KR0128107B1 - Process for benzanthrone - Google Patents

Process for benzanthrone

Info

Publication number
KR0128107B1
KR0128107B1 KR1019940019891A KR19940019891A KR0128107B1 KR 0128107 B1 KR0128107 B1 KR 0128107B1 KR 1019940019891 A KR1019940019891 A KR 1019940019891A KR 19940019891 A KR19940019891 A KR 19940019891A KR 0128107 B1 KR0128107 B1 KR 0128107B1
Authority
KR
South Korea
Prior art keywords
benzanthrone
chlorobenzene
anthraquinone
palladium
glycerin
Prior art date
Application number
KR1019940019891A
Other languages
Korean (ko)
Other versions
KR960007524A (en
Inventor
오세화
정재윤
김영석
권은경
Original Assignee
강박광
재단법인 한국화학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강박광, 재단법인 한국화학연구소 filed Critical 강박광
Priority to KR1019940019891A priority Critical patent/KR0128107B1/en
Publication of KR960007524A publication Critical patent/KR960007524A/en
Application granted granted Critical
Publication of KR0128107B1 publication Critical patent/KR0128107B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/10Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/417Saturated compounds containing a keto group being part of a ring polycyclic
    • C07C49/423Saturated compounds containing a keto group being part of a ring polycyclic a keto group being part of a condensed ring system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Anthrone is synthesized by hydration of anthraquinone in organic solvent. Hydration is carried out by Pd/C catalyst and 9-15 parts by weight of chlorobenzene is used as organic solvent. Condensation reaction of anthrone prepared above and glycerin is carried out in the presence of sulfuric acid at the temperature of 105-130 degree Celsius, then benzanthrone with high purity is synthesized.

Description

벤즈안트론의 제조방법Method of manufacturing benzanthrone

본 발명은 벤즈안트론(Benzanthrone)의 새로운 제조방법에 관한 것으로서, 제조공정상 부산물인 중금속 폐기물의 발생량을 최소화하고, 관리와 조작이 간편한 제조공정으로 고순도 및 고수율로 다음 구조식(Ⅰ)로 표시되는 벤즈안트론을 제조하는 방법에 관한 것이다.The present invention relates to a new manufacturing method of Benzanthrone, which minimizes the amount of by-product heavy metal waste produced in the manufacturing process, and is represented by the following structural formula (I) in high purity and high yield with a simple manufacturing process A method for producing benzanthrone.

일반적으로 고급 배트염료의 중요 중간체로 사용되고 있는 상기 구조식(I)로 표시되는 벤즈안트론은 다양한 제조방법들이 알려져 있으나, 종래의 제조방법들은 대부분 반응조건이 매우 격렬하고, 다량의 중금속 폐기물이 발생하는 등 심각한 환경오염 문제를 수반하기 때문에 그 제조방법들을 그대로 공업적으로 적용하기는 적합하지 못하다는 문제가 있다.In general, benzanthrone represented by Structural Formula (I), which is generally used as an important intermediate of high-quality bat dyes, is known in a variety of manufacturing methods. However, most of the conventional manufacturing methods are very vigorous in reaction conditions, and a large amount of heavy metal waste is generated. There is a problem that it is not suitable to apply the manufacturing method as it is because it involves a serious environmental pollution problem.

유럽 특허공보 EP 10,525 A1호에는 중금속 촉매인 철과 유독성의 아황산 가스촉매하에서 벤즈안트론을 과량의 황산과 클로로벤젠 용매 중에서 글리세린과 반응시켜 구조식(I)의 화합물을 제조하는 방법이 제시되어 있으나, 이와같은 방법은 다량의 중금속 폐기물 및 폐산이 발생되고, 독성이 강하고, 공해 발생요인이 매우 큰 아황산 가스를 사용해야 하므로 이를 그대로 생산방법으로 적용하기에는 많은 문제점이 있다.EP 10,525 A 1 discloses a process for preparing a compound of formula (I) by reacting benzanthrone with glycerin in an excess of sulfuric acid and chlorobenzene in a heavy metal catalyst iron and a toxic sulfite gas catalyst. In this way, since a large amount of heavy metal waste and waste acid are generated, toxic and strong pollution factors must be used, sulfurous acid gas has a lot of problems to be applied as it is as a production method.

또한, 반응용매인 클로로벤젠을 벤즈안트론에 대해 20중량배, 황산을 5.1중량배 사용함으로서 제조원가 부담이 높다는 문제도 있다.In addition, there is a problem in that the production cost burden is high by using chlorobenzene, which is a reaction solvent, in an amount of 20% by weight based on benzanthrone and 5.1% by weight of sulfuric acid.

또한, FIAT 1313Ⅱ에 기술되어 있는 구조식(I)의 화합물 제조방법은 벤즈안트론에 대해 7중량배의 황산과 1중량배의 철을 사용하여 볜즈안트론을 안트론으로 환원한 후 이것을 글리세린과 축합반응하여 86% 순도의 목적화합물을 제조하는 방법을 제안하고 있으나, 이 방법 역시 다량의 중금속 페기물을 발생시키며, 이렇게 제조된 벤즈안트론은 불순하여 이것을 고급 배트염료의 합성에 사용하기 위해서는 필수적으로 고온 감압하에서 승화법에 의한 정제과정을 거쳐야 하는등 제조공정상의 번거러움이 따르고, 제조원가 부담이 많다.In addition, the method for preparing the compound of formula (I) described in FIAT 1313II is a condensation with glycerin after reducing the wort anthrone to anthrone using 7 wt% sulfuric acid and 1 wt% iron relative to benzanthrone. It is proposed to prepare 86% purity of the target compound by reaction, but this method also generates a large amount of heavy metal waste, and the benzanthrone thus produced is impure, so it is essential to use it for the synthesis of high-quality bat dyes. It is cumbersome in manufacturing process such as having to go through purification process by sublimation method under reduced pressure, and there is much manufacturing cost burden.

이러한 기존의 제조방법들은 반응 출발물질인 벤즈안트론을 다량의 황산용매 내에서 철과 아황산 가스와 같은 환원제를 사용해 하기 구조식(Ⅱ)로 표시되는 안트론으로 환원한 후, 이것을 글리세린과 축합반응하여 벤즈안트론을 제조하게 된다. 이 경우 벤즈안트론의 낮은 용해도로 인해 다량의 용매를 사용하게 되며, 또한 중금속 환원제나 유독성의 환원제를 사용해야 하기 때문에 공해발생에 대한 부담이 매우 높다.These conventional manufacturing methods reduce the reaction starting material benzanthrone to an anthrone represented by the following structural formula (II) using a reducing agent such as iron and sulfurous acid gas in a large amount of sulfuric acid solvent, and then condensation reaction with glycerin Benzanthrone will be produced. In this case, due to the low solubility of benzanthrone, a large amount of solvent is used, and since heavy metal reducing agents or toxic reducing agents must be used, the burden of pollution is very high.

이에 본 발명자들은 상술한 문제점들을 다양하게 연구해 온 결과, 공해발생이 적고, 간편한 제조공정과 높은 수율로 고순도의 구조식(I)의 화합물을 제조할 수 있음을 알게 되어 본 발명을 완성하게 되었다.Accordingly, the present inventors have studied the above-mentioned problems in a variety of ways, and found that it is possible to prepare a compound of structural formula (I) of high purity with little pollution and easy manufacturing process and high yield.

본 발명은 상술한 바와같은 종래의 문제점을 해결하기 위해, 벤즈안트론을 유기용매 중에서 팔라듐-탄소촉매로 수소화반응시켜 안트론을 합성한 후, 이를 글리세린과 축합반응하여 목적화합물인 벤즈안트론을 제조함으로서 종래의 방법에서 필수적으로 발생하면 중금속 폐기물이 발생하지 않아 환경오염에 대한 부담이 없으며, 제조공정이 안전하고 간편하여 현장적용을 용이하게 하는 한편, 구조식(I)의 화합물에 대한 제조원가를 최소화하여 고순도 및 과수율로 벤즈안트론을 제조하는 방법을 제공하는데 그 목적과 의의가 있다.In order to solve the above-mentioned problems, the present invention synthesizes anthrone by hydrogenation of benzanthrone with a palladium-carbon catalyst in an organic solvent, and then condensation reaction with glycerin to form benzanthrone as a target compound. When produced by the conventional method, it does not generate heavy metal waste, so it is not burdened with environmental pollution, and the manufacturing process is safe and simple to facilitate the site application, while minimizing the manufacturing cost for the compound of formula (I). To provide a method for producing benzanthrone in high purity and yield, there is a purpose and significance.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 소량의 팔라듐-탄소(약 5중량%의 팔라듐 함유)와 산촉매하에서 벤즈안트론를 클로로벤젠, 크실렌등의 유기용매 중에서 수소화반응시켜 안트론을 합성한 후, 이것을 그대로 글리세린과 축합반응하여 구조식(I)의 화합물을 제조하는 방법에 관한 것이다.The present invention synthesizes anthrone by hydrogenation of benzanthrone in an organic solvent such as chlorobenzene and xylene under a small amount of palladium-carbon (containing about 5% by weight of palladium) and an acid catalyst, and then condensation reaction with glycerin as it is. It relates to a method for producing the compound of (I).

독일 특허공보 DE 3,245,201 A1호에 기술되어 있는 벤즈안트론의 합성 중간체인 안트론의 제조방법은 아크롬산 구리염(Cu Chromite) 촉매하에서 벤즈안트론을 o-크실렌이나 o-클로로톨루엔 용매 중에서 수소화반응 시킴으로서 구조식(Ⅱ) 화합물을 제조하는 방법이 제시되어 있으나, 이와같은 방법으로 구조식(Ⅱ)의 화합물을 제조하는 경우, 그 반응조건은 35기압 내지 45기압의 수소압력에서 200℃ 반응온도로 3시간 반응해야 하는등 반응조건이 매우 격렬하여 그대로 현장에 적용하기에는 많은 문제점이 있다.The process for the preparation of anthrone, a synthetic intermediate of benzanthrone described in DE 3,245,201 A 1 , is carried out by hydrogenation of benzanthrone in an o-xylene or o-chlorotoluene solvent under a Cu Chromite catalyst. Although a method of preparing the compound of formula (II) has been proposed by the reaction, when the compound of the formula (II) is prepared in this manner, the reaction conditions are 3 to 200 ° C. at a hydrogen pressure of 35 to 45 atm. The reaction conditions are very intense, such as the need to react for a long time, and there are many problems in applying them to the field as they are.

또한, 반응촉매인 아크롬산 구리염은 재사용이 불가능하며, 벤즈안트론 몰양의 10%를 사용함으로서 다량의 중금속 폐기물을 발생시키게 되어 공해발생 부담요인이 되었다.In addition, the copper chromite salt, which is a reaction catalyst, is not reusable, and by using 10% of the molar amount of benzanthrone, a large amount of heavy metal waste is generated, which causes a pollution burden.

즉, 종래의 기술에서는 아크롬산 구리염을 벤즈안트론에 대해 10% 중량배를 반응촉매로 사용하여 다량의 중금속 폐기물을 양산하였으나, 본 발명에서는 팔라듐-탄소(팔라듐 5%) 촉매를 출발물질에 대해 0.5-1% 중량배 사용하게 되고, 반응후의 팔라듐-탄소 촉매는 5회까지 재사용 가능하여 환경오염과 제조원가에 대한 부담을 크게 감소시켰으며, 반응 수소압력을 13기압 정도로 크게 낮추어 현장적용이 용이하게 하였다.That is, in the prior art, a large amount of heavy metal waste was produced using copper chromite salt with 10% by weight of benzanthrone as a reaction catalyst, but in the present invention, a palladium-carbon (5% palladium) catalyst was used as a starting material. 0.5-1% by weight, and the palladium-carbon catalyst after the reaction can be reused up to 5 times, greatly reducing the burden on environmental pollution and manufacturing costs, and easily reducing the hydrogen pressure to 13 atm. It was made.

이와같은 방법으로 벤즈안트론을 수소화하여 안트론을 합성한 후 여과하여 반응촉매는 회수하고, 반응여액은 황산촉매하에서 글리세린과 축합반응시키면 98% 이상의 순도를 갖는 구조식(I)의 목적 화합물을 82%의 수율로 제조할 수 있게 된다.Hydrogen benzanthrone was synthesized in this manner to synthesize anthrone, followed by filtration to recover the reaction catalyst, and the reaction filtrate condensed with glycerin under a sulfuric acid catalyst to give a target compound of formula (I) having a purity of 98% or more. It can be produced in a yield of%.

이렇게 제조된 벤즈안트론은 승화 정제 등의 별도의 정제과정을 거치지 않고 고급 배트염료의 제조에 그대로 사용가능하며, 벤즈안트론의 수소화반응에 팔라듐-탄소 촉매와 함께 사용한 산촉매는 황산, 염산, 루이스산, 무기산 등으로 수소화반응에서 탈수작용을 촉진시켜 안트론의 제조를 용이하는 역할을 하게 된다.The benzanthrone thus prepared can be used as it is for the production of high-quality bat dyes without undergoing a separate purification process such as sublimation purification.The acid catalyst used together with the palladium-carbon catalyst for the hydrogenation of benzanthrone is sulfuric acid, hydrochloric acid, Lewis Acids, inorganic acids, etc. promote the dehydration in the hydrogenation reaction to facilitate the production of anthrone.

특히, 유럽 특허공보 EP 10,525 A1호에서는 황산을 벤즈안트론에 대해 5.1중량배, 클로로벤젠을 20중량배 사용하여 83%의 수율로 목적화합물을 제조하고 있는 것에 비해, 본 발명에서는 1중량배의 황산과 9-10중량배의 클로로 벤젠을 사용함으로서 제조원가를 크게 줄였다. 또한, 중금속 환원제인 철과 유독성의 아황산 가스를 사용해야 했던 종래의 기술과는 달리, 취급이 용이하고, 재사용이 가능한 팔라듐-탄소 촉매를 사용하기 때문에 전체 반응공정이 간편하고 안전하며, 반응조절이 용이할 뿐아니라, 반응촉매 및 유기용매의 양을 적정화 함으로서 폐기물의 양을 최소화하여 환경오염 처리부담을 줄였으며, 매우 고순도의 구조식(I)의 화합물을 제조할 수 있게 되었다.In particular, European Patent Publication No. EP 10,525 A 1 uses sulfuric acid as 5.1 weight times with respect to benzanthrone and 20 weight times with chlorobenzene to produce the target compound in 83% yield. The production cost was greatly reduced by using sulfuric acid and 9-10 weight chlorobenzene. In addition, unlike the prior art, which had to use heavy metal reducing agent iron and toxic sulfurous acid gas, the overall reaction process is simple, safe, and easy to control because it uses an easy-to-use, reusable palladium-carbon catalyst. In addition, by minimizing the amount of waste by optimizing the amount of reaction catalyst and organic solvent, it is possible to prepare a compound of formula (I) of very high purity.

이하 본 발명의 안트론 제조방법과 벤즈안트론 제조방법을 실시예를 들어 설명하면 다음과 같다.Hereinafter, the antron production method and the benzanthrone production method of the present invention will be described with reference to Examples.

안트론의 제조Preparation of Antron

실시예 1Example 1

벤즈안트론 21g, 팔라듐-탄소(5% 팔라듐) 0.26g, 95% 황산 0.08g, 클로로벤젠 210g을 600ml 압력반응기에 넣고, 190p.s.i의 압력으로 수소를 공급하면서 175℃의 반응온도에서 6.5시간 교반한다. 110℃로 냉각한 후, 잔여 수소압력을 배기하고 여과한다. 클로로벤젠 30g으로 세척한다. 여기에서 회수한 팔라듐-탄소 촉매는 동일한 방법으로 5회까지 재사용 가능하였다.21 g of benzanthrone, 0.26 g of palladium-carbon (5% palladium), 0.08 g of 95% sulfuric acid, and 210 g of chlorobenzene were placed in a 600 ml pressure reactor, and 6.5 hours at a reaction temperature of 175 ° C while supplying hydrogen at a pressure of 190 p.si. Stir. After cooling to 110 ° C., the residual hydrogen pressure is evacuated and filtered. Wash with 30 g of chlorobenzene. The palladium-carbon catalyst recovered here was reusable up to five times in the same manner.

클로로벤젠 여액과 세척액을 증류하여 고체상태의 구조식(Ⅱ)의 화합물 19.13g을 얻었다.(수율 : 98.6%, mp : 153-154℃, 순도 : 99.7%)The chlorobenzene filtrate and the washing solution were distilled to obtain 19.13 g of the compound of the structural formula (II) in a solid state (yield: 98.6%, mp: 153-154 ° C., purity: 99.7%).

실시예 2Example 2

벤즈안트론 21g, 팔라듐-탄소(팔라듐 5%) 0.26g, 95% 황산 0.08g, 클로로벤젠 210g을 600ml 압력반응기에 넣고, 390p.s.i의 압력으로 수소를 공급하면서 200℃의 반응온도에서 4.5시간 교반한다. 110℃로 냉각한 후, 잔여 수소압력을 배기하고, 여과한다. 클로로벤젠 30g으로 세척한다.21 g of benzanthrone, 0.26 g of palladium-carbon (5% palladium), 0.08 g of 95% sulfuric acid, and 210 g of chlorobenzene were placed in a 600 ml pressure reactor, and 4.5 hours at a reaction temperature of 200 ° C. while supplying hydrogen at a pressure of 390 p.si. Stir. After cooling to 110 ° C., the residual hydrogen pressure is evacuated and filtered. Wash with 30 g of chlorobenzene.

클로로벤젠 여액과 세척액을 증류하여 고체상태의 구조식(Ⅱ)의 화합물 19.20g을 얻었다.(수율 : 99.3%, mp : 153-154℃, 순도 : 97.9%)The chlorobenzene filtrate and the washing solution were distilled to obtain 19.20 g of the compound of the structural formula (II) in a solid state (yield: 99.3%, mp: 153-154 ° C., purity: 97.9%).

실시예 3Example 3

벤즈안트론 21g, 실시예 1에서 회수한 팔라듐-탄소 0.26g, 95% 황산 0.08g 클로로벤젠 210g을 600ml 압력반응기에 넣고, 190p.s.i의 압력으로 수소를 공급하면서 175℃의 반응온도에서 6.5시간 교반한다.21 g of benzanthrone, 0.26 g of palladium-carbon recovered in Example 1, and 0.08 g of 95% sulfuric acid, 0.08 g chlorobenzene 210 g were placed in a 600 ml pressure reactor and supplied with hydrogen at a pressure of 190 p.si for 6.5 hours at a reaction temperature of 175 ° C. Stir.

110℃로 냉각한 후, 잔여 수소압력을 배기하고, 여과한다. 클로로벤젠 30g으로 세척한다.After cooling to 110 ° C., the residual hydrogen pressure is evacuated and filtered. Wash with 30 g of chlorobenzene.

클로로벤젠 여액과 세척액을 증류하여 고체상태의 구조식(Ⅱ)의 화합물 19.16g을 얻었다.(수율 : 99.9%, mp : 153-154℃, 순도 : 98.5%)The chlorobenzene filtrate and the washing solution were distilled to obtain 19.16 g of the compound of the structural formula (II) in a solid state (yield: 99.9%, mp: 153-154 占 폚, purity: 98.5%).

실시예 4Example 4

벤즈안트론 21g, 팔라듐-탄소(5% 팔라듐) 0.13g, 황산 2.10g, 클로로벤젠 210g을 600ml 압력반응기에 넣고, 190p.s.i의 압력으로 수소를 공급하면서 200℃의 반응온도에서 3.5시간 교반한다.21 g of benzanthrone, 0.13 g of palladium-carbon (5% palladium), 2.10 g of sulfuric acid, and 210 g of chlorobenzene were added to a 600 ml pressure reactor, and stirred at a reaction temperature of 200 ° C. for 3.5 hours while supplying hydrogen at a pressure of 190 p.si. .

110℃로 냉각한 후, 잔여 수소압력을 배기하고, 여과한다. 클로로벤젠 30g으로 세척한다.After cooling to 110 ° C., the residual hydrogen pressure is evacuated and filtered. Wash with 30 g of chlorobenzene.

클로로벤젠 여액과 세척액을 증류하여 고체상태의 구조식(Ⅱ)의 화합물 19.25g을 얻었다.(수율 : 90.1%, mp : 151-154℃, 순도 : 91.75%)The chlorobenzene filtrate and the washing solution were distilled to obtain 19.25 g of the compound of the structural formula (II) in a solid state (yield: 90.1%, mp: 151-154 ° C, purity: 91.75%).

벤즈안트론의 제조Preparation of Benzanthrone

실시예 5Example 5

벤즈안트론 21g, 팔라듐-탄소(5% 팔라듐) 0.26g, 95% 황산 0.08g, 클로로벤젠 210g을 600ml 압력반응기에 넣고, 190p.s.i의 압력으로 수소를 공급하면서 175℃의 반응온도에서 6.5시간 교반한다.21 g of benzanthrone, 0.26 g of palladium-carbon (5% palladium), 0.08 g of 95% sulfuric acid, and 210 g of chlorobenzene were placed in a 600 ml pressure reactor, and 6.5 hours at a reaction temperature of 175 ° C while supplying hydrogen at a pressure of 190 p.si. Stir.

110℃로 냉각한 후, 잔여 수소압력을 배기하고, 여과한다. 클로로벤젠 30g으로 세척한다.After cooling to 110 ° C., the residual hydrogen pressure is evacuated and filtered. Wash with 30 g of chlorobenzene.

상기의 클로로벤젠 여액과 세척액, 95% 글리세린 18.4g을 500ml 4구 유리반응기에 넣고, 교반하면서 105℃로 가열한다. 95% 황산 32g을 105-120℃에서 0.5시간 동안 적가하고, 동일온도에서 4.5시간 교반한다.The chlorobenzene filtrate, the washing liquid and 18.4 g of 95% glycerin are placed in a 500 ml four-necked glass reactor, and heated to 105 ° C. with stirring. 32 g of 95% sulfuric acid is added dropwise at 105-120 ° C. for 0.5 hours, and stirred at the same temperature for 4.5 hours.

반응온도를 60-70℃로 냉각한 후, 0.5시간 동안 95% 가성소다 26g을 60-90℃의 반응온도에서 천천히 첨가하고, 동일 온도범위에서 30분한다.After the reaction temperature was cooled to 60-70 ° C., 26 g of 95% caustic soda was slowly added at a reaction temperature of 60-90 ° C. for 0.5 hour, followed by 30 minutes in the same temperature range.

반응온도를 천천히 올리면서 증류한다. 반응액의 온도가 127-130℃가 되면 증류를 멈추고, 동일온도에서 0.5시간 교반한 후, 여과한다. 클로로벤젠 40ml로 세척하고, 여액과 세척액을 감압증류한다. 증류후 남은 고체를 이소프로필 알코을 35ml에 풀어 넣고, 상온에서 30분간 교반한후 여과한다.Distilling while slowly raising the reaction temperature. When the temperature of the reaction solution reaches 127-130 ° C., distillation is stopped, and the mixture is stirred at the same temperature for 0.5 hour and then filtered. Wash with 40 ml of chlorobenzene, and distillate the filtrate and washings under reduced pressure. The solid remaining after distillation is dissolved in 35 ml of isopropyl alcohol, stirred at room temperature for 30 minutes, and filtered.

이소프로필 알코올 10ml로 세척하고, 건조하여 고체상태의 구조식(I)의 화합물 20.23g을 얻었다.(수율 : 86.8%, mp : 169-171℃, 순도 : 98.77%)Washed with 10 ml of isopropyl alcohol and dried to obtain 20.23 g of the compound of formula (I) in the solid state (yield: 86.8%, mp: 169-171 ℃, purity: 98.77%).

실시예 6Example 6

벤즈안트론 21g, 팔라듐-탄소(5% 팔라듐) 0.26g, 95% 황산 0.08g, 클로로벤젠 210g을 600ml 압력반응기에 넣고, 190p.s.i의 압력으로 수소를 공급하면서 175℃의 반응온도에서 6.5시간 교반한다.21 g of benzanthrone, 0.26 g of palladium-carbon (5% palladium), 0.08 g of 95% sulfuric acid, and 210 g of chlorobenzene were placed in a 600 ml pressure reactor, and 6.5 hours at a reaction temperature of 175 ° C while supplying hydrogen at a pressure of 190 p.si. Stir.

110℃로 냉각한 후, 잔여 수소압력을 배기하고, 여과한다. 클로로벤젠 30g으로 세척한다.After cooling to 110 ° C., the residual hydrogen pressure is evacuated and filtered. Wash with 30 g of chlorobenzene.

상기의 클로로벤젠 여액과 세척액, 95% 글리세린 13.5g을 500ml 4구 유리반응기에 넣고, 교반하면서 105℃로 가열한다. 100% 황산 16g을 105-120℃에서 0.5시간 동안 적가하고, 동일온도에서 4.5시간 교반한다.The chlorobenzene filtrate, the washing solution and 13.5 g of 95% glycerin were placed in a 500 ml four-necked glass reactor, and heated to 105 ° C. while stirring. 16 g of 100% sulfuric acid is added dropwise at 105-120 ° C. for 0.5 hours, and stirred at the same temperature for 4.5 hours.

반응온도를 60-70℃로 냉각한 후, 0.5시간 동안 95% 가성소다 26g을 60-90℃의 반응온도에서 천천히 첨가하고, 동일 온도범위에서 30분한다.After the reaction temperature was cooled to 60-70 ° C., 26 g of 95% caustic soda was slowly added at a reaction temperature of 60-90 ° C. for 0.5 hour, followed by 30 minutes in the same temperature range.

반응온도를 천천히 올리면서 증류한다. 반응액의 온도가 127-130℃가 되면 증류를 멈추고, 동일온도에서 0.5시간 교반한 후, 여과한다. 클로로벤젠 40ml로 세척하고, 여액과 세척액을 감압증류한다. 증류후 남은 고체를 이소프로필 알코올 35ml에 풀어 넣고, 상온에서 30분간 교반한후 여과한다.Distilling while slowly raising the reaction temperature. When the temperature of the reaction solution reaches 127-130 ° C., distillation is stopped, and the mixture is stirred at the same temperature for 0.5 hour and then filtered. Wash with 40 ml of chlorobenzene, and distillate the filtrate and washings under reduced pressure. The solid remaining after distillation is dissolved in 35 ml of isopropyl alcohol, stirred at room temperature for 30 minutes and then filtered.

이소프로필 알코올 10ml로 세척하고, 건조하여 고체상태의 구조식(I)의 화합물 20.23g을 얻었다.(수율 : 83.1%, mp : 168-170℃, 순도 : 96.21%)It was washed with 10 ml of isopropyl alcohol and dried to give 20.23 g of the compound of formula (I) in the solid state (yield: 83.1%, mp: 168-170 ℃, purity: 96.21%).

Claims (8)

아래 구조식(I)로 표시되는 벤즈안트론을 제조하는 방법에 있어서, 구조식(Ⅲ)의 안트라퀴논을 유기용매 중에서 팔라듐-탄소와 산촉매를 사용하여 수소화반응시켜 아래구조식(Ⅱ)으로 표시되는 안트론을 제조한 후 이를 산촉매 하에서 글리세린과 축합반응시켜 안트라퀴논을 제조하는 방법.In the method for producing benzanthrone represented by the following structural formula (I), anthrone of the structural formula (III) is hydrogenated using palladium-carbon and an acid catalyst in an organic solvent to form anthrone represented by the following structural formula (II) To prepare an anthraquinone after the condensation reaction with glycerin under an acid catalyst. 제1항에 있어서, 유기용매가 안트라퀴논에 대해 9-15 중량배의 클로로벤젠인 방법.The process of claim 1 wherein the organic solvent is 9-15 weight chlorobenzene relative to the anthraquinone. 제1항에 있어서, 팔라듐-탄소촉매를 안트라퀴논에 대하여 0.006-0.002 중량배 사용하는 방법.The method of claim 1, wherein the palladium-carbon catalyst is used in an amount of 0.006-0.002 weight times based on the anthraquinone. 제1항에 있어서, 수소화반응 산촉매가 황산, 염산, 무기산중 어느하나이고 안트라퀴논에 대하여 0.003-0.1 중량배 사용하는 방법.The method according to claim 1, wherein the hydrogenation acid catalyst is any one of sulfuric acid, hydrochloric acid, and inorganic acid, and is used at 0.003-0.1 weight times based on anthraquinone. 제1항에 있어서, 175-200℃의 온도와 12-28 기압의 수소압력 범위에서 3.5-6.5시간 수소화반응 시키는 방법.The method of claim 1, wherein the hydrogenation is carried out at a temperature of 175-200 ° C. and a hydrogen pressure of 12-28 atm for 3.5-6.5 hours. 제1항 있어서, 글리세린을 안트라퀴논에 대하여 1.39-2몰배 사용하는 방법.The method of claim 1, wherein glycerin is used at 1.39-2 molar times with respect to anthraquinone. 제1항에 있어서, 글리세린과 축합반응시 황산을 안트라퀴논에 대하여 1.6-3.2몰배 사용하는 방법.The method according to claim 1, wherein in the condensation reaction with glycerin, sulfuric acid is used in an amount of 1.6-3.2 molar times with respect to anthraquinone. 제1항에 있어서, 글리세린과 축합반응을 105-130℃에서 2-5시간 시키는 방법.The method of claim 1, wherein the condensation reaction with glycerin is carried out at 105-130 ° C. for 2-5 hours.
KR1019940019891A 1994-08-12 1994-08-12 Process for benzanthrone KR0128107B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940019891A KR0128107B1 (en) 1994-08-12 1994-08-12 Process for benzanthrone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940019891A KR0128107B1 (en) 1994-08-12 1994-08-12 Process for benzanthrone

Publications (2)

Publication Number Publication Date
KR960007524A KR960007524A (en) 1996-03-22
KR0128107B1 true KR0128107B1 (en) 1998-04-04

Family

ID=19390250

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940019891A KR0128107B1 (en) 1994-08-12 1994-08-12 Process for benzanthrone

Country Status (1)

Country Link
KR (1) KR0128107B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620410B1 (en) * 2001-02-06 2006-09-13 엠도흐멘코리아 주식회사 Process for the preparation of anisothiazolanthrone compound
CN108084004A (en) * 2017-12-08 2018-05-29 陕西嘉禾药业有限公司 A kind of synthetic method of emodin anthrone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110668930A (en) * 2019-10-24 2020-01-10 江苏亚邦染料股份有限公司 Production method of benanthrone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620410B1 (en) * 2001-02-06 2006-09-13 엠도흐멘코리아 주식회사 Process for the preparation of anisothiazolanthrone compound
CN108084004A (en) * 2017-12-08 2018-05-29 陕西嘉禾药业有限公司 A kind of synthetic method of emodin anthrone
CN108084004B (en) * 2017-12-08 2021-05-18 陕西嘉禾药业有限公司 Method for synthesizing emodin anthrone

Also Published As

Publication number Publication date
KR960007524A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
CS226041B2 (en) Method of preparing antraquinone derivatives
KR0128107B1 (en) Process for benzanthrone
EP0253788B1 (en) A method of preparing 5-amino salicyclic acid
US5637733A (en) Syntheses of fluorescein compounds with excess resorcinol as a solvent
US4020104A (en) Process for isomerizing cis,cis- and cis,trans-isomers of di-(p-aminocyclohexyl)methane to the corresponding trans,trans-isomer
JP2930774B2 (en) Method for producing quinophthalone
US4058563A (en) Novel schiff bases
WO2023151157A1 (en) Chemical intermediate and preparation method
JPH048426B2 (en)
EP0057889A1 (en) Process for preparing 1-alkyl-2-chloro-5-nitro-benzene-4-sulphonic acids
EP0858995B1 (en) Process for the preparation of N-alkyl carbazoles
GB1597428A (en) Manufacture of pyridoxin
US4153632A (en) 2-Methyl-3-nitrobenzophenone
US4091013A (en) Process for preparing 1-amino-naphthalene-7-sulphonic acid
US3994972A (en) Synthesis of N,N',N",N'"-tetra-salicylidene pentaerythrityl tetramine
JP3160439B2 (en) Method for producing acetylguanine
CN111187197B (en) Synthesis method of Tezacaftor intermediate
CN111454189B (en) Synthetic method of sepiatinib intermediate
Jackson Facile conversion of a coordinated nitro group into an aqua group: acid-induced nitro-to-nitrito rearrangement
KR910009235B1 (en) Process for the preparation 3-methoxy-6-anilino toluene
JPH02193950A (en) Preparation of 4,4'-dinitrodiphenylamine
KR950001685B1 (en) Process for the preparation of antraquinone derivatives use reactivity dye
US1929847A (en) Production of condensation products of 1.5-dihalogen anthraquinones
US2772285A (en) Process for producing copper-phthalocyanine precursor
KR910006385B1 (en) Process for the preparation of cyanoazo dyes

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030407

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee