JPWO2021039558A1 - Phenol resin, curable resin composition and its cured product - Google Patents

Phenol resin, curable resin composition and its cured product Download PDF

Info

Publication number
JPWO2021039558A1
JPWO2021039558A1 JP2020570582A JP2020570582A JPWO2021039558A1 JP WO2021039558 A1 JPWO2021039558 A1 JP WO2021039558A1 JP 2020570582 A JP2020570582 A JP 2020570582A JP 2020570582 A JP2020570582 A JP 2020570582A JP WO2021039558 A1 JPWO2021039558 A1 JP WO2021039558A1
Authority
JP
Japan
Prior art keywords
resin
phenol
compound
resin composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020570582A
Other languages
Japanese (ja)
Other versions
JP7036235B2 (en
Inventor
陽祐 広田
陽祐 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2021039558A1 publication Critical patent/JPWO2021039558A1/en
Application granted granted Critical
Publication of JP7036235B2 publication Critical patent/JP7036235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • C07C45/46Friedel-Crafts reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/82Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
    • C07C49/83Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/86Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with esterified hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Abstract

流動性に優れるとともに、硬化物の熱時弾性率、低吸湿性、誘電特性のバランスに優れ、半導体封止材料等に好適に用いることができるフェノール樹脂、組成物、およびその硬化物を提供することを課題とし、モノフェノール化合物と、ヒドロキシ基を有する芳香族カルボン酸との反応物であり、GPC測定において下記式(1)で表されるエステル化合物と、下記式(2)で表されるケトン化合物(2)との合計のピーク面積が、70〜99%であることを特徴とするフェノール樹脂を提供する。(式中、R1〜R17はそれぞれ独立して水素原子、炭素原子数1〜4のアルキル基又は炭素原子数1〜4のアルコキシ基である。)Provided are a phenol resin, a composition, and a cured product thereof, which are excellent in fluidity, have an excellent balance of thermal elasticity, low moisture absorption, and dielectric properties of the cured product, and can be suitably used as a semiconductor encapsulating material or the like. It is a reaction product of a monophenol compound and an aromatic carboxylic acid having a hydroxy group, and is represented by an ester compound represented by the following formula (1) and a following formula (2) in GPC measurement. Provided is a phenol resin characterized in that the total peak area with the ketone compound (2) is 70 to 99%. (In the formula, R1 to R17 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms.)

Description

本発明は、流動性に優れるとともに、硬化物の熱時弾性率、低吸湿性、誘電特性のバランスに優れ、半導体封止材料等に好適に用いることができるフェノール樹脂、および当該フェノール樹脂を含有する硬化性樹脂組成物とその硬化物に関する。 The present invention contains a phenol resin that is excellent in fluidity, has an excellent balance of thermal elasticity, low moisture absorption, and dielectric properties of the cured product, and can be suitably used as a semiconductor encapsulating material, and the phenol resin. The present invention relates to a curable resin composition and a cured product thereof.

フェノール樹脂は、例えばエポキシ樹脂と組み合わせて硬化性樹脂組成物とし、接着剤、成形材料、塗料、フォトレジスト材料、顕色材料等に用いられるほか、得られる硬化物の優れた耐熱性や耐湿性などの点から半導体封止材やプリント配線板用絶縁材料等の電気・電子分野で幅広く用いられている。 Phenol resin is used as a curable resin composition in combination with, for example, an epoxy resin, and is used as an adhesive, a molding material, a paint, a photoresist material, a coloring material, etc., and also has excellent heat resistance and moisture resistance of the obtained cured product. It is widely used in the electrical and electronic fields such as semiconductor encapsulants and insulating materials for printed wiring boards.

これらの各種用途のうち、半導体封止材料の分野では、BGA、CSPといった表面実装パッケージへの移行や、鉛フリー半田への対応、ハロゲン系難燃材の排除などの技術革新が進められており、樹脂材料には、パッケージの反りを抑制する為、シリカ等のフィラー高充填化できるよう、低粘度化が求められている。また昨今の各種自動車の自動運転や運転支援システムなどから多くの電子部品が乗るようになり、封止材料への信頼性要求や高速通信への対応要求も高まってきている。封止樹脂に対しては、兼備困難な低吸湿化、熱時低弾性率化、高周波領域での低誘電正接、ハロゲンフリーでの高難燃化などが求められている Among these various applications, in the field of semiconductor encapsulant materials, technological innovations such as shift to surface mount packages such as BGA and CSP, support for lead-free solder, and elimination of halogen-based flame-retardant materials are being promoted. In order to suppress the warp of the package, the resin material is required to have a low viscosity so that a filler such as silica can be highly filled. In addition, many electronic components have come to be used in the automatic driving and driving support systems of various automobiles in recent years, and the demand for reliability of the encapsulant material and the demand for high-speed communication are increasing. Encapsulating resins are required to have low hygroscopicity, low elastic modulus during heat, low dielectric loss tangent in the high frequency region, and high flame retardancy without halogen.

低吸湿化、熱時低弾性率化、高周波領域での低誘電正接の要求に対して、好適に使用できる樹脂として、ジシクロペンタジエンフェノール樹脂とα−ナフトールとをフタル酸クロライドでエステル化して得られる活性エステル樹脂が挙げられる(例えば、特許文献1参照)。特許文献1記載の活性エステル樹脂は、フェノールノボラック樹脂のような従来型の硬化剤を用いた場合と比較すると、特性を良化するものの、近年要求されるレベルを満足するものでは無く、高溶融粘度である為、半導体封止材料に適用しにくいものである。 Dicyclopentadienephenol resin and α-naphthol are esterified with phthalate chloride as a resin that can be suitably used to meet the demands of low moisture absorption, low elasticity during heat, and low dielectric loss tangent in the high frequency region. Examples thereof include active ester resins (see, for example, Patent Document 1). The active ester resin described in Patent Document 1 has improved properties as compared with the case of using a conventional curing agent such as a phenol novolac resin, but does not satisfy the level required in recent years and is highly melted. Due to its viscosity, it is difficult to apply to semiconductor encapsulant materials.

国際公開第2018/008410号International Publication No. 2018/008410

従って、本発明が解決しようとする課題は、流動性に優れるとともに、硬化物の熱時弾性率、低吸湿性、誘電特性のバランスに優れ、半導体封止材料等に好適に用いることができるフェノール樹脂、組成物、およびその硬化物を提供することにある。 Therefore, the problem to be solved by the present invention is that phenol is excellent in fluidity, has an excellent balance of thermal elastic modulus, low moisture absorption property, and dielectric property of the cured product, and can be suitably used for semiconductor encapsulation materials and the like. The purpose of the present invention is to provide a resin, a composition, and a cured product thereof.

本発明者は、鋭意検討した結果、芳香環上の置換基としてヒドロキシ基を1つ有するモノフェノール化合物と、ヒドロキシ基を有する芳香族カルボン酸との反応物である特定のフェノール樹脂を用いることにより、前記課題が解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventor used a specific phenolic resin which is a reaction product of a monophenol compound having one hydroxy group as a substituent on the aromatic ring and an aromatic carboxylic acid having a hydroxy group. , The present invention has been completed by finding that the above-mentioned problems can be solved.

即ち、本発明は、芳香環上にヒドロキシ基を1つ有するモノフェノール化合物(A)と、芳香環上にヒドロキシ基とカルボキシ基とを有する芳香族カルボン酸(B)との反応物であり、GPC測定において下記構造式(1)で表されるエステル化合物と、下記構造式(2)で表されるケトン化合物(2)との合計のピーク面積が、70〜99%であることを特徴とするフェノール樹脂、およびこれ含む硬化性樹脂組成物とその硬化物を提供するものである。 That is, the present invention is a reaction product of a monophenol compound (A) having one hydroxy group on the aromatic ring and an aromatic carboxylic acid (B) having a hydroxy group and a carboxy group on the aromatic ring. In GPC measurement, the total peak area of the ester compound represented by the following structural formula (1) and the ketone compound (2) represented by the following structural formula (2) is 70 to 99%. The present invention provides a phenol resin, a curable resin composition containing the same, and a cured product thereof.

Figure 2021039558
(式中、R〜R17はそれぞれ独立して水素原子、炭素原子数1〜4のアルキル基又は炭素原子数1〜4のアルコキシ基である。)
Figure 2021039558
(In the formula, R 1 to R 17 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms.)

本発明によれば、低粘度で流動性に優れ、硬化物の熱時弾性率、低吸湿性、誘電特性のバランスに優れ、半導体封止材料等に好適に用いることができるフェノール樹脂、硬化性樹脂組成物、前記性能を兼備した硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、及び繊維強化成形品を提供できる。 According to the present invention, a phenol resin having a low viscosity and excellent fluidity, an excellent balance of thermal elastic modulus, low hygroscopicity, and dielectric properties of a cured product, and which can be suitably used as a semiconductor encapsulating material, curable. It is possible to provide a resin composition, a cured product having the above-mentioned performance, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, a build-up film, a build-up board, a fiber-reinforced composite material, and a fiber-reinforced molded product.

実施例1で得られたフェノール樹脂のGPCチャートである。It is a GPC chart of the phenol resin obtained in Example 1. 実施例1で得られたフェノール樹脂の13C−NMRスペクトルである。 It is a 13 C-NMR spectrum of the phenol resin obtained in Example 1. 実施例1で得られたフェノール樹脂のMSスペクトルである。6 is an MS spectrum of the phenol resin obtained in Example 1. 実施例2で得られたフェノール樹脂のGPCチャートである。It is a GPC chart of the phenol resin obtained in Example 2. 実施例2で得られたフェノール樹脂の13C−NMRスペクトルである。 It is a 13 C-NMR spectrum of the phenol resin obtained in Example 2. 実施例2で得られたフェノール樹脂のMSスペクトルである。6 is an MS spectrum of the phenol resin obtained in Example 2. 実施例3で得られたフェノール樹脂のGPCチャートである。It is a GPC chart of the phenol resin obtained in Example 3. 実施例3で得られたフェノール樹脂の13C−NMRスペクトルである。 It is a 13 C-NMR spectrum of the phenol resin obtained in Example 3. 実施例3で得られたフェノール樹脂のMSスペクトルである。6 is an MS spectrum of the phenol resin obtained in Example 3. 実施例4で得られたフェノール樹脂のGPCチャートである。It is a GPC chart of the phenol resin obtained in Example 4. 実施例4で得られたフェノール樹脂の13C−NMRスペクトルである。 It is a 13 C-NMR spectrum of the phenol resin obtained in Example 4. 実施例4で得られたフェノール樹脂のMSスペクトルである。6 is an MS spectrum of the phenol resin obtained in Example 4. 実施例5で得られたフェノール樹脂のGPCチャートである。6 is a GPC chart of the phenol resin obtained in Example 5. 実施例5で得られたフェノール樹脂の13C−NMRスペクトルである。 It is a 13 C-NMR spectrum of the phenol resin obtained in Example 5. 実施例5で得られたフェノール樹脂のMSスペクトルである。6 is an MS spectrum of the phenol resin obtained in Example 5. 実施例6で得られたフェノール樹脂のGPCチャートである。6 is a GPC chart of the phenol resin obtained in Example 6. 実施例6で得られたフェノール樹脂の13C−NMRスペクトルである。 It is a 13 C-NMR spectrum of the phenol resin obtained in Example 6. 実施例6で得られたフェノール樹脂のMSスペクトルである。6 is an MS spectrum of the phenol resin obtained in Example 6. 実施例7で得られたフェノール樹脂のGPCチャートである。6 is a GPC chart of the phenol resin obtained in Example 7. 実施例7で得られたフェノール樹脂の13C−NMRスペクトルである。 13 C-NMR spectrum of the phenol resin obtained in Example 7. 実施例7で得られたフェノール樹脂のMSスペクトルである。6 is an MS spectrum of the phenol resin obtained in Example 7. 実施例8で得られたフェノール樹脂のGPCチャートである。6 is a GPC chart of the phenol resin obtained in Example 8. 実施例8で得られたフェノール樹脂の13C−NMRスペクトルである。 It is a 13 C-NMR spectrum of the phenol resin obtained in Example 8. 実施例8で得られたフェノール樹脂のMSスペクトルである。6 is an MS spectrum of the phenol resin obtained in Example 8.

<フェノール樹脂>
以下、本発明を詳細に説明する。
本発明のフェノール樹脂は、芳香環上にヒドロキシ基を1つ有するモノフェノール化合物(A)と、芳香環上にヒドロキシ基とカルボキシ基とを有する芳香族カルボン酸(B)との反応物であり、GPC測定において下記構造式(1)で表されるエステル化合物と、下記構造式(2)で表されるケトン化合物(2)との合計のピーク面積が、70〜99%であることを特徴とする。
<Phenol resin>
Hereinafter, the present invention will be described in detail.
The phenolic resin of the present invention is a reaction product of a monophenol compound (A) having one hydroxy group on the aromatic ring and an aromatic carboxylic acid (B) having a hydroxy group and a carboxy group on the aromatic ring. , The total peak area of the ester compound represented by the following structural formula (1) and the ketone compound (2) represented by the following structural formula (2) in the GPC measurement is 70 to 99%. And.

Figure 2021039558
(式中、R〜R17はそれぞれ独立して水素原子、炭素原子数1〜4のアルキル基又は炭素原子数1〜4のアルコキシ基である。)
Figure 2021039558
(In the formula, R 1 to R 17 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms.)

前記フェノール樹脂中のR〜R17はそれぞれ独立して水素原子、炭素原子数1〜4のアルキル基又は炭素原子数1〜4のアルコキシ基であり、特に水素原子、炭素原子数1〜2のアルキル基であることが好ましく、水素原子又はメチル基であることが好ましい。 R 1 to R 17 in the phenol resin are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms, and in particular, hydrogen atoms and 1 to 2 carbon atoms. It is preferably an alkyl group, preferably a hydrogen atom or a methyl group.

本発明においては、芳香環上にヒドロキシ基を1つ有するモノフェノール化合物(A)と、芳香環上にヒドロキシ基とカルボキシ基とを有する芳香族カルボン酸(B)とを原料として用いるものであるが、このモノフェノール化合物(A)中のヒドロキシ基と、芳香族カルボン酸(B)中のカルボキシ基が、エステル化するとともに、ケトンを形成する。本発明では、2つの芳香環が連結してなるエステル化合物とケトン化合物とを樹脂中に一定量含まれることにより、分子量が低く、又結晶化も起こりにくいために取扱いが容易な上、ヒドロキシ基がエステル基と共存する事で、一般的に硬化反応が遅いとされるエステル基の速硬化性もあり、硬化性組成物として好適に用いることができるものである。特にこれらの合計がGPC測定における面積%で70%以上であることが、樹脂としての流動性と硬化性とのバランスが良く、99%以下であることが、結晶の融点温度が低くなるため、取扱いが良好となる。 In the present invention, a monophenol compound (A) having one hydroxy group on the aromatic ring and an aromatic carboxylic acid (B) having a hydroxy group and a carboxy group on the aromatic ring are used as raw materials. However, the hydroxy group in the monophenol compound (A) and the carboxy group in the aromatic carboxylic acid (B) are esterified and form a ketone. In the present invention, since the resin contains a certain amount of an ester compound and a ketone compound in which two aromatic rings are linked, the molecular weight is low and crystallization is unlikely to occur, so that the ester compound and the ketone compound are easy to handle and have a hydroxy group. By coexisting with the ester group, the ester group, which is generally considered to have a slow curing reaction, has a fast-curing property, and can be suitably used as a curable composition. In particular, when the total of these is 70% or more in terms of area% in GPC measurement, the balance between fluidity and curability as a resin is good, and when it is 99% or less, the melting point temperature of the crystal is low. Good handling.

特に、フェノール樹脂中のエステル基とケトン基との比率が、13C−NMR測定による比率として1:0.01〜1:0.20の範囲であると吸湿率が低く、より硬化性に優れる。特にエポキシ樹脂用硬化剤として用いた場合に、硬化触媒としてトリフェニルホスフィン等の比較的マイルドな触媒を用いても硬化反応が進行しやすく、得られる硬化物中に残存する硬化触媒の影響を受けにくいという特徴も有する。より好ましくは、エステル基:ケトン基が1:0.01〜1:0.15の範囲である。In particular, when the ratio of the ester group to the ketone group in the phenol resin is in the range of 1: 0.01 to 1: 0.20 as measured by 13 C-NMR, the moisture absorption rate is low and the curability is more excellent. .. In particular, when used as a curing agent for epoxy resins, the curing reaction easily proceeds even if a relatively mild catalyst such as triphenylphosphine is used as the curing catalyst, and it is affected by the curing catalyst remaining in the obtained cured product. It also has the characteristic of being difficult. More preferably, the ester group: ketone group is in the range of 1: 0.01 to 1: 0.15.

なお、本発明における構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)との合計のピーク面積は、下記の条件によるGPC測定によって求めることができる。
<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8320 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC−WorkStation」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPCワークステーション EcoSEC―WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
The total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) in the present invention can be determined by GPC measurement under the following conditions. can.
<GPC measurement conditions>
Measuring device: "HLC-8320 GPC" manufactured by Tosoh Corporation,
Column: Guard column "HXL-L" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential Refractometer)
Data processing: "GPC Workstation EcoSEC-WorkStation" manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent tetrahydrofuran
Flow rate 1.0 ml / min Standard: Based on the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation", the following monodisperse polystyrene having a known molecular weight was used.
(Polystyrene used)
"A-500" manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
"F-1" manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
"F-4" manufactured by Tosoh Corporation
"F-10" manufactured by Tosoh Corporation
"F-20" manufactured by Tosoh Corporation
"F-40" manufactured by Tosoh Corporation
"F-80" manufactured by Tosoh Corporation
"F-128" manufactured by Tosoh Corporation
Sample: A solution obtained by filtering 1.0 mass% of a tetrahydrofuran solution in terms of resin solid content with a microfilter (50 μl).

更に、本発明におけるフェノール樹脂中のエステル基とケトン基との比率は、下記13C−NMRの測定において、147〜154ppm間のピークの面積積分値の合計と191〜205ppm間のピークの面積積分値の合計の比として算出している。Further, the ratio of the ester group to the ketone group in the phenol resin in the present invention is the sum of the sum of the peak area integral values between 147 and 154 ppm and the peak area integral between 191-205 ppm in the following 13 C-NMR measurement. It is calculated as the ratio of the total values.

13C−NMR測定条件>
装置:日本電子株式会社製 ECA500
測定モード:逆ゲート付きデカップリング
溶媒:重水素化ジメチルスルホキシド
パルス角度:30°パルス
試料濃度 :30wt%
積算回数 :4000回
< 13 C-NMR measurement conditions>
Equipment: ECA500 manufactured by JEOL Ltd.
Measurement mode: Decoupling with reverse gate Solvent: Deuterated dimethyl sulfoxide Pulse angle: 30 ° pulse Sample concentration: 30 wt%
Accumulation number: 4000 times

本発明のフェノール樹脂の粘度としては、半導体封止剤として好適に使用できる観点より、150℃におけるICI粘度が0.01〜5dPa・sの範囲であることが好ましい。また、DSC測定装置を用いて昇温速度10℃/分で測定した際に得られる融点としては、30〜180℃の範囲であることが好ましい。 The viscosity of the phenolic resin of the present invention is preferably in the range of 0.01 to 5 dPa · s at 150 ° C. from the viewpoint that it can be suitably used as a semiconductor encapsulant. Further, the melting point obtained when measured at a heating rate of 10 ° C./min using a DSC measuring device is preferably in the range of 30 to 180 ° C.

<フェノール樹脂の製造方法>
前記のように、本発明のフェノール樹脂は、芳香環上にヒドロキシ基を1つ有するモノフェノール化合物(A)と、芳香環上にヒドロキシ基とカルボキシ基とを有する芳香族カルボン酸(B)との反応物である。
<Phenol resin manufacturing method>
As described above, the phenolic resin of the present invention comprises a monophenol compound (A) having one hydroxy group on the aromatic ring and an aromatic carboxylic acid (B) having a hydroxy group and a carboxy group on the aromatic ring. It is a reactant of.

前記芳香環上にヒドロキシ基を1つ有するモノフェノール化合物(A)としては、芳香環上に炭素原子数1〜4のアルキル基又は炭素原子数1〜4のアルコキシ基を置換基として有していてもよい。これらの中でも、原料入手容易性および得られるフェノール樹脂の硬化性がより良好である観点から、水素原子又は炭素原子数1〜2のアルキル基を置換基として有するものであることが好ましく、特にフェノール、クレゾール又はキシレノールであることが好ましい。これらのモノフェノール化合物(A)は単独でも、2種以上を併用してもよい。 The monophenol compound (A) having one hydroxy group on the aromatic ring has an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms as a substituent on the aromatic ring. You may. Among these, from the viewpoint of easy availability of raw materials and better curability of the obtained phenol resin, those having a hydrogen atom or an alkyl group having 1 to 2 carbon atoms as a substituent are preferable, and phenol is particularly preferable. , Cresol or xylenol is preferred. These monophenol compounds (A) may be used alone or in combination of two or more.

また、前記芳香環上にヒドロキシ基とカルボキシ基とを有する芳香族カルボン酸(B)としては、芳香環上に炭素原子数1〜4のアルキル基又は炭素原子数1〜4のアルコキシ基を置換基として有していてもよい。これらの中でも、原料入手容易性および得られるフェノール樹脂の硬化性がより良好である観点から、水素原子又は炭素原子数1〜2のアルキル基を置換基として有するものであることが好ましく、特にp−ヒドロキシ安息香酸、サリチル酸、m−ヒドロキシ安息香酸であることが好ましい。これらの芳香族カルボン酸(B)は単独でも、2種以上を併用してもよい。 Further, as the aromatic carboxylic acid (B) having a hydroxy group and a carboxy group on the aromatic ring, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms is substituted on the aromatic ring. It may have as a group. Among these, from the viewpoint of easy availability of raw materials and better curability of the obtained phenol resin, those having a hydrogen atom or an alkyl group having 1 to 2 carbon atoms as a substituent are preferable, particularly p. -Hydroxybenzoic acid, salicylic acid, and m-hydroxybenzoic acid are preferable. These aromatic carboxylic acids (B) may be used alone or in combination of two or more.

更に、本発明の効果を損なわない範囲で、他のフェノール化合物、芳香族カルボン酸を併用してもよい。他のフェノール化合物としては、例えば、2価フェノール類、3価フェノール類が挙げられ、他の芳香族カルボン酸としては、芳香族ジカルボン酸やその無水物、カルボン酸がエステル構造となっているサリチル酸メチル等が挙げられる。このようなその他のフェノール化合物・その他の芳香族カルボン酸を併用する場合は、原料の全質量中10質量%以下で使用することが好ましい。 Further, other phenol compounds and aromatic carboxylic acids may be used in combination as long as the effects of the present invention are not impaired. Examples of other phenolic compounds include dihydric phenols and trivalent phenols, and examples of other aromatic carboxylic acids include aromatic dicarboxylic acids, their anhydrides, and salicylic acids having an ester structure of carboxylic acids. Examples include methyl. When such other phenol compounds and other aromatic carboxylic acids are used in combination, it is preferable to use them in an amount of 10% by mass or less based on the total mass of the raw material.

本発明での芳香環上にヒドロキシ基を1つ有するモノフェノール化合物(A)と、芳香環上にヒドロキシ基とカルボキシ基とを有する芳香族カルボン酸(B)との反応は、酸触媒下で行うことができる。具体的には、種々のものが使用できるが硫酸、p−トルエンスルホン酸、シュウ酸等の有機あるいは無機酸、塩化第二錫、塩化亜鉛、塩化第二鉄等のフリーデルクラフツ型触媒等が挙げられ、単独でも2種以上を併用してもよい。これらの中でも、反応性の観点より、p−トルエンスルホン酸を用いることが好ましい。これら酸触媒の使用量としては、触媒の種類により異なるが、モノフェノール化合物(A)と、芳香族カルボン酸(B)の合計質量に対して0.0005〜5質量%の範囲内であることが好ましい。 The reaction between the monophenol compound (A) having one hydroxy group on the aromatic ring and the aromatic carboxylic acid (B) having a hydroxy group and a carboxy group on the aromatic ring in the present invention is carried out under an acid catalyst. It can be carried out. Specifically, various ones can be used, but organic or inorganic acids such as sulfuric acid, p-toluenesulfonic acid and oxalic acid, Friedel-Crafts type catalysts such as ferric chloride, zinc chloride and ferric chloride can be used. These may be mentioned alone or in combination of two or more. Among these, it is preferable to use p-toluenesulfonic acid from the viewpoint of reactivity. The amount of these acid catalysts used varies depending on the type of catalyst, but is within the range of 0.0005 to 5% by mass with respect to the total mass of the monophenol compound (A) and the aromatic carboxylic acid (B). Is preferable.

前記モノフェノール化合物(A)と、前記芳香族カルボン酸(B)との使用割合としては、目的とする樹脂の物性等に応じて適宜調整可能であるが、より流動性に優れ、後述する硬化性樹脂組成物としたときの硬化性にも優れるフェノール樹脂を容易に得ることができる観点より、モノフェノール化合物(A)中のヒドロキシ基と芳香族カルボン酸(B)中のカルボキシ基の当量比が、0.95:1〜8:1の範囲で用いることが好ましく、特に0.97:1〜6:1の範囲で用いることがより好ましい。 The ratio of the monophenol compound (A) to the aromatic carboxylic acid (B) can be appropriately adjusted according to the physical properties of the target resin, etc., but it is more excellent in fluidity and is cured as described later. Equivalent ratio of hydroxy group in monophenol compound (A) to carboxy group in aromatic carboxylic acid (B) from the viewpoint that a phenol resin having excellent curability when made into a sex resin composition can be easily obtained. However, it is preferably used in the range of 0.95: 1 to 8: 1, and more preferably in the range of 0.97: 1 to 6: 1.

また、この反応は無溶剤下でも溶剤の存在下でも行うことが出来る。溶剤を使用する場合は、例えば、水、トルエン、キシレン、メタノール、エタノール、プロパノール、乳酸エチル、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン、2−エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、1,3−ジオキサン、1,4−ジオキサン、テトラヒドロフラン、エチレングリコールアセテート、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、N−メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。これらの溶媒は、それぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。溶剤の使用量としてはモノフェノール化合物(A)と、芳香族カルボン酸(B)の合計質量に対して通常10〜300質量%、好ましくは15〜250質量%である。反応温度としては通常40〜150℃、反応時間としては通常1〜24時間である。 In addition, this reaction can be carried out in the absence of a solvent or in the presence of a solvent. When a solvent is used, for example, water, toluene, xylene, methanol, ethanol, propanol, ethyl lactate, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1, 5-Pentane diol, 1,6-hexane diol, 1,7-heptane diol, 1,8-octane diol, 1,9-nonane diol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin, 2-ethoxyethanol, ethylene Glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, ethylene glycol monophenyl ether, diethylene glycol ethyl methyl ether, propylene glycol Examples thereof include monomethyl ether, 1,3-dioxane, 1,4-dioxane, tetrahydrofuran, ethylene glycol acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide and the like. Each of these solvents may be used alone or as a mixed solvent of two or more kinds. The amount of the solvent used is usually 10 to 300% by mass, preferably 15 to 250% by mass, based on the total mass of the monophenol compound (A) and the aromatic carboxylic acid (B). The reaction temperature is usually 40 to 150 ° C., and the reaction time is usually 1 to 24 hours.

反応終了後、中和、水洗などにより酸触媒を除去し、次いで加熱減圧下で必要により使用した溶剤及び未反応の原料を除去する。必要により再沈殿などの精製を行うことも可能である。再沈殿に使用できる溶剤としてはトルエン、メチルエチルケトン、アセトン、メチルイソブチルケトン、n−ヘキサン、メタノール、エタノール等が挙げられるが、これらに限定されるものではなく、各種溶剤を混合しても構わない。再沈殿は、これら溶剤を加熱し、反応混合物を溶解した後、冷却、ろ過を行う通常の手法を適用することができる。 After completion of the reaction, the acid catalyst is removed by neutralization, washing with water, etc., and then the solvent used as necessary and the unreacted raw material are removed under heating and reduced pressure. If necessary, purification such as reprecipitation can be performed. Examples of the solvent that can be used for reprecipitation include, but are not limited to, toluene, methyl ethyl ketone, acetone, methyl isobutyl ketone, n-hexane, methanol, ethanol and the like, and various solvents may be mixed. For reprecipitation, a usual method of heating these solvents, dissolving the reaction mixture, and then cooling and filtering can be applied.

<硬化性樹脂組成物>
本発明のフェノール樹脂は、水酸基と反応する官能基を有する、その他の化合物を併用することで、硬化性樹脂組成物とすることができる。硬化性樹脂組成物は、接着剤や塗料、フォトレジスト、プリント配線基板、半導体封止材料等の各種の電気・電子部材用途に好適に用いることが出来る。
<Curable resin composition>
The phenol resin of the present invention can be made into a curable resin composition by using another compound having a functional group that reacts with a hydroxyl group in combination. The curable resin composition can be suitably used for various electric / electronic member applications such as adhesives, paints, photoresists, printed wiring boards, and semiconductor encapsulant materials.

本発明で用いる水酸基と反応する官能基を有する、その他の化合物は、例えば、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、レゾール樹脂、エポキシ樹脂、イソシアネート化合物、アジド化合物、アルケニルエーテル基等の2重結合を含む化合物、酸無水物、オキサゾリン化合物等が挙げられる。 Other compounds having a functional group that reacts with the hydroxyl group used in the present invention include, for example, a melamine compound, a guanamine compound, and a glycol uryl substituted with at least one group selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group. Examples thereof include compounds containing double bonds such as compounds, urea compounds, resole resins, epoxy resins, isocyanate compounds, azide compounds and alkenyl ether groups, acid anhydrides and oxazoline compounds.

前記メラミン化合物は、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1〜6個のメチロール基がメトキシメチル化した化合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1〜6個がアシロキシメチル化した化合物等が挙げられる。 The melamine compound is, for example, a compound in which 1 to 6 methylol groups of hexamethylol melamine, hexamethoxymethyl melamine, and hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, and methylol of hexamethylol melamine. Examples thereof include compounds in which 1 to 6 groups are asyloxymethylated.

前記グアナミン化合物は、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメトキシメチルベンゾグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がメトキシメチル化した化合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がアシロキシメチル化した化合物等が挙げられる。 The guanamine compound is, for example, a compound in which 1 to 4 methylol groups of tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethylbenzoguanamine, and tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, and tetra. Examples thereof include compounds in which 1 to 4 methylol groups of methoxyl guanamine are acyloxymethylated.

前記グリコールウリル化合物は、例えば、1,3,4,6−テトラキス(メトキシメチル)グリコールウリル、1,3,4,6−テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6−テトラキス(ヒドロキシメチル)グリコールウリル等が挙げられる。 The glycoluril compound is, for example, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis (1,3,4,6-tetrakis). Hydroxymethyl) glycol uryl and the like can be mentioned.

前記ウレア化合物は、例えば、1,3−ビス(ヒドロキシメチル)尿素、1,1,3,3−テトラキス(ブトキシメチル)尿素及び1,1,3,3−テトラキス(メトキシメチル)尿素等が挙げられる。 Examples of the urea compound include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. Be done.

前記レゾール樹脂は、例えば、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とをアルカリ性触媒条件下で反応させて得られる重合体が挙げられる。 The resol resin is, for example, an alkaline compound containing phenol, an alkylphenol such as cresol or xylenol, a phenylphenol, a resorcinol, a biphenyl, a bisphenol such as bisphenol A or bisphenol F, a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene, and an aldehyde compound. Examples thereof include a polymer obtained by reacting under catalytic conditions.

前記エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)アルカン、ナフチレンエーテル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、リン原子含有エポキシ樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との共縮合物のポリグリシジルエーテル等が挙げられる。これらのエポキシ樹脂の中でも、特に難燃性に優れる硬化物が得られる点においては、テトラメチルビフェノール型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂が好ましい。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin. Triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolac type epoxy resin, diglycidyloxynaphthalene, naphthol aralkyl type epoxy resin, naphthol- Phenolic co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolak type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resin, biphenyl modified novolac type epoxy resin, 1,1-bis (2,7-diglycidyl) Oxy-1-naphthyl) alkane, naphthylene ether type epoxy resin, triphenylmethane type epoxy resin, phosphorus atom-containing epoxy resin, polyglycidyl ether of cocondensate of phenolic hydroxyl group-containing compound and alkoxy group-containing aromatic compound, etc. Can be mentioned. Among these epoxy resins, tetramethylbiphenol type epoxy resin, biphenylaralkyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, and novolac type epoxy resin can be used in terms of obtaining a cured product having particularly excellent flame retardancy. A dicyclopentadiene-phenol addition reaction type epoxy resin is preferable in that a cured product having excellent dielectric properties can be obtained.

前記イソシアネート化合物は、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられる。 Examples of the isocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate and the like.

前記アジド化合物は、例えば、1,1’−ビフェニル−4,4’−ビスアジド、4,4’−メチリデンビスアジド、4,4’−オキシビスアジド等が挙げられる。 Examples of the azide compound include 1,1'-biphenyl-4,4'-bis azide, 4,4'-methylidene azide, 4,4'-oxybis azide and the like.

前記アルケニルエーテル基等の2重結合を含む化合物は、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。 Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, and tetramethylene glycol divinyl ether. , Neopentyl glycol divinyl ether, trimethylolpropantrivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylol propanetrivinyl ether And so on.

前記酸無水物は例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、4,4’−(イソプロピリデン)ジフタル酸無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族酸無水物;無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の脂環式カルボン酸無水物等が挙げられる。 The acid anhydrides include, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, biphenyltetracarboxylic acid dianhydride, 4,4. Aromatic acid anhydrides such as'-(isopropyridene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride , Alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride dodecenylsuccinic anhydride, and trialkyltetrahydrophthalic anhydride.

これらの中でも、硬化性や硬化物における耐熱性により優れ、かつ誘電特性が良好な硬化性組成物となることから、エポキシ樹脂が特に好ましい。 Among these, epoxy resins are particularly preferable because they provide a curable composition that is more excellent in curability and heat resistance in the cured product and has good dielectric properties.

更に前記エポキシ樹脂を使用する場合には、エポキシ樹脂用硬化剤を配合してもよい。 Further, when the epoxy resin is used, a curing agent for epoxy resin may be blended.

ここで用いることのできる硬化剤としては、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノール系化合物などの各種の公知のエポキシ樹脂用の硬化剤が挙げられる。 Examples of the curing agent that can be used here include various known curing agents for epoxy resins such as amine compounds, amide compounds, acid anhydride compounds, and phenol compounds.

具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール性水酸基含有化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール性水酸基含有化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール性水酸基含有化合物)等の多価フェノール性水酸基含有化合物が挙げられる。Specifically, diaminodiphenylmethane as amine compound, diethylenetriamine, triethylenetetramine, diaminodiphenyl sulfone, isophoronediamine, imidazo - Le, BF 3 - amine complex, guanidine derivatives and the like, Examples of the amide compounds include dicyandiamide , Polyamide resin synthesized by a dimer of linolenic acid and ethylenediamine, and the like. Examples of acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydro. Examples include phthalic anhydride. Examples of phenol-based compounds include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadienephenol-added resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and triphenylol methane resin. Tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by bismethylene groups), biphenyl Modified naphthol resin (polyvalent naphthol compound in which phenol nuclei are linked by bismethylene group), aminotriazine-modified phenol resin (polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by melamine, benzoguanamine, etc.) and alkoxy group-containing aromatic ring Examples thereof include polyhydric phenolic hydroxyl group-containing compounds such as modified novolak resin (polyvalent phenolic hydroxyl group-containing compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde).

エポキシ樹脂を併用して硬化性樹脂組成物とする場合には、硬化触媒を併用することができる。とくに本発明のフェノール樹脂は硬化性に優れるため、従来活性エステルを硬化剤として用いる場合に使用されるジメチルアミノピリジン等の強塩基触媒を用いなくても、硬化物を得ることができ、特にトリフェニルホスフィン等のリン系化合物や含窒素化合物を用いることで、硬化物中の残存触媒による影響を抑制することもできる。 When an epoxy resin is used in combination to form a curable resin composition, a curing catalyst can be used in combination. In particular, since the phenol resin of the present invention has excellent curability, a cured product can be obtained without using a strong base catalyst such as dimethylaminopyridine, which is conventionally used when an active ester is used as a curing agent. By using a phosphorus compound such as phenylphosphine or a nitrogen-containing compound, the influence of the residual catalyst in the cured product can be suppressed.

また、本発明の硬化性樹脂組成物は、その他の熱硬化性樹脂を併用しても良い。 Further, the curable resin composition of the present invention may be used in combination with other thermosetting resins.

その他の熱硬化性樹脂としては、例えば、シアネートエステル樹脂、ベンゾオキサジン構造を有する樹脂、マレイミド化合物、活性エステル樹脂、ビニルベンジル化合物、アクリル化合物、スチレンとマレイン酸無水物の共重合物などが挙げられる。前記した他の熱硬化性樹脂を併用する場合、その使用量は本発明の効果を阻害しなければ特に制限をうけないが、硬化性樹脂組成物100質量部中1〜50質量部の範囲であることが好ましい。 Examples of other thermosetting resins include cyanate ester resins, resins having a benzoxazine structure, maleimide compounds, active ester resins, vinylbenzyl compounds, acrylic compounds, copolymers of styrene and maleic acid anhydride, and the like. .. When the other thermosetting resin described above is used in combination, the amount used is not particularly limited as long as the effect of the present invention is not impaired, but is in the range of 1 to 50 parts by mass out of 100 parts by mass of the curable resin composition. It is preferable to have.

前記シアネートエステル樹脂としては、例えば、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン−フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール−フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール−クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, bisphenol S type cyanate ester resin, bisphenol sulfide type cyanate ester resin, and phenylene ether type cyanate ester resin. , Naftyrene ether type cyanate ester resin, biphenyl type cyanate ester resin, tetramethylbiphenyl type cyanate ester resin, polyhydroxynaphthalene type cyanate ester resin, phenol novolac type cyanate ester resin, cresol novolac type cyanate ester resin, triphenylmethane type cyanate. Ester resin, tetraphenylethane type cyanate ester resin, dicyclopentadiene-phenol addition reaction type cyanate ester resin, phenol aralkyl type cyanate ester resin, naphthol novolac type cyanate ester resin, naphthol aralkyl type cyanate ester resin, naphthol-phenol co-condensed novolak Examples thereof include type cyanate ester resin, naphthol-cresol co-condensed novolak type cyanate ester resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type cyanate ester resin, biphenyl modified novolak type cyanate ester resin, and anthracene type cyanate ester resin. Each of these may be used alone, or two or more types may be used in combination.

これらのシアネートエステル樹脂の中でも、特に耐熱性に優れる硬化物が得られる点においては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ノボラック型シアネートエステル樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン−フェノール付加反応型シアネートエステル樹脂が好ましい。 Among these cyanate ester resins, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, and polyhydroxynaphthalene type cyanate ester resin are particularly excellent in heat resistance. , Naftylene ether type cyanate ester resin and novolak type cyanate ester resin are preferably used, and dicyclopentadiene-phenol addition reaction type cyanate ester resin is preferable in that a cured product having excellent dielectric properties can be obtained.

ベンゾオキサジン構造を有する樹脂としては、特に制限はないが、例えば、ビスフェノールFとホルマリンとアニリンの反応生成物(F−a型ベンゾオキサジン樹脂)やジアミノジフェニルメタンとホルマリンとフェノールの反応生成物(P−d型ベンゾオキサジン樹脂)、ビスフェノールAとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルエーテルとホルマリンとアニリンの反応生成物、ジアミノジフェニルエーテルとホルマリンとフェノールの反応生成物、ジシクロペンタジエン−フェノール付加型樹脂とホルマリンとアニリンの反応生成物、フェノールフタレインとホルマリンとアニリンの反応生成物、ジフェニルスルフィドとホルマリンとアニリンの反応生成物などが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The resin having a benzoxazine structure is not particularly limited, but for example, a reaction product of bisphenol F, formalin and aniline (FA type benzoxazine resin) or a reaction product of diaminodiphenylmethane, formalin and phenol (P-). d-type benzoxazine resin), reaction product of bisphenol A and formalin and aniline, reaction product of dihydroxydiphenyl ether and formalin and aniline, reaction product of diaminodiphenyl ether and formalin and phenol, dicyclopentadiene-phenol addition type resin and formalin And aniline reaction products, phenolphthaline, formalin and aniline reaction products, diphenylsulfide, formalin and aniline reaction products, and the like. Each of these may be used alone, or two or more types may be used in combination.

前記マレイミド化合物としては、例えば、下記構造式(i)〜(iii)の何れかで表される各種の化合物等が挙げられる。 Examples of the maleimide compound include various compounds represented by any of the following structural formulas (i) to (iii).

Figure 2021039558
(式中Rはm価の有機基であり、α及びβはそれぞれ水素原子、ハロゲン原子、アルキル基、アリール基の何れかであり、sは1以上の整数である。)
Figure 2021039558
(In the formula, R is an m-valent organic group, α and β are any of a hydrogen atom, a halogen atom, an alkyl group, and an aryl group, respectively, and s is an integer of 1 or more.)

Figure 2021039558
(式中Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1〜3の整数、tは繰り返し単位の平均で0〜10である。)
Figure 2021039558
(In the formula, R is any of a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group, and an alkoxy group, s is an integer of 1 to 3, and t is an average of 0 to 10 in repeating units. .)

Figure 2021039558
(式中Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1〜3の整数、tは繰り返し単位の平均で0〜10である。)これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
Figure 2021039558
(In the formula, R is any of a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group, and an alkoxy group, s is an integer of 1 to 3, and t is an average of 0 to 10 in repeating units. .) Each of these may be used alone, or two or more types may be used in combination.

前記活性エステル樹脂としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。前記活性エステル樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物又はそのハライドとヒドロキシ化合物とから得られる活性エステル樹脂が好ましく、カルボン酸化合物又はそのハライドと、フェノール化合物及び/又はナフトール化合物とから得られる活性エステル樹脂がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等、又はそのハライドが挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、フェノールフタレイン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン−フェノール付加型樹脂等が挙げられる。 The active ester resin is not particularly limited, but generally contains an ester group having high reactive activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule. A compound having two or more is preferably used. The active ester resin is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester resin obtained from a carboxylic acid compound or a halide thereof and a hydroxy compound is preferable, and an active ester resin obtained from a carboxylic acid compound or a halide thereof and a phenol compound and / or a naphthol compound is preferable. More preferred. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like, or halides thereof. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, dihydroxydiphenyl ether, phenol phthalein, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m. -Cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenol, trihydroxybenzophenone, tetrahydroxybenzophenone, fluoroglusin , Benzintriol, dicyclopentadiene-phenol-added resin and the like.

活性エステル樹脂として、具体的にはジシクロペンタジエン−フェノール付加構造を含む活性エステル系樹脂、ナフタレン構造を含む活性エステル樹脂、フェノールノボラックのアセチル化物である活性エステル樹脂、フェノールノボラックのベンゾイル化物である活性エステル樹脂等が好ましく、なかでもピール強度の向上に優れるという点で、ジシクロペンタジエン−フェノール付加構造を含む活性エステル樹脂、ナフタレン構造を含む活性エステル樹脂がより好ましい。ジシクロペンタジエン−フェノール付加構造を含む活性エステル樹脂として、より具体的には下記一般式(iv)で表される化合物が挙げられる。 Specific examples of the active ester resin include an active ester resin containing a dicyclopentadiene-phenol addition structure, an active ester resin containing a naphthalene structure, an active ester resin which is an acetylated product of phenol novolac, and an activity which is a benzoyl product of phenol novolac. Ester resins and the like are preferable, and among them, an active ester resin containing a dicyclopentadiene-phenol addition structure and an active ester resin containing a naphthalene structure are more preferable in that they are excellent in improving peel strength. Specific examples of the active ester resin containing a dicyclopentadiene-phenol addition structure include compounds represented by the following general formula (iv).

Figure 2021039558
Figure 2021039558

但し、式(iv)中、Rはフェニル基又はナフチル基であり、uは0又は1を表し、nは繰り返し単位の平均で0.05〜2.5である。なお、樹脂組成物の硬化物の誘電正接を低下させ、耐熱性を向上させるという観点から、Rはナフチル基が好ましく、uは0が好ましく、また、nは0.25〜1.5が好ましい。 However, in the formula (iv), R is a phenyl group or a naphthyl group, u represents 0 or 1, and n is an average of 0.05 to 2.5 in repeating units. From the viewpoint of reducing the dielectric loss tangent of the cured product of the resin composition and improving the heat resistance, R is preferably a naphthyl group, u is preferably 0, and n is preferably 0.25 to 1.5. ..

更に、各種の本発明のフェノール樹脂以外のノボラック樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、及び各種のビニル重合体を併用してもよい。 Further, various novolak resins other than the phenol resin of the present invention, an addition polymer resin of an alicyclic diene compound such as dicyclopentadiene and a phenol compound, and a modified novolak resin of a phenolic hydroxyl group-containing compound and an alkoxy group-containing aromatic compound. , Phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, trimethylolmethane resin, tetraphenylol ethane resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, aminotriazine-modified phenol resin, and various vinyl polymers in combination. May be good.

前記各種のノボラック樹脂は、より具体的には、フェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とを酸触媒条件下で反応させて得られる重合体が挙げられる。 More specifically, the various novolak resins are acid catalysts of phenol, phenylphenol, resorcinol, biphenyl, bisphenol such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene, and aldehyde compounds. Examples thereof include a polymer obtained by reacting under conditions.

前記各種のビニル重合体は、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体或いはこれらの共重合体が挙げられる。 The various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinylnaphthalene, polyvinylanthracene, polyvinylcarbazole, polyinden, polyacenaftylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, and poly (polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, and poly (polynorbornene, polycyclodecene, polytetracyclododecene). Examples thereof include homopolymers of vinyl compounds such as meth) acrylate and copolymers thereof.

これらその他の樹脂を用いる場合、本発明のフェノール樹脂とその他の樹脂との配合割合は、用途に応じて任意に設定することが出来るが、本発明が奏する熱時弾性率、硬化物の誘電特性等のバランス効果がより顕著に発現することから、本発明のフェノール樹脂100質量部に対し、その他の樹脂が0.5〜100質量部となる割合であることが好ましい。 When these other resins are used, the blending ratio of the phenol resin of the present invention and the other resin can be arbitrarily set according to the application, but the thermal elasticity and the dielectric property of the cured product exhibited by the present invention can be set arbitrarily. It is preferable that the ratio of the other resin to 100 parts by mass is 0.5 to 100 parts by mass with respect to 100 parts by mass of the phenol resin of the present invention.

また、本発明の硬化性樹脂組成物に高い難燃性が求められる用途に用いる場合には、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。 Further, when the curable resin composition of the present invention is used in an application requiring high flame retardancy, a non-halogen flame retardant which does not substantially contain a halogen atom may be blended.

前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。 Examples of the non-halogen flame retardant include phosphorus-based flame retardants, nitrogen-based flame retardants, silicone-based flame retardants, inorganic flame retardants, organic metal salt-based flame retardants, and the like, and their use is also restricted. It may be used alone, a plurality of flame retardants of the same system may be used, and flame retardants of different systems may be used in combination.

前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。 As the phosphorus-based flame retardant, either an inorganic type or an organic type can be used. Examples of the inorganic compound include ammonium phosphates such as red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate and ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. ..

また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。 Further, the red phosphorus is preferably surface-treated for the purpose of preventing hydrolysis and the like, and examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide and water. A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof, (ii) inorganic compounds such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide and titanium hydroxide, and Method of coating with a mixture of thermosetting resins such as phenol resin, (iii) Thermocurability of phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide Examples thereof include a method of double coating with a resin.

前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,5―ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。 The organic phosphorus compounds include, for example, general-purpose organic phosphorus compounds such as phosphoric acid ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphoran compounds, and organic nitrogen-containing phosphorus compounds, as well as 9,10-dihydro. -9-Oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-) Examples thereof include cyclic organophosphorus compounds such as dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide and derivatives obtained by reacting the cyclic organophosphorus compounds with compounds such as epoxy resins and phenol resins.

これらリン系難燃剤の配合量としては、リン系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合には0.1質量部〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を用いる場合には同様に0.1質量部〜10.0質量部の範囲で配合することが好ましく、0.5質量部〜6.0質量部の範囲で配合することがより好ましい。 The blending amount of these phosphorus-based flame retardants is appropriately selected depending on the type of the phosphorus-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy. For example, a non-halogen flame retardant. When red phosphorus is used as a non-halogen flame retardant, it is blended in the range of 0.1 parts by mass to 2.0 parts by mass in 100 parts by mass of the resin composition containing all of the fillers and other additives. In the same way, when an organic phosphorus compound is used, it is preferably blended in the range of 0.1 parts by mass to 10.0 parts by mass, and blended in the range of 0.5 parts by mass to 6.0 parts by mass. It is more preferable to do so.

また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ素化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。 When the phosphorus-based flame retardant is used, hydrotalcite, magnesium hydroxide, boron compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated charcoal, etc. may be used in combination with the phosphorus-based flame retardant. good.

前記窒素系難燃剤は、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。 Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazine, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.

前記トリアジン化合物は、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(1)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(2)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類及びホルムアルデヒドとの共縮合物、(3)前記(2)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(4)前記(2)、(3)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。 The triazine compound includes, for example, melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylenedimelamine, polyphosphate melamine, triguanamine and the like, and for example, (1) guanyl melamine sulfate, melem sulfate, melam sulfate. Aminotriazine sulfate compounds such as (2) Phenols such as phenol, cresol, xylenol, butylphenol and nonylphenol, and melamines such as melamine, benzoguanamine, acetguanamine and formguanamine and formaldehyde cocondensate, (3) Examples thereof include a mixture of the cocondensate of (2) and phenolic resins such as phenol formaldehyde condensate, and (4) the above-mentioned (2) and (3) further modified with tung oil, isomerized flaxseed oil and the like.

前記シアヌル酸化合物は、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。 Examples of the cyanuric acid compound include cyanuric acid and melamine cyanuric acid.

前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、0.1質量部〜5質量部の範囲で配合することがより好ましい。 The blending amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy. For example, a non-halogen flame retardant. And other fillers, additives, etc. are all blended in the range of 0.05 to 10 parts by mass, preferably in the range of 0.1 parts by mass to 5 parts by mass, out of 100 parts by mass of the resin composition. It is more preferable to do so.

また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。 When using the nitrogen-based flame retardant, a metal hydroxide, a molybdenum compound, or the like may be used in combination.

前記シリコーン系難燃剤は、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。 The silicone-based flame retardant can be used without particular limitation as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin. The blending amount of the silicone-based flame retardant is appropriately selected depending on the type of the silicone-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy. For example, a non-halogen-based flame retardant. It is preferable to blend in the range of 0.05 to 20 parts by mass in 100 parts by mass of the resin composition containing all of the other fillers and additives. Further, when using the silicone flame retardant, a molybdenum compound, alumina or the like may be used in combination.

前記無機系難燃剤は、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。 Examples of the inorganic flame retardant include metal hydroxides, metal oxides, metal carbonate compounds, metal powders, boron compounds, and low melting point glass.

前記金属水酸化物は、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。 Examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydride and the like.

前記金属酸化物は、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。 The metal oxide includes, for example, zinc molybdate, molybdenum trioxide, zinc tinate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, and bismuth oxide. Examples thereof include chromium oxide, nickel oxide, copper oxide, and tungsten oxide.

前記金属炭酸塩化合物は、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。 Examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, titanium carbonate and the like.

前記金属粉は、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。 Examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, tin and the like.

前記ホウ素化合物は、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。 Examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.

前記低融点ガラスは、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。The low melting point glass includes, for example, Shipley (Boxy Brown Co., Ltd.), hydrated glass SiO 2 -MgO-H 2 O, PbO-B 2 O 3 system, ZnO-P 2 O 5- MgO system, P 2 O 5 -B 2 O 3- PbO-MgO system, P-Sn-OF system, PbO-V 2 O 5- TeO 2 system, Al 2 O 3- H 2 O system, lead borosilicate glassy compounds, etc. Can be mentioned.

前記無機系難燃剤の配合量としては、無機系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.05質量部〜20質量部の範囲で配合することが好ましく、0.5質量部〜15質量部の範囲で配合することがより好ましい。 The blending amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, other components of the resin composition, and the desired degree of flame retardancy. For example, a non-halogen flame retardant. It is preferable to blend in the range of 0.05 parts by mass to 20 parts by mass, and in the range of 0.5 parts by mass to 15 parts by mass, out of 100 parts by mass of the resin composition containing all of the other fillers and additives. It is more preferable to mix with.

前記有機金属塩系難燃剤は、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。 The organometallic salt-based flame retardant includes, for example, ferrocene, an acetylacetonate metal complex, an organometallic carbonyl compound, an organocobalt salt compound, an organosulfonic acid metal salt, a metal atom and an aromatic compound or a heterocyclic compound in an ionic bond or arrangement. Examples thereof include position-bonded compounds.

前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した樹脂組成物100質量部中、0.005質量部〜10質量部の範囲で配合することが好ましい。 The blending amount of the organic metal salt-based flame retardant is appropriately selected depending on the type of the organic metal salt-based flame retardant, other components of the resin composition, and the desired degree of flame retardancy. It is preferable to blend in the range of 0.005 parts by mass to 10 parts by mass in 100 parts by mass of the resin composition containing all of the halogen-based flame retardant and other fillers and additives.

本発明の硬化性樹脂組成物は、必要に応じて無機充填材を配合することができる。前記無機充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、硬化性樹脂組成物の全質量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。 The curable resin composition of the present invention can be blended with an inorganic filler, if necessary. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide and the like. When the blending amount of the inorganic filler is particularly large, it is preferable to use fused silica. The molten silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the molten silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical one. Further, in order to increase the blending amount of spherical silica, it is preferable to appropriately adjust the particle size distribution of spherical silica. The filling rate is preferably high in consideration of flame retardancy, and is particularly preferably 20% by mass or more with respect to the total mass of the curable resin composition. When used for applications such as conductive paste, a conductive filler such as silver powder or copper powder can be used.

本発明の硬化性樹脂組成物は、この他、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。 In addition to this, various compounding agents such as a silane coupling agent, a mold release agent, a pigment, and an emulsifier can be added to the curable resin composition of the present invention, if necessary.

<硬化性樹脂組成物の用途>
本発明の硬化性樹脂組成物は、半導体封止材料、半導体装置、プリプレグ、プリント回路基板、ビルドアップ基板、ビルドアップフィルム、繊維強化複合材料、繊維強化樹脂成形品、導電ペースト等に適用することができる。
<Use of curable resin composition>
The curable resin composition of the present invention shall be applied to semiconductor encapsulant materials, semiconductor devices, prepregs, printed circuit boards, build-up boards, build-up films, fiber-reinforced composite materials, fiber-reinforced resin molded products, conductive pastes, and the like. Can be done.

1.半導体封止材料
本発明の硬化性樹脂組成物から半導体封止材料を得る方法としては、前記硬化性樹脂組成物、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30質量部〜95質量部の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐半田クラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
1. 1. Semiconductor encapsulation material As a method for obtaining a semiconductor encapsulation material from the curable resin composition of the present invention, the curable resin composition and a compounding agent such as an inorganic filler are used in an extruder or a feeder as necessary. , A method of sufficiently melting and mixing until uniform using a roll or the like can be mentioned. At that time, fused silica is usually used as the inorganic filler, but when used as a high thermal conductivity semiconductor encapsulant for power transistors and power ICs, crystalline silica, alumina, and silicon nitride having higher thermal conductivity than fused silica are used. High filling of silicon or the like, or molten silica, crystalline silica, alumina, silicon nitride or the like may be used. The filling rate is preferably in the range of 30 parts by mass to 95 parts by mass of the inorganic filler per 100 parts by mass of the curable resin composition. In order to reduce the coefficient of expansion, 70 parts by mass or more is more preferable, and 80 parts by mass or more is further preferable.

2.半導体装置
本発明の硬化性樹脂組成物から半導体装置を得る方法としては、前記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間の間、加熱する方法が挙げられる。
2. Semiconductor device As a method for obtaining a semiconductor device from the curable resin composition of the present invention, the semiconductor encapsulant material is cast or molded using a transfer molding machine, an injection molding machine, or the like, and further at 50 to 200 ° C. 2 A method of heating for 10 hours can be mentioned.

3.プリプレグ
本発明の硬化性樹脂組成物からプリプレグを得る方法としては、有機溶剤を配合してワニス化した硬化性樹脂組成物を、補強基材(紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布など)に含浸したのち、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、得る方法が挙げられる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20質量%〜60質量%となるように調製することが好ましい。
3. 3. Prepreg As a method for obtaining a prepreg from the curable resin composition of the present invention, a curable resin composition obtained by blending an organic solvent to form a varnish is used as a reinforcing base material (paper, glass cloth, glass non-woven fabric, aramid paper, aramid cloth). , Glass mat, glass roving cloth, etc.), and then heated at a heating temperature according to the type of solvent used, preferably 50 to 170 ° C., to obtain the method. The mass ratio of the resin composition and the reinforcing base material used at this time is not particularly limited, but it is usually preferable to prepare the resin content in the prepreg to be 20% by mass to 60% by mass.

ここで用いる有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、下記のようにプリプレグからプリント回路基板をさらに製造する場合には、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、また、不揮発分が40質量%〜80質量%となる割合で用いることが好ましい。 Examples of the organic solvent used here include methyl ethyl ketone, acetone, dimethyl formamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate, and the like. It can be appropriately selected depending on the application, but for example, when further producing a printed circuit board from prepylene as described below, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, or dimethylformamide. , It is preferable to use the non-volatile content at a ratio of 40% by mass to 80% by mass.

4.プリント回路基板
本発明の硬化性樹脂組成物からプリント回路基板を得る方法としては、前記プリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜300℃で10分〜3時間、加熱圧着させる方法が挙げられる。
4. Printed circuit board As a method for obtaining a printed circuit board from the curable resin composition of the present invention, the prepregs are laminated by a conventional method, copper foils are appropriately laminated, and the temperature is 170 to 300 ° C. under a pressure of 1 to 10 MPa. Examples thereof include a method of heat-bonding for 10 minutes to 3 hours.

5.ビルドアップ基板
本発明の硬化性樹脂組成物からビルドアップ基板を得る方法としては、工程1〜3を経由する方法が挙げられる。工程1では、まず、ゴム、フィラーなどを適宜配合した前記硬化性樹脂組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。工程2では、必要に応じて、硬化性樹脂組成物が塗布された回路基板に所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、前記基板に凹凸を形成させ、銅などの金属をめっき処理する。工程3では、工程1〜2の操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップしてビルドアップ基板を成形する。なお、前記工程において、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行うとよい。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
5. Build-up substrate As a method for obtaining a build-up substrate from the curable resin composition of the present invention, a method via steps 1 to 3 can be mentioned. In step 1, first, the curable resin composition in which rubber, a filler and the like are appropriately mixed is applied to a circuit board on which a circuit is formed by a spray coating method, a curtain coating method, or the like, and then cured. In step 2, if necessary, the circuit board coated with the curable resin composition is drilled with a predetermined through-hole portion or the like, treated with a roughening agent, and the surface thereof is washed with hot water. Concavities and convexities are formed on the substrate, and a metal such as copper is plated. In step 3, the operations of steps 1 and 2 are sequentially repeated as desired, and the resin insulating layer and the conductor layer having a predetermined circuit pattern are alternately built up to form a build-up substrate. In the above step, the through-hole portion may be drilled after the resin insulating layer of the outermost layer is formed. Further, the build-up substrate of the present invention is roughened by heat-pressing a resin-containing copper foil obtained by semi-curing the resin composition on a copper foil onto a wiring substrate on which a circuit is formed at 170 to 300 ° C. It is also possible to produce a build-up substrate by omitting the steps of forming a surface and plating.

6.ビルドアップフィルム
本発明の硬化性樹脂組成物からビルドアップフィルムを得る方法としては、例えば、支持フィルム上に硬化性樹脂組成物を塗布したのち、乾燥させて、支持フィルムの上に樹脂組成物層を形成する方法が挙げられる。本発明の硬化性樹脂組成物をビルドアップフィルムに用いる場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう前記各成分を配合することが好ましい。
6. Build-up film As a method of obtaining a build-up film from the curable resin composition of the present invention, for example, a curable resin composition is applied on a support film, dried, and a resin composition layer is placed on the support film. There is a method of forming. When the curable resin composition of the present invention is used as a build-up film, the film is softened under the temperature conditions of lamination (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, and at the same time as laminating the circuit board, it is applied to the circuit board. It is important to show fluidity (resin flow) capable of filling the existing via hole or through hole with resin, and it is preferable to blend each of the above components so as to exhibit such characteristics.

ここで、回路基板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。 Here, the diameter of the through hole of the circuit board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm, and it is usually preferable to enable resin filling in this range. When laminating both sides of the circuit board, it is desirable to fill about 1/2 of the through holes.

前記したビルドアップフィルムを製造する具体的な方法としては、有機溶剤を配合してワニス化した樹脂組成物を調製した後、支持フィルム(Y)の表面に、前記組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥して樹脂組成物の層(X)を形成する方法が挙げられる。 As a specific method for producing the above-mentioned build-up film, after preparing a varnished resin composition by blending an organic solvent, the composition is applied to the surface of the support film (Y) and further heated. Alternatively, a method of drying the organic solvent by blowing hot air or the like to form the layer (X) of the resin composition can be mentioned.

ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30質量%〜60質量%となる割合で使用することが好ましい。 Examples of the organic solvent used here include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, cellosolve and butyl carbitol and the like. Carbitols, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like are preferably used, and the non-volatile content is 30% by mass to 60% by mass. Is preferable.

なお、形成される前記樹脂組成物の層(X)の厚さは、通常、導体層の厚さ以上とする必要がある。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。なお、本発明における前記樹脂組成物の層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。 The thickness of the layer (X) of the resin composition to be formed usually needs to be equal to or larger than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm. The layer (X) of the resin composition in the present invention may be protected by a protective film described later. By protecting with a protective film, it is possible to prevent dust and the like from adhering to the surface of the resin composition layer and scratches.

前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。 The support film and protective film described above include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter, may be abbreviated as "PET"), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and further release. Examples include metal foils such as patterns, copper foils, and aluminum foils. The support film and the protective film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment. The thickness of the support film is not particularly limited, but is usually 10 to 150 μm, and is preferably used in the range of 25 to 50 μm. The thickness of the protective film is preferably 1 to 40 μm.

前記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。ビルドアップフィルムを構成する樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。 The support film (Y) described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled off after the resin composition layer constituting the build-up film is heat-cured, it is possible to prevent the adhesion of dust and the like in the curing step. When peeling after curing, the support film is usually subjected to a mold release treatment in advance.

なお、前記のようにして得られたビルドアップフィルムから多層プリント回路基板を製造することができる。例えば、前記樹脂組成物の層(X)が保護フィルムで保護されている場合はこれらを剥離した後、前記樹脂組成物の層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前にビルドアップフィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70〜140℃とすることが好ましく、圧着圧力を1〜11kgf/cm(9.8×10〜107.9×10N/m)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。A multilayer printed circuit board can be manufactured from the build-up film obtained as described above. For example, when the layer (X) of the resin composition is protected by a protective film, after peeling off the layers (X) of the resin composition, one side or both sides of the circuit board so that the layer (X) of the resin composition is in direct contact with the circuit board. , For example, by the vacuum laminating method. The laminating method may be a batch method or a continuous method using a roll. If necessary, the build-up film and the circuit board may be preheated if necessary before laminating. As for the laminating conditions, the crimping temperature (lamination temperature) is preferably 70 to 140 ° C., and the crimping pressure is 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2 ). It is preferable to laminate under a reduced air pressure of 20 mmHg (26.7 hPa) or less.

7.繊維強化複合材料
本発明の樹脂組成物から繊維強化複合材料(樹脂が強化繊維に含浸したシート状の中間材料)を得る方法としては、樹脂組成物を構成する各成分を均一に混合してワニスを調整し、次いでこれを強化繊維からなる強化基材に含浸した後、重合反応させることにより製造する方法が挙げられる。
7. Fiber-reinforced composite material As a method for obtaining a fiber-reinforced composite material (a sheet-like intermediate material in which a resin is impregnated in a reinforcing fiber) from the resin composition of the present invention, each component constituting the resin composition is uniformly mixed and varnished. Then, after impregnating the reinforcing base material made of reinforcing fibers with the reinforcing base material, a polymerization reaction may be carried out to produce the material.

かかる重合反応を行う際の硬化温度は、具体的には、50〜250℃の温度範囲であることが好ましく、特に、50〜100℃で硬化させ、タックフリー状の硬化物にした後、更に、120〜200℃の温度条件で処理することが好ましい。 Specifically, the curing temperature at the time of carrying out such a polymerization reaction is preferably in the temperature range of 50 to 250 ° C., and in particular, after curing at 50 to 100 ° C. to obtain a tack-free cured product, further , It is preferable to treat at a temperature condition of 120 to 200 ° C.

ここで、強化繊維は、有撚糸、解撚糸、又は無撚糸などいずれでも良いが、解撚糸や無撚糸が、繊維強化プラスチック製部材の成形性と機械強度を両立することから、好ましい。さらに、強化繊維の形態は、繊維方向が一方向に引き揃えたものや、織物が使用できる。織物では、平織り、朱子織りなどから、使用する部位や用途に応じて自由に選択することができる。具体的には、機械強度や耐久性に優れることから、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられ、これらの2種以上を併用することもできる。これらの中でもとりわけ成形品の強度が良好なものとなる点から炭素繊維が好ましく、かかる、炭素繊維は、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。中でも、容易に高強度の炭素繊維が得られるポリアクリロニトリル系のものが好ましい。ここで、ワニスを強化繊維からなる強化基材に含浸して繊維強化複合材料とする際の強化繊維の使用量は、該繊維強化複合材料中の強化繊維の体積含有率が40%〜85%の範囲となる量であることが好ましい。 Here, the reinforcing fiber may be any of twisted yarn, untwisted yarn, untwisted yarn and the like, but the untwisted yarn and the untwisted yarn are preferable because both the moldability and the mechanical strength of the fiber-reinforced plastic member are compatible. Further, as the form of the reinforcing fiber, one in which the fiber directions are aligned in one direction or a woven fabric can be used. For woven fabrics, plain weaves, satin weaves, and the like can be freely selected according to the part to be used and the intended use. Specific examples thereof include carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber because of their excellent mechanical strength and durability, and two or more of these can be used in combination. Among these, carbon fibers are particularly preferable from the viewpoint of improving the strength of the molded product, and various carbon fibers such as polyacrylonitrile-based, pitch-based, and rayon-based can be used. Of these, polyacrylonitrile-based ones, which can easily obtain high-strength carbon fibers, are preferable. Here, the amount of the reinforcing fiber used when impregnating the reinforcing base material made of the reinforcing fiber with the varnish to obtain the fiber-reinforced composite material is such that the volume content of the reinforcing fiber in the fiber-reinforced composite material is 40% to 85%. The amount is preferably in the range of.

8.繊維強化樹脂成形品
本発明の樹脂組成物から繊維強化成形品(樹脂が強化繊維に含浸したシート状部材が硬化した成形品)を得る方法としては、型に繊維骨材を敷き、前記ワニスを多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材にワニスを含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有するワニスをシート状にしたものを金型で圧縮成型するSMCプレス法、繊維を敷き詰めた合わせ型に前記ワニスを注入するRTM法などにより、強化繊維に前記ワニスを含浸させたプリプレグを製造し、これを大型のオートクレーブで焼き固める方法などが挙げられる。なお、前記で得られた繊維強化樹脂成形品は、強化繊維と樹脂組成物の硬化物とを有する成形品であり、具体的には、繊維強化成形品中の強化繊維の量は、40質量%〜70質量%の範囲であることが好ましく、強度の点から50質量%〜70質量%の範囲であることが特に好ましい。
8. Fiber-reinforced resin molded product As a method for obtaining a fiber-reinforced molded product (a molded product in which a sheet-like member impregnated with resin impregnated in reinforcing fibers is cured) from the resin composition of the present invention, a fiber aggregate is laid on a mold and the varnish is applied. Using either the hand lay-up method, spray-up method, or male or female type, in which multiple layers are laminated, the base material made of reinforcing fibers is impregnated with varnish and stacked to form, and pressure is applied to the molded product. The vacuum bag method, in which the airtightly sealed material is vacuum (decompressed) molded by covering it with a flexible mold that can be used, the SMC press method, in which a sheet of varnish containing reinforcing fibers is previously compression-molded with a mold, and fibers are laid out. Examples thereof include a method in which a prepreg in which reinforcing fibers are impregnated with the varnish is produced by an RTM method in which the varnish is injected into a mating mold, and the prepreg is baked and hardened in a large autoclave. The fiber-reinforced resin molded product obtained above is a molded product having a reinforcing fiber and a cured product of the resin composition. Specifically, the amount of the reinforcing fiber in the fiber-reinforced molded product is 40 mass. It is preferably in the range of% to 70% by mass, and particularly preferably in the range of 50% by mass to 70% by mass from the viewpoint of strength.

9.導電ペースト
本発明の樹脂組成物から導電ペーストを得る方法としては、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させる方法が挙げられる。前記導電ペーストは、用いる微細導電性粒子の種類によって、回路接続用ペースト樹脂組成物や異方性導電接着剤とすることができる。
9. Conductive Paste As a method for obtaining a conductive paste from the resin composition of the present invention, for example, a method of dispersing fine conductive particles in the curable resin composition can be mentioned. The conductive paste can be a paste resin composition for circuit connection or an anisotropic conductive adhesive depending on the type of fine conductive particles used.

次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、GPC、13C−NMRスペクトルは以下の条件にて測定した。Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, "parts" and "%" are based on mass unless otherwise specified. The GPC and 13 C-NMR spectra were measured under the following conditions.

<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8320 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC−WorkStation」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPCワークステーション EcoSEC−WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
<GPC measurement conditions>
Measuring device: "HLC-8320 GPC" manufactured by Tosoh Corporation,
Column: Guard column "HXL-L" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential Refractometer)
Data processing: "GPC Workstation EcoSEC-WorkStation" manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent tetrahydrofuran
Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene with a known molecular weight was used in accordance with the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation".
(Polystyrene used)
"A-500" manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
"F-1" manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
"F-4" manufactured by Tosoh Corporation
"F-10" manufactured by Tosoh Corporation
"F-20" manufactured by Tosoh Corporation
"F-40" manufactured by Tosoh Corporation
"F-80" manufactured by Tosoh Corporation
"F-128" manufactured by Tosoh Corporation
Sample: A solution obtained by filtering 1.0 mass% of a tetrahydrofuran solution in terms of resin solid content with a microfilter (50 μl).

13C−NMRの測定条件>
装置:日本電子株式会社製 AL−400
測定モード:逆ゲート付きデカップリング
溶媒:重水素化ジメチルスルホキシド
パルス角度:30°パルス
試料濃度 :30wt%
積算回数 :4000回
< 13 C-NMR measurement conditions>
Equipment: AL-400 manufactured by JEOL Ltd.
Measurement mode: Decoupling with reverse gate Solvent: Deuterated dimethyl sulfoxide Pulse angle: 30 ° pulse Sample concentration: 30 wt%
Accumulation number: 4000 times

実施例1
温度計、分留管、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながらフェノール565g(6モル)、p−ヒドロキシ安息香酸207g(1.5モル)、p−トルエンスルホン酸二水和物7.7g、トルエン207gを仕込んだ。水を分留管で捕集しながら140℃に昇温し、12時間反応させた。反応終了後、49%水酸化ナトリウム水溶液3.4gを加え中和確認し、トルエン685gを加えて80℃まで冷却し、水207gで水洗を4回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒と未反応モノマーを減圧下で留去してフェノール樹脂(1)を得た。得られたフェノール樹脂(1)の融点は175℃であった。フェノール樹脂(1)のGPCチャートを図1に、13C−NMRチャートを図2に、MSスペクトルを図3に示す。GPCから構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)との合計のピーク面積は86%、モノフェノール残は1.7%であった。また13C−NMRからエステル基:ケトン基の比率は1:0.06であった。
Example 1
565 g (6 mol) of phenol, 207 g (1.5 mol) of p-hydroxybenzoic acid, p-toluenesulfonic acid dihydration while performing nitrogen gas purging on a flask equipped with a thermometer, a fractional distillation tube, a cooling tube, and a stirrer. 7.7 g of the product and 207 g of toluene were charged. The temperature was raised to 140 ° C. while collecting water with a fractional distillation tube, and the mixture was reacted for 12 hours. After completion of the reaction, 3.4 g of a 49% aqueous sodium hydroxide solution was added to confirm neutralization, 685 g of toluene was added, the mixture was cooled to 80 ° C., and washing with water was repeated 4 times with 207 g of water. Then, the inside of the system was dehydrated by azeotrope, and after microfiltration, the solvent and the unreacted monomer were distilled off under reduced pressure to obtain a phenol resin (1). The melting point of the obtained phenol resin (1) was 175 ° C. The GPC chart of the phenol resin (1) is shown in FIG. 1, the 13 C-NMR chart is shown in FIG. 2, and the MS spectrum is shown in FIG. The total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) from GPC was 86%, and the monophenol residue was 1.7%. .. From 13 C-NMR, the ratio of ester group: ketone group was 1: 0.06.

実施例2
フェノールをオルソクレゾール649g(6モル)、反応温度を150℃に変更した以外は実施例1と同様にして、フェノール樹脂(2)を得た。得られたフェノール樹脂(2)の融点は135℃であった。フェノール樹脂(2)のGPCチャートを図4に、13C−NMRチャートを図5に、MSスペクトルを図6に示す。GPCから構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)の合計ピーク面積は91%、モノフェノール残は0.1%であった。また13C−NMRからエステル基:ケトン基の比率は1:0.05であった
Example 2
A phenol resin (2) was obtained in the same manner as in Example 1 except that the phenol was changed to 649 g (6 mol) of orthocresol and the reaction temperature was changed to 150 ° C. The melting point of the obtained phenol resin (2) was 135 ° C. The GPC chart of the phenol resin (2) is shown in FIG. 4, the 13 C-NMR chart is shown in FIG. 5, and the MS spectrum is shown in FIG. From GPC, the total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) was 91%, and the monophenol residue was 0.1%. From 13 C-NMR, the ratio of ester group: ketone group was 1: 0.05.

実施例3
フェノールをパラクレゾール649g(6モル)、反応温度を150℃に変更した以外は実施例1と同様にして、フェノール樹脂(3)を得た。得られたフェノール樹脂(3)の融点は165℃であった。フェノール樹脂(3)のGPCチャートを図7に、13C−NMRチャートを図8に、MSスペクトルを図9に示す。GPCから構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)の合計ピーク面積は88%、モノフェノール残は6.5%であった。また13C−NMRからエステル基:ケトン基の比率は1:0.02であった。
Example 3
Phenol resin (3) was obtained in the same manner as in Example 1 except that the phenol was paracresol 649 g (6 mol) and the reaction temperature was changed to 150 ° C. The melting point of the obtained phenol resin (3) was 165 ° C. The GPC chart of the phenol resin (3) is shown in FIG. 7, the 13 C-NMR chart is shown in FIG. 8, and the MS spectrum is shown in FIG. From GPC, the total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) was 88%, and the monophenol residue was 6.5%. From 13 C-NMR, the ratio of ester group: ketone group was 1: 0.02.

実施例4
フェノールをメタクレゾール649g(6モル)、反応温度を150℃に変更した以外は実施例1と同様にして、フェノール樹脂(4)を得た。得られたフェノール樹脂(4)の融点は130℃であった。フェノール樹脂(4)のGPCチャートを図10に、13C−NMRチャートを図11に、MSスペクトルを図12に示す。GPCから構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)の合計ピーク面積は86%、モノフェノール残は6.2%であった。また13C−NMRからエステル基:ケトン基の比率は1:0.10であった。
Example 4
A phenol resin (4) was obtained in the same manner as in Example 1 except that the phenol was changed to 649 g (6 mol) of metacresol and the reaction temperature was changed to 150 ° C. The melting point of the obtained phenol resin (4) was 130 ° C. The GPC chart of the phenol resin (4) is shown in FIG. 10, the 13 C-NMR chart is shown in FIG. 11, and the MS spectrum is shown in FIG. From GPC, the total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) was 86%, and the monophenol residue was 6.2%. From 13 C-NMR, the ratio of ester group: ketone group was 1: 0.10.

実施例5
フェノールを2,6−キシレノール733g(6モル)、反応温度を160℃に変更した以外は実施例1と同様にして、フェノール樹脂(5)を得た。得られたフェノール樹脂(5)の融点は176℃であった。フェノール樹脂(5)のGPCチャートを図13に、13C−NMRチャートを図14に、MSスペクトルを図15に示す。GPCから構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)の合計ピーク面積は93%、モノフェノール残は0.2%であった。また13C−NMRからエステル基:ケトン基の比率は1:0.03であった。
Example 5
Phenol resin (5) was obtained in the same manner as in Example 1 except that the phenol was changed to 733 g (6 mol) of 2,6-xylenol and the reaction temperature was changed to 160 ° C. The melting point of the obtained phenol resin (5) was 176 ° C. The GPC chart of the phenol resin (5) is shown in FIG. 13, the 13 C-NMR chart is shown in FIG. 14, and the MS spectrum is shown in FIG. From GPC, the total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) was 93%, and the monophenol residue was 0.2%. From 13 C-NMR, the ratio of ester group: ketone group was 1: 0.03.

実施例6
フェノールを2,4−キシレノール733g(6モル)、反応温度を160℃に変更した以外は実施例1と同様にして、フェノール樹脂(6)を得た。得られたフェノール樹脂(6)の融点は155℃であった。フェノール樹脂(6)のGPCチャートを図16に、13C−NMRチャートを図17に、MSスペクトルを図18に示す。GPCから構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)の合計ピーク面積は97%、モノフェノール残は0.1%であった。また13C−NMRからエステル基:ケトン基の比率は1:0.03であった。
Example 6
Phenol resin (6) was obtained in the same manner as in Example 1 except that the phenol was changed to 733 g (6 mol) of 2,4-xylenol and the reaction temperature was changed to 160 ° C. The melting point of the obtained phenol resin (6) was 155 ° C. The GPC chart of the phenol resin (6) is shown in FIG. 16, the 13 C-NMR chart is shown in FIG. 17, and the MS spectrum is shown in FIG. From GPC, the total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) was 97%, and the monophenol residue was 0.1%. From 13 C-NMR, the ratio of ester group: ketone group was 1: 0.03.

実施例7
p−ヒドロキシ安息香酸をサリチル酸207g(1.5モル)に、p−トルエンスルホン酸二水和物を15.4gに、反応温度を180℃に変更した以外は実施例1と同様にして、フェノール樹脂(7)を得た。得られたフェノール樹脂(7)の融点は40℃であった。フェノール樹脂(7)のGPCチャートを図19に、13C−NMRチャートを図20に、MSスペクトルを図21に示す。GPCから構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)の合計ピーク面積は98%、モノフェノール残は0.1%であった。また13C−NMRからエステル基:ケトン基の比率は1:0.01であった。
Example 7
Phenol in the same manner as in Example 1 except that p-hydroxybenzoic acid was changed to 207 g (1.5 mol) of salicylic acid, p-toluenesulfonic acid dihydrate was changed to 15.4 g, and the reaction temperature was changed to 180 ° C. Resin (7) was obtained. The melting point of the obtained phenol resin (7) was 40 ° C. The GPC chart of the phenolic resin (7) is shown in FIG. 19, the 13 C-NMR chart is shown in FIG. 20, and the MS spectrum is shown in FIG. From GPC, the total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) was 98%, and the monophenol residue was 0.1%. From 13 C-NMR, the ratio of ester group: ketone group was 1: 0.01.

実施例8
p−ヒドロキシ安息香酸をサリチル酸207g(1.5モル)に、p−トルエンスルホン酸二水和物を15.4gに、反応温度を180℃に変更した以外は実施例2と同様にして、フェノール樹脂(8)を得た。得られたフェノール樹脂(8)の融点は83℃であった。フェノール樹脂(8)のGPCチャートを図22に、13C−NMRチャートを図23に、MSスペクトルを図24に示す。GPCから構造式(1)で表されるエステル化合物と、構造式(2)で表されるケトン化合物(2)の合計ピーク面積は97%、モノフェノール残は0.1%であった。また13C−NMRからエステル基:ケトン基の比率は1:0.02であった。
Example 8
Phenol in the same manner as in Example 2 except that p-hydroxybenzoic acid was changed to 207 g (1.5 mol) of salicylic acid, p-toluenesulfonic acid dihydrate was changed to 15.4 g, and the reaction temperature was changed to 180 ° C. Resin (8) was obtained. The melting point of the obtained phenol resin (8) was 83 ° C. The GPC chart of the phenol resin (8) is shown in FIG. 22, the 13 C-NMR chart is shown in FIG. 23, and the MS spectrum is shown in FIG. 24. From GPC, the total peak area of the ester compound represented by the structural formula (1) and the ketone compound (2) represented by the structural formula (2) was 97%, and the monophenol residue was 0.1%. From 13 C-NMR, the ratio of ester group: ketone group was 1: 0.02.

実施例9〜16、比較例1
表1に示す組成で配合して硬化性樹脂組成物を得た。これを11cm×9cm×2.4mmの型枠に流し込み、プレスで175℃の温度で1時間成型した後、175℃の温度で5時間後硬化して硬化物を作製した。得られた硬化物について、熱時弾性率、誘電正接、吸湿率を測定した。結果を表1の下部に示す。
Examples 9 to 16, Comparative Example 1
A curable resin composition was obtained by blending with the compositions shown in Table 1. This was poured into a mold of 11 cm × 9 cm × 2.4 mm, molded by a press at a temperature of 175 ° C. for 1 hour, and then cured at a temperature of 175 ° C. for 5 hours to prepare a cured product. The elastic modulus at heat, dielectric loss tangent, and hygroscopicity of the obtained cured product were measured. The results are shown at the bottom of Table 1.

なお、組成物調製に使用した原料は下記の通り。
・HE100C−15:フェニルアラルキル型フェノール樹脂、水酸基当量:174g/eq(エア・ウォーター株式会社製)
・N−655−EXP−S:クレゾールノボラック型エポキシ樹脂、エポキシ当量201g/eq(DIC株式会社製)
・TPP:トリフェニルホスフィン
The raw materials used to prepare the composition are as follows.
HE100C-15: Phenylaralkyl type phenol resin, hydroxyl group equivalent: 174 g / eq (manufactured by Air Water Inc.)
N-655-EXP-S: Cresol novolac type epoxy resin, epoxy equivalent 201 g / eq (manufactured by DIC Corporation)
・ TPP: Triphenylphosphine

<熱時弾性率の測定>
前記で作製した厚さ2.4mmの硬化物を幅5mm、長さ54mmのサイズに切り出し、この試験片を粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、レクタンギュラーテンション法:周波数1Hz、昇温速度3℃/分)を用いて、260℃での貯蔵弾性率を熱時弾性率として測定した。
<Measurement of elastic modulus at heat>
The 2.4 mm thick cured product produced above was cut into a size of 5 mm in width and 54 mm in length, and this test piece was cut into a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device "RSAII" manufactured by Leometric Co., Ltd., rectangular tension. Method: Using a frequency of 1 Hz and a heating rate of 3 ° C./min), the storage elastic modulus at 260 ° C. was measured as the thermal elastic modulus.

<誘電正接の測定>
先で得た硬化物を105℃で2時間加熱真空乾燥させた後、温度23℃、湿度50%の室内に24時間保管したものを試験片とした。アジレント・テクノロジー株式会社製「ネットワークアナライザE8362C」を用い、空洞共振法により試験片の1GHzでの誘電正接を測定した。
<Measurement of dielectric loss tangent>
The cured product obtained above was vacuum-dried by heating at 105 ° C. for 2 hours, and then stored in a room at a temperature of 23 ° C. and a humidity of 50% for 24 hours as a test piece. The dielectric loss tangent of the test piece at 1 GHz was measured by the cavity resonance method using a “network analyzer E8632C” manufactured by Agilent Technologies, Inc.

<吸湿率の測定>
前記で作製した厚さ2.4mmの硬化物を幅25mm、長さ75mmのサイズに切り出し、85℃/85%RHの恒温恒湿装置中で300時間処理した前後の質量変化(wt%)を吸湿率として測定した。
<Measurement of hygroscopicity>
The mass change (wt%) before and after the cured product having a thickness of 2.4 mm produced above was cut into a size of 25 mm in width and 75 mm in length and treated in a constant temperature and humidity chamber at 85 ° C./85% RH for 300 hours. It was measured as a hygroscopicity.

Figure 2021039558
Figure 2021039558

実施例17〜24、比較例2
表2に示す組成比で2本ロールを用いて90℃の温度で5分間溶融混練して組成物を調製した。得られた組成物について、下記に従い、流動性(スパイラルフロー)と難燃性を評価した。
Examples 17 to 24, Comparative Example 2
A composition was prepared by melt-kneading at a temperature of 90 ° C. for 5 minutes using two rolls at the composition ratios shown in Table 2. The obtained composition was evaluated for fluidity (spiral flow) and flame retardancy according to the following.

<流動性の測定>
硬化性樹脂組成物を試験用金型に注入し、温度175℃、注入圧力70kg/cm、300秒の条件でスパイラルフロー値を測定した。
<Measurement of liquidity>
The curable resin composition was injected into a test mold, and the spiral flow value was measured under the conditions of a temperature of 175 ° C., an injection pressure of 70 kg / cm 2, and 300 seconds.

<難燃性の評価>
硬化性樹脂組成物をトランスファー成型機にて幅12.7mm、長さ127mm、厚み1.6mmのサンプル175℃で5分間成形した後、175℃で5時間後硬化して評価用サンプルを作成した。そのサンプル5本を用い、UL−94試験法に準拠して燃焼試験を行った。
※1:1回の接炎における最大燃焼時間(秒)
※2:試験片5本の合計燃焼時間(秒)
<Evaluation of flame retardancy>
The curable resin composition was molded by a transfer molding machine at a sample having a width of 12.7 mm, a length of 127 mm, and a thickness of 1.6 mm at 175 ° C. for 5 minutes, and then cured at 175 ° C. for 5 hours to prepare an evaluation sample. .. A combustion test was conducted using the five samples according to the UL-94 test method.
* 1: Maximum combustion time (seconds) for one flame contact
* 2: Total burning time (seconds) of 5 test pieces

なお、組成物調製に使用した原料は下記の通り。
・HE100C−15:フェニルアラルキル型フェノール樹脂、水酸基当量:174g/eq(エア・ウォーター株式会社製)
・N−655−EXP−S:クレゾールノボラック型エポキシ樹脂、エポキシ当量201g/eq(DIC株式会社製)
・TPP:トリフェニルホスフィン
・溶融シリカ:球状シリカ「FB−5604」デンカ株式会社製
・シランカップリング剤:γ−グリシドキシトリエトキシキシシラン「KBM−403」信越化学工業株式会社製
・カルナウバワックス:「PEARL WAX No.1−P」デンカ株式会社製
The raw materials used to prepare the composition are as follows.
HE100C-15: Phenylaralkyl type phenol resin, hydroxyl group equivalent: 174 g / eq (manufactured by Air Water Inc.)
N-655-EXP-S: Cresol novolac type epoxy resin, epoxy equivalent 201 g / eq (manufactured by DIC Corporation)
・ TPP: Triphenylphosphine ・ Fused silica: Spherical silica "FB-5604" manufactured by Denka Co., Ltd. ・ Silane coupling agent: γ-glycidoxytriethoxyxisilane "KBM-403" manufactured by Shin-Etsu Chemical Co., Ltd. ・ Carnauba wax : "PEARL WAX No.1-P" manufactured by Denka Co., Ltd.

Figure 2021039558
Figure 2021039558

Claims (16)

芳香環上にヒドロキシ基を1つ有するモノフェノール化合物(A)と、芳香環上にヒドロキシ基とカルボキシ基とを有する芳香族カルボン酸(B)との反応物であり、
GPC測定において下記構造式(1)で表されるエステル化合物と、下記構造式(2)で表されるケトン化合物(2)との合計のピーク面積が、70〜99%であることを特徴とするフェノール樹脂。
Figure 2021039558
(式中、R〜R17はそれぞれ独立して水素原子、炭素原子数1〜4のアルキル基又は炭素原子数1〜4のアルコキシ基である。)
It is a reaction product of a monophenol compound (A) having one hydroxy group on the aromatic ring and an aromatic carboxylic acid (B) having a hydroxy group and a carboxy group on the aromatic ring.
In GPC measurement, the total peak area of the ester compound represented by the following structural formula (1) and the ketone compound (2) represented by the following structural formula (2) is 70 to 99%. Phenol resin.
Figure 2021039558
(In the formula, R 1 to R 17 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms.)
前記式(1)及び(2)中のR〜R17が、水素原子又はメチル基である請求項1記載のフェノール樹脂。The phenolic resin according to claim 1, wherein R 1 to R 17 in the formulas (1) and (2) are hydrogen atoms or methyl groups. 前記フェノール樹脂中のエステル基とケトン基との比率が、13C−NMR測定による比率として1:0.01〜1:0.20の範囲である請求項1又は2記載のフェノール樹脂。The phenol resin according to claim 1 or 2, wherein the ratio of the ester group to the ketone group in the phenol resin is in the range of 1: 0.01 to 1: 0.20 as the ratio measured by 13 C-NMR measurement. 前記芳香環上にヒドロキシ基を1つ有するモノフェノール化合物(A)が、フェノール、クレゾール又はキシレノールであり、前記芳香環上にヒドロキシ基とカルボキシ基とを有する芳香族カルボン酸(B)がモノヒドロキシ安息香酸である請求項1〜3の何れか1項記載のフェノール樹脂。 The monophenol compound (A) having one hydroxy group on the aromatic ring is phenol, cresol or xylenol, and the aromatic carboxylic acid (B) having a hydroxy group and a carboxy group on the aromatic ring is monohydroxy. The phenolic resin according to any one of claims 1 to 3, which is a benzoic acid. エポキシ樹脂用硬化剤である請求項1〜4の何れか1項記載のフェノール樹脂。 The phenol resin according to any one of claims 1 to 4, which is a curing agent for an epoxy resin. 請求項1〜4の何れか1項記載のフェノール樹脂と、水酸基と反応する官能基を有する樹脂とを必須成分とする硬化性樹脂組成物。 A curable resin composition containing the phenolic resin according to any one of claims 1 to 4 and a resin having a functional group that reacts with a hydroxyl group as essential components. 前記水酸基と反応する官能基を有する樹脂がエポキシ樹脂である請求項6記載の硬化性樹脂組成物 The curable resin composition according to claim 6, wherein the resin having a functional group that reacts with the hydroxyl group is an epoxy resin. 更に、硬化触媒としてリン系化合物及び/又は含窒素化合物を含有する請求項7記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, further comprising a phosphorus compound and / or a nitrogen-containing compound as a curing catalyst. 請求項6〜8の何れか1項記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to any one of claims 6 to 8. 請求項6〜8の何れか1項記載の硬化性樹脂組成物と無機充填材とを含有する半導体封止材料。 A semiconductor encapsulating material containing the curable resin composition according to any one of claims 6 to 8 and an inorganic filler. 請求項10に記載の半導体封止材料の硬化物である半導体装置。 A semiconductor device that is a cured product of the semiconductor encapsulating material according to claim 10. 請求項6〜8の何れか1項記載の硬化性樹脂組成物と補強基材とを有する含浸基材の半硬化物であるプリプレグ。 A prepreg that is a semi-cured product of an impregnated base material having the curable resin composition according to any one of claims 6 to 8 and a reinforcing base material. 請求項6〜8の何れか1項記載の硬化性樹脂組成物の板状賦形物と銅箔とからなる回路基板。 A circuit board comprising a plate-shaped excipient of the curable resin composition according to any one of claims 6 to 8 and a copper foil. 請求項6〜8の何れか1項記載の硬化性樹脂組成物の硬化物と基材フィルムとからなるビルドアップフィルム。 A build-up film comprising a cured product of the curable resin composition according to any one of claims 6 to 8 and a base film. 請求項6〜8の何れか1項記載の硬化性樹脂組成物と強化繊維とを含有する繊維強化複合材料。 A fiber-reinforced composite material containing the curable resin composition according to any one of claims 6 to 8 and reinforcing fibers. 請求項15記載の繊維強化複合材料の硬化物である繊維強化成形品。 A fiber-reinforced molded product which is a cured product of the fiber-reinforced composite material according to claim 15.
JP2020570582A 2019-08-27 2020-08-20 Phenol resin, curable resin composition and its cured product Active JP7036235B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019154619 2019-08-27
JP2019154619 2019-08-27
PCT/JP2020/031384 WO2021039558A1 (en) 2019-08-27 2020-08-20 Phenolic resin, curable resin composition, and cured object obtained therefrom

Publications (2)

Publication Number Publication Date
JPWO2021039558A1 true JPWO2021039558A1 (en) 2021-09-27
JP7036235B2 JP7036235B2 (en) 2022-03-15

Family

ID=74685467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020570582A Active JP7036235B2 (en) 2019-08-27 2020-08-20 Phenol resin, curable resin composition and its cured product

Country Status (4)

Country Link
JP (1) JP7036235B2 (en)
KR (1) KR20220013562A (en)
TW (1) TW202115183A (en)
WO (1) WO2021039558A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120642A (en) * 1980-02-29 1981-09-22 Teijin Ltd Preparation of aryl ester of aromatic oxycarboxylic acid
JPS57154140A (en) * 1981-02-04 1982-09-22 Ici Ltd Manufacture of hydroxyarylophenone
JPH03232836A (en) * 1989-12-06 1991-10-16 Teijin Ltd Novel hydroxycarboxylic acid derivative and its production
JPH09291064A (en) * 1996-04-25 1997-11-11 Sumitomo Chem Co Ltd Aryl ester compound and epoxy resin composition using the same
JP2012519172A (en) * 2009-02-26 2012-08-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Process for the production of 3,4 'dihydroxybenzophenone as an intermediate for the production of 3,4'diacetoxybenzophenone
WO2018003513A1 (en) * 2016-06-29 2018-01-04 Dic株式会社 Phenol novolak resin, curable resin composition, and cured product thereof
JP2018100319A (en) * 2016-12-19 2018-06-28 Dic株式会社 Phenol resin, curable resin composition and cured product thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6332720B1 (en) 2016-07-06 2018-05-30 Dic株式会社 Active ester resin and its cured product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120642A (en) * 1980-02-29 1981-09-22 Teijin Ltd Preparation of aryl ester of aromatic oxycarboxylic acid
JPS57154140A (en) * 1981-02-04 1982-09-22 Ici Ltd Manufacture of hydroxyarylophenone
JPH03232836A (en) * 1989-12-06 1991-10-16 Teijin Ltd Novel hydroxycarboxylic acid derivative and its production
JPH09291064A (en) * 1996-04-25 1997-11-11 Sumitomo Chem Co Ltd Aryl ester compound and epoxy resin composition using the same
JP2012519172A (en) * 2009-02-26 2012-08-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Process for the production of 3,4 'dihydroxybenzophenone as an intermediate for the production of 3,4'diacetoxybenzophenone
WO2018003513A1 (en) * 2016-06-29 2018-01-04 Dic株式会社 Phenol novolak resin, curable resin composition, and cured product thereof
JP2018100319A (en) * 2016-12-19 2018-06-28 Dic株式会社 Phenol resin, curable resin composition and cured product thereof

Also Published As

Publication number Publication date
WO2021039558A1 (en) 2021-03-04
KR20220013562A (en) 2022-02-04
TW202115183A (en) 2021-04-16
JP7036235B2 (en) 2022-03-15
CN114341227A (en) 2022-04-12

Similar Documents

Publication Publication Date Title
CN109415476B (en) Phenol novolac resin, curable resin composition, and cured product thereof
KR101703719B1 (en) Active ester resin, thermosetting resin composition, cured product of same, semiconductor encapsulation material, prepreg, circuit board, and build-up film
JP5637418B1 (en) Phosphorus atom-containing active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
WO2018180451A1 (en) Epoxy resin, production method, and epoxy resin composition and cured object obtained therefrom
JP5904387B1 (en) Epoxy resin, curable resin composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, buildup film, buildup board, fiber reinforced composite material, and fiber reinforced molded product
WO2015190131A1 (en) Curable resin composition, cured product thereof, semiconductor sealing material, semiconductor device, prepreg, circuit board, buildup film, buildup board, fiber-reinforced composite material, and fiber-reinforced resin molded article
JP6171760B2 (en) Phosphorus atom-containing active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP6809200B2 (en) Epoxy resin, curable resin composition and its cured product
JP6828413B2 (en) Phenolic resin, curable resin composition and its cured product
JP6874359B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
WO2018225411A1 (en) Epoxy resin, production method, epoxy resin composition, and cured product thereof
JP7036235B2 (en) Phenol resin, curable resin composition and its cured product
JP5850228B2 (en) Curable resin composition, cured product thereof, cyanate ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film
JP5966903B2 (en) Cyanate ester resin, curable resin composition, cured product thereof, prepreg, circuit board, semiconductor sealing material, and build-up film
JP2017105898A (en) Epoxy resin, manufacturing method of epoxy resin, curable resin composition and cured article thereof
JP5880921B2 (en) Curable resin composition, cured product thereof, printed wiring board
CN114341227B (en) Phenolic resin, curable resin composition, and cured product thereof
JP6809206B2 (en) Epoxy resin, curable resin composition and its cured product
JP6750427B2 (en) Polyfunctional epoxy resin, production method thereof, curable resin composition and cured product thereof
JP7024227B2 (en) Epoxy resin manufacturing method, epoxy resin, epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210415

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7036235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151