생성되어 오히려 고온연성이 저하될 수 있다.In addition, the Mn and Zr as a fine precipitate generating element inhibits grain growth and contributes to the refinement and stabilization of the tissue, and when the addition of 0.3% and 0.05% or more, respectively, sufficient precipitates are generated and the effect is high. When excessively added in excess of 1.2% and 0.25%, a crude object may be generated and the high temperature ductility may be lowered.

다음에는 상기한 바와 같은 본 발명 고연성 알루미늄 합금의 제조방법을 설명한다.Next, the manufacturing method of the high ductility aluminum alloy of the present invention as described above will be described.

첨부한 도면은 본 발명에 의한 알루미늄 합금의 제조공정도로서, 도면에서와 같이, Al을 용해한 후, 합금원소 중 먼저 Mn과 Zr을 첨가하고, 770∼880℃ 온도범위의 고온으로 가열하여 완전히 용해한 다음, 용탕의 온도를 680∼770℃로 낮추어 Mg를 첨가하여 용해한 후 곧 주조를 실시한다. 이 때 합금원소는 미리 Al에 고농도로 용해된 모합금을 사용하여도 무방하다.The accompanying drawings are manufacturing process diagrams of the aluminum alloy according to the present invention. As shown in the drawing, after Al is dissolved, Mn and Zr are first added among the alloying elements, and then heated to a high temperature in the temperature range of 770 to 880 ° C. to completely dissolve them. The temperature of the molten metal is lowered to 680 to 770 ° C, and Mg is added to dissolve, followed by casting. At this time, the alloying element may be used a mother alloy previously dissolved in high concentration in Al.

상술한 바에서 Mn과 Zr의 용해온도를 통상의 Al합금의 용해온도인 약 750℃보다 높은 범위로 설정한 이유는 이들 원소의 융점이 매우 높아서 온도가 적어도 770℃ 이상 되어야 단시간에 완전히 녹아들어가서 회수율이 높고 미세상이 형성되는 장점이 있기 때문이며, 온도가 낮으면 완전용해가 이루어지지 않게 되거나, 용해가 되더라도 조대상이 생성되어 고온연성을 해치며 완전히 용해하는데 장시간이 소요되어 생산성과 회수율이 저하되기 때문이다. 그러나, 880℃ 이상으로 지나치게 가열하면 산화가 심하여 회수율이 다시 낮아지므로 이들 원소의 적정 용해온도 범위는 770∼880℃로 제한된다.As mentioned above, the reason why the melting temperature of Mn and Zr is set in a range higher than about 750 ° C., which is the melting temperature of a conventional Al alloy, is that the melting point of these elements is so high that the temperature melts at least 770 ° C. to melt completely in a short time. This is because the high and fine phase is formed, and when the temperature is low, complete dissolution is not achieved, or even when dissolved, a crude object is formed, which deteriorates high temperature ductility, and takes a long time to completely dissolve, thereby decreasing productivity and recovery rate. Because. However, when excessively heated above 880 ° C., oxidation is severe and the recovery rate is lowered again. Therefore, the appropriate melting temperature range of these elements is limited to 770 ° C. to 880 ° C.

또한, Mg의 용해온도를 낮은 온도범위로 설정한 것은 이 원소의 융점이 낮고, 증기압이 커서 온도가 770℃ 이상이면 산화 및 증발되어 회수율이 낮고, 680℃ 이하이면 완전히 녹아들어가는데 장시간을 요하게 되어 생산성과 회수율이 감소하기 때문이다. 따라서, Mg의 적정 용해온도는 680∼770℃ 범위로 제한되며, 주조조직의 미세화와 Mn, Zr의 고용도를 높이기 위해 주조온도도 이 범위로 제한한다.In addition, the melting temperature of Mg is set in a low temperature range. The melting point of this element is low, and the vapor pressure is large, so that the oxidation and evaporation is low when the temperature is 770 ° C or higher, and the recovery rate is low. This is because the recovery rate is reduced. Therefore, the appropriate dissolution temperature of Mg is limited to the range of 680 ~ 770 ℃, and the casting temperature is also limited to this range in order to refine the casting structure and increase the solid solution of Mn, Zr.

이와 같이 본 발명에서는 용해 및 주조조건으로서 합금원소의 용해순서가 효율적으로 배분되고, 원소의 종류에 따라 여러 단계로 용해온도가 달리 실시되며, 최종 용해온도는 주조온도와 동일한 온도에서 용해되도록 함으로써 회수율을 극대화하면서 조대상의 생성을 억제하고 미세상의 생성을 촉진하여 조직의 미세화를 달성할 수 있도록 한 것이다.As described above, in the present invention, the dissolution order of the alloying elements is efficiently distributed as the dissolution and casting conditions, and the melting temperature is differently performed in various stages according to the type of elements, and the final dissolution temperature is dissolved at the same temperature as the casting temperature. While maximizing the suppression of the production of the target and to promote the generation of microphases to achieve the miniaturization of tissues.

주조 후 제조공정은 통상의 균질화처리와 열간압연을 거쳐 원하는 두께의 판재로 냉간압연하는 것으로, 압연판재의 표면상태를 양호하게 하기 위하여 적절한 시기에 표면을 수 mm 깎아낼 수도 있으며, 필요시에는 열간압연과 냉간압연 사이에 온간압연 공정을 넣거나, 온간압연량이 클 때에는 냉간압연이 생략될 수도 있다. 또한, 냉간압연 도중이나 냉간압연 후에는 재결정 열처리를 할 수도 있으나 반드시 요구되는 것은 아니다.After casting, the manufacturing process is cold rolled into a plate with a desired thickness through the usual homogenization treatment and hot rolling. The surface of the rolled sheet may be shaved a few millimeters at an appropriate time in order to improve the surface condition. A hot rolling process may be put between rolling and cold rolling, or cold rolling may be omitted when the amount of hot rolling is large. In addition, although recrystallization heat treatment may be performed during or after cold rolling, it is not necessarily required.

이와 같은 공정으로 제조된 냉간압연 판재를 450∼530℃의 온도범위에서 인장시험을 하면 우수한 고온연성을 나타내는 바, 온도가 이 범위를 벗어나더라도 이 합금의 연성은 일반 Al합금보다 높지만, 상기의 범위 내에 있을 때보다는 상당히 낮아지게 된다. 이러한 온도범위를 벗어나면 신율이 저하하는 이유는 450℃ 이하에서는 입계 마찰력이 증가하여 입계 미끄러짐이 느려지고, 530℃ 이상에서는 결정립 성장속도가 증가하여 조직이 조대해지기 때문이다.When the cold rolled sheet produced by such a process is subjected to a tensile test at a temperature range of 450 to 530 ° C., it shows excellent hot ductility. Even though the temperature is outside this range, the ductility of this alloy is higher than that of general Al alloy, but the above range It is considerably lower than when you are inside. The elongation is lowered outside this temperature range because the grain boundary friction is increased at 450 ° C. or lower, and the grain slippage is slowed, and the grain growth rate is increased at 530 ° C. or higher, resulting in coarse texture.

본 발명 합금의 제조공정과 제반특성은 다음의 실시예에 의해 보다 명확하게 이해될 것이다.The manufacturing process and general characteristics of the alloy of the present invention will be more clearly understood by the following examples.

[실시예 1]Example 1

아래의 표 1은 Al합금의 용해온도, 주조온도와 Zr 회수율 및 고온신율과의 관계를 나타낸 것으로, Zr은 Al용해 후, Mn과 함께 0.15∼0.25% 첨가하고 최고온도로 가열하여 완전용해 후, 용탕의 온도를 낮추어 Mg이 첨가되고, 완전히 녹은 다음, 바로 주조하였다. 주조된 합금들은 430∼540℃에서 통상의 균질화처리와 열간압연을 거친 후, 60% 이상 냉간압연하여 두께 약 2mm인 판재로 제조하였다. 이 판재에서 표점거리 25mm인 인장시험편을 제작하여 450∼530℃ 온도범위에서 인장시험한 후 고온연성이 측정되었다.Table 1 below shows the relationship between dissolution temperature, casting temperature, Zr recovery rate and high temperature elongation of Al alloy, Zr is dissolved after Al, 0.15∼0.25% added with Mn and heated to the highest temperature, then completely dissolved. The temperature of the molten metal was lowered, Mg was added, completely melted, and immediately cast. The cast alloys were subjected to the usual homogenization treatment and hot rolling at 430 to 540 ° C., and then cold rolled to 60% or more to prepare a sheet having a thickness of about 2 mm. Tensile test specimens with a gauge distance of 25 mm were made from this sheet and subjected to a tensile test at a temperature range of 450 to 530 ° C., followed by high temperature ductility.

상기의 표에서 보는 바와 같이, 용해온도가 높을수록 Zr 회수율이 개선되며, 고온신율도 증가한다. 즉, 용해온도가 770℃ 이상일 때, Zr 회수율은 80% 이상의 높은 수준을 나타내며, 고온신율은 450% 이상을 얻을 수 있다. 용해온도가 700℃ 이하이면 Zr 회수율이 50% 이하로 크게 떨어지므로 비경제적이고, 750℃ 이하에서 용해하면 조대상이 생성되어 고온연성이 저하되었다. 주조온도는 Mg의 증발을 억제하고 응고속도를 빠르게 하기 위하여 770℃ 이하로 함으로써 거의 100%에 달하는 Mg 회수율을 얻을 수 있었다. 이와 함께 수지상조직이 미세해지고, Mn, Zr이 과포화 상태로 고용되어 가공열처리 과정에서 미세상으로 석출하기 때문에 10㎛ 이하의 미세한 재결정조직을 얻을 수 있었으며, 그 결과 우수한 고온신율이 달성되었다.As shown in the above table, the higher the melting temperature, the Zr recovery is improved and the high temperature elongation is also increased. That is, when the melting temperature is 770 ℃ or more, Zr recovery shows a high level of 80% or more, high temperature elongation can be obtained 450% or more. If the melting temperature is 700 ° C. or lower, the Zr recovery rate is significantly reduced to 50% or less, which is uneconomical. When it is dissolved at 750 ° C. or lower, a crude object is generated and the high temperature ductility is lowered. In order to suppress evaporation of Mg and to speed up the solidification rate, the casting temperature was set to 770 ° C. or lower to obtain almost 100% Mg recovery. In addition, since the dendritic structure became fine, Mn and Zr were dissolved in a supersaturated state and precipitated as a fine phase during the heat treatment process, a fine recrystallized structure of 10 μm or less was obtained, and as a result, excellent high temperature elongation was achieved.

한편, 합금 속에 포함된 Zr의 양인 분석치와 고온신율과의 관계를 보면 Zr 함량이 높을수록 대체로 고온신율이 우수하다. 즉 Zr함량이 0.05∼0.25%범위에서는 Zr의 함량이 높은 경우 최고 600% 이상의 높은 고온신율이 얻어진다. Zr이 전혀 첨가되지 않았을 때의 고온신율은 150% 이하였다.On the other hand, the relationship between the analysis value and the high temperature elongation, which is the amount of Zr contained in the alloy, the higher the Zr content, the better the high temperature elongation. That is, when the Zr content is in the range of 0.05 to 0.25%, a high temperature elongation of at least 600% is obtained when the Zr content is high. The high temperature elongation when Zr was not added at all was 150% or less.

[실시예 2]Example 2

아래 표 2는 Al-Mg-0.5/1.0Mn-0.05/0.2Zr 합금계에서 Mg합금원소의 양을 변화시켰을 때, Mg함량이 고온연성에 미치는 결과를 종합한 예이다. 용해온도와 주조온도는 각각 780∼860℃와 680∼770℃ 범위로 하였으며, 주조 후에는 실시예 1과 같은 방법으로 판재를 제조하여 동일한 방법으로 고온연성을 측정하였다. 이 표에서 고온연성은 Mg함량이 높을수록 점차 증가하는 경향을 보인다. 즉 Mg함량이 0.5% 이하이면 고온연성은 200%를 넘지 못하지만, 약 2%를 초과하면 200% 이상의 고온연성이 얻어지고, 약 3.5%를 초과하면 300% 이상의 우수한 고온연성이 얻어지는 것을 알 수 있다.Table 2 below is an example of the results of Mg content on high temperature ductility when the amount of Mg alloy element is changed in Al-Mg-0.5 / 1.0Mn-0.05 / 0.2Zr alloy system. The melting temperature and the casting temperature were in the range of 780 ~ 860 ℃ and 680 ~ 770 ℃, respectively, after casting the plate was manufactured in the same manner as in Example 1 and the high temperature ductility was measured by the same method. In this table, hot ductility tends to increase gradually as the Mg content increases. In other words, if the Mg content is 0.5% or less, the hot ductility does not exceed 200%, but if it exceeds 2%, the hot ductility is obtained at 200% or more, and if it exceeds 3.5%, the excellent high ductility is obtained. .

[실시예 3]Example 3

아래의 표 3은 Al합금에 Mn, Cu 등의 합금원소의 양을 변화시켜 실시예 2와 같은 방법으로 판재를 제조한 후, 고온연성을 측정한 예이다. Cu없이 Mn이 단독으로 있는 경우에 Mn함량이 0.5%를 초과하면 250% 이상의 고온신율이 얻어지며, Mn없이 Cu만이 0.8∼1.5% 있는 경우에는 Mn이 단독으로 있는 경우에 비해 전반적으로 고온연성이 좋지 않다. Mn이 0.5∼1% Cu와 공동으로 있으면, Mn함량이 0.25%를 초과할 때 250% 이상의 고온연성을 얻을 수 있지만 첨가량에 비해서는 고온연성의 개선효과가 그다지 높지 않다. 그 이유는 Cu 첨가량이 증가할수록 조대한 2차상의 생성량이 증가하여 조직의 균질화가 어렵고 고온변형시 기공 생성량이 증가하기 때문이다. 따라서 Cu는 반드시 첨가할 필요가 없고 균질화와 기공발생 측면에서는 오히려 가급적 첨가량을 억제할 필요가 있다.Table 3 below is an example of measuring the high-temperature ductility after manufacturing the plate material in the same manner as in Example 2 by changing the amount of alloying elements, such as Mn, Cu in the Al alloy. When Mn is alone without Cu, Mn content of more than 0.5% yields a high temperature elongation of 250% or more.In the case where only Cu is 0.8 to 1.5% without Mn, overall high temperature ductility is compared with that of Mn alone. Not good. If Mn is cavities with 0.5 to 1% Cu, high ductility of 250% or more can be obtained when the Mn content exceeds 0.25%, but the effect of improving hot ductility is not so high compared to the amount added. The reason is that as the amount of added Cu increases, the amount of coarse secondary phase increases, making it difficult to homogenize the tissue and increasing the amount of pore generated at high temperature deformation. Therefore, Cu does not necessarily need to be added, and in terms of homogenization and pore generation, it is necessary to suppress the amount of addition as much as possible.

이와 같은 본 발명은 합금설계상으로는 Al-Mg-Mn-Cr으로 구성되는 상용 5000계 Al합금에 Cr 대신 Zr을 첨가함으로써 미세상의 생성효과를 증대시키는 한편, Cu 함량을 제한하여 조대상의 생성을 억제토록 한 것이며, 제조방법상으로는 높은 Zr, Mn 용해온도와 낮은 Mg 용해온도를 사용하여 각 합금원소가 효율적이면서도 신속하게 용해되도록 하고, 주조온도를 낮춤으로써 조대상의 생성을 억제하면서 미세상의 생성을 촉진하여 가공 열처리에 의해 적은 합금원소로도 조직의 미세화가 효과적으로 달성되어 우수한 고온연성을 얻을 수 있는 이점이 있다.As described above, the present invention enhances the effect of forming a microphase by adding Zr instead of Cr to a commercial 5000-based Al alloy composed of Al-Mg-Mn-Cr. In the manufacturing method, high Zr, Mn melting temperature and low Mg melting temperature are used to make each alloy element dissolve quickly and efficiently. By promoting the heat treatment, the microstructure of the structure is effectively achieved even with a small alloy element has an advantage that can be obtained excellent hot ductility.

이상에서 상세히 설명한 바와 같이, 본 발명에 의한 알루미늄 합금의 제조방법에 의하면, 적절한 합금설계와 제조조건에 의해 고가의 Li, Sc, Cr, Zr 및 Cu 등의 합금원소를 다량으로 첨가하거나 특수한 설비를 사용하지 않고도 수백%의 고온연성을 갖는 합금을 제조할 수 있어 마치 플라스틱과 같은 우수한 성형성으로 일반 금속으로는 불가능한 복잡한 형상의 물품제조가 가능하도록 한 것이다.As described in detail above, according to the manufacturing method of the aluminum alloy according to the present invention, by adding a large amount of alloying elements such as expensive Li, Sc, Cr, Zr and Cu, or special equipment by appropriate alloy design and manufacturing conditions It is possible to manufacture an alloy having a high temperature ductility of several hundred percent without using, so as to enable the production of articles of a complex shape that is impossible with ordinary metal with excellent moldability, such as plastic.

Claims (2)

중량%로, Mg : 4.1∼7%, Mn : 0.3∼1.2%, Zr : 0.05∼0.25% 및 불가피한 불순물로 구성되는 그 나머지로 이루어지고, 450∼530℃에서 최대 640%의 신율을 갖는 것을 특징으로 하는 고온 연성이 우수한 고연성 알루미늄 합금.By weight%, Mg: 4.1-7%, Mn: 0.3-1.2%, Zr: 0.05-0.25% and the remainder consisting of unavoidable impurities, and have an elongation of up to 640% at 450-530 ° C. High ductility aluminum alloy with excellent high temperature ductility. Al을 용해하고, 합금 연소 중 Mn과 Zr을 첨가하여 770∼880℃에서 완전 용해하고, 680∼770℃에서, 합금 원소인 Mg를 첨가하여 용해하고, 주조를 행함으로써, 중량%로, Mg : 4∼7%, Mn : 0.3∼1.2%, Zr : 0.05∼0.25% 및 불가피한 불순물로 구성되는 그 나머지로 이루어지는 합금을 제조하는 것을 특징으로 하는 고온연성이 우수한 고연성 알루미늄 합금의 제조방법.Al was dissolved, Mn and Zr were added during alloy combustion, and completely dissolved at 770 to 880 ° C. At 680 to 770 ° C, Mg was added and dissolved at 680 to 770 ° C, and casting was performed to obtain Mg: A method for producing a high ductility aluminum alloy having excellent high temperature ductility, characterized by producing an alloy consisting of 4 to 7%, Mn: 0.3 to 1.2%, Zr: 0.05 to 0.25% and the remainder of unavoidable impurities.
KR1019950000156A 1995-01-06 1995-01-06 Aluminum alloy and the manufacturing method thereof KR0154401B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950000156A KR0154401B1 (en) 1995-01-06 1995-01-06 Aluminum alloy and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950000156A KR0154401B1 (en) 1995-01-06 1995-01-06 Aluminum alloy and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR960029473A KR960029473A (en) 1996-08-17
KR0154401B1 true KR0154401B1 (en) 1998-11-16

Family

ID=19406441

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950000156A KR0154401B1 (en) 1995-01-06 1995-01-06 Aluminum alloy and the manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR0154401B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032322B1 (en) * 2011-01-31 2011-04-29 한상훈 Gas time valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032322B1 (en) * 2011-01-31 2011-04-29 한상훈 Gas time valve

Also Published As

Publication number Publication date
KR960029473A (en) 1996-08-17

Similar Documents

Publication Publication Date Title
CN103339276B (en) Aluminum alloy wire for use in bolts, bolt, and manufacturing method of these.
JP2009520109A (en) Doped iridium with improved high temperature properties
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP4856597B2 (en) Magnesium alloy excellent in strength and elongation at high temperature and method for producing the same
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
KR20040071314A (en) Room-temperature- formable magnesium alloy with excellent corrosion resistance
KR0154401B1 (en) Aluminum alloy and the manufacturing method thereof
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP5802114B2 (en) Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt
JP3387548B2 (en) Manufacturing method of magnesium alloy molded product
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
CN115717209B (en) Al-Cu alloy, preparation method thereof and heat treatment method
JP2654891B2 (en) Manufacturing method of aluminum foil
JPS61257459A (en) Manufacture of aluminum foil
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
KR102353612B1 (en) Magnesium alloy, magnesium alloy plate using thereof, and method for manufacturing of magnesium alloy plate
JP2000038632A (en) Aluminum foil base and its production
JP2678675B2 (en) Method for producing aluminum alloy sheet for forming having excellent deep drawability
JPS6296643A (en) Superplastic aluminum alloy
JPH04268054A (en) Manufacture of al-mg alloy sheet excellent in strength and orientation property
JP6809363B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and shape freezing property and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030627

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee