KR0125152B1 - Complex positive electrode of lithium secondary battery - Google Patents

Complex positive electrode of lithium secondary battery

Info

Publication number
KR0125152B1
KR0125152B1 KR1019940039512A KR19940039512A KR0125152B1 KR 0125152 B1 KR0125152 B1 KR 0125152B1 KR 1019940039512 A KR1019940039512 A KR 1019940039512A KR 19940039512 A KR19940039512 A KR 19940039512A KR 0125152 B1 KR0125152 B1 KR 0125152B1
Authority
KR
South Korea
Prior art keywords
positive electrode
electrode active
active material
battery
lithium
Prior art date
Application number
KR1019940039512A
Other languages
Korean (ko)
Other versions
KR960027015A (en
Inventor
이동일
선우준
임미라
정재식
Original Assignee
이정성
주식회사 엘지금속
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정성, 주식회사 엘지금속 filed Critical 이정성
Priority to KR1019940039512A priority Critical patent/KR0125152B1/en
Publication of KR960027015A publication Critical patent/KR960027015A/en
Application granted granted Critical
Publication of KR0125152B1 publication Critical patent/KR0125152B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The process puts a V6O13, a CuO, a trichloroethane(1,1,1-TCE), and a dispersing agent into a plastic tube, and then compounds four and sixteen alumina balls having a diameter of 3cm, 1cm respectively for two and half hours. After that, polyethylene oxide(PEO) and EPDM is added to it and compounded again for ten minutes. The solution dissolved through annexing a LiClO4, a ethylene carbonate(EC), and a propylene carbonate(PC) to a acetonitrile(ACN) is added to the compounded mixture, then they were compounded again for thirty minutes. After the mixture is coated on the Ni foil with the anode collection plate by making use of a doctor blade, then it is manufactured as a film by being dried at the normal temperature.

Description

리튬(Li) 2차전지의 복합양극Composite Anode of Lithium (Li) Secondary Battery

제1도는 리튬(Li) 2차전지의 구조도.1 is a structural diagram of a lithium (Li) secondary battery.

제2도는 종래의 충·방전에 따른 양극 활성물질의 이동현상을 나타낸 상태도.Figure 2 is a state diagram showing the movement phenomenon of the positive electrode active material according to the conventional charging and discharging.

제3도는 본 발명의 충·방전에 따른 양극 활성물질의 이동현상을 나타낸 상태도.3 is a state diagram showing the movement phenomenon of the positive electrode active material according to the charge and discharge of the present invention.

제4도는 전지의 사이클에 따른 용량변화를 나타낸 그래프.4 is a graph showing the capacity change according to the cycle of the battery.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 복합양극 2 : 고분자 전해질 착물1 composite anode 2 polymer electrolyte complex

3 : 리튬음극3: lithium cathode

본 발명은 고체상태의 리튬 2차전지에 관한 것으로, 특히 충·방전시 양극 활성물질의 부피변화로 인한 양극 활성물질과 고분자 전해질간의 계면접촉이 저하되는 현상을 방지하기 위한 첨가제를 함유한 복합양극에 관한 것이다.The present invention relates to a lithium secondary battery in a solid state, and in particular, a composite anode containing an additive to prevent the interfacial contact between the positive electrode active material and the polymer electrolyte due to the volume change of the positive electrode active material during charging and discharging It is about.

이동용 직류전원, 백업용 전원등으로써 사용할 수 있는 충전가능한 고체상태의 리튬(Li) 2차전지는 고밀도 에너지, 고신뢰성을 가진 것이 기대되어 최근 많이 연구, 개발되고 있다.Rechargeable solid state lithium (Li) secondary batteries that can be used as mobile direct current power supplies, backup power supplies, etc. are expected to have high density energy and high reliability.

제1도는 일반적인 고체상태의 리튬(Li) 2차전지(6)을 나타낸 것으로, 복합양극(1), 고분자 전해질 착물(2), 음극(3), 양극집전판(4), 음극집전판(5)으로 구성된다.1 illustrates a general solid state lithium (Li) secondary battery (6), which includes a composite anode (1), a polymer electrolyte complex (2), a cathode (3), a cathode current collector plate (4), and a cathode current collector plate ( 5) consists of.

이와 같은 구성에서 복합양극(1)은 산화 바나튬, 크롬 산화물, 망간 산화물 등의 칼코겐 화합물(Chalcogens Compound) 또는 각종의 도전성 폴리머등 수많은 물질이 검토되고 있으며, 이중 산화 바나듐이 가장 바람직하게 알려지고 있다.In this configuration, the composite anode 1 has been studied with numerous substances such as chalcogens compounds such as vanadium oxide, chromium oxide, and manganese oxide, or various conductive polymers, and double vanadium oxide is most preferably known. have.

한편, 복합양극은 충전지 높은 전압이 인가되므로 고전압에 견딜 수 있는 전해액이 필요한데, 통상은 LiClO4, LiPF4, LiPF6등의 리튬염을 용해한 비수용매가 사용되며, 또한 혼합용매로는 예를 들어 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC), DME 등을 첨가함으로써 LiClO4등의 활성도를 향상시킨다.On the other hand, the composite anode requires an electrolyte solution capable of withstanding a high voltage since a high voltage of a rechargeable battery is applied, and a nonaqueous solvent in which lithium salts such as LiClO 4 , LiPF 4 and LiPF 6 are dissolved is usually used, and as a mixed solvent, for example, By adding ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), DME and the like, the activity of LiClO 4 or the like is improved.

음극(2)으로서는 리튬, 리튬-알루미늄합금등이 이용된다.As the negative electrode 2, lithium, a lithium-aluminum alloy, or the like is used.

상기한 고체상태인 복합양극, 고부나 전해질 및 음극은 코팅방법을 이용하여 필름으로 제조되며, 각 필름을 적층하여 전지로 제조한다.The composite positive electrode, the solid portion or the electrolyte and the negative electrode in the solid state are made of a film using a coating method, and each film is laminated to produce a battery.

이와 같이 양극, 음극 및 전해질이 모두 고체상태인 전기 화학전지는 기존의 비수성 액체 전해질을 사용했을 때의 문제점 즉, 액체 전해질의 누수, 휘발, 리튬 음극과의 반응으로 인한 부동태형성 및 덴드라이트(Dendrite) 형성 등의 문제점을 해결함과 함께 제조방법이 간단하고 기계적 강도도 우수하여 많은 전자기기 및 전기자동차 등의 전원 공급장치로 기대되고 있다.As such, an electrochemical cell having both a positive electrode, a negative electrode, and an electrolyte in a solid state has problems in using a conventional nonaqueous liquid electrolyte, namely, leakage of liquid electrolyte, volatilization, passivation due to reaction with a lithium negative electrode, and dendrite ( It is expected to be a power supply device for many electronic devices and electric vehicles due to its simple manufacturing method and excellent mechanical strength.

한편, 상기한 리튬 2차전지의 양극 활성물질로서는 단위무게당 에너지밀도가 높은 V6O13(880 wh/Kg)가 가장 유력하지만, 이는 전지의 충·방전시 상대적으로 많은 양의 리튬(8Li/V6O13)이 인터칼레이션(Intercalation)되어야 하므로 이에 따른 V6O13의 부피변화가 크게 일어난다.On the other hand, as the positive electrode active material of the lithium secondary battery, V 6 O 13 (880 wh / Kg), which has a high energy density per unit weight, is most likely. However, this is a relatively large amount of lithium (8Li) during charging and discharging of the battery. / V 6 O 13 ) has to be intercalated, so the volume change of V 6 O 13 occurs accordingly.

즉, V6O13격자에서 리튬의 인터칼레이션에 따른 부피변화는 표 1에 나타낸 바와 같이 리튬이 격자내로 인터칼레이션됨에 따라 b축이 크게 증가하여 이에 따라 부피도 15%이상 증가함을 알수 있다.That is, the volume change according to the intercalation of lithium in the V 6 O 13 lattice shows that the b-axis greatly increases as lithium is intercalated into the lattice, thereby increasing the volume by 15% or more. have.

(표 1 : 리튬첨가에 따른 LixV6O13의 격자 상수변화)Table 1: Changes in Lattice Constants of LixV 6 O 13 with Lithium Addition

이러한 양극 활성물질의 부피변화는 제2도에 나타낸 바와 같이 전지의 충·방전에 따라 양극 활성물질의 부피변화로 인한 양극 활성물질(7)과 고분자 전해질(8)과의 계면(9) 접촉 저하현상을 야기시키며, 이에 따라 전지의 사이클수명(Cycle Life)도 감소하게 된다.As shown in FIG. 2, the volume change of the positive electrode active material decreases the contact of the interface 9 between the positive electrode active material 7 and the polymer electrolyte 8 due to the volume change of the positive electrode active material as the battery is charged and discharged. This causes a phenomenon, which also reduces the cycle life of the battery.

복합양극내의 양극 활성물질과 고분자 전해질간의 계면 접촉향상을 위한 노력으로 양극 활성물질(V6O13)위에 고분자 전해질과 전자 전도성물질(예 : 활성탄소)을 코팅시키는 방법이 제시되었다.(US 4,576,883)In an effort to improve the interfacial contact between the positive electrode active material and the polymer electrolyte in the composite anode, a method of coating the polymer electrolyte and the electron conductive material (eg, activated carbon) on the positive electrode active material (V 6 O 13 ) has been proposed (US 4,576,883). )

이 방법은 양극 활성물질주위에 고분자 전해질과 전자 전도성물질을 코팅함으로써, 양극 활성물질을 안정하게 유지시키며 양극 활성물질주위에 전기전도 망을 구축하여 높은 전도성을 나타내지만, 코팅된 전자전도성물질이 비이온 전도성물질이므로 리튬의 인터칼레이션을 차단시켜 전지의 용량 저하현상 및 사이클수명 단축현상을 초래하게 되는 문제가 있다.In this method, the polymer electrolyte and the electron conductive material are coated around the positive electrode active material to keep the positive electrode active material stable and to establish a conductive network around the positive electrode active material, thereby showing high conductivity. Since it is an ion conductive material, there is a problem that the intercalation of lithium is blocked, resulting in a decrease in capacity of the battery and a shortening of cycle life.

또 다른 개선방법으로 양극 활성물질과 고분자 전해질 사이에 무기-유기성질을 모두 가지고 있는 폴리일렉트로라이트(Polyelectrolyte) 또는 실란계 화합물 [R3Si(CH)nX]을 첨가함으로써, 양극 활성물질과 고분자 전해질간을 결합시키는 방법(GB 2,197,529, GB 2,205,437)이 제시되었으나, 양극 활성물질의 부피변화로 인해 양극 활성물질과 고분자 전해질 사이의 결합이 약해져 계면접촉 저하현상은 개선되지 않고 있다.Another improvement is the addition of a positive electrode active material and a polymer electrolyte by adding a polyelectrolyte or silane compound [R 3 Si (CH) nX] having both inorganic and organic properties between the positive electrode active material and the polymer electrolyte. The method of binding the liver (GB 2,197,529, GB 2,205,437) has been proposed, but the interfacial contact degradation is not improved due to weak bonding between the positive electrode active material and the polymer electrolyte due to the volume change of the positive electrode active material.

본 발명은 상기한 종래의 문제점을 해결하기 위해 안출한 것으로, 복합양극에 고탄성물질을 첨가시킴으로써 양극 활성물질과 고분자 전해질간의 계면접촉성을 좋게 하여 전지의 사이클수명 및 전지용량을 증대시키는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The purpose of the present invention is to improve the interfacial contact between the positive electrode active material and the polymer electrolyte by adding a high elastic material to the composite anode, thereby increasing the cycle life and battery capacity of the battery. have.

이와 같은 목적을 달성하기 위한 본 발명은 양극 활성물질(예 : V6O13), 전기 전도성물질(예 : 캣죤블랙)과 고분자 전해질로 구성된 복합양극에 고탄성의 물질을 첨가하여서 된 구조로 이루어진다.The present invention for achieving the above object is made of a structure by adding a high elastic material to the composite anode consisting of a positive electrode active material (for example, V 6 O 13 ), an electrically conductive material (for example Cat John Black) and a polymer electrolyte.

첨가되는 탄성체는 EPDM등의 에틸렌-프로필렌계 탄성체, 폴리 우레탄계의 열가소성 폴리머 또는 ECH 등의 폴리 에테르계의 탄성체중 선택하여 사용되며, 각 탄성체는 이온전도성 고분자(폴리에틸렌 옥사이드 : PED), 리튬염(예 : LiClO4)과 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC)등의 가소제와 함께 혼합되어 고분자 전해질 착물(Polymer Electrolyte Comlex)을 형성하며, 양극 활성물질 및 전자 전도성물질과 함께 복합양극을 구성한다.The added elastomer is selected from ethylene-propylene-based elastomers such as EPDM, polyurethane-based thermoplastic polymers, or polyether-based elastomers such as ECH. : LiClO 4 ), mixed with plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), to form a polymer electrolyte complex, and a composite anode together with the positive electrode active material and the electron conductive material.

적용 전지로는 양극 활성물질로 리튬의 인터칼레이션에 따른 부피변화가 큰 V6O13을 채용하는 전지에 적합하며, 탄성체 첨가로 인한 전지의 성능 저하현상은 관찰되지 않았다.As a positive electrode active material, it is suitable for a battery adopting V6O13, which has a large volume change due to intercalation of lithium. No degradation of battery performance was observed due to the addition of elastomer.

상기한 복합양극 및 고분자 전해질 착물은 닥터 블레이트(Doctor Blade)등의 코팅방법을 이용하여 필름으로 제조되며 리튬음극과 함께 적층되어 고체상태 리튬 2차전지를 구성한다.The composite positive electrode and the polymer electrolyte complex are manufactured into a film using a coating method such as Doctor Blade, and stacked together with the lithium negative electrode to form a solid state lithium secondary battery.

이와 같이 복합양극에 고탄성의 물질을 첨가시킨 본 발명은 제3도에 나타낸 바와 같이 전지의 충·방전에 따른 양극 활성물질의 부피변화가 크게 일어나더라도 양극 활성물질(7)과 고분자 전해질(8)간의 계면(9) 접촉은 탄성체의 역할로 높은 접촉성을 유지하게 되어 전지의 사이클수명을 향상시킬 수 있으며, 높은 계면접촉성으로 인해 양극 활성표면이 증가되므로 전지의 용량 또는 증가시킨다.As described above, in the present invention in which a highly elastic material is added to the composite anode, the volume change of the positive electrode active material due to the charge / discharge of the battery occurs largely, the positive electrode active material 7 and the polymer electrolyte 8 The contact between the interface 9 maintains high contact with the role of the elastic body, thereby improving the cycle life of the battery, and the positive electrode active surface is increased due to the high interface contact, thereby increasing or increasing the capacity of the battery.

다음은 실시예에 따라 설명한다.The following is described according to the embodiment.

복합양극의 제조Preparation of Composite Anode

[실시예1]Example 1

200ml 플라스틱 통에 V6O13(8.72g), CuO(0.56g), 1, 1, 1-TCE(트리클로로 에탄 : 35ml)과 분산제로서 Span80, 3방울을 넣는다.Into a 200 ml plastic pail add V 6 O 13 (8.72 g), CuO (0.56 g), 1, 1, 1-TCE (trichloroethane: 35 ml) and 3 drops of Span80 as a dispersant.

상기 플라스틱 통에 직경 3Cm의 알루미나 볼 4개와, 직경 1Cm의 알루미나 볼 16개를 넣고 2시간 30분 동안 분쇄/혼합한다.Four alumina balls with a diameter of 3 Cm and 16 alumina balls with a diameter of 1 Cm were put into the plastic barrel and pulverized / mixed for 2 hours and 30 minutes.

분쇄/혼합작업이 완료된 후, 폴리에틸렌 옥사이드(PEO : 1.3g : M.W〓4,000,000)와 EPDM (0.15g : Ethylene 50%, Diene 8%)를 넣고 다시 10분동안 분쇄/혼합한다.After the grinding / mixing operation is completed, add polyethylene oxide (PEO: 1.3g: M.W〓4,000,000) and EPDM (0.15g: 50% Ethylene, 8% Diene) and grind / mix for 10 minutes.

LiClO4(0.61g)과 에틸렌 카보네이트(EC : 1.13g) 및 프로필렌 카보네이트(PC : 0.37g)를 아세토니트릴(ACN : 70ml)에 첨가/용해시킨 용액을 상기 분쇄/혼합한 혼합물에 첨가시켜 30분동안 다시 분쇄/혼합한다.LiClO 4 (0.61 g), ethylene carbonate (EC: 1.13 g) and propylene carbonate (PC: 0.37 g) were added / dissolved in acetonitrile (ACN: 70 ml) to the ground / mixed mixture for 30 minutes. While grinding / mixing again.

상기 혼합물을 닥터 블레이드를 이용하여 양극집전판인 Ni 호일위에 코팅한 후(0.5mm 황동 블레이드이용), 상온에서 건조시켜 필름으로 제조한다.The mixture is coated on a Ni foil, which is a positive electrode current collector plate using a doctor blade (using a 0.5 mm brass blade), and then dried at room temperature to prepare a film.

[실시예 2]Example 2

상기 실시예1에서 PEO와 EPDM의 첨가 대신에 폴리에틸렌 옥사이드(PEO)와 ECH의 1 : 1 공1: 1 hole of polyethylene oxide (PEO) and ECH instead of the addition of PEO and EPDM in Example 1

중합체(Copolymer) 1.5g을 첨가한다.1.5 g of polymer is added.

코팅 및 필름 제조방법은 실시예 1과 동일하다.Coating and film production method is the same as in Example 1.

[실시예 3]Example 3

상기 실시예 1에서 PEO와 EPDM의 첨가 대신에 폴리에틸렌 옥사이드(PEO : 1.15g)와 폴리우레탄(0.35g)을 첨가한다.In Example 1, polyethylene oxide (PEO: 1.15 g) and polyurethane (0.35 g) are added instead of PEO and EPDM.

코팅 및 필름 제조방법은 실시예1과 동일하다.Coating and film production method is the same as in Example 1.

제1도는 상기한 첨가제(실시예 1∼3) 사용시 Li/V6O13전지의 사이클에 따른 용량변화를 나타낸 것으로, 이에 알 수 있는 바와 같이 본 발명(실시예 1∼3)은 종래의 복합양극으로 구성된 전지에서 보다 사이클링에 따른 전지의 초기 용량감소가 완화되었음을 알 수 있다.Figure 1 shows the capacity change according to the cycle of the Li / V 6 O 13 battery when using the additives (Examples 1 to 3), as can be seen the present invention (Examples 1 to 3) is a conventional composite In the battery composed of the positive electrode, it can be seen that the initial capacity reduction of the battery due to cycling was alleviated.

상기 실시예 1∼3과 같은 방법으로 첨가제의 양을 0.1∼10wt%로 변화시켜 투여했을 때 전지의 사이클수명에 미치는 영향을 표 2에 나타내었다.Table 2 shows the effect on the cycle life of the battery when the amount of the additive is changed to 0.1 to 10 wt% in the same manner as in Examples 1 to 3 above.

표 2의 사이클횟수는 전지의 용량이 초기용량의 50%수준으로 감소할 때까지의 사이클횟수로 나타내었으며, 이때 wt%〓(100×첨가제량)/(복합양극 전체 무게)이다.The number of cycles in Table 2 is expressed as the number of cycles until the capacity of the battery decreases to 50% of the initial capacity, where wt% 〓 (100 × additive) / (total weight of composite anode).

표 2에 나타난 바와 같이 본 발명의 첨가제 첨가시 종래의 복합양극에 비해, 초기 용량감소가 개선됨을 알 수 있다.As shown in Table 2, when the additive of the present invention is added, it can be seen that the initial capacity reduction is improved as compared with the conventional composite anode.

(표 2 : 첨가제 첨가량변화에 따른 50%-초기용량까지의 사이클횟수 비교)Table 2: Comparison of Cycle Counts to 50% -Initial Capacity According to Additive Additive Change

이상에서와 같이 본 발명은 전지 충·방전에 따른 양극 활성물질과 고분자 전해질간의 계면접촉은 탄성체의 역할로 높은 계면접촉성을 유지하게 되어 전지의 사이클 수명을 향상시킬 수 있으며, 높은 계면접촉성으로 인해 양극 활성물질의 활성표면이 증가되므로 전지의 용량 및 성능이 향상된다.As described above, according to the present invention, the interface contact between the positive electrode active material and the polymer electrolyte according to the battery charging and discharging maintains high interfacial contact with the role of an elastic body, thereby improving cycle life of the battery. This increases the active surface of the positive electrode active material, thereby improving the capacity and performance of the battery.

Claims (2)

이온전도성 고분자, 리튬염 및 가소제로 구성되는 고분자 전해질 착물과 양극 활성물질 및 전자 전도성물질로 혼합되어 이루어진 것에 있어서, 고분자 전해질 착물에 고탄성물질이 첨가되어 이루어짐을 특징으로 하는 리튬(Li) 2차전지의 복합양극.Lithium (Li) secondary battery, characterized in that the high-elastic material is added to the polymer electrolyte complex, the polymer electrolyte complex consisting of an ion conductive polymer, a lithium salt and a plasticizer mixed with a positive electrode active material and an electronic conductive material Composite anode. 제1항에 있어서, 고탄성물질이 EPDM(Ethylene/Propyene/Dien Terpolymer), ECH (Epichlor -ohydrin), 폴리우레탄중 선택한 1종임을 특징으로 하는 리튬(Li) 2차전지의 복합양극.The composite anode of claim 1, wherein the high elastic material is one selected from EPDM (Ethylene / Propyene / Dien Terpolymer), ECH (Epichlor-ohydrin), and polyurethane.
KR1019940039512A 1994-12-30 1994-12-30 Complex positive electrode of lithium secondary battery KR0125152B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940039512A KR0125152B1 (en) 1994-12-30 1994-12-30 Complex positive electrode of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940039512A KR0125152B1 (en) 1994-12-30 1994-12-30 Complex positive electrode of lithium secondary battery

Publications (2)

Publication Number Publication Date
KR960027015A KR960027015A (en) 1996-07-22
KR0125152B1 true KR0125152B1 (en) 1997-12-15

Family

ID=19405582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940039512A KR0125152B1 (en) 1994-12-30 1994-12-30 Complex positive electrode of lithium secondary battery

Country Status (1)

Country Link
KR (1) KR0125152B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190088331A (en) * 2018-01-18 2019-07-26 주식회사 엘지화학 Cathode active material slurry for solid electrolyte battery and cathode for solid electrolyte battery prepared therefrom
US11258122B2 (en) 2018-09-14 2022-02-22 Samsung Electronics Co., Ltd. Metal-air battery
US11374262B2 (en) 2018-04-26 2022-06-28 Lg Energy Solution, Ltd. Solid electrolyte battery and battery module and battery pack comprising same
US11444272B2 (en) 2018-04-26 2022-09-13 Lg Energy Solution, Ltd. Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379244B1 (en) * 2000-09-06 2003-04-08 광주과학기술원 The fabrication method of the cathode grown by using the buffer layer for thin film battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190088331A (en) * 2018-01-18 2019-07-26 주식회사 엘지화학 Cathode active material slurry for solid electrolyte battery and cathode for solid electrolyte battery prepared therefrom
US11374262B2 (en) 2018-04-26 2022-06-28 Lg Energy Solution, Ltd. Solid electrolyte battery and battery module and battery pack comprising same
US11444272B2 (en) 2018-04-26 2022-09-13 Lg Energy Solution, Ltd. Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same
US11258122B2 (en) 2018-09-14 2022-02-22 Samsung Electronics Co., Ltd. Metal-air battery

Also Published As

Publication number Publication date
KR960027015A (en) 1996-07-22

Similar Documents

Publication Publication Date Title
KR100738057B1 (en) Anode electride and lithium battery containing the material
US5928812A (en) High performance lithium ion polymer cells and batteries
CN109417189B (en) Electrolyte
CN111971769A (en) Incorporation of lithium ion source materials into activated carbon electrodes for capacitor-assisted batteries
JP3008269B2 (en) Rechargeable battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JP3079382B2 (en) Non-aqueous secondary battery
JPH0562712A (en) Non-aqueous electrolyte secondary cell
KR100463179B1 (en) Preparation method for materials for electrodes of lithium secondary battery and lithium secondary battery
JPH07192723A (en) Nonaqueous electrolyte secondary battery
KR0125152B1 (en) Complex positive electrode of lithium secondary battery
EP0905807B1 (en) Nonaqueous secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
KR20030026815A (en) Electrode material, preparation method of the electrode material, electrode and battery comprising the electrode
JP2000195550A (en) Nonaqueous electrolyte secondary battery
WO1998008263A1 (en) Lithium ion secondary cell and its cathode
KR100385700B1 (en) Non-aqueous secondary battery with superior high-temperature cycle life
JP4134556B2 (en) Nonaqueous electrolyte secondary battery
KR102654674B1 (en) Negative electrode for lithium secondary battery and all-solid-state-lithium secondary battery comprising the same
EP1135816A1 (en) High performance lithium ion polymer cells and batteries
KR0125148B1 (en) BATTERY WITH THE POSITIVE MATERIALS OF Li-V OXIDES
KR20190057979A (en) positive electrode active material composition, positive electrode prepared using the same, and a secondary battery employing the same
US20230187703A1 (en) Electrolyte for manganese ion battery and manganese ion battery using the same
JP3775022B2 (en) Gel electrolyte and gel electrolyte battery
KR0140750B1 (en) Battery with composite anode with improved cathode material

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee