KR0145787B1 - Process for preparing oxygen by changing pressure - Google Patents

Process for preparing oxygen by changing pressure

Info

Publication number
KR0145787B1
KR0145787B1 KR1019940026056A KR19940026056A KR0145787B1 KR 0145787 B1 KR0145787 B1 KR 0145787B1 KR 1019940026056 A KR1019940026056 A KR 1019940026056A KR 19940026056 A KR19940026056 A KR 19940026056A KR 0145787 B1 KR0145787 B1 KR 0145787B1
Authority
KR
South Korea
Prior art keywords
adsorption
oxygen
tower
pressure
product
Prior art date
Application number
KR1019940026056A
Other languages
Korean (ko)
Inventor
송무룡
박두선
박경석
이수언
김한수
민경현
이선우
Original Assignee
김영대
대성산소주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영대, 대성산소주식회사 filed Critical 김영대
Priority to KR1019940026056A priority Critical patent/KR0145787B1/en
Application granted granted Critical
Publication of KR0145787B1 publication Critical patent/KR0145787B1/en

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

공기중의 수분을 제거하기 위해 탑의 하부에 할성알루미나를 충전하고, 상부에는 질소를 선택적으로 흡착하는 합성제올라이트 분자체를 충전한 3기의 흡착탑을 이용하여 압력변동흡착법에 의해 공기로부터 산소를 제조하는 상압흡착 후 진공재생방식으로 운전되는 압력변동흡착식 산소제조방법에 있어서, 제 2 흡착공정이 완료된 탑의 상부에 잔류하는 농축산소성분을 회수하는 과정에 있어서 종래의 균압공정에서 발생하는 가스흐름의 와류현상이나 탑내산소농도 구배의 불안정 등의 문제점으로 발생되는 제품순도 및 회수율의 저하를 해결하기 위해 탈착공정이 끝난탑에 제품산소로써 흡착압력 가까이 축압시킨 후, 상기의 잔류산소성분을 축압공정이 완료된 탑의 하부로 회수함에 있어서, 가스의 흐름을 안정적으로 유지시켜서 탑내부의 가스흐름의 교란을 방지하여 흡착탑 내부의 산소농도구배를 안정적으로 유지시키므로써 제품의 회수율 및 순도의 항상을 도모하였다. 또한 축압공정시 가스의 탑내유속을 7Cm/sec 이하로 유지하여 공정효율을 향상시켜 순도 94% 이상의 제품산소를 제조하면서 회수율은 50% 이상을 유지할 수 있었다.Oxygen is produced from air by pressure swing adsorption using three adsorption towers filled with synthetic alumina in the lower part of the tower and a synthetic zeolite molecular sieve which selectively adsorbs nitrogen in the upper part to remove moisture in the air. In the pressure swing adsorption oxygen production method that is operated by vacuum regeneration after the atmospheric pressure adsorption, the gas flow generated in the conventional pressure equalization process in the process of recovering the concentrated oxygen component remaining on the top of the column where the second adsorption process is completed. In order to solve the decrease in product purity and recovery rate caused by problems such as vortex phenomena and instability of the oxygen concentration in the tower, after the desorption process, pressure is accumulated near the adsorption pressure with the product oxygen. In recovering to the bottom of the completed tower, the gas flow inside the tower is kept stable by keeping the gas flow stable. Of writing because prevent disturbance stably maintain the oxygen concentration gradient of the adsorption tower it was internal to promote the recovery and purity of the product all the time. In addition, the gas flow rate was maintained at 7Cm / sec or less during the pressure storing process to improve process efficiency, thereby producing oxygen having a purity of 94% or more, and maintaining a recovery rate of 50% or more.

Description

압력변동흡착식 산소제조방법Pressure fluctuation adsorption oxygen production method

제 1 도는 압력변동흡착식 산소제조 장치의 구성도.1 is a block diagram of a pressure swing adsorption oxygen production apparatus.

제 2 도는 압력변동흡착식 산소제조 방법의 공정구성도.2 is a process configuration diagram of a pressure swing adsorption oxygen production method.

제 3 도는 산소제조공정의 탑내 압력변화도.3 is the pressure gradient in the tower of the oxygen production process.

제 4 도는 재생 진공도에 따른 제품산소의 농도변화도.4 is a graph of changes in the concentration of product oxygen according to the degree of regeneration vacuum.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

AD-I, AD-II, AD-III:흡착탑 C10:공기압축기AD-I, AD-II, AD-III: Adsorption Tower C10: Air Compressor

R40:제품탱크 V40:진공펌프R40: Product tank V40: Vacuum pump

7,9,10,13,15,16:밸브7,9,10,13,15,16: valve

본 발명은 압력변동흡착(PSA:Pressure Swing Adsorption)법에 의해 산소를 제조하는 방법에 관한 것으로, 공기중의 수분을 제거하기 위해 흡착탑의 하부에 활성알루니마를, 상부에는 질소흡착제인 합성제올라이트 분자체를 충전한 3기의 흡착탑을 이용하여 공기중의 질소를 선택적으로 흡착제거하여 산소를 회수하고, 감압하여 흡착제의 탈착재생을 행하는 것을 연속적으로 반복하는 산소제조방법에 관한 것이다.The present invention relates to a method for producing oxygen by the pressure swing adsorption (PSA) method, active alumina in the lower part of the adsorption tower to remove moisture in the air, the synthetic zeolite powder as a nitrogen adsorbent on the upper part The present invention relates to a method for producing oxygen in which oxygen in the air is selectively adsorbed and removed using three adsorption columns packed with itself to recover oxygen, and decompression and regeneration of the adsorbent is carried out under reduced pressure.

지금까지 압력변동흡착법에 의해서 공기중으로부터 산소를 농축회수하는 방법이 많이 제안되어 있다. 이 방법은 통상적으로 질소성분을 흡착하는 합성제올라이트 혹은 천연제올라이트 등의 흡착제를 충전한 흡착탑의 한쪽 끝에서 공기를 가압공급하고 반대 끝으로부터 제품산소를 회수하는 것이다. 가압공기가 흡착탑에 공급됨에 따라 흡착제는 질소성분으로 점차적으로 포화흡착되고 흡착탑을 통과한 농축산소는 제품으로 회수된다. 제품산소중의 질소성분이 허용농도치가 되면 원료공기의 공급을 중단하고 질소성분으로 포화된 흡착탑을 감압재생한다. 그러나 이러한 방법은 흡착공정이 완료된 탑의 출구부근에 제품으로 회수되지 않은 농축산소가 잔류하고 있기 때문에 제품의 회수율이 떨어지게 된다. 이러한 종래의 문제점을 개선하기 위해서 흡착공정이 완료된 탑의 출구부근에 잔류하는 농축산소를 회수하는 방법이 많이 제안되어 있다.Until now, many methods for concentrating and recovering oxygen from air by pressure swing adsorption have been proposed. This method is usually pressurized air at one end of an adsorption tower packed with an adsorbent such as a synthetic zeolite or a natural zeolite that adsorbs a nitrogen component, and product oxygen is recovered from the opposite end. As pressurized air is supplied to the adsorption tower, the adsorbent is gradually saturated and adsorbed with nitrogen, and the concentrated oxygen passed through the adsorption tower is recovered as a product. When the nitrogen content in the product oxygen reaches the allowable concentration level, the supply of raw air is stopped and the adsorption tower saturated with nitrogen is recovered under reduced pressure. However, in this method, the recovery rate of the product decreases because concentrated oxygen, which is not recovered as a product, remains near the outlet of the tower where the adsorption process is completed. In order to improve such a conventional problem, many methods for recovering concentrated oxygen remaining near the outlet of the column where the adsorption process is completed have been proposed.

최근에는 압력변동흡착법으로 산소를 제조하는 방법에 있어서, 제품의 순도를 향상시키고 소비동력을 낮추기 위해 가압흡착 후에 상압재생을 실시하는 방법에서 점차 상압흡착 후에 진공재생하는 방법으로 전환되고 있는 추세이다.In recent years, in the method of producing oxygen by pressure swing adsorption, the method of gradually regenerating the vacuum after atmospheric pressure adsorption is gradually changed from the method of performing normal pressure regeneration after pressure adsorption in order to improve the purity of the product and lower the power consumption.

국내특허 공보 제 93-5315 호에서는 상기의 잔류농축산소를 회수하기 위하여 탈착재생이 완료된 탑과 흡착공정이 끝난 탑의 상부를 서로 통관하여 흡착공정이 끝난탑의 상부에 잔류하는 농축산소성분을 탈착재생이 완료된 탑으로 1차적으로 회수(상-상균압)하고, 회수되는 산소의 농도가 87% 이하로 떨어지면 탑의 하부로 나머지 잔류농축산소성분을 회수(상-하균압)하고 있다. 그러나 이러한 균압공정에서는 균압을 도모하는 두 탑의 압력차이를 이 공정 동안에 일정하게 유지시킬 수 없기 때문에 균압공정시 가스의 유속을 일정하게 유지할 수 없게 된다. 또한 잔류가스의 회수율을 높이기 위해 상-상 균압과 상-하 균압을 순차적으로 행하기 때분에 탑내부의 가스의 흐름이 바뀌게 되어 산손농도구배가 완만하지 못하게 된다. 이러한 탑내부의 산소농도구배의 불안정은 제품의 순도를 일정하게 유지하기 곤란할 뿐만아니라, 제품의 회수율이 떨어지는 결과를 초래한다.In Korean Patent Publication No. 93-5315, in order to recover the residual concentrated oxygen, the concentrated oxygen component remaining on the upper part of the adsorption step is desorbed by passing through the upper part of the desorption regeneration completion tower and the adsorption step completion tower. After the regeneration is completed, the first recovery (phase-equilibrium pressure) is performed, and when the concentration of recovered oxygen falls below 87%, the remaining residual oxygen component is recovered (upper-down pressure equalization) to the bottom of the tower. However, in this pressure equalization process, the pressure difference between the two towers for equalization cannot be kept constant during this process, so that the flow rate of the gas during the pressure equalization process cannot be kept constant. In addition, in order to increase the recovery rate of the residual gas, the phase of the gas inside the tower is changed when the phase-phase equalization and the phase-down equalization are sequentially performed, so that the acid loss farming tool is not smooth. This instability of the oxygen concentration tool inside the tower is not only difficult to maintain a constant product purity, but also results in a poor product recovery rate.

본 발명의 목적은 이러한 문제점을 해결하기 위하여 흡착공정이 환료된 후 탑의 상부에 잔류하는 농축산소를 회수함에 있어서, 가스흐름의 교란현상을 막고 잔류하는 농축산소의 회수율을 높히기 위해서, 잔류농축산소의 회수에 앞서서 탈착배기공정이 완료된 탑을 제품산소로서 흡착압력 가까이 축압한 후, 상기 흡착공정이 완료된 탑의 하부에서 계속해서 원료공기를 공급하고 탑의 상부로 배기되는 농축산소를 축압공정이 완료된 탑의 하부롤 도입함에 따라 균압공정에서 발생되는 가스의 와류현상을 방지하고 탑내부의 산손농도구배를 완만하게 유지할 수 있다. 따라서 균압공정에 의한 제품산소의 일시적인 농도저하를 염려할 필요가 없을 뿐만아니라, 제품의 회수율을 향상시킬수 있다. 또한 축압공정시 탑내의 유속을 7Cm/sec 이하로 하므로써 제품산소와 탑내에 잔류하는 질소성분과의 물질이동을 최대로 용이하게 하여 흡착공정에 들어가기 전에 흡착탑의 상부의 질소성분을 가능한 하부쪽으로 이동시키므로 제품의 순도향상을 도모할 수 있는 압력변동흡착식 산소제조방법을 제공하고자 하는 것이다.The purpose of the present invention is to recover the concentrated oxygen remaining in the upper part of the tower after the adsorption process to remedy the problem, in order to prevent the disturbance of the gas flow and to increase the recovery rate of the remaining concentrated oxygen, After accumulating the tower in which the desorption exhaust process is completed as the product oxygen near the adsorption pressure, the raw material air is continuously supplied from the lower part of the tower where the adsorption process is completed and exhausted concentrated oxygen discharged to the upper part of the tower is completed. By introducing the lower roll, it is possible to prevent the vortex of the gas generated in the pressure equalization process and to maintain the sanson concentration tool inside the tower gently. Therefore, there is no need to worry about the temporary concentration drop of the product oxygen by the equalization process, and the recovery rate of the product can be improved. In addition, the flow rate in the tower during the compression process is 7 Cm / sec or less, which facilitates mass transfer between the product oxygen and the nitrogen remaining in the tower, and moves the nitrogen component of the upper part of the adsorption column to the lower side as possible before entering the adsorption process. It is to provide a pressure swing adsorption oxygen production method that can improve the purity of the product.

이하 발명을 첨부도면과 그 운전공정에 관하여 제 1 도에 도시된 제 1 흡착탑 AD-I을 기준으로 설명하면 아래와 같다.Hereinafter, the present invention will be described with reference to the first adsorption tower AD-I shown in FIG.

(1)축압공정(1) accumulation process

진공펌프(V40)에 의해 탈착재생이 완료된 제 1 흡착탑 AD-I의 상부와 제품탱크(R40) 사이의 밸브(10)과 (16)을 열고, 제품탱크(R40)으로부터 제품산소의 일부를 도입하여 흡착압력 가까이 축압한다. 이때 축압시의 탑내유속은 7Cm/sec 이하로 하여 흡착제에 흡착되어 있는 질소와 제품산소의 치환을 용이하게 하고 치환된 질소는 탑의 하부로 이동시킨다.Open the valves 10 and 16 between the upper part of the first adsorption tower AD-I and the product tank R40 where the desorption and regeneration is completed by the vacuum pump V40, and introduce a part of the product oxygen from the product tank R40. To accumulate near the adsorption pressure. At this time, the flow rate in the column during the pressurization is 7 Cm / sec or less to facilitate the replacement of nitrogen and product oxygen adsorbed in the adsorbent, and the replaced nitrogen is moved to the bottom of the column.

(2)제 1 흡착공정(2) First adsorption process

제 1 흡착탑 AD-I의 축압공정이 완료되면 밸브(10)과 (16)을 닫고 밸브(7)을 열어서 제 2 흡착공정이 완료된 제 2 흡착탑 AD-II의 상부에 잔류하는 산소를 제 1 흡착탑 AD-I로 도입하고 상부로 배기되는 제품산소는 밸브(13)을 열어서 제품탱크(R40)에 저장한다. 제 2 흡착탑 AD-II의 상부에 잔류하는 산소의 회수가 완료되면 제 1 흡착공정을 종료한다.When the pressure storing process of the first adsorption tower AD-I is completed, the valves 10 and 16 are closed and the valve 7 is opened to release oxygen remaining in the upper portion of the second adsorption tower AD-II where the second adsorption process is completed. The product oxygen introduced into the AD-I and exhausted to the upper portion is stored in the product tank R40 by opening the valve 13. When the recovery of oxygen remaining in the upper portion of the second adsorption tower AD-II is completed, the first adsorption process is completed.

(3)제 2 흡착공정(3) 2nd adsorption process

제 1 흡착공정, 즉 제 2 흡착탑 AD-II 상부에 잔류하는 산소 성분의 회수가 완료되면 원료공기를 제 2 흡착탑 AD-II로의 공급을 중단하고 공기 압축기(C10)에 의해서 제 1 흡착탑 AD-I의 하부로 직접 도입한다. 원료공기를 계속해서 제 2 흡착탑을 통과시켜 제 1 흡착탑으로 도입하는 것을 흡착탑이나 배관 및 밸브등에서 압력손실만 초래할 뿐 효율향상에 전혀 도움이 되지 않는다. 그래서 제 2 흡착공정에서는 원료공기글 제 1 흡착탑 AD-I의 하부로 직접 도입하고 상부에서는 제품산소를 회수한다.When the first adsorption process, that is, the recovery of the oxygen component remaining on the upper side of the second adsorption tower AD-II, is completed, the supply of raw air to the second adsorption tower AD-II is stopped and the first adsorption tower AD-I is operated by the air compressor C10. Introduce directly into the bottom of the. The continuous introduction of raw air into the first adsorption tower through the second adsorption tower only results in pressure loss in the adsorption tower, piping and valves, but does not help to improve the efficiency at all. Therefore, in the second adsorption step, the raw air is introduced directly into the first adsorption tower AD-I and the product oxygen is recovered from the upper part.

제 2 흡착공정시 탑의 상부로 배기되는 제품산소중에 함유하고 있는 질소성분이 허용치 이하에서 이 공정을 완료하여야 한다. 즉 질소의 파괴점으로부터 충분한 여유를 두고 이 공정을 종료해도 무방하다는 것이다. 이것은 다음에 설명하는 회수공정에서 상부에 잔류하는 농축산소가 충분히 다른 탑으로 회수되기 때문이다.In the second adsorption process, this process should be completed when the nitrogen content in the product oxygen exhausted to the top of the tower is below the allowable level. In other words, the process may be terminated with sufficient margin from the point of destruction of nitrogen. This is because the concentrated oxygen remaining at the top is recovered to a sufficiently different column in the recovery step described below.

(4)회수공정(4) Recovery process

이 공정은 탑의 상부에 잔류하는 농축산소성분을 다른 탑으로 회수하여 제품으로 취하기 위한 공정으로 밸브(13)을 닫고 밸브(9)를 열어서 제 1 흡착탑 AD-I의 상부에 잔류하는 산소성분을 축압공정이 완료된 제 3 흡착탑 AD-III의 하부로 도입하고 밸브(15)를 열어서 상부로 배기되는 산소를 제품으로 취한다. 제 1 흡착탑 AD-I의 상부에 잔류하는 산소의 회수가 완료되면, 즉 제 1 흡착탑 AD-I 상부로 배기되는 산소의 농도가 공기중의 산소조성과 같아지게 되면 회수공정이 종료된다.This process is for recovering the concentrated oxygen component remaining in the upper part of the tower and taking it as a product. The valve 13 is closed and the valve 9 is opened to remove the oxygen component remaining in the upper part of the first adsorption tower AD-I. Oxygen discharged to the upper part is introduced into the lower part of the third adsorption tower AD-III where the pressure storing process is completed, and the valve 15 is opened. When the recovery of oxygen remaining in the upper part of the first adsorption tower AD-I is completed, that is, the concentration of oxygen exhausted to the upper part of the first adsorption tower AD-I becomes equal to the oxygen composition in the air, the recovery process is completed.

(5)탈착재생공정(5) Desorption and Regeneration Process

회수공정이 완료되면 제 1 흡착탑 AD-I은 질소성분으로 포화되어 있다. 이 질소 성분을 진공펌프(V40)와 연결시켜 탑내압력이 120torr가 될 때까지 진공탈착시켜서 대기로 방출한다. 이 탈착재생공정에서 질소의 탈착을 용이하게 하기 위해 제품산소의 일부를 탑의 상부에서 흘려주는 것은 제품의 손실을 초래하여 제품의 회수율을 떨어뜨리는 원인이 된다. 그래서 본 발명에서는 탈착재생공정시에 제품산소를 흘려주는 대신에 질소탈착재생의 진공도를 높혀 운전하여 제품의 손실을 줄임으로써 제품산소의 회수율을 높힐 수 있다.After the recovery process, the first adsorption tower AD-I is saturated with nitrogen. This nitrogen component is connected to the vacuum pump (V40) and vacuum-desorbed until the internal pressure of the column reaches 120torr, and is discharged to the atmosphere. In this desorption and regeneration process, the flow of a part of product oxygen from the top of the tower in order to facilitate the desorption of nitrogen causes a loss of the product and a decrease in the recovery rate of the product. Therefore, in the present invention, instead of flowing the product oxygen during the desorption and regeneration process, the recovery rate of the product oxygen can be increased by reducing the loss of the product by increasing the vacuum degree of the desorption and regeneration.

제 2 도는 상기의 공정이 보기 쉽게 도시되어 있고 제 3 도에는 흡착탑 AD-I, AD-II 및 AD-III 의 탑내압력 변화도가 도시되며, 제 4 도에는 재생진공도에 따른 제품산소의 농도 변화도가 도시된다.FIG. 2 shows the above process for easy viewing, and FIG. 3 shows the change in column pressures of the adsorption towers AD-I, AD-II and AD-III, and FIG. 4 shows the change of concentration of product oxygen according to the regeneration vacuum degree. The figure is shown.

상기 5개의 공정을 흡착탑 AD-I에서 흡착탑 AD-II, III에 공정의 위상이 서로 다르게 반복하여 실시하므로써 제품산소를 연속적으로 제조할 수 있다.By repeating the five processes in the adsorption tower AD-I to the adsorption towers AD-II and III in different phases, product oxygen can be continuously produced.

이하는 상기의 공정을 실제장치에 적용하여 실시한 예에 대하여 기술한다.The following describes an example in which the above process is applied to an actual apparatus.

[실시예]EXAMPLE

제 1 도에 나타난 장치를 사용하여 공기로부터 산소의 제조를 본 발명의 공정에 따라 실시하였다. 공기중의 수분을 제거하기 위해 탑의 하부에는 활성 알루미나를, 상부에는 질소흡착제이니 합성제올라이트 분자체로 충전하였으며, 흡착탑 AD-I, AD-II, AD-III의 내경을 89.1mm 높이 1500mm의 것을 사용하였고, 한 탑당 흡착제 충전량은 활성알루미나 1.8kg, 합성제올라이트 4.4kg이었다.The production of oxygen from air was carried out according to the process of the invention using the apparatus shown in FIG. In order to remove water from the air, the bottom of the tower was filled with activated alumina, and the top was filled with nitrogen adsorbent and synthetic zeolite molecular sieve.The inner diameter of the adsorption tower AD-I, AD-II, AD-III was 89.1mm high and 1500mm high. Adsorbent loading per tower was 1.8 kg activated alumina and 4.4 kg synthetic zeolite.

상기의 실험장치를 사용하여 원료공기의 압력을 0.5kg, 유량을 42 l/min 사용하여 94.9%의 제품산소를 5.06 l/min 생산하였다(회수율 54.4%). 이때의 각공정시간은 축압 50초, 제 1 흡착공정 30초, 제 2 흡착공정 50초, 회수공정 30초 탈착공정 80초였으며, 축압시 가스의 탑내유속은 5.3Cm/sec 이었다.Using the above experimental apparatus, 5.06 l / min of 94.9% product oxygen was produced using a pressure of 0.5 kg of raw air and a flow rate of 42 l / min (recovery rate 54.4%). At this time, the process time was 50 seconds for the pressurization pressure, 30 seconds for the first adsorption process, 50 seconds for the second adsorption process, and 30 seconds for the desorption process, and 80 seconds for the desorption process.

본 발명의 산소제조방법에 따르면, 상압흡착과 진공재생방법으로 운전되는 산소압력변동흡착식 장치에서 흡착공정이 완료된 탑의 출구부근에 잔류하고 있는 농축산소 성분을 축압공정이 완료된 탑의 하부로 회수하여 제품산소의 회수율을 향상시키고 고순도의 제품을 연속적으로 제조할 수 있는 효과가 있다.According to the oxygen production method of the present invention, in the oxygen pressure variable adsorption apparatus operated by the atmospheric pressure adsorption and vacuum regeneration method, the concentrated oxygen component remaining near the outlet of the tower where the adsorption process is completed is recovered to the bottom of the column where the pressure storage process is completed. It has the effect of improving the recovery rate of product oxygen and continuously producing high purity products.

Claims (2)

흡착탑의 하부에는 공기중의 수분을 제거하기 위한 활성알루미나를, 상부에는 질소를 선택적으로 흡착하는 합성제올라이트 분자를 충전할 3기의 흡착탑을 이용하여 압력변동흡착법에 의해 공기로부터 산소를 제조하는 방법에 있어서, 흡착공정이 완료된 제 1 흡착탑 AD-I에 제품산소를 제품탱크(R40)로부터 탑의 상부로 도입하여 흡착압력부근까지 축압하는 축압공정과, 제 2 흡착탑 AD-II의 제 2 흡착공정 후 탑의 상부에 잔류하는 산소성분을 축압공정이 완료된 탑으로 회수하기 위하여 원료공기를 제 2 흡착탑 AD-II 하부에서 계속해서 도입하면서 탑의 상부로 배기되는 농축산소성분을 제 1 흡착탑 AD-I의 하부로 도입하면서 상부로부터 제품산소를 회수하는 제 1 흡착공정과, 제 2 흡착공정 후 탑의 상부에 잔류하는 농축산소를 축압공정이 완료된 제 3 흡착탑 AD-III으로 회수하기 위하여 원료공기를 제 1 흡착탑 AD-I 하부로부터 도입하여 상부로 배기되는 농축산소를 제 3 흡착탑 AD-III의 하부로 회수하는 회수공정과, 축압공정에서 회수공정까지를 수행하여 질소성분으로 포화되어 있는 흡착탑을 진공펌프로서 감압탈착하므로써 흡착탑을 재생하는 탈착재생공정을 제 1 흡착탑 AD-I에서 제 2,3의 흡착탑 AD-II, AD-III에 공정위상이 서로 다르게 순차적으로 반복해서 행하는 것을 특징으로 하는 산소제조방법.In the method of producing oxygen from the air by pressure swing adsorption using three adsorption towers to be charged with activated alumina for removing moisture in the air at the lower part of the adsorption column and synthetic zeolite molecules for selectively adsorbing nitrogen at the upper part. In the first adsorption tower AD-I where the adsorption step is completed, after the product oxygen is introduced from the product tank R40 to the top of the column and accumulates to near the adsorption pressure, and after the second adsorption process of the second adsorption tower AD-II. In order to recover the oxygen component remaining in the upper part of the column to the column where the pressure storing process is completed, the concentrated oxygen component which is exhausted to the upper part of the tower while continuously introducing the raw material air from the lower part of the second adsorption column AD-II, The third adsorption process in which the pressure accumulation process is completed for the first adsorption step of recovering the product oxygen from the upper part while introducing the lower part and the concentrated oxygen remaining in the upper part of the tower after the second adsorption step. In order to recover to the tower AD-III, a recovery step of recovering the concentrated oxygen introduced from the lower part of the first adsorption tower AD-I and exhausted to the lower part of the third adsorption tower AD-III, and from the accumulating step to the recovery step The desorption and regeneration process for regenerating the adsorption tower by depressurizing and desorbing the adsorption tower saturated with nitrogen by means of a vacuum pump was carried out differently from the first adsorption tower AD-I to the adsorption towers AD-II and AD-III of the 2nd and 3rd adsorption tower. Oxygen production method characterized in that it is carried out repeatedly sequentially. 제 1 항에 있어서, 탈착재생이 완료된 흡착탑을 제품산소로서 축압할 때 가스의 탑내유속을 7Cm/sec 이하로 하는 것을 특징으로 하는 산소제조방법.The oxygen production method according to claim 1, wherein when the desorption and regeneration of the adsorption tower is completed as product oxygen, the gas flow rate of the column is set to 7 Cm / sec or less.
KR1019940026056A 1994-10-12 1994-10-12 Process for preparing oxygen by changing pressure KR0145787B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940026056A KR0145787B1 (en) 1994-10-12 1994-10-12 Process for preparing oxygen by changing pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940026056A KR0145787B1 (en) 1994-10-12 1994-10-12 Process for preparing oxygen by changing pressure

Publications (1)

Publication Number Publication Date
KR0145787B1 true KR0145787B1 (en) 1998-08-17

Family

ID=19394913

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940026056A KR0145787B1 (en) 1994-10-12 1994-10-12 Process for preparing oxygen by changing pressure

Country Status (1)

Country Link
KR (1) KR0145787B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862080B1 (en) * 2006-02-03 2008-10-09 (주) 선바이오투 Pressure Swing Adsorption Method And Apparatus thereof
KR20150043266A (en) * 2015-04-02 2015-04-22 이종찬 Apparatus and method for producing nitrogen or oxygen gas using three towers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862080B1 (en) * 2006-02-03 2008-10-09 (주) 선바이오투 Pressure Swing Adsorption Method And Apparatus thereof
KR20150043266A (en) * 2015-04-02 2015-04-22 이종찬 Apparatus and method for producing nitrogen or oxygen gas using three towers

Similar Documents

Publication Publication Date Title
US4781735A (en) Enrichment in oxygen gas
FI81966B (en) Improved adsorption method with pressure oscillation
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
US5085674A (en) Duplex adsorption process
US4359328A (en) Inverted pressure swing adsorption process
US5536300A (en) Natural gas enrichment process
US5536299A (en) Simultaneous step pressure swing adsorption process
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
US5547492A (en) Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor
EP0354259A1 (en) Improved pressure swing adsorption process
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
US5403385A (en) Serial flow pressure swing adsorption process for gas separation
KR0145787B1 (en) Process for preparing oxygen by changing pressure
KR100275858B1 (en) Pressure and apparatus for nitrogen production by pressure swing adsorption
JPH04227018A (en) Manufacture of inert gas of high purity
JPS621767B2 (en)
JPH0555171B2 (en)
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JP2981303B2 (en) Method for separating gaseous impurities from gas mixtures
CN112742172B (en) Energy gas purification method
KR100292555B1 (en) Pressure swing adsorption process for hydrogen purification with high productivity
JPH0967104A (en) Oxygen concentrating method by pressure swing adsorption
JPS60161309A (en) Production of oxygen-enriched gas
CA2118572C (en) Serial flow pressure swing adsorption process for gas separation
JPH0456648B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130424

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20140424

Year of fee payment: 17

EXPY Expiration of term