KR0124622B1 - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
KR0124622B1
KR0124622B1 KR1019940038589A KR19940038589A KR0124622B1 KR 0124622 B1 KR0124622 B1 KR 0124622B1 KR 1019940038589 A KR1019940038589 A KR 1019940038589A KR 19940038589 A KR19940038589 A KR 19940038589A KR 0124622 B1 KR0124622 B1 KR 0124622B1
Authority
KR
South Korea
Prior art keywords
eccentric wheel
bearing
rotary compressor
crankshaft
force
Prior art date
Application number
KR1019940038589A
Other languages
Korean (ko)
Other versions
KR960023815A (en
Inventor
황선웅
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019940038589A priority Critical patent/KR0124622B1/en
Publication of KR960023815A publication Critical patent/KR960023815A/en
Application granted granted Critical
Publication of KR0124622B1 publication Critical patent/KR0124622B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/16Wear

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The rotary compressor is capable of reducing a friction force generated between a crank shaft and a bearing by the alteration of structure of the crank shaft. In more detail, the friction force reducing effect of the rotary compressor is achieved by forming an oil groove on each of the outer peripheral surfaces of a long shaft and a short shaft of the crank shaft each connected to a main bearing and a sub-bearing. At this time, the oil groove is formed opposite to the direction where a force applied to an eccentric wheel during the rotation of the eccentric wheel exhibits a maximum synthetic force.

Description

로타리 압축기Rotary compressor

제1도는 일반적인 로타리 압축기를 나타낸 종단면도,1 is a longitudinal sectional view showing a general rotary compressor,

제2도는 제1도의 A-A선 단면도,2 is a cross-sectional view taken along the line A-A of FIG.

제3도는 종래의 로타리 압축기에서 편심륜에 작용하는 동하중의 로울러 및 베어링의 축심궤적을 나타낸 그래프,3 is a graph showing the axial center trajectory of the roller and bearing of dynamic load acting on the eccentric wheel in the conventional rotary compressor,

제4도는 본 발명의 크랭크축을 나타낸 정면도,4 is a front view showing the crankshaft of the present invention,

제5도는 제4도의 B-B선 단면도.5 is a cross-sectional view taken along the line B-B in FIG.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

5 : 크랭크축5a : 장축5: crankshaft 5a: long shaft

5b : 단축6 : 메인베어링5b: Shortening 6: Main Bearing

7 : 서브베어링16,17 : 오일홈7: Sub bearing 16, 17: Oil groove

본 발명은 로타리 압축기에 관한 것으로써, 좀더 구체적으로는 크랭크축의 구조를 변경하여 크랭크축과 베어링사이에서 발생되는 마찰력을 줄일 수 있도록 한 것이다.The present invention relates to a rotary compressor, more specifically, to change the structure of the crankshaft to reduce the friction force generated between the crankshaft and the bearing.

첨부도면 제1도는 일반적인 로타리 압축기를 나타낸 종단면도이고 제2도는 제1도의 A-A선 단면도로써, 본체(1)와, 상기 본체의 하부에 설치되는 실린더(2)와, 상기 실린더의 내주면을 따라 회전하면서 냉매를 흡입, 압축하는 로울러(3)와, 상기 로울러에 결합되어 회전력을 부여하는 편심륜(4)과, 상기 편심륜과 일체로 형성되며 장축(5a) 및 단축(5b)로 이루어진 크랭크축(5)과, 상기 실린더의 상,하부에 설치됨과 동시에 장축 및 단축의 저어널을 지지하는 메인베어링(6) 및 서브베어링(7)과, 상기 실린더의 내부로 냉매를 유입시키는 흡입파이프(8)와, 상기 편심륜의 외주면과 접속되게 스프링(9)으로 탄력 설치되어 로울러의 회전에 따라 직선 왕복운동하면서 실린더의 내부를 흡입실(10)과 압축실(11)로 구획하는 베인(12)과, 상기 크랭크축을 회전시키는 전동기구부인 스테이터(13)와 로터(14)로 구성되어 있다.FIG. 1 is a longitudinal cross-sectional view showing a general rotary compressor, and FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and rotates along a main body 1, a cylinder 2 installed below the main body, and an inner circumferential surface of the cylinder. A crank shaft formed of a long shaft 5a and a short shaft 5b integrally formed with the roller 3 for sucking and compressing the refrigerant, an eccentric wheel 4 coupled to the roller to impart rotational force, and an eccentric wheel. (5), the main bearing 6 and the sub bearing 7 which are installed at the upper and lower portions of the cylinder and support the long and short journals, and the suction pipe 8 for introducing refrigerant into the cylinder. And a vane 12 that is elastically installed with a spring 9 to be connected to the outer circumferential surface of the eccentric wheel and divides the inside of the cylinder into the suction chamber 10 and the compression chamber 11 while linearly reciprocating according to the rotation of the roller. And an electric mechanism for rotating the crankshaft. It consists of the female stator 13 and the rotor 14.

따라서 상기 전동기구부에 의해 크랭크축(5)이 회전하면 편심륜(4)에 결합된 로울러(3)가 실린더(2)내를 자전 및 공전하는 베인(12)으로 구획된 흡입실(10) 및 압축실(11)의 체적을 변화시킨다. 즉, 편심륜(4)이 반시계방향으로 회전하면 흡입실(10)의 체적이 커지면서 압력이 저하되므로 흡입밸브(도시는 생략함)가 개방되어 흡입파이프(8)를 통해 흡입실내부로 냉매가스가 유입된다.Therefore, when the crankshaft (5) is rotated by the transmission mechanism part, the suction chamber (10) partitioned by vanes (12) rotating and revolving in the cylinder (2) coupled to the eccentric wheel (4) and The volume of the compression chamber 11 is changed. That is, when the eccentric wheel 4 rotates in the counterclockwise direction, the volume of the suction chamber 10 increases and the pressure decreases, so the suction valve (not shown) is opened and the refrigerant gas into the suction chamber through the suction pipe 8. Is introduced.

그러나 이와는 반대로 흡입실(7)내의 체적이 커지므로 인해 압축실(11)내의 체적이 작아지면 흡입된 냉매가스의 압력이 점진적으로 상승되어 토출밸브(도시는 생략함)을 개방시키게 되므로 고온, 고압의 냉매가스가 토출포트(15)를 통해 외부로 토출된다.On the contrary, since the volume in the suction chamber 7 increases, the pressure in the compression chamber 11 decreases gradually, thereby increasing the pressure of the sucked refrigerant gas to open the discharge valve (not shown). Refrigerant gas is discharged to the outside through the discharge port (15).

상기 동작시 크랭크축(5)의 각속도 ω로 회전하면 로울러(3)와 편심륜(4)사이의 마찰력때문에 로울러(3)는 ω의 방향으로 회전력이 부여된다.In this operation, if the crankshaft 5 rotates at an angular velocity ω, the roller 3 is given a rotational force in the ω direction because of the frictional force between the roller 3 and the eccentric wheel 4.

한편 로울러(3)와 베인(12)과의 접속면에서 발생되는 마찰력과, 로울러(3)의 상하 단면이 메인베어링(6) 및 서브베어링(7)의 상하단면에 접속됨에 따라 접속면에서 발생되는 마찰력에 의해 로울러(3)가 ω의 방향으로 회전하려는 것을 지지하는 힘이 작용하게 된다.On the other hand, the frictional force generated at the connection surface between the roller 3 and the vane 12 and the upper and lower end surfaces of the roller 3 are connected to the upper and lower end surfaces of the main bearing 6 and the sub bearing 7 so as to generate at the connection surface. The frictional force acts on the roller 3 to support the rotation of the roller 3 in the direction of ω.

이러한 힘들의 평행에 의해 로울러(3)는 크랭크축(5)의 각속도 ω와는 차이가 있는 각속도 ωp로 편심륜(4)의 중심을 축으로 자전하게 된다.Due to the parallel of these forces, the roller 3 rotates about the center of the eccentric wheel 4 at an angular velocity ω p which is different from the angular velocity ω of the crankshaft 5.

상기한 바와같은 동작시 로타리 압축기의 주요 기계적손실은 메인베어링(6) 및 서브베어링(7)의 기계 마찰손실, 베인(12)과 실린더(2)의 가이드홈사이의 마찰손실, 베인선단과 로울러(3)의 외주면과의 마찰손실, 로울러와 편심륜사이의 마찰손실로 이루어진다.In the above operation, the main mechanical loss of the rotary compressor is the mechanical friction loss of the main bearing 6 and the sub bearing 7, the friction loss between the vane 12 and the guide groove of the cylinder 2, the vane tip and the roller. Friction loss between the outer circumferential surface of (3) and friction loss between the roller and the eccentric ring.

이때 상기 로울러(3)와 편심륜(4) 사이의 상대속도는 ω -ωp이다.At this time, the relative speed between the roller 3 and the eccentric wheel 4 is ω -ω p .

상기 로울러(3)에 결합되어 전동기구부의 구동으로 자전 및 공전하는 편심륜(4)은 냉매가스의 압축력 및 베인의 스프링력, 마찰력등과 평형을 이루며 θ방향으로 회전할때 편심륜(4)에 작용하는 하중이 각각 변하게 된다.The eccentric wheel (4) coupled to the roller (3) is rotated and revolved by the drive of the electric mechanism unit in balance with the compressive force of the refrigerant gas and the spring force, friction force, etc. of the vane eccentric wheel (4) when rotating in the θ direction The load acting on each will change.

따라서 로울러(3)와 편심륜(4)사이의 저어널 편심률 및 크랭크축(5)의 장축(5a), 단축(5b)과 메인베어링(6), 서브베어링(7)사이의 저어널 편심률이 제3도에 도시된 바와 같이 달라지게 된다.Thus, the journal eccentricity between the roller (3) and the eccentric wheel (4) and the journal eccentric between the long axis (5a), short axis (5b) and the main bearing (6), sub-bearing (7) of the crankshaft (5) The rate will vary as shown in FIG.

이때 최대하중이 작용되는 시기는 θ의 각도가 210°(토출개시직전)의 위치에 있을때이다. 상기 메인베어링(6)과 서브베어링(7)에 작용하는 하중은 편심륜(4)에 작용하는 하중과 편행을 이루게 되어 F=FM+ FS가 되고, 이에 따라 크랭크축(5)의 장축(5a)에는 힘 FM이, 단축(5b)에는 힘FS가 걸리게 된다.At this time, the maximum load is applied when the angle of θ is 210 ° (just before discharge start). The load acting on the main bearing 6 and the sub-bearing 7 is in a deviation from the load acting on the eccentric ring 4, whereby F = F M + F S , whereby the long axis of the crankshaft 5 Force F M is applied to 5a, and force F S is applied to short axis 5b.

FM= FS=F/2라고 가정했을 때의 메인 및 서브베어링 저어널의 축심궤적을 제3도에 도시하였다. 여기서 축심궤적이란 메인베어링 및 서브베어링내에서의 크랭크축의 운동궤적을 말하는 것으로 편심률 및 편심각의 변화를 의미한다.Axial trajectories of the main and subbearing journals under the assumption that F M = F S = F / 2 are shown in FIG. Here, the axial center trajectory refers to the motion trajectory of the crankshaft in the main bearing and the sub bearing, and means the change of the eccentricity and the eccentric angle.

그러나 이러한 종래의 로타리 압축기에서 주요 습동부인 크랭크축의 단축, 장축과 메인베어링, 서브베어링구조는 마찰면적이 크므로 인해 마찰손실이 증가되었고, 이에따라 압축기의 입력손실이 상승되는 문제점을 갖게 된다.However, in the conventional rotary compressor, the main crank shaft, the main shaft, the main shaft and the main bearing, and the sub-bearing structure have a large friction area, thereby increasing the frictional loss, thereby increasing the input loss of the compressor.

본 발명은 종래의 이와같은 문제점을 해결하기 위해 안출한 것으로써, 크랭크축의 장축, 단축의 저어널부 구조를 개선하여 메인베어링과 서브베어링의 접속면에서 발생되는 마찰손실을 최소화할 수 있도록 하는데 그 목적이 있다.The present invention has been made to solve such a problem in the prior art, by improving the structure of the journal portion of the long axis, short axis of the crankshaft to minimize the frictional loss generated in the connection surface of the main bearing and the sub-bearing There is this.

상기 목적을 달성하기 위한 본 발명의 형태에 따르면, 메인베어링과 서브베어링에 접속되는 크랭크축의 장축과 단축부의 외주면상에 편심륜의회전시 편심륜에 작용하는 힘의 합성력이 최대가 되는 방향의 반대방향으로 오일홈을 형성하여 된 로타리 압축기가 제공된다.According to the aspect of the present invention for achieving the above object, the opposite direction of the direction in which the combined force of the force acting on the eccentric wheel at the time of rotation of the eccentric wheel on the outer circumferential surface of the crankshaft connected to the main bearing and the subbearing is maximized The rotary compressor is formed by forming an oil groove.

이하, 본 발명은 일 실시예로 도시한 첨부된 도면 제4도 및 제5도를 참조로 하여 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to FIGS. 4 and 5 of the accompanying drawings as an example.

첨부도면 제4도는 본 발명의 크랭크축을 나타낸 정면도이고 제5도는 제4도의 B-B선 단면도로써, 본 발명은 메인베어링(5)과 서브베어링(7)에 접속되는 크랭크축(5)의 장축(5a)과 (5b)부 외주면상의 일정각도내에 일정범위만큼 오일홈(16)(17)을 각각 형성하도록 되어 있다.FIG. 4 is a front view showing the crankshaft of the present invention, and FIG. 5 is a cross-sectional view taken along line BB of FIG. 4, and the present invention is a long axis 5a of the crankshaft 5 connected to the main bearing 5 and the subbearing 7. The oil grooves 16 and 17 are formed in a predetermined range within a predetermined angle on the outer circumferential surface of the portions () and (5b), respectively.

즉, 편심륜(4)의 회전시 편심륜(4)에 작용하는 힘의 합성력이 최대가 되는 방향의 반대방향에 위치되는 장축(5a)과 단축(5b)의 외주면상으로 오일홈(16)(17)을 각각 형성하도록 되어 있다.That is, the oil groove 16 on the outer circumferential surface of the long axis 5a and the short axis 5b which are located in the opposite direction to the direction in which the combined force of the force acting on the eccentric wheel 4 becomes maximum when the eccentric wheel 4 is rotated. Each of 17 is formed.

상기 편심륜(4)에 작용하는 힘의 합성력이 최대가 되는 방향은 편심륜의 장경부위치(크랭크축의 중심과 가장 멀리 떨어진 편심륜의 외주면까지의 거리)가 θ =210 ° 부근일때 베인(12)의 위치를 0°로 하는 고정좌표계에서 ψ(편심각)=118°부근에서 최대하중이 작용되기 때문이다.The direction in which the combined force of the force acting on the eccentric ring 4 is maximized is the vane 12 when the long diameter position of the eccentric ring (the distance from the center of the crankshaft to the outer circumferential surface of the eccentric ring farthest) is around θ = 210 °. This is because the maximum load is applied near ψ (eccentric angle) = 118 ° in a fixed coordinate system where the position of) is 0 °.

상기 오일홈(16)(17)이 형성되는 위치는 제5도에 도시한 바와 같이 θX= -15°-220°사이에서 시작되도록 한다. θX= -15°-220°로 설정한 이유는 상기 범위내에서는 오일에 의한 유막의 압력이 형성되지 않는 범위이기 때문이다.The position where the oil grooves 16 and 17 are formed is to be started between θ X = -15 ° -220 ° as shown in FIG. The reason why X = -15 ° -220 ° is set is because the pressure of the oil film due to oil is not formed within the above range.

이때 상기 θX가 -15°보다 작고, 220°보다 클 경우에는 로타리 압축기의 동작시 베어링 윤활이 원활히 이루어지지 않아 소부(눌러 붙는 현상)가 발생될 우려가 있기 때문에 상기 범위로 설정하는 것이 바람직하다.In this case, when the θ X is smaller than -15 ° and larger than 220 °, the lubrication of the bearing may not occur smoothly during operation of the rotary compressor. .

상기 θX의 기준점인 0°의 위치는 편심륜(4)의 장축경과 실린더(2)와의 접점위치를 의미한다. 여기서 장축경이란 크랭크축(5)의 중심과 가장 멀리 떨어진 편심륜의 외주면(실린더와 맞닿는 면)까지의 거리를 말한다.The position of 0 ° which is a reference point of θ X means the contact position between the long axis diameter of the eccentric wheel 4 and the cylinder 2. Here, the long axis diameter refers to the distance from the center of the crankshaft 5 to the outer circumferential surface (surface contacting the cylinder) of the eccentric ring farthest.

상기 오일홈(16)(17)의 크기 (δθ)는 θX의 범위내에서 30°-150°정도로 형성한다. 이는 오일홈이 형성되는 범위를 너무 크게 설정하면 오일 유막에 악영향을 줄수 있기 때문이다.The size (δθ) of the oil grooves 16 and 17 is formed in the range of 30 ° to 150 ° within the range of θ X. This is because if the range in which the oil groove is formed is set too large, it may adversely affect the oil film.

이에 따라 θX=20 °이고, δθ = 30°라 하면, 장축경으로부터 20°떨어진 곳에서 오일홈(16)(17)이 형성되기 시작하여 50°까지 형성된다는 의미이다.Accordingly, when θ X = 20 ° and δθ = 30 °, it means that oil grooves 16 and 17 start to be formed at a distance of 20 ° from the long axis diameter and are formed up to 50 °.

이상에서와 같이 본 발명은 메인베어링과 서브베어링이 접속하는 크랭크축의 장축과 단축부에 크랭크축의 강도에 영향을 주지 않는 범위내에서 오일홈을 형성하도록 되어 있어 오일 유막에 영향을 주지 않으면서도 저어널 베어링부의 마찰손실을 저감시킬 수 있게 되므로 로타리 압축기의 압력을 저감시키게 되고, 이에따라 로타리 압축기의 효율을 향상시키는 효과를 얻게 된다.As described above, the present invention is to form an oil groove within the range of not affecting the strength of the crankshaft in the major and minor axis of the crankshaft to which the main bearing and the sub-bearing are connected, so that the journal does not affect the oil film. Since the friction loss of the bearing part can be reduced, the pressure of the rotary compressor can be reduced, thereby improving the efficiency of the rotary compressor.

Claims (2)

메인베어링과 서브베어링에 접속되는 크랭크축의 장축과 단축부의 외주면상에 편심륜의 회전시 편심륜에 작용하는 힘의 합성력이 최대가 되는 방향의 반대반향으로 오일홈을 형성하여서 된 로타리 압축기.A rotary compressor in which oil grooves are formed in the opposite direction of the direction in which the combined force of the forces acting on the eccentric wheel becomes maximum when the eccentric wheel is rotated on the major axis of the crank shaft and the minor axis connected to the main bearing and the sub bearing. 제1항에 있어서, 오일홈이 형성되는 θX= -15°~220°(θX: 기준점인 0°는 편심륜의 장축경과 실린더와의 접점위치를 의미한다)사이에서 시작되도록 하고 오일홈이 형성되는 범위는 30°~150°이내로 하여서 된 로타리 압축기.The oil groove according to claim 1, wherein the oil groove is started between θ X = -15 ° to 220 ° (θ X : 0 ° as a reference point means the contact position between the long axis diameter of the eccentric wheel and the cylinder). Rotary compressor is formed within the range of 30 ° ~ 150 °.
KR1019940038589A 1994-12-29 1994-12-29 Rotary compressor KR0124622B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940038589A KR0124622B1 (en) 1994-12-29 1994-12-29 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940038589A KR0124622B1 (en) 1994-12-29 1994-12-29 Rotary compressor

Publications (2)

Publication Number Publication Date
KR960023815A KR960023815A (en) 1996-07-20
KR0124622B1 true KR0124622B1 (en) 1997-12-23

Family

ID=19404816

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940038589A KR0124622B1 (en) 1994-12-29 1994-12-29 Rotary compressor

Country Status (1)

Country Link
KR (1) KR0124622B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105889069A (en) * 2016-05-30 2016-08-24 广西大学 Rotating compressor low in exhaust oil content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105889069A (en) * 2016-05-30 2016-08-24 广西大学 Rotating compressor low in exhaust oil content

Also Published As

Publication number Publication date
KR960023815A (en) 1996-07-20

Similar Documents

Publication Publication Date Title
KR890000688B1 (en) Rotary compressor
KR20100000369A (en) Rotary compressor
US6203301B1 (en) Fluid pump
CN101387296A (en) Static vane compressor
US20210025389A1 (en) Rotary comppresor
KR0124622B1 (en) Rotary compressor
KR0132990Y1 (en) Compressing device of a rotary compressor
KR950001693Y1 (en) Rotary compressor
KR102288429B1 (en) Rotary Compressor
JPS5870087A (en) Rotary piston compressor having vanes rotating concentrically with inner wall surface of cylinder
US5141423A (en) Axial flow fluid compressor with oil supply passage through rotor
JPH021997B2 (en)
CN100513748C (en) Piston device with rotary blade
JP4151996B2 (en) Scroll compressor
JPS60259790A (en) Rotary compressor
KR0132131B1 (en) Fluid compressor
US4657493A (en) Rotary-sleeve supporting apparatus in rotary compressor
JPS6321756Y2 (en)
KR100323543B1 (en) Friction Reduction Device for Rotary Compressor
KR0118462B1 (en) Rotary compressor
KR0134251Y1 (en) Rotary compressor
JPS641511Y2 (en)
JPH04103281U (en) rotary compressor
JPS61201896A (en) Rotary compressor
JPH11336681A (en) Fluid compressor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee