KR0146336B1 - Porous and thin-film nickel electrode and their manufacturing method - Google Patents

Porous and thin-film nickel electrode and their manufacturing method

Info

Publication number
KR0146336B1
KR0146336B1 KR1019950032028A KR19950032028A KR0146336B1 KR 0146336 B1 KR0146336 B1 KR 0146336B1 KR 1019950032028 A KR1019950032028 A KR 1019950032028A KR 19950032028 A KR19950032028 A KR 19950032028A KR 0146336 B1 KR0146336 B1 KR 0146336B1
Authority
KR
South Korea
Prior art keywords
nickel
electrode
plating
foamed
resin
Prior art date
Application number
KR1019950032028A
Other languages
Korean (ko)
Other versions
KR970018810A (en
Inventor
신준호
김기원
김경호
Original Assignee
김기성
김기원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김기성, 김기원 filed Critical 김기성
Priority to KR1019950032028A priority Critical patent/KR0146336B1/en
Publication of KR970018810A publication Critical patent/KR970018810A/en
Application granted granted Critical
Publication of KR0146336B1 publication Critical patent/KR0146336B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/1648Porous product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명의 목적은 기존의 전극보다 두께가 훨씬 얇은 발판의 전극을 제조하므로써 전극의 급소충방전성능을 향상시킨 발포니켈 박전극을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a foamed nickel thin electrode which improves the sudden charging and discharging performance of an electrode by manufacturing an electrode having a much thinner thickness than a conventional electrode.

상기한 목적을 달성하기 위한 본 발명의 제조방법은 발포니켈 전극의 제조방법에 있어서, 0.2mm∼0.4mm 두께의 얇은 박판상의 다공성 우레탄 수지의 기공속에 수㎛ 크기를 갖는 미세한 흑연이나 탄소분말을 수분 및 알콜 성분과 혼합된 슬러리를 침투시킨 후 건조시키는 과정과, 상기건조된 수지를 스트라이크 욕에서 예비 처리하여 니켈의 손실을 줄이고 무전해 도금속도를 향상시키는 과정과, 상기 예비 처리된 수지를 무전해 니켈 도금액속에 침지시키는 과정과로 구성되어 흑연이나 탄소입자의 표면에 니켈 금속층이 형성되도록 니켈 금속을 석출시켜 도금하는 무전해 도금공정과; 상기 무전해 도금공정을 거친 발코니켈을 전해 니켈 도금 용액에서 전해 니켈도금을 하거나 코발트 이온을 포함하는 수용액에서 코발트 전해 처리를 행하는 재처리 공정과; 및 상기 재처리된 발포니켈 박편에 수산화니켈을 주원료한 전극물질을 공급해 주는 공정과;로 이루어짐을 특징으로 한다.In the manufacturing method of the present invention for achieving the above object, in the method of manufacturing a foamed nickel electrode, water containing fine graphite or carbon powder having a size of several micrometers in the pores of a thin plate-like porous urethane resin having a thickness of 0.2 mm to 0.4 mm And impregnating and drying the slurry mixed with the alcohol component, pretreating the dried resin in a strike bath to reduce the loss of nickel and improving the electroless plating rate, and electrolessly treating the pretreated resin. Immersing in a nickel plating solution and depositing and plating nickel metal so that a nickel metal layer is formed on the surface of graphite or carbon particles; A reprocessing step of subjecting the balconel subjected to the electroless plating process to electrolytic nickel plating in an electrolytic nickel plating solution or performing cobalt electrolysis in an aqueous solution containing cobalt ions; And supplying an electrode material mainly containing nickel hydroxide to the reprocessed expanded nickel flakes.

Description

발포니켈 박전극 및 그 제조방법Foamed nickel thin electrode and its manufacturing method

제1도는 본 발명에 의해 제조된 발포니켈 박전극의 단면도1 is a cross-sectional view of a foamed nickel thin electrode prepared according to the present invention

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1:내부 니켈층 2:외부 니켈층1: inner nickel layer 2: outer nickel layer

3:활물질 저장공간3: Active material storage space

본 발명은 자동차의 범퍼용 발포폴리우레탄 수지와 같이 내부에 충분한 기공이 있고 밀도도 비교적 높으며 신축성 있는 발포폴리우레탄 수지를 이용하여 수지의 기공에 미세한 흑연분말이나 탄소분말을 침투시켜 무전해 니켈도금용액에 침지하여 침투시킨 흑연이나 탄소입자표면에 니켈을 석출시켜 얻어지는 무전해 발포니켈 박전극 및 그 제조방법에 관한 것이다.The present invention uses electroless nickel plating solution by infiltrating fine graphite powder or carbon powder into the pores of the resin by using a foamed polyurethane resin having sufficient pores therein and having a relatively high density, such as a foamed polyurethane resin for automobile bumpers. The present invention relates to an electroless foamed nickel thin electrode obtained by depositing nickel on the surface of graphite or carbon particles impregnated and immersed in a surface thereof, and a method of manufacturing the same.

현재 가장 일반적으로 채택되고 있는 발포니켈 제조방법은 발포우레탄 수지를 이용하여 적절한 전도성처리를 하여 우레탄 수지에 전기전도성을 부여 한 후 전기분해하여 니켈을 코팅시킨 후 열처리하여 우레탄 수지를 제거시켜 얻는 방법이다. 이렇게 하여 우레탄수지의 섬유상조직과 거의 같은 니켈의 망상구조를 얻는다. 이 경우 발포니켈의 기공율은 95%∼98%에 이르러 대단히 기공도가 좋은 발포니켈을 얻을 수 있다. 또 한가지의 방법은 일본의 스미토모 전기공업 주식회사(Sumitomo Electric Industries Ltd)사에서 최초로 개발된 것으로서 우레탄수지에 흑연을 코팅시켜서 전기전도성을 부여하는 방법이다.Currently, the most commonly used method of manufacturing a foamed nickel is a method of obtaining urethane resin by applying electroconductive to urethane resin by appropriate conductive treatment using foamed urethane resin, electrolytically coating nickel, and then heat treatment to remove the urethane resin. . In this way, a network of nickel almost similar to that of the urethane resin fibrous structure is obtained. In this case, the porosity of the foamed nickel reaches 95% to 98%, so that the foamed nickel having a very high porosity can be obtained. Another method, which was first developed by Sumitomo Electric Industries Ltd. of Japan, is a method of imparting electrical conductivity by coating graphite on urethane resin.

이 방법으로 제조된 발포니켈을 흔히 니켈 품(Nikel Foam)이라고 부르고 있다. 이외에 니켈 펠트(Nikel Felt)라고 볼 수 있는 발포니켈을 제조하는 새로운 방법으로 1989년 미국의 네이블 써피스 월훼어 센터(Naval Surface Walfare Center)에서 개발된 것으로서 소결된 흑연 섬유 펠트(Sintered Graphite Fiber Felt)를 소지로 하여 여기에 니켈을 코팅시켜 얻은 니켈 도포 흑연섬유(Nikel Plated Graphite Fiber (NPGF))방식의 발포니켈도 있다.Foamed nickel produced in this way is commonly referred to as nickel foam. In addition, a new method of manufacturing foamed nickel, also known as nickel felt, was developed at the Naval Surface Walfare Center in the United States in 1989 and sintered graphite fiber felt. There is also a nickel nickel coated graphite fiber (NPGF) foamed nickel obtained by coating nickel thereon.

종전의 발포니켈 제조방식으로 제조된 발포니켈을 축전지의 전극으로 사용하는 경우에 전극의 도전체 역할을 하게 되는 니켈이 전체 전극 무게중 상당 부분을 차지하는 관계로 축전지의 경량화에는 한계가 있다. 발포니켈의 무게를 줄이면 전극의 저항이 커지고 활물질의 이용률이 떨어지고 급속충발전성능 또한 저하하게 되기 때문에 도전체로서의 발포니켈의 양은 일정수준을 유지하지 않으면 안된다.In the case where the foamed nickel manufactured by the conventional foamed nickel manufacturing method is used as an electrode of a battery, the weight of the battery is limited because nickel, which serves as a conductor of the electrode, occupies a substantial portion of the total electrode weight. Reducing the weight of the foamed nickel increases the resistance of the electrode, lowers the utilization rate of the active material, and also decreases the rapid charging performance. Therefore, the amount of the foamed nickel as a conductor must be maintained at a constant level.

종전의 발포니켈이 축전지의 전극으로 사용할 때 이와같은 문제는 피할 수 없는 것으로서 경량고성능의 축전지를 제조하기 어려운 단점이 있다. 이는 전극의 도전체로서 무게가 무거운 니켈만을 사용하기 때문인데, 도전체의 무게를 감소시킬 수 있는 방법이 절실히 필요한 이유가 여기에 있으며, 충전하는 데 많은 시간이 걸린다는 문제점이 있다.This problem is inevitable when conventional foamed nickel is used as an electrode of a battery, and has a disadvantage in that it is difficult to manufacture a lightweight, high-performance battery. This is because only a heavier nickel is used as the conductor of the electrode, which is why there is an urgent need for a method for reducing the weight of the conductor, and there is a problem in that it takes a long time to charge.

한편, 니켈-카드뮴, 니켈-수소, 니켈-금속수소화물 축전지 등에서 니켈전극은 전체 전극무게의 상당 부분을 차지할 뿐 아니라 축전지 전체 무게에서도 중요한 역할을 하며, 특히 에너지 밀도를 제한하는 요소이다.Meanwhile, in nickel-cadmium, nickel-hydrogen, and nickel-metal hydride accumulators, the nickel electrode not only occupies a large part of the total electrode weight but also plays an important role in the total weight of the accumulator, in particular, a limiting energy density element.

따라서 니켈전극의 용량을 개선하고 전극 경량화를 위한 새로운 형태의 니켈전극의 제조방법으로 기존의 소결식극판을 대체하기 위한 새로운 제조법에 대한 연구가 활발히 진행되고 있다. 그중에서도 특히, 다공성 발포니켈을 사용한 전극은 전극 전체의 무게를 감소시키고 높은 에너지 밀도를 얻을 수 있어서 주목받고 있다.Therefore, research on a new manufacturing method for replacing the existing sintered electrode plate as a method of manufacturing a new type of nickel electrode for improving the capacity of the nickel electrode and reducing the weight of the electrode is being actively conducted. Among them, in particular, the electrode using the porous foam nickel is attracting attention because it can reduce the weight of the entire electrode and obtain a high energy density.

다공성 발포니켈의 제조시에는 다공성의 폴리우레탄수지를(starting material)로 사용하는 방법이 일반적이다. 이때 사용되는 우레탄 수지의 물리적 형태에 따라 생성된 니켈의 형태가 섬유펠트(fibrous felt), 폼(foam)형 등을 나타내게 된다. 이중에서 발포니켈(nickel foam) 형태가 현재 니켈전극으로 실용화되고 있는데, 발포니켈의 기공율은 92%∼98%로서 종래의 소결식 극판의 다공도 77%∼82%에 비해 단위부피당 활물질의 양이 10% 이상 증가되었으며 에너지 밀도도 크게 향상되었다.In the production of porous foamed nickel, a method of using a porous polyurethane resin as a starting material is common. At this time, the form of nickel produced according to the physical form of the urethane resin used is represented by the fiber felt (fibrous felt), foam (foam) form. Among these, nickel foam is currently used as a nickel electrode. The porosity of the foamed nickel is 92% to 98%, and the amount of active material per unit volume is 10% compared to 77% to 82% of the porosity of the conventional sintered electrode plate. It is increased by more than% and the energy density is greatly improved.

그러나 현재 상용되고 있는 발포니켈전극은 두께가 0.5mm∼1mm 정도로 종래의 소결식 극판의 두께와 비슷한 수준이며 급속충방전 성능면에 있어서는 아직 개선의 여지가 많다. 급속충방전성능은 특히 전기자동차용 축전지에 절실하게 요구되는 것으로서 이는 극판의 두께가 얇을수록 좋아지므로 가능한 극판의 두께를 얇게 만들 필요가 있다.However, commercially available foamed nickel electrodes have a thickness of about 0.5 mm to 1 mm, similar to the thickness of conventional sintered electrode plates, and there is still room for improvement in terms of rapid charge and discharge performance. Rapid charging and discharging performance is especially required for battery batteries for electric vehicles, and the thinner the plate, the better the thickness of the plate is required.

0.5mm이하의 두께를 가진 박판(sheet)상 극판을 채용한 축전지는 급속충방전 성능이 뛰어나고 축전지의 두께도 얇아지는 형태상의 장점도 있으므로 전기자동차용 축전지 뿐만 아니라 각종 휴대용 전자제품 및 장난감등의 동력원, 고율방전용 집적에너지원(integrated power source)등 많은 응용분야를 가지고 있다.The battery that adopts sheet-like pole plate with the thickness of 0.5mm or less has the advantage of quick charging and discharging performance and the thickness of the battery is also thin. Therefore, it is a power source for not only electric vehicle battery but also various portable electronic products and toys. It has many applications such as high power discharge integrated power source.

그럼에도 불구하고 현재 상용되고 있는 발포니켈 전극은 높은 기공율을 가지고 있기 때문에 두께 0.5mm 이하의 박전극으로 제조하는 경우 도전체로서의 충분한 실용강도와 전기전도도를 가지지 어렵기 때문에 두께를 줄이는 데 한계가 있어, 현재까지 실용화된 발포니켈 전극의 한계 두께는 0.7mm 정도이다.Nevertheless, the currently available foamed nickel electrode has a high porosity, so when manufactured with a thin electrode having a thickness of 0.5 mm or less, it is difficult to have sufficient practical strength and electrical conductivity as a conductor, thereby limiting the thickness reduction. The limit thickness of the foamed nickel electrode which has been put to practical use is about 0.7 mm.

본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로서 그의 목적으로 하는 바는 발포 폴리우레탄수지 박편의 기공에 흑연이나 탄소분말을 침투시킨 후 무전해 도금방법에 의해 니켈을 석출시켜 얻어진 발포니켈에 강도, 전기전도도 및 활물질의 이용율을 향상시킬 목적으로 전해니켈도금 이나 코발트 전해처리 또는 이 두 가지 처리를 모두 실시한 후 최종적으로 0.5mm이하의 발포니켈 박전극을 제조함으로써 기존의 전극보다 훨씬 얇은 박판상 전극의 제조를 가능하게 하고, 전극의 급속충방전성능을 향상시키는 것을 특징으로 하는 신규한 제조방법에 의한 발포니켈 박전극을 제공하는 데 있다.An object of the present invention is to solve the above problems, and its purpose is to penetrate graphite or carbon powder into the pores of expanded polyurethane resin flakes and then to deposit nickel by depositing nickel by electroless plating. Electrolytic nickel plating, cobalt electrolytic treatment, or both treatments for the purpose of improving strength, electrical conductivity, and utilization of active materials, and finally, a thin nickel electrode having a thickness of 0.5 mm or less is manufactured. The present invention provides a foamed nickel thin electrode according to a novel manufacturing method, which enables the production of a polymer and improves the rapid charging and discharging performance of the electrode.

본 발명은 상기한 목적을 달성하기 위하여 다공성 고분자 수지, 특히 다공성 우레탄 수지의 기공속에 수㎛ 정도의 크기를 갖는 미세한 흑연이나 탄소분말을 수분 및 알콜성분과 혼합된 슬러리(slurry)상태로 침투시킨 후 건조하는 과정과, 상기 건조된 수지를 스트라이크 욕에서 예비처리 함으로써 니켈의 손실을 줄이고 무전해 도금속도를 향상시키는 과정과, 상기 예비처리된 수지를 무전해 니켈 도금액속에 침지시키는 과정과로 구성되어 흑연이나 탄소입자의 표면에 니켈 금속층이 형성되도록 니켈 금속을 석출시켜 도금하는 무전해 도금공정과; 상기 건조된 무전해 발포니켈을 강도, 전기전도도 및 활물질의 이용율을 향상시킬 목적으로 전해 니켈 도금용액에서 전해 니켈 도금을 하거나, 코발트 이온을 포함하는 수용액에서 코발트 전해처리를 하거나 또는 전해 니켈도금후에 계속해서 코발트 전해처리를 더하는 것과 같은 재처리 공정과; 및 상기 재처리된 발포니켈 박편에 수산화니켈을 주원료로 한 전극물질을 공급해 주는 공정과로 이루어져 발포니켈 박전극을 제조하게 된다.In order to achieve the above object, the present invention penetrates a fine graphite or carbon powder having a size of several μm into pores of a porous polymer resin, particularly a porous urethane resin, in a slurry state mixed with water and an alcohol component. Drying, pretreating the dried resin in a strike bath to reduce nickel loss and improving electroless plating rate, and immersing the pretreated resin in an electroless nickel plating solution. An electroless plating process of depositing and plating nickel metal so that a nickel metal layer is formed on the surface of the carbon particles; The dried electroless expanded nickel is subjected to electrolytic nickel plating in an electrolytic nickel plating solution for the purpose of improving strength, electrical conductivity and utilization of the active material, or cobalt electrolytic treatment in an aqueous solution containing cobalt ions, or after electrolytic nickel plating. A reprocessing process such as adding cobalt electrolysis; And supplying an electrode material containing nickel hydroxide as a main raw material to the reprocessed foamed nickel flakes, thereby producing a foamed nickel thin electrode.

그런데 상기에서 재처리 공정후 전극내부의 우레탄 수지는 필요한 경우 제거하는 공정을 수행할 수도 있다.However, after the reprocessing process, the urethane resin inside the electrode may be removed if necessary.

본 발명에서 새로이 제공하는 무전해도금공정은 상기한 첫 번째 공정에서 종래와는 달리 흑연 또는 탄소분말을 침투시키는 방식에서 알콜과 같이 우레탄수지의 팽윤을 가져오는 재료를 수분과 혼합하여 사용함으로써 침투효과를 극대화한 공정과 무전해 도금시 불필요한 흑연 또는 탄소분말의 혼입에 의한 니켈 및 환원제의 손실을 줄이고 도금속도를 향상시키기 위하여 새로이 추가한 스트라이크 욕에서의 예비처리 공정이다. 이와같이 흑연입자를 알콜에 개어 사용할 경우 우레탄수지의 내부 기공속까지 깊숙히 그리고 골고루 충진시키는 것이 가능하며 이는 박전극을 형성하는 데 대단히 중요한 역할을 한다.The electroless plating process newly provided in the present invention has a permeation effect by using a material that brings about swelling of urethane resin like water in a manner of infiltrating graphite or carbon powder in the first process as described above and mixing it with water. It is a pretreatment process in a newly added strike bath to reduce the loss of nickel and reducing agent due to the incorporation of unnecessary graphite or carbon powder during electroless plating and to improve plating speed. As such, when graphite particles are used in alcohol, it is possible to deeply and evenly fill the inner pores of the urethane resin, which plays an important role in forming the thin electrode.

본 발명에서 제공하는 무전해도금공정에서는 우레탄 수지의 두께가 두꺼우면 균일한 도금상태를 얻기가 어려워지게 된다. 따라서 본 발명에서는 허용가능한 우레탄수지의 두께를 최대 0.5mm로 제한하고자 한다.In the electroless plating process provided by the present invention, when the thickness of the urethane resin is thick, it becomes difficult to obtain a uniform plating state. Therefore, the present invention intends to limit the thickness of the acceptable urethane resin to a maximum of 0.5mm.

또한, 무전해 도금후 우레탄 수지를 제거하지 않고 그대로 사용하는 경우 전극제조 공정이 간단해지며, 우레탄 수지자체가 전해액을 흡수할 수 있는 리테이너의 역할과 활물질의 탈락을 방지하는 바람직한 역할도 기대할 수 있다.In addition, when the electrode is used without removing the urethane resin after electroless plating, the electrode manufacturing process is simplified, and the urethane resin itself can be expected to serve as a retainer capable of absorbing the electrolyte and a desirable role in preventing the active material from falling off. .

이하, 본 발명에 따른 발포니켈 박전극의 제조를 보다 상세히 설명하면 다음과 같다.Hereinafter, the production of the expanded nickel thin electrode according to the present invention in more detail.

첫째, 자동차의 범퍼에 완충재로 사용되는 것과 유사한 물성을 갖는 발포폴리우레탄수지를 0.2mm∼0.4mm 정도의 얇은 박판으로 절단하여, 에탄올과 증류수를 1:1로 혼합한 용액에 미세한 흑연분말과 혼합한 반죽액에 침지시켜 우레탄수지의 기공에 흑연을 침투시킨 후 약 60℃에서 1시간 정도 건조한다.First, the foamed polyurethane resin, which has properties similar to those used as a shock absorber for automobile bumpers, is cut into thin sheets of 0.2 mm to 0.4 mm, and mixed with fine graphite powder in a 1: 1 mixture of ethanol and distilled water. It is immersed in one batter liquid to infiltrate graphite into the pores of the urethane resin, and then dried at about 60 ℃ for 1 hour.

둘째, 비교적 니켈농도가 낮은 무전해 용액이나 한 번 사용한 무전해 니켈 도금용액에 적당 량의 환원제를 보충한 후 완전히 건조된 우레탄 수지를 침지한다. 그리고 무전해 니켈 도금용액의 온도를 120℃∼130℃ 정도로 유지하면서 10분∼30분 정도 니켈 스트라이크를 실시하여 흑연입자상에 니켈 핵을 생성시킴과 동시에 우레탄 수지의 표면에 붙어 있는 흑연입자를 제거한다.Secondly, an appropriate amount of reducing agent is added to an electroless solution having a relatively low nickel concentration or an electroless nickel plating solution that has been used once, and then a completely dried urethane resin is immersed. Then, while maintaining the temperature of the electroless nickel plating solution at about 120 ° C. to 130 ° C., a nickel strike is performed for about 10 to 30 minutes to generate nickel nuclei on the graphite particles and to remove the graphite particles on the surface of the urethane resin. .

셋째, 염화니켈, 치아인산소다, 구연소다, 염화암모늄이 주성분인 무전해 니켈 도금용액에 적당량의 기성소다를 첨가하여 pH를 조절한 후 이 용액에 니켈스트라이크를 실시한 우레탄 수지를 침지한다.Third, an appropriate amount of ready-made soda is added to an electroless nickel plating solution composed mainly of nickel chloride, sodium phosphate, citric acid sodium and ammonium chloride to adjust the pH and then immerse the urethane resin subjected to nickel strike in the solution.

넷째, 무전해 니켈 도금용액의 온도를 80℃∼90℃로 유지하면서 무전해 도금을 실시한다.Fourth, electroless plating is performed while maintaining the temperature of the electroless nickel plating solution at 80 ° C to 90 ° C.

다섯째, 무전해 도금이 끝난후 얻어진 시편을 증류수로 잘세척한 후 완전히 건조시킨다.Fifth, the specimen obtained after the electroless plating is washed well with distilled water and dried completely.

여섯째, 염화니켈, 황산니켈, 붕산을 주성분으로 하는 전해니켈 도금용액에 무전해 도금된 시편을 침지하여 전해니켈 도금을 실시하거나, 황산코발트나 염화코발트 단일용액 또는 황산코발트, 염화코발트 및 붕산을 주성분으로 하는 수용액에서 양극은 백금이나 탄소등 불용성 전극을 사용하고 음극에 전해 니켈도금이 된 시료를 걸고 음극적으로 코발트 전해처리를 하거나 상기의 전해니켈 도금후에 상기의 코발트 전해처리를 연속적으로 처리하는 등의 재처리를 실시한다.Sixth, electroless nickel plating is carried out by immersing electroless plated specimen in electrolytic nickel plating solution containing nickel chloride, nickel sulfate, and boric acid as the main component, or cobalt sulfate or cobalt chloride single solution or cobalt sulfate, cobalt chloride and boric acid as main components. In the aqueous solution of the anode, the insoluble electrode such as platinum or carbon is used, the sample is coated with electrolytic nickel plating on the cathode, and the cobalt electrolytic treatment is performed negatively, or the cobalt electrolytic treatment is continuously performed after the electrolytic nickel plating. Reprocess.

일곱째, 상기 재처리한 발포니켈 박편은 우레탄을 제거하거나 또는 제거하지 않은 채로 질산니켈, 질산코발트, 질산나트륨을 주성분으로 하는 전기 화학적 충진 용액에 침지하여 전기화학적으로 수산화니켈을 생성시켜주거나 또는 수산화니켈을 기계적으로 도포하여 공급하거나 이들을 겸용하여 공급해 주는 등의 방식으로 활물질을 공급한다.Seventh, the reprocessed foamed nickel flakes are immersed in an electrochemical filling solution containing nickel nitrate, cobalt nitrate, and sodium nitrate with or without removing urethane to produce nickel hydroxide electrochemically or nickel hydroxide. The active material is supplied in such a manner that it is mechanically coated and supplied or a combination thereof is supplied.

이상과 같이 본 발명은 0.2mm∼0.4mm 정도의 얇은 고밀도 발포 폴리우레탄 수지박편을 이용함을 특징으로 한 신규한 제조 방식으로서 종래에는 없던 박전극의 제조를 가능하게 한다. 우레탄 수지가 얇을수록 무전해 시에 니켈이 내부와 외부에 더욱 균일하게 석출되므로 두께가 얇은 수지를 사용하면 특별한 장치의 도움없이도 간단히 발포니켈의 제조가 가능하게 되는 큰 장점이 있다.As described above, the present invention is a novel manufacturing method characterized by using a thin high density foamed polyurethane resin flake of about 0.2mm to 0.4mm, which enables the production of a thin electrode which has not existed in the past. The thinner the urethane resin, the more uniformly the nickel is deposited inside and outside during electroless electrolysis. Thus, the use of a thin resin allows the manufacture of expanded nickel simply without the aid of a special device.

제조공정에 있어서는 알콜을 사용하여 흑연 침투를 배가 시키므로써 니켈 골격 형성이 극히 용이하여 기저로 사용되는 우레탄 수지의 두께를 매우 얇게 할 수 있으며 무전해 도금전해 니켈 스트라이크 욕에서 예비처리를 하는 공정을 새로이 도입함으로써 무전해 도금시에 흑연이나 탄소분말이 불필요하게 혼입되어 야기되는 문제점을 해결하고 무전해도금 속도도 향상되어 더욱 경제적인 무전해 도금이 가능하게 된다.In the manufacturing process, alcohol is used to double the penetration of graphite, which makes the formation of nickel skeleton extremely easy, making the thickness of the urethane resin used as the base very thin and pretreatment in electroless plating electrolytic nickel strike baths. This solution solves the problem caused by unnecessarily mixing of graphite or carbon powder during electroless plating, and improves electroless plating speed, thereby enabling more economical electroless plating.

이하, 실시예를 통하여 상기의 신규한 제조방법에 의한 발포니켈 박전극의 전극성능시험 결과를 밝힌다.Hereinafter, the electrode performance test results of the foamed nickel thin electrode according to the novel manufacturing method will be revealed through Examples.

[실시예 1]Example 1

(무전해 니켈도금후 전해 니켈도금 처리한 경우)(In case of electrolytic nickel plating after electroless nickel plating)

40(L)×27(W)×0.35(T)mm의 크기로 얇게 절단된 발포 폴리우레탄수지에 앞서 설명한 것과 같은 무전해 도금을 실시한 후 얻어진 시편에 0.11g의 전류집진용 니켈선을 부착한 후 전해 니켈도금액에서 0.5A의 전류로 약 30분간 전해 니켈도금을 실시한 후의 시편의 무게는 0.65g이었고 기공율은 약 88% 정도이었다.0.11 g of current collector nickel wire was attached to a specimen obtained after electroless plating as described above on a foamed polyurethane resin thinly cut to a size of 40 (L) x 27 (W) x 0.35 (T) mm. After the electrolytic nickel plating was carried out for about 30 minutes at a current of 0.5 A in the electrolytic nickel plating solution, the weight of the specimen was 0.65 g and the porosity was about 88%.

이렇게 제조된 발포니켈 박편을 질산코발트, 질산나트륨, 질산니켈을 주성분으로 하는 용액에 담그어서 0.65A의 정전류로 60분간 통전하여 수산화니켈을 주성분으로 하는 전극물질을 충진시켰다. 이때 충진된 전극물질은 약 92wt/%의 수산화니켈과 8wt/%의 수산화코발트로 구성됨을 확인하였다.The foamed nickel flakes thus prepared were immersed in a solution containing cobalt nitrate, sodium nitrate, and nickel nitrate as a main component, and energized for 60 minutes at a constant current of 0.65 A to fill an electrode material mainly composed of nickel hydroxide. At this time, the filled electrode material was confirmed to be composed of about 92wt /% nickel hydroxide and 8wt /% cobalt hydroxide.

전극물질이 충진된 다공성 발포니켈 박전극을 증류수로 여러번 깨끗이 세척한 후 다시 실온의 증류수에 담그어서 15분간 시효처리를 하였다. 시효처리된 전극을 6M KOH 용액에서 100mA의 전류로 만충전시킨 후 실온에서 50mA와 100mA의 전류로 방전시험을 한 결과 각각 87.5mAh의 방전용량을 얻었다.The porous foamed nickel foil electrode filled with electrode material was washed several times with distilled water, and then immersed in distilled water at room temperature for 15 minutes. The aged electrode was fully charged with a current of 100 mA in a 6 M KOH solution, and then discharged at 50 mA and 100 mA at room temperature to obtain a discharge capacity of 87.5 mAh, respectively.

방전율은 50mA 방전시 0.57C, 100mA 방전시 1.16C에 해당한다. 방전율의 배중에 따른 용량감소는 2.2% 정도로 매우 적어 고율방전 성능이 우수함을 확인할 수 있었다. 충방전 시험후 건조기에서 약 120℃의 온도로 1시간 정도 건조시킨 후의 전극의 최종 무게는 1.02g이었다. 전극물질총량중에서 코발트성분을 제외한 전극활물질만의 무게는 0.34g 이고, 따라서 이론 용량은 98.26mAh로서 0.57C의 방전율로 방전시의 활물질의 이용율은 약 89%이고, 중량에너지밀도는 96.2mAh/g 이며 1.16C의 방전율에서는 이용율이 약 87%이고 중량 에너지 밀도는 94.1mAh/g이었다.The discharge rate corresponds to 0.57C at 50mA discharge and 1.16C at 100mA discharge. The capacity decrease according to the doubled discharge rate was about 2.2%, indicating that the high rate discharge performance was excellent. The final weight of the electrode after drying for 1 hour at a temperature of about 120 ° C. in the dryer after the charge and discharge test was 1.02 g. In the total amount of the electrode material, only the active electrode material excluding the cobalt component weighed 0.34 g. Therefore, the theoretical capacity was 98.26 mAh, with a discharge rate of 0.57 C. The use rate of the active material at discharge was about 89%, and the weight energy density was 96.2 mAh / g. At a discharge rate of 1.16 C, the utilization was about 87% and the weight energy density was 94.1 mAh / g.

[실시예 2]Example 2

(무전해 니켈 도금후 전해 니켈도금 및 코발트 전해처리한 경우)(In case of electrolytic nickel plating and cobalt electrolytic treatment after electroless nickel plating)

40(L)×27(W)×0.35(T)mm의 크기로 얇게 절단된 발포 폴리우레탄수지에 상기와 동일하게 무전해 도금을 실시한 후 얻어진 시편에 0.13g의 전류집진용 니켈선을 부착한 후 전해 니켈도금액에서 0.5A의 전류로 약 30분간 전해니켈도금을 실시하여 무게 0.64g의 시편을 얻은 후 다시 0.74M의 황산코발트 단일용액중에서 0.3A의 전류로 15분간 실온에서 코발트 전해처리를 실시하여 0.07g의 무게 증가를 가져온 결과 총무게 0.71g이고 기공율이 약 84%의 발포니켈 박편을 얻었다.0.13 g of current collector nickel wire was attached to the specimen obtained after electroless plating was performed on the expanded polyurethane resin thinly cut to 40 (L) × 27 (W) × 0.35 (T) mm. Then, electrolytic nickel plating was carried out for about 30 minutes in an electrolytic nickel plating solution at a current of 0.5 A to obtain a specimen weighing 0.64 g. Then, cobalt electrolysis was performed at room temperature for 15 minutes at a current of 0.3 A in a single solution of 0.74 M cobalt sulfate. The result was 0.07 g in weight gain, resulting in foamed nickel flakes with a total weight of 0.71 g and porosity of about 84%.

이렇게 제조된 발포니켈 박편을 800g/1 질산니켈, 80g/1 질산코발트, 40g/1 질산나트륨의 용액에 담그어서 0.6A의 전류로 실온에서 60분간 통전하여 수산화니켈을 주성분으로 하는 전극물질을 충진시켰다. 이때 충진된 전극물질은 약 93wt/%의 수산화니켈과 7wt/%의 수산화코발트로 구성됨을 확인하였다.The foamed nickel flakes thus prepared were immersed in a solution of 800g / 1 nickel nitrate, 80g / 1 cobalt nitrate, and 40g / 1 sodium nitrate and energized for 60 minutes at room temperature at a current of 0.6 A to fill the electrode material containing nickel hydroxide as a main component. I was. At this time, it was confirmed that the filled electrode material was composed of about 93 wt /% nickel hydroxide and 7 wt /% cobalt hydroxide.

이후 실시예 1과 동일한 조건으로 세척, 시효처리 및 충방전 시험을 실시하였다. 방전결과 50mA로 방전시에 118.3mAh, 100mA로 방전시에 116.7mAh의 방전용량을 얻었다. 이 경우에 방전율은 50mA 방전시 0.42C, 100mA 방전시 0.86C에 해당한다.Thereafter, washing, aging treatment, and charge / discharge tests were performed under the same conditions as in Example 1. As a result of discharge, a discharge capacity of 118.3 mAh at 50 mA and 116.7 mAh at 100 mA was obtained. In this case, the discharge rate corresponds to 0.42C for 50mA discharge and 0.86C for 100mA discharge.

방전율의 배증에 따른 용량감소는 약 1.4%에 불과한 좋은 결과를 나타내었다. 충방전 시험후 실시예 1과 동일한 조건으로 건조시킨 후의 전극의 최종무게는 1.15g이었다. 전극물질총량중에서 코발트성분을 제외한 전극활물질만의 무게는 0.41g이었다. 전극물질 총량중에서 코발트성분을 제외한 전극활물질만의 무게는 0.41g이고, 따라서 이론용량은 118.5mAh로서 0.42C의 방전율로 방전시의 활물질 이용율은 약 99.8%이고, 중량 에너지 밀도는 116mAh/g 이며 0.86C의 방전율에서는 이용율이 약 98.5%이고 중량 에너지밀도는 114.4mAh/g이다.The capacity reduction due to doubling of the discharge rate showed only good results of only 1.4%. The final weight of the electrode after drying under the same conditions as in Example 1 after the charge and discharge test was 1.15 g. The total weight of the electrode active material except the cobalt component was 0.41 g in the total amount of the electrode material. In the total amount of the electrode material, only the active electrode material excluding the cobalt component weighed 0.41 g. Therefore, the theoretical capacity was 118.5 mAh, and the discharge rate of 0.42C was about 99.8%, and the weight energy density was 116 mAh / g, 0.86. At a discharge rate of C, the utilization rate is about 98.5% and the weight energy density is 114.4 mAh / g.

[실시예 3]Example 3

(무전해 니켈도금후 코발트 전해처리한 경우)(When cobalt electrolytic treatment after electroless nickel plating)

40(L)×27(W)×0.35(T)mm의 크기로 얇게 절단된 발포 폴리우레탄수지에 무전해 도금을 실시한 후 얻어진 시편에 0.13g의 전류집진용 니켈선을 부착한 후 전해 니켈도금액에서 0.5A의 전류로 약 30분간 전해니켈도금을 실시하여 무게 0.36g의 시편을 얻을 후 다시 황산코발트, 염화코발트 및 붕산을 주성분으로 하는 수용액중에서 0.3A의 전류로 30분간 실온에서 교반하면서 코발트 전해처리를 실시하여 0.14g의 무게증가를 가져온 결과 총무게 0.5g이고 기공율이 약 90%의 발포니켈 박편을 얻었다.After electroless plating the expanded polyurethane resin thinly cut to 40 (L) × 27 (W) × 0.35 (T) mm, 0.13g of current collector nickel wire was attached to the specimen. Electrolytic nickel plating was carried out for about 30 minutes at a current of 0.5 A from the amount, and a specimen weighing 0.36 g was obtained. Then, cobalt was stirred for 30 minutes at room temperature with a current of 0.3 A in an aqueous solution mainly composed of cobalt sulfate, cobalt chloride, and boric acid. The electrolytic treatment resulted in a weight increase of 0.14 g, resulting in expanded nickel flakes having a total weight of 0.5 g and porosity of about 90%.

이렇게 제조된 발포니켈 박편을 800g/1 질산니켈, 80g/1 질산코발트, 40g/1 질산나트륨의 용액에 담그어서 0.6A의 전류로 실온에서 60분간 통전하여 수산화니켈을 주성분으로 하는 전극물질을 충진시켰다. 이때 충진된 전극물질은 약 93wt%의 수산화니켈과 7wt%의 수산화코발트로 구성됨을 확인하였다.The foamed nickel flakes thus prepared were immersed in a solution of 800g / 1 nickel nitrate, 80g / 1 cobalt nitrate, and 40g / 1 sodium nitrate and energized for 60 minutes at room temperature at a current of 0.6 A to fill the electrode material containing nickel hydroxide as a main component. I was. At this time, the filled electrode material was confirmed to be composed of about 93wt% nickel hydroxide and 7wt% cobalt hydroxide.

이후 실시예1과 동일한 조건으로 세척, 시효처리 및 충방전 시험을 실시하였다. 방전결과, 50mA로 방전시에 96.7mAh, 100mA로 방전시에 95mAh의 방전용량을 얻었다. 이 경우에 방전율은 50mA 방전시 0.52C, 100mA 방전시 1.05C에 해당한다.Thereafter, washing, aging treatment, and charging / discharging tests were performed under the same conditions as in Example 1. As a result of discharge, a discharge capacity of 96.7 mAh at 50 mA and 95 mAh at 100 mA was obtained. In this case, the discharge rate corresponds to 0.52C for 50mA discharge and 1.05C for 100mA discharge.

방전율의 배중에 따른 용량감소는 약 1.8에 불과한 좋은 결과를 나타내었다. 충방전 시험후 실시예1과 동일한 조건으로 건조시킨 후의 전극의 최종무게는 0.84g이었다. 전극물질총량중에서 코발트성분을 제외한 전극활물질만의 무게는 0.316g이고, 따라서 이론용량은 91.3mAh/g이며, 0.05C의 방전율에서는 이용율이 약 104%이고 중량 에너지밀도는 133.8mAh/g이다.The capacity reduction according to the doubled discharge rate showed only about 1.8. The final weight of the electrode after drying under the same conditions as in Example 1 after the charge and discharge test was 0.84 g. In the total amount of the electrode material, only the electrode active material excluding the cobalt component weighed 0.316 g, thus the theoretical capacity was 91.3 mAh / g. At a discharge rate of 0.05C, the utilization rate was about 104% and the weight energy density was 133.8 mAh / g.

상기 실시예를 통해서 확인 할 수 있듯이 본 발명에서 제공하는 발포니켈박전극은 에너지 밀도, 활물질 이용율, 급속충방전특성(고율방전특성)이 우수하며 특히 코발트 처리한 경우 더욱 우수한 성능의 박전극을 제조할 수 있음을 확인하였다. 상기와 같이 제조한 발포니켈 박전극의 단면도를 제1도에 나타내었다. 도면은 0.45mm 두께 정도의 박전극으로서 측면을 연마하여 사진 촬영한 것으로 니켈골격부분은 빛의 반사로 하얗게 나타나 있으며 부호 1은 발포니켈 박전극의 골격을 형성하는 내부 니켈층을, 부호 2는 표면의 니켈층을 나타내며 검은 부분인 부호 3은 니켈층 골격과 골격 사이에 형성되는 공간부에 충진된 전극 활물질이다.As can be seen through the above embodiment, the foamed nickel foil electrode provided by the present invention has excellent energy density, active material utilization, rapid charge and discharge characteristics (high rate discharge characteristics), and particularly, a thin electrode having better performance when cobalt is manufactured. It was confirmed that it can be done. The cross-sectional view of the foamed nickel thin electrode prepared as described above is shown in FIG. The drawing is a thin electrode of 0.45mm thickness, photographed by polishing the side, and the nickel skeleton part is shown in white by the reflection of light. The symbol 1 is an inner nickel layer forming the skeleton of the foamed nickel foil electrode, and the symbol 2 is a surface. The reference numeral 3, which is a black layer and denotes a nickel layer, denotes an electrode active material filled in the space portion formed between the nickel layer skeleton and the skeleton.

도면에서 보듯이 내부와 외부의 니켈층의 두께가 비교적 균일하게 형성되어 있음을 알 수 있는데 발포 폴리우레탄수지박편의 두께가 0.4mm이하일 경우(니켈이 표면에 석출하여 도금되었을 경우 박전극의 두께는 0.1mm정도증가), 특별한 장치의 도움없이 무전해도금용액에 단순히 우레판 박편을 침지하는 것만으로도 이와 같이 균일한 도금상태를 실현할 수 있음이 본 발명의 한가지 주요한 장점이다.As shown in the figure, it can be seen that the thickness of the inner and outer nickel layers is formed relatively uniformly. If the thickness of the expanded polyurethane resin flakes is less than 0.4 mm (when the nickel is deposited on the surface and plated, the thickness of the thin electrode is Increasing the thickness of about 0.1 mm), it is possible to realize such a uniform plating state by simply immersing the urethane flakes in the electroless plating solution without the help of a special device.

이와같이 본원발명은 발포니켈의 박전극의 두께를 0.5mm이하의 두께로 제조할 수 있어 이를 사용할 경우 충전시간을 크게 단축시키고 충전용량 및 고율 방전이 가능하여 축전지등의 성능을 크게 높이는 것이 가능하다.As described above, the present invention can manufacture the thickness of the thin electrode of the expanded nickel in a thickness of 0.5 mm or less, and when it is used, the charging time can be greatly shortened, the charging capacity and the high rate discharge are possible, and the performance of the battery can be greatly improved.

Claims (4)

발포니켈 전극의 제조방법에 있어서, 0.2mm∼0.4mm 두께의 얇은 박판상의 다공성 우레탄 수지의 기공속에 수㎛ 크기를 갖는 미세한 흑연이나 탄소분말을 수분 및 알콜 성분과 혼합된 슬러리를 침투시킨 후 건조시키는 과정과, 상기 건조된 수지를 스트라이크 욕에서 예비 처리하여 니켈의 손실을 줄이고 무전해 도금속도를 향상시키는 과정과, 상기 예비 처리된 수지를 무전해 니켈 도금액속에 침지시키는 과정과로 구성되어 흑연이나 탄소입자의 표면에 니켈 금속충이 형성되도록 니켈 금속을 석출시켜 도금하는 무전해 도금공정과; 상기 무전해 도금공정을 거친 발포니켈을 전해 니켈 도금용액에서 전해 니켈도금을 하거나 코발트 이온을 포함하는 수용액에서 코발트 전해 처리를 행하는 재처리 공정과; 및 상기 재처리된 발포니켈 박편에 수산화니켈을 주원료한 전극물질을 공급해 주는 공정과;로 이루어짐을 특징으로 하는 발포니켈 박전극의 제조방법.In the method of manufacturing a foamed nickel electrode, a fine graphite or carbon powder having a size of several μm is infiltrated into the pores of a thin plate-shaped porous urethane resin having a thickness of 0.2 mm to 0.4 mm, followed by drying a slurry mixed with water and an alcohol component. A process of preliminarily treating the dried resin in a strike bath to reduce nickel loss and improving electroless plating rate, and immersing the pretreated resin in an electroless nickel plating solution. An electroless plating process of depositing and plating nickel metal so that nickel metal worms are formed on the surface of the particles; A reprocessing process of electrolytic nickel plating the electrolytic nickel plating solution in the electroless nickel plating solution or the cobalt electrolytic treatment in an aqueous solution containing cobalt ions; And supplying an electrode material containing nickel hydroxide to the reprocessed foamed nickel flakes. 제1항에 있어서, 상기 우레탄 수지는 자동차 범퍼용의 고밀도 발포 폴리우레탄수지인 것을 특징으로 하는 발포니켈 박전극의 제조방법.The method of claim 1, wherein the urethane resin is a high-density foamed polyurethane resin for automobile bumpers. 제1항에 있어서, 상기 미세 흑연이나 탄소 분말을 에탄올과 증류수를 1:1의 중량비로 혼합한 용액에 혼합하여 반죽함을 특징으로 하는 발포니켈 박전극의 제조방법.The method of claim 1, wherein the fine graphite or carbon powder is mixed and kneaded in a solution in which ethanol and distilled water are mixed at a weight ratio of 1: 1. 0.2mm∼0.4mm 두께의 고밀도 발포 폴리우레탄 수지를 기저로 하고 상기 고밀도 발포폴리우레탄수지의 섬유골격이 석출된 니켈금속으로 도포되며 그의 기공속에는 전극 활물질이 충진된 것을 특징으로 하는 발포니켈 박전극.A foamed nickel thin electrode, based on a high density foamed polyurethane resin having a thickness of 0.2 mm to 0.4 mm and coated with a nickel metal in which a fiber skeleton of the high density foamed polyurethane resin is deposited, and an electrode active material is filled in the pores thereof.
KR1019950032028A 1995-09-27 1995-09-27 Porous and thin-film nickel electrode and their manufacturing method KR0146336B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950032028A KR0146336B1 (en) 1995-09-27 1995-09-27 Porous and thin-film nickel electrode and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950032028A KR0146336B1 (en) 1995-09-27 1995-09-27 Porous and thin-film nickel electrode and their manufacturing method

Publications (2)

Publication Number Publication Date
KR970018810A KR970018810A (en) 1997-04-30
KR0146336B1 true KR0146336B1 (en) 1998-09-15

Family

ID=19427954

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950032028A KR0146336B1 (en) 1995-09-27 1995-09-27 Porous and thin-film nickel electrode and their manufacturing method

Country Status (1)

Country Link
KR (1) KR0146336B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123078B1 (en) * 2008-04-11 2012-03-19 주식회사 아모그린텍 Electrode of supercapacitor and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123078B1 (en) * 2008-04-11 2012-03-19 주식회사 아모그린텍 Electrode of supercapacitor and method for manufacturing the same

Also Published As

Publication number Publication date
KR970018810A (en) 1997-04-30

Similar Documents

Publication Publication Date Title
EP0609180B1 (en) High density, high capacity battery electrode
US4224392A (en) Nickel-oxide electrode structure and method of making same
JP4292436B2 (en) Metal porous body, method for producing the same and battery current collector using the same
CA2763462C (en) Method of producing current collectors for electrochemical devices
RU2611722C1 (en) Method of production of non-polarizable electrode for electrochemical capacitor
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
US5840444A (en) Electrode for storage battery and process for producing the same
US4938780A (en) Paste type cadmium anode and method for making same
KR0146336B1 (en) Porous and thin-film nickel electrode and their manufacturing method
US3317347A (en) Nickel electrode and method of making same
EP0723307B1 (en) Paste type electrode for alkaline storage battery and process for producing the same
US4975035A (en) Method of making a nickel hydroxide-containing cathode for alkaline batteries
US6265112B1 (en) Method of making a nickel fiber electrode for a nickel based battery system
US4595463A (en) Cobalt treatment of nickel composite electrode surfaces
Law et al. A Novel Substrate for Nickel‐Cadmium Batteries
CN114032532B (en) Sodium metal battery current collector and preparation method and application thereof
US4574096A (en) Suspension method of impregnating active material into composite nickel plaque
US6333125B1 (en) Non-sintered nickel electrode for alkaline storage cell, and alkaline storage cell utilizing the electrode
KR970004135B1 (en) Nickel electrode
EP0331599B1 (en) Process for obtaining electrodes with a non-woven support of nickel or nickel alloy fibres
Zhu et al. Electrochemical impregnation and performance of nickel hydroxide electrodes with porous plaques of hollow nickel fibres
JP3015455B2 (en) Electrode plate for battery
EP0840384A2 (en) Process for the manufacture of positive nickel hydroxide electrodes for alkaline electrical accumulators
JP2000299112A (en) Electrode substrate constituting material for lithium ion secondary battery and lithium polymer battery, electrode substrate for lithium ion secondary battery and lithium polymer battery, and manufacture thereof
Reksc et al. Polypropylene fibre material as a carrier for nickel electrodes

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010509

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee