JPWO2021024988A1 - Method of manufacturing a laminate - Google Patents

Method of manufacturing a laminate Download PDF

Info

Publication number
JPWO2021024988A1
JPWO2021024988A1 JP2020542922A JP2020542922A JPWO2021024988A1 JP WO2021024988 A1 JPWO2021024988 A1 JP WO2021024988A1 JP 2020542922 A JP2020542922 A JP 2020542922A JP 2020542922 A JP2020542922 A JP 2020542922A JP WO2021024988 A1 JPWO2021024988 A1 JP WO2021024988A1
Authority
JP
Japan
Prior art keywords
polyimide film
film
laminate
protective film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020542922A
Other languages
Japanese (ja)
Other versions
JP7082206B2 (en
Inventor
真之 熊田
真之 熊田
敬太 石山
敬太 石山
守 小堺
守 小堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Manufacturing Co Ltd
Original Assignee
Arisawa Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Manufacturing Co Ltd filed Critical Arisawa Manufacturing Co Ltd
Publication of JPWO2021024988A1 publication Critical patent/JPWO2021024988A1/en
Application granted granted Critical
Publication of JP7082206B2 publication Critical patent/JP7082206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/30Making multilayered or multicoloured articles
    • B29C43/305Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0065Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3405Feeding the material to the mould or the compression means using carrying means
    • B29C2043/3422Feeding the material to the mould or the compression means using carrying means rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3483Feeding the material to the mould or the compression means using band or film carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

本発明の積層体の製造方法は、ポリイミドフィルムの少なくとも一方の面と保護フィルムとの間に金属箔を挟むように各々を搬送しながら、互いを重ね合わせて一対の加圧ロール間で熱圧着する熱圧着工程を有し、搬送方向における加圧ロールの圧接部から上流側の1〜200cmの範囲において、ポリイミドフィルムの温度を、70℃以上かつポリイミドフィルムのガラス転移温度未満となるようにするとともに、搬送方向における加圧ロールの圧接部から下流側の1〜100cmの範囲において、加圧ロールから送り出された保護フィルム付き積層体の温度を、200〜350℃となるようにする。In the method for producing a laminate of the present invention, while transporting each of them so as to sandwich a metal foil between at least one surface of the polyimide film and the protective film, they are overlapped with each other and heat-bonded between a pair of pressure rolls. The temperature of the polyimide film is set to 70 ° C. or higher and lower than the glass transition temperature of the polyimide film in the range of 1 to 200 cm upstream from the pressure contact portion of the pressure roll in the transport direction. At the same time, the temperature of the laminate with the protective film sent out from the pressure roll is set to 200 to 350 ° C. in the range of 1 to 100 cm downstream from the pressure contact portion of the pressure roll in the transport direction.

Description

本発明は、積層体の製造方法に関し、より詳しくは、ポリイミドフィルムと金属箔とを積層した積層体を製造する方法に関する。 The present invention relates to a method for producing a laminate, and more particularly to a method for producing a laminate in which a polyimide film and a metal foil are laminated.

従来、電子材料分野では、電気絶縁性を有するポリイミドフィルムやポリアミドフィルムなどの樹脂層、エポキシ樹脂又はポリイミド樹脂を主成分とする接着層、導電性を有する銅箔、銀箔、アルミ箔などの金属箔層、などを適宜組み合わせた、カバーレイやフレキシブル金属張積層板などのフレキシブルプリント配線板(FPC)用材料が用いられている。 Conventionally, in the field of electronic materials, a resin layer such as a polyimide film or a polyamide film having electrical insulation, an adhesive layer containing an epoxy resin or a polyimide resin as a main component, and a metal foil such as a conductive copper foil, silver foil, or aluminum foil. A material for a flexible printed wiring board (FPC) such as a coverlay or a flexible metal-clad laminate, in which layers and the like are appropriately combined, is used.

FPCを製造する場合、一般に、まず、樹脂層をコアフィルム(基材)とし、このコアフィルムの表面に接着層を介して金属箔層を熱ラミネートすることにより貼り合わせて金属張積層体を製造する。金属張積層体は、各層を連続的に搬送しながら熱圧着させるロールtoロール方式で製造され、熱ラミネートは、各層を重ね合わせて加圧ロールの間を通過させることにより、樹脂層と金属箔層とを接着層のガラス転移温度(Tg)以上かつ融点よりも低い温度で加熱し、圧着して行う。そして得られた金属張積層体を所望の大きさに裁断したフレキシブル金属張積層板上に回路パターンを形成し、当該回路パターンの表面にカバー層(カバーレイフィルム)を形成する。 In the case of manufacturing FPC, generally, first, a resin layer is used as a core film (base material), and a metal foil layer is heat-laminated on the surface of the core film via an adhesive layer to be bonded to each other to manufacture a metal-clad laminate. do. The metal-clad laminate is manufactured by a roll-to-roll method in which each layer is continuously conveyed and thermocompression-bonded. The layer is heated at a temperature equal to or higher than the glass transition temperature (Tg) of the adhesive layer and lower than the melting point, and pressure-bonded. Then, a circuit pattern is formed on the flexible metal-clad laminate obtained by cutting the obtained metal-clad laminate to a desired size, and a cover layer (coverlay film) is formed on the surface of the circuit pattern.

近年、電子機器の高性能化及び小型化に伴い、FPCは任意に折り曲げできる屈曲性を備えることが要求されており、ポリイミドフィルムを用いたFPCは屈曲性、耐熱性に優れることから着目されている。そして、ポリイミドフィルムに銅箔を積層したフレキシブル銅張積層板が一般的に広く用いられている。 In recent years, with the increase in performance and miniaturization of electronic devices, FPCs are required to have flexibility that can be bent arbitrarily, and FPCs using polyimide films have been attracting attention because they are excellent in flexibility and heat resistance. There is. A flexible copper-clad laminate in which a copper foil is laminated on a polyimide film is generally widely used.

ポリイミドフィルムと銅箔から構成される銅張積層体を製造する場合、ポリイミドフィルムと銅箔との密着性を高めるために、通常、銅箔には表面に粗化粒子と称される微細な金属粒子を形成させる粗化処理(黒化処理)が施される。しかし、ロールtoロール方式での製造では、銅箔表面の粗化粒子が加圧ロールに付着し、そのまま連続製造されるとその異物が搬送されてくる銅箔表面に転写され凹みが形成されることがある。 When producing a copper-clad laminate composed of a polyimide film and a copper foil, in order to improve the adhesion between the polyimide film and the copper foil, the copper foil usually has a fine metal called roughened particles on the surface. A roughening treatment (blackening treatment) for forming particles is performed. However, in the roll-to-roll method, the roughened particles on the surface of the copper foil adhere to the pressure roll, and if the foreign matter is continuously manufactured as it is, the foreign matter is transferred to the surface of the copper foil to form a dent. Sometimes.

そこで、銅箔と加圧ロールとの間に保護フィルムを介在させて、銅箔が直接加圧ロールに接触しないようにして製造する方法が提案されている。例えば、特許文献1には、ポリイミドを材質とする基材の少なくとも一方の表面に、銅箔層の表面に防錆効果を発揮する防錆層が設けられている銅箔を載置しつつ両者をラミネートするラミネート手段と、前記ラミネート手段でのラミネートと同時またはそれよりも前に、少なくとも1層の前記防錆層のうち前記銅箔層とは反対側の表面に、保護フィルムを配置して、所定温度に加熱しながら前記防錆層と前記保護フィルムとを貼付するフィルム貼付手段と、前記フィルム貼付手段により生成された中間生成物が、40秒〜80秒の適正時間を200度〜230度の適正温度範囲内で保持するように、温度調節を行う温度調節手段と、前記温度調節手段で温度調節がされた前記中間生成物から、前記保護フィルムを前記防錆層から剥離させる剥離手段と、を備えるフレキシブルプリント積層板の製造方法が開示されている。 Therefore, a method has been proposed in which a protective film is interposed between the copper foil and the pressure roll so that the copper foil does not come into direct contact with the pressure roll. For example, in Patent Document 1, both are placed on at least one surface of a base material made of polyimide, in which a copper foil provided with a rust preventive layer exhibiting a rust preventive effect on the surface of the copper foil layer is placed. A protective film is placed on the surface of at least one of the anticorrosive layers opposite to the copper foil layer at the same time as or prior to laminating by the laminating means and the laminating means. The film sticking means for sticking the rust preventive layer and the protective film while heating to a predetermined temperature and the intermediate product produced by the film sticking means set an appropriate time of 40 seconds to 80 seconds at 200 degrees to 230 degrees. A temperature controlling means for controlling the temperature so as to maintain the temperature within an appropriate temperature range of the degree, and a peeling means for peeling the protective film from the rust preventive layer from the intermediate product whose temperature has been controlled by the temperature controlling means. A method for manufacturing a flexible printed laminated board comprising the above is disclosed.

また、特許文献2には、光学的異方性の溶融相を形成する液晶ポリマーよりなるフィルムと金属箔とを重ね合わせて加圧ロールの間を通過させることによりフィルムと金属箔とを積層する積層体の製造方法において、該フィルムと該金属箔とを加圧ロールの間に通過させる工程で、該加圧ロールの外部に加熱手段を設けて、フィルムおよび金属箔、及び/又は加圧ロールを加熱又は保温する、積層体の製造方法が開示されている。 Further, in Patent Document 2, a film made of a liquid crystal polymer forming an optically anisotropic molten phase and a metal leaf are overlapped and passed between pressure rolls to laminate the film and the metal leaf. In the method for producing a laminate, in the step of passing the film and the metal foil between the pressure rolls, a heating means is provided outside the pressure rolls, and the film and the metal foil and / or the pressure rolls are provided. A method for producing a laminate, which heats or retains heat, is disclosed.

国際公開第2016/171078号International Publication No. 2016/171078 日本国特開2006−272743号公報Japanese Patent Application Laid-Open No. 2006-272743

特許文献1記載の方法では、防錆処理された銅箔における保護フィルム剥離時の波打ちを解消し、フレキシブルプリント積層板における残留応力を増加させずに済むとされている。しかしながら、保護フィルムを介在させて積層体を製造する従来の製造方法では、保護フィルムにより接着層への加圧ロールの熱の伝わりが遅くなるので、加圧ロールで十分に熱圧着させるためには搬送速度を低速にしなければならず、加工速度に制限があった。また、従来の製造方法では、搬送速度を低速にした場合であっても、積層体に十分な熱を与えることができず、ポリイミドフィルム内部に残留する歪を十分に緩和がすることができない、という問題があった。ポリイミドフィルム内部に歪が残った状態で積層体の銅箔をエッチングした場合、銅箔により固定されていたポリイミドフィルム内部の歪が開放され、寸法変化のバラツキが大きくなってしまう。
また、特許文献2記載の方法では、金属箔と加圧ロールの間に保護フィルムを貼付しないため、加熱手段を通過した積層体の急激な冷却を抑制することができず、外観不良(波打ち)が発生してしまう場合があった。
It is said that the method described in Patent Document 1 eliminates the waviness of the rust-preventive copper foil when the protective film is peeled off, and does not increase the residual stress in the flexible printed laminated board. However, in the conventional manufacturing method in which the laminate is manufactured by interposing a protective film, the heat transfer of the pressure roll to the adhesive layer is delayed by the protective film, so that the pressure roll is sufficiently thermocompression-bonded. The transport speed had to be low, and the machining speed was limited. Further, in the conventional manufacturing method, even when the transport speed is lowered, sufficient heat cannot be given to the laminated body, and the strain remaining inside the polyimide film cannot be sufficiently relaxed. There was a problem. When the copper foil of the laminated body is etched with the strain remaining inside the polyimide film, the strain inside the polyimide film fixed by the copper foil is released, and the variation in dimensional change becomes large.
Further, in the method described in Patent Document 2, since the protective film is not attached between the metal foil and the pressure roll, rapid cooling of the laminate that has passed through the heating means cannot be suppressed, resulting in poor appearance (waviness). May occur.

本発明は、上記課題に鑑みてなされたものであり、ポリイミドフィルムを基材として金属箔を備えて構成されるフレキシブル金属積層板を得るための積層体を製造する方法であって、ロールtoロール方式で製造する際に、従来よりも速い速度での製造が可能であり、かつエッチング後の寸法変化のバラツキが小さく、積層体表面における波打ちの発生が抑制された積層体を得るための積層体の製造方法を提供することを課題とする。 The present invention has been made in view of the above problems, and is a method for producing a laminated body for obtaining a flexible metal laminated plate composed of a polyimide film as a base material and provided with a metal foil, and is a roll-to-roll method. A laminate for obtaining a laminate that can be manufactured at a faster speed than before, has a small variation in dimensional change after etching, and suppresses the occurrence of waviness on the surface of the laminate. It is an object to provide a manufacturing method for the above.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、加圧ロール間でポリイミドフィルムと金属箔とを圧着する際に、ポリイミドフィルムを、加圧ロールの圧接部直前の特定の領域において特定の温度範囲となるように搬送しながら熱圧着するとともに、加圧ロールで圧着した後の特定の領域において、保護フィルム付き積層体を特定の温度範囲になるようにすることにより上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have identified the polyimide film immediately before the pressure welding portion of the pressure roll when the polyimide film and the metal foil are pressure-bonded between the pressure rolls. By thermocompression bonding while transporting the laminate so as to have a specific temperature range in the above region, and by setting the laminate with the protective film to a specific temperature range in the specific region after the pressure bonding with the pressure roll. We have found that the problem can be solved and have completed the present invention.

すなわち、本発明は以下の(1)〜(7)を特徴とする。
(1)ポリイミドフィルムに金属箔が積層された積層体を製造する方法であって、
ポリイミドフィルムの少なくとも一方の面と保護フィルムとの間に金属箔を挟むように前記ポリイミドフィルム、前記金属箔及び前記保護フィルムの各々を搬送しながら、前記ポリイミドフィルム、前記金属箔及び前記保護フィルムを互いに重ね合わせて前記ポリイミドフィルムと前記金属箔とを一対の加圧ロール間で熱圧着する熱圧着工程を有し、
搬送方向における前記加圧ロールの圧接部から上流側の1〜200cmの範囲において、前記ポリイミドフィルムの温度を、70℃以上かつ前記ポリイミドフィルムのガラス転移温度(Tg)未満となるようにするとともに、
搬送方向における前記加圧ロールの圧接部から下流側の1〜100cmの範囲において、前記加圧ロールから送り出された保護フィルム付き積層体の温度を、200〜350℃となるようにする積層体の製造方法。
(2)熱圧着時の前記加圧ロールの温度を、前記ポリイミドフィルムのガラス転移温度(Tg)以上かつ400℃以下とする、前記(1)に記載の積層体の製造方法。
(3)前記熱圧着工程後に、前記加圧ロールから搬出された保護フィルム付き積層体から前記保護フィルムを剥離する保護フィルム回収工程を有する、前記(1)又は(2)に記載の積層体の製造方法。
(4)不活性ガス雰囲気下で行う、前記(1)〜(3)のいずれか1つに記載の積層体の製造方法。
(5)前記ポリイミドフィルムの膜厚が12.5〜50μmである、前記(1)〜(4)のいずれか1つに記載の積層体の製造方法。
(6)前記金属箔の膜厚が9〜70μmである、前記(1)〜(5)のいずれか1つに記載の積層体の製造方法。
(7)前記ポリイミドフィルムは熱可塑性ポリイミドを含み、前記保護フィルムが非熱可塑性ポリイミドからなる、前記(1)〜(6)のいずれか1つに記載の積層体の製造方法。
That is, the present invention is characterized by the following (1) to (7).
(1) A method for producing a laminate in which a metal foil is laminated on a polyimide film.
While transporting each of the polyimide film, the metal foil and the protective film so as to sandwich the metal foil between at least one surface of the polyimide film and the protective film, the polyimide film, the metal foil and the protective film are transferred. It has a heat crimping step of superimposing each other and hot-bonding the polyimide film and the metal foil between a pair of pressure rolls.
In the range of 1 to 200 cm upstream from the pressure contact portion of the pressure roll in the transport direction, the temperature of the polyimide film is set to 70 ° C. or higher and lower than the glass transition temperature (Tg) of the polyimide film.
In the range of 1 to 100 cm downstream from the pressure contact portion of the pressure roll in the transport direction, the temperature of the laminate with the protective film sent out from the pressure roll is 200 to 350 ° C. Production method.
(2) The method for producing a laminate according to (1) above, wherein the temperature of the pressure roll at the time of thermocompression bonding is equal to or higher than the glass transition temperature (Tg) of the polyimide film and 400 ° C. or lower.
(3) The laminate according to (1) or (2) above, which has a protective film recovery step of peeling the protective film from the laminate with a protective film carried out from the pressure roll after the thermocompression bonding step. Production method.
(4) The method for producing a laminate according to any one of (1) to (3) above, which is carried out in an inert gas atmosphere.
(5) The method for producing a laminate according to any one of (1) to (4) above, wherein the polyimide film has a film thickness of 12.5 to 50 μm.
(6) The method for producing a laminate according to any one of (1) to (5) above, wherein the metal foil has a film thickness of 9 to 70 μm.
(7) The method for producing a laminate according to any one of (1) to (6) above, wherein the polyimide film contains a thermoplastic polyimide and the protective film is made of a non-thermoplastic polyimide.

本発明の製造方法によれば、加圧ロールで熱圧着される時点でポリイミドフィルムが70℃以上に温められているので、加圧ロールでの加熱により短時間でポリイミドフィルムの表面を溶融させて金属箔と一体化させることができる。よって、搬送速度を上げることができるので、加工速度を短くすることができる。また、加圧ロールでの圧着直前にポリイミドフィルムが温められていると、ポリイミドフィルム内部の歪みが緩和されるため、片面金属箔積層体を製造する場合であっても積層体内の導体厚みにおける寸法変化を小さくすることができる。そして、加圧ロールの圧接部から送り出された直後の保護フィルム付き積層体を200〜350℃の範囲に温めることで、積層体から保護フィルムを剥離した際に発生しやすい波打ちを抑制することができる。 According to the manufacturing method of the present invention, since the polyimide film is heated to 70 ° C. or higher at the time of thermocompression bonding with the pressure roll, the surface of the polyimide film is melted in a short time by heating with the pressure roll. It can be integrated with metal foil. Therefore, since the transport speed can be increased, the processing speed can be shortened. Further, if the polyimide film is warmed immediately before pressure bonding with the pressure roll, the distortion inside the polyimide film is alleviated. Therefore, even when manufacturing a single-sided metal leaf laminate, the dimension in the conductor thickness in the laminate is used. The change can be small. Then, by warming the laminate with the protective film immediately after being sent out from the pressure contact portion of the pressure roll to the range of 200 to 350 ° C., it is possible to suppress the waviness that tends to occur when the protective film is peeled from the laminate. can.

図1は、本発明の一実施形態に係る積層板の製造装置の概要を示す図である。FIG. 1 is a diagram showing an outline of a laminated board manufacturing apparatus according to an embodiment of the present invention. 図2は、寸法変化率の測定方法を説明するための図である。FIG. 2 is a diagram for explaining a method of measuring the dimensional change rate.

本発明の積層体の製造方法は、ポリイミドフィルムに金属箔が積層された積層体を製造する方法であって、ポリイミドフィルムの少なくとも一方の面と保護フィルムとの間に金属箔を挟むように各々を搬送しながら、互いを重ね合わせて一対の加圧ロール間で熱圧着する熱圧着工程を有する。本発明の積層体の製造方法では、搬送方向における前記加圧ロールの圧接部から上流側の1〜200cmの範囲において、前記ポリイミドフィルムの温度を、70℃以上かつ前記ポリイミドフィルムのガラス転移温度(Tg)未満となるようにするとともに、搬送方向における前記加圧ロールの圧接部から下流側の1〜100cmの範囲において、前記加圧ロールから送り出された保護フィルム付き積層体の温度を、200〜350℃となるようにする。 The method for producing a laminate of the present invention is a method for producing a laminate in which a metal foil is laminated on a polyimide film, and the metal foil is sandwiched between at least one surface of the polyimide film and the protective film. It has a thermocompression bonding step in which the films are overlapped with each other and thermocompression bonded between a pair of pressure rolls. In the method for producing a laminate of the present invention, the temperature of the polyimide film is set to 70 ° C. or higher and the glass transition temperature of the polyimide film in the range of 1 to 200 cm upstream from the pressure contact portion of the pressure roll in the transport direction. Tg) should be less than Tg), and the temperature of the laminate with the protective film sent out from the pressure roll should be 200 to 100 cm in the range of 1 to 100 cm downstream from the pressure contact portion of the pressure roll in the transport direction. The temperature should be 350 ° C.

本実施形態において、前記熱圧着工程後に、加圧ロールから搬出された保護フィルム付き積層体から保護フィルムを剥離する保護フィルム回収工程を有することが好ましい。
以下、各工程について説明する。
In the present embodiment, it is preferable to have a protective film recovery step of peeling the protective film from the laminate with the protective film carried out from the pressure roll after the thermocompression bonding step.
Hereinafter, each step will be described.

<熱圧着工程>
熱圧着工程では、ポリイミドフィルムを備えた基材と、金属箔と、保護フィルムとを、各々供給ロールから引き出し、一対の加圧ロールに向けて搬送し、加圧ロール間で互いを熱圧着する。
<Thermocompression bonding process>
In the thermocompression bonding step, the base material provided with the polyimide film, the metal foil, and the protective film are each pulled out from the supply rolls, transported toward the pair of pressure rolls, and thermocompression bonded to each other between the pressure rolls. ..

(基材)
基材は、積層体の強化材となる材料である。本実施形態において、基材はポリイミドフィルムを備える。
(Base material)
The base material is a material that serves as a reinforcing material for the laminate. In this embodiment, the base material comprises a polyimide film.

ポリイミドフィルムは、少なくとも熱可塑性ポリイミドを含有する層(熱可塑性ポリイミド層)を備え、当該熱可塑性ポリイミド層が加熱により溶融して、金属箔と接着する。
熱可塑性ポリイミドとしては、例えば、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、熱可塑性ポリエーテルイミド、熱可塑性ポリエステルイミド等が挙げられる。中でも、低吸湿特性の観点から、熱可塑性ポリエステルイミドが好ましい。熱可塑性ポリイミドは、例えば、酸二無水物とジアミンを共重合することによって得られる。
The polyimide film includes a layer containing at least a thermoplastic polyimide (thermoplastic polyimide layer), and the thermoplastic polyimide layer is melted by heating and adheres to a metal foil.
Examples of the thermoplastic polyimide include thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyetherimide, and thermoplastic polyesterimide. Of these, thermoplastic polyesterimide is preferable from the viewpoint of low hygroscopicity. The thermoplastic polyimide can be obtained, for example, by copolymerizing an acid dianhydride and a diamine.

熱可塑性ポリイミドを構成する酸二無水物としては、例えば、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、1,2−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)及びビスフェノールAビス(トリメリット酸モノエステル酸無水物)からなる群より選ばれる少なくとも1種が挙げられ、上記の中でも、接着性、入手容易性の観点から、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物及び4,4’−オキシジフタル酸二無水物からなる群より選ばれる少なくとも1種が好ましい。 Examples of the acid dianhydride constituting the thermoplastic polyimide include pyromellitic acid dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, and 3,3', 4,4'-biphenyltetra. Carboxyl dianhydride, 1,2,5,6-naphthalenetetracarboxylic hydride, 2,2', 3,3'-biphenyltetracarboxylic hydride, 3,3', 4,4'- Benzophenone tetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3, 4-Dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, 1,2-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (3,4) -Dicarboxyphenyl) sulfonate dianhydride, p-phenylenebis (trimellitic acid monoesteric anhydride), ethylenebis (trimellitic acid monoesteric anhydride) and bisphenol A bis (trimellitic acid monoesteric anhydride) ), And among the above, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3', from the viewpoint of adhesiveness and availability. , 4,4'-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride and 4,4'-oxydiphthalic acid dianhydride, at least one selected from the group. Seeds are preferred.

熱可塑性ポリイミドを構成するジアミンとしては、例えば、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、3,3’−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニルN−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン及び2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンからなる群より選ばれる少なくとも1種が挙げられ、上記の中でも、接着性、入手容易性の観点から、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−オキシジアニリン、4,4’−ジアミノジフェニルメタン、1,3−ビス(3−アミノフェノキシ)ベンゼン及び1,3−ビス(4−アミノフェノキシ)ベンゼンからなる群より選ばれる少なくとも1種が好ましい。 Examples of the diamine constituting the thermoplastic polyimide include 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine, 2,2. '-Dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4, 4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4 , 4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenylN-methylamine, 4,4'-diaminodiphenylN-phenylamine, 1,4-diaminobenzene ( p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 4, 4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) Benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone and 2,2-bis [ At least one selected from the group consisting of 4- (4-aminophenoxy) phenyl] propane is mentioned, and among the above, 2,2-bis- [4- (4- (4- (4- (4- (4- (4- (4- (4- (4- (4-)4-)] is selected from the viewpoint of adhesiveness and availability. From aminophenoxy) phenyl] propane, 4,4'-oxydianiline, 4,4'-diaminodiphenylmethane, 1,3-bis (3-aminophenoxy) benzene and 1,3-bis (4-aminophenoxy) benzene At least one selected from the group is preferred.

熱可塑性ポリイミドのガラス転移温度(Tg)は、フレキシブル金属張積層板の用途に依存するため特に限定されないが、好ましくは240〜290℃であり、より好ましくは260〜290℃であり、さらに好ましくは280〜290℃である。熱可塑性ポリイミドのTgが240℃以上であると、金属箔との貼り合わせが容易となる傾向にあり、290℃以下であると、加工性や耐熱性が良好となる傾向にある。
なお、本明細書において、ガラス転移温度(Tg)は、動的粘弾性測定装置(DMA)により測定した貯蔵弾性率の変曲点の値により求めることができ、例えば、TA Instruments社製「RSA−G2」(商品名)を用い、昇温温度10℃/分で測定を行い、得られたtanδのピークをTg(℃)とする。
The glass transition temperature (Tg) of the thermoplastic polyimide is not particularly limited because it depends on the use of the flexible metal-clad laminate, but is preferably 240 to 290 ° C, more preferably 260 to 290 ° C, and even more preferably. It is 280 to 290 ° C. When the Tg of the thermoplastic polyimide is 240 ° C. or higher, the bonding with the metal foil tends to be easy, and when the Tg is 290 ° C. or lower, the processability and heat resistance tend to be good.
In the present specification, the glass transition temperature (Tg) can be determined by the value of the bending point of the storage elastic modulus measured by a dynamic viscoelasticity measuring device (DMA). For example, "RSA" manufactured by TA Instruments. -G2 "(trade name) is used, and the measurement is performed at a temperature rise temperature of 10 ° C./min, and the obtained peak of tan δ is defined as Tg (° C.).

熱可塑性ポリイミドの線膨張係数は、積層体面内の寸法変化を抑制するという観点から、20〜100ppm/Kであることが好ましく、30〜70ppm/Kがより好ましく、40〜60ppm/Kがさらに好ましい。
線膨張係数は、TMA(例えば、株式会社島津製作所製「TMA−60」(商品名))により測定することができ、昇温速度10℃/分で、100℃から150℃の範囲に得られた測定値より求める。
The coefficient of linear expansion of the thermoplastic polyimide is preferably 20 to 100 ppm / K, more preferably 30 to 70 ppm / K, and even more preferably 40 to 60 ppm / K, from the viewpoint of suppressing dimensional changes in the surface of the laminate. ..
The coefficient of linear expansion can be measured by TMA (for example, "TMA-60" (trade name) manufactured by Shimadzu Corporation), and can be obtained in the range of 100 ° C. to 150 ° C. at a heating rate of 10 ° C./min. Obtained from the measured values.

ポリイミドフィルムは、熱可塑性ポリイミド層の他に、非熱可塑性ポリイミドを含有する層(非熱可塑性ポリイミド層)を備えていることが好ましい。本明細書において、「非熱可塑性ポリイミド」とは、300℃以上に加熱しても軟化せず、接着性を示さないポリイミドのことをいう。非熱可塑性ポリイミド層を有することにより、積層体に対して耐熱性を与えることができる。 The polyimide film preferably includes a layer containing a non-thermoplastic polyimide (non-thermoplastic polyimide layer) in addition to the thermoplastic polyimide layer. As used herein, the term "non-thermoplastic polyimide" refers to a polyimide that does not soften even when heated to 300 ° C. or higher and does not exhibit adhesiveness. By having the non-thermoplastic polyimide layer, heat resistance can be imparted to the laminated body.

非熱可塑性ポリイミド層に用いられる非熱可塑性ポリイミドは、例えば、酸二無水物とジアミンを共重合することによって得られる。酸二無水物及びジアミンとしては、脂肪族化合物、脂環式化合物、芳香族化合物のいずれも用いることができるが、耐熱性の観点からは、酸二無水物としては芳香族テトラカルボン酸二無水物が好ましく、ジアミンとしては芳香族ジアミンが好ましい。 The non-thermoplastic polyimide used for the non-thermoplastic polyimide layer is obtained, for example, by copolymerizing an acid dianhydride and a diamine. As the acid dianhydride and the diamine, any of an aliphatic compound, an alicyclic compound and an aromatic compound can be used, but from the viewpoint of heat resistance, the acid dianhydride is an aromatic tetracarboxylic acid dianhydride. A compound is preferable, and an aromatic diamine is preferable as the diamine.

非熱可塑性ポリイミドを構成する酸二無水物としては、例えば、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)及びビスフェノールAビス(トリメリット酸モノエステル酸無水物)からなる群より選ばれる少なくとも1種の酸二無水物が挙げられ、上記の中でも、耐熱性、寸法安定性の観点から、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物及び3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物からなる群より選ばれる少なくとも1種の酸二無水物が好ましい。 Examples of the acid dianhydride constituting the non-thermoplastic polyimide include pyromellitic acid dianhydride, 2,3,6,7-naphthalenetetracarboxylic hydride, 3,3', 4,4'-biphenyl. Tetracarboxylic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4' -Benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, 2,2-bis (3,4-di) Carboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic acid dianhydride, bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-di) Carboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) Phenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylene bis (trimeric acid monoesteric anhydride), ethylene bis (trimellitic acid monoesteric anhydride) and Bisphenol A At least one acid dianhydride selected from the group consisting of bis (trimeritic acid monoesteric anhydride) can be mentioned. Among the above, pyromellitic acid dianhydride is mentioned from the viewpoint of heat resistance and dimensional stability. , 2,3,6,7-naphthalenetetracarboxylic hydride, 2,2', 3,3'-biphenyltetracarboxylic hydride, 3,3', 4,4'-biphenyltetracarboxylic acid At least one acid dianhydride selected from the group consisting of dianhydride and 3,3', 4,4'-benzophenone tetracarboxylic hydride is preferred.

非熱可塑性ポリイミドを構成するジアミンとしては、例えば、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、3,3’−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニルN−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン及び2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンからなる群より選ばれる少なくとも1種のジアミンが挙げられ、上記の中でも、耐熱性、寸法安定性の観点から、3,3’−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、1,5−ジアミノナフタレン及び1,4−ジアミノベンゼン(p−フェニレンジアミン)からなる群より選ばれる少なくとも1種のジアミンを含有することが好ましい。 Examples of the diamine constituting the non-thermoplastic polyimide include 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine, 2, 2'-Dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-dimethoxybenzidine, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4 , 4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-Diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenylN-methylamine, 4,4'-diaminodiphenylN-phenylamine, 1,4-diaminobenzene (P-Phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 4 , 4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) ) From benzene, 1,4-bis (4-aminophenoxy) benzene, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone and 2,2-bis [4- (4-aminophenoxy) phenyl] propane At least one diamine selected from the above group is mentioned, and among the above, 3,3'-dimethylbenzidine, 2,2'-dimethylbenzidine, 3,3'-dimethoxy, from the viewpoint of heat resistance and dimensional stability. It preferably contains at least one diamine selected from the group consisting of benzidine, 2,2'-dimethoxybenzidine, 1,5-diaminonaphthalene and 1,4-diaminobenzene (p-phenylenediamine).

非熱可塑性ポリイミドのガラス転移温度(Tg)は、フレキシブル金属張積層板の用途に依存するため特に限定されないが、好ましくは290℃以上であり、より好ましくは320℃以上であり、さらに好ましくは340℃以上である。非熱可塑性ポリイミドのTgが290℃以上であると、耐熱性が良好となる傾向にある。非熱可塑性ポリイミドはTgが高いほど耐熱性を有するため、その上限は特に限定されない。 The glass transition temperature (Tg) of the non-thermoplastic polyimide depends on the use of the flexible metal-clad laminate and is not particularly limited, but is preferably 290 ° C. or higher, more preferably 320 ° C. or higher, and further preferably 340. It is above ℃. When the Tg of the non-thermoplastic polyimide is 290 ° C. or higher, the heat resistance tends to be good. Since the higher the Tg of the non-thermoplastic polyimide, the more heat resistant it is, the upper limit thereof is not particularly limited.

非熱可塑性ポリイミドの線膨張係数は、積層体面内の寸法変化のバラツキを抑制するという観点から、20ppm/K以下であることが好ましく、18ppm/K以下がより好ましく、16ppm/K以下がさらに好ましい。 The coefficient of linear expansion of the non-thermoplastic polyimide is preferably 20 ppm / K or less, more preferably 18 ppm / K or less, still more preferably 16 ppm / K or less, from the viewpoint of suppressing variations in dimensional changes in the surface of the laminate. ..

非熱可塑性ポリイミド層は、市販品として入手可能なポリイミドフィルムを用いることができ、例えば、株式会社カネカ製「アピカルNPI」シリーズ、東レ・デュポン株式会社製「カプトンEN」シリーズ、宇部興産株式会社製「ユーピレックスS」シリーズ(いずれも商品名)等が挙げられる。 As the non-thermoplastic polyimide layer, a commercially available polyimide film can be used, for example, "Apical NPI" series manufactured by Kaneka Corporation, "Kapton EN" series manufactured by Toray DuPont Co., Ltd., and Ube Industries, Ltd. Examples include the "UPIREX S" series (both are product names).

ポリイミドフィルムの構成としては、金属箔と接する側の面を熱可塑性ポリイミド層で構成すれば特に限定されず、例えば、熱可塑性ポリイミド層単層、熱可塑性ポリイミド層/非熱可塑性ポリイミド層、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層等が挙げられる。 The structure of the polyimide film is not particularly limited as long as the surface in contact with the metal foil is composed of a thermoplastic polyimide layer, for example, a thermoplastic polyimide layer single layer, a thermoplastic polyimide layer / non-thermoplastic polyimide layer, and thermoplastic. Examples thereof include a polyimide layer / a non-thermoplastic polyimide layer / a thermoplastic polyimide layer.

ポリイミドフィルムが複数の層で構成された多層フィルムである場合、ポリイミドフィルムは、上記したような市販の熱可塑性ポリイミドフィルム及び/又は非熱可塑性ポリイミドフィルムを用いて互いを熱圧着させる方法、非熱可塑性ポリイミドフィルムの表面に熱可塑性ポリイミド組成物を塗布して乾燥させる方法、熱可塑性ポリイミド組成物と非熱可塑性ポリイミド組成物を用いて一体成形する方法等により作製することができる。 When the polyimide film is a multilayer film composed of a plurality of layers, the polyimide film is a method of heat-bonding each other using a commercially available thermoplastic polyimide film and / or a non-thermoplastic polyimide film as described above, non-thermal. It can be produced by a method of applying a thermoplastic polyimide composition to the surface of a plastic polyimide film and drying it, a method of integrally molding a thermoplastic polyimide composition and a non-thermoplastic polyimide composition, or the like.

ポリイミドフィルム全体の線膨張係数は、積層体面内の寸法変化のバラツキを抑制するという観点から、10〜30ppm/Kであることが好ましく、12〜25ppm/Kがより好ましく、15〜20ppm/Kがさらに好ましい。 The coefficient of linear expansion of the entire polyimide film is preferably 10 to 30 ppm / K, more preferably 12 to 25 ppm / K, and more preferably 15 to 20 ppm / K, from the viewpoint of suppressing variations in dimensional changes within the surface of the laminate. More preferred.

なお、多層構造のポリイミドフィルムとしては、市販品を用いてもよく、例えば、株式会社カネカ製「ピクシオFRS」シリーズ、宇部興産株式会社製「ユピセルNVT」シリーズ(いずれも商品名)等が好適なものとして挙げられる。 As the polyimide film having a multilayer structure, a commercially available product may be used. For example, "Pixio FRS" series manufactured by Kaneka Corporation and "Yupicel NVT" series manufactured by Ube Industries, Ltd. (both are trade names) are suitable. Listed as a thing.

ポリイミドフィルムの厚さは、フレキシブル金属張積層板の用途に依存するため特に限定されないが、単層であるか多層であるかにかかわらず、9〜75μmであることが好ましく、より好ましくは12.5〜50μmである。ポリイミドフィルムの厚さが9μm未満であると、絶縁性に劣る傾向にあり、また引裂け・破れ等の機械的特性が低くなる傾向にある。一方、ポリイミドフィルムの厚さが75μmを超えると、熱処理の際に発泡を生じ易くなったり、柔軟性が損なわれる傾向にある。 The thickness of the polyimide film is not particularly limited because it depends on the use of the flexible metal-clad laminate, but is preferably 9 to 75 μm, more preferably 12. It is 5 to 50 μm. If the thickness of the polyimide film is less than 9 μm, the insulating property tends to be inferior, and the mechanical properties such as tearing and tearing tend to be lowered. On the other hand, if the thickness of the polyimide film exceeds 75 μm, foaming tends to occur easily during the heat treatment, and the flexibility tends to be impaired.

本実施形態において、基材はポリイミドフィルムの片面に金属箔が設けられた片面金属張積層体を用いてもよい。金属箔の金属としては、例えば、銅、アルミニウム、ステンレス、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、ジルコニウム、金、コバルト、チタン、タンタル、亜鉛、鉛、錫、シリコン、ビスマス、インジウム又はこれらの合金等が挙げられる。 In the present embodiment, the base material may be a single-sided metal-clad laminate in which a metal foil is provided on one side of a polyimide film. Metal foil metals include, for example, copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zirconium, gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth, indium. Alternatively, these alloys and the like can be mentioned.

基材として用いる片面金属張積層体の構造としては、例えば、熱可塑性ポリイミド層/金属箔、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/金属箔、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層/金属箔等が挙げられる。 The structure of the single-sided metal-clad laminate used as the base material is, for example, a thermoplastic polyimide layer / metal foil, a thermoplastic polyimide layer / non-thermoplastic polyimide layer / metal foil, a thermoplastic polyimide layer / non-thermoplastic polyimide layer / heat. Examples include a thermoplastic polyimide layer / metal foil and the like.

基材の厚さは、基材がポリイミドフィルムからなる場合は前記したように9〜75μmであることが好ましく、12.5〜50μmがより好ましい。また、金属箔等の他の層を備える場合は、フレキシブル金属張積層板の薄型化への適用等を考慮し、基材全体の厚さを10〜180μmとすることが好ましく、20〜70μmがより好ましい。 When the base material is made of a polyimide film, the thickness of the base material is preferably 9 to 75 μm as described above, and more preferably 12.5 to 50 μm. When another layer such as a metal foil is provided, the thickness of the entire base material is preferably 10 to 180 μm in consideration of application to thinning of the flexible metal-clad laminate, preferably 20 to 70 μm. More preferred.

(金属箔)
基材に積層する金属箔の金属としては、上記した金属と同様であり、例えば、銅、アルミニウム、ステンレス、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、ジルコニウム、金、コバルト、チタン、タンタル、亜鉛、鉛、錫、シリコン、ビスマス、インジウム又はこれらの合金等が挙げられる。中でも、導電性、回路加工性の観点から、銅又は銅合金の金属箔が好ましい。なお、金属箔の表面には亜鉛メッキ、クロムメッキ等による無機表面処理、シランカップリング剤等による有機表面処理を施してもよい。
(Metal leaf)
The metal of the metal foil laminated on the base material is the same as the above-mentioned metal, for example, copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zirconium, gold, cobalt, titanium, etc. Examples thereof include tantalum, zinc, lead, tin, silicon, bismuth, indium and alloys thereof. Of these, copper or copper alloy metal foils are preferable from the viewpoint of conductivity and circuit processability. The surface of the metal foil may be subjected to an inorganic surface treatment such as zinc plating or chrome plating, or an organic surface treatment such as a silane coupling agent.

金属箔の厚さは、フレキシブル金属張積層板の用途に依存するため特に限定されないが、好ましくは1〜105μmであり、より好ましくは9〜70μm、更に好ましくは9〜35μmであり、最も好ましくは9〜18μmである。金属箔の厚さが1μm未満であると、回路基板を作製した際にピンホールや破れ等で回路欠損を引き起こしやすくなる傾向にあり、105μmを超えると、ポリイミドフィルムとの貼り合せ温度が高くなり生産性が低下する傾向にある。 The thickness of the metal foil is not particularly limited because it depends on the use of the flexible metal-clad laminate, but is preferably 1 to 105 μm, more preferably 9 to 70 μm, still more preferably 9 to 35 μm, and most preferably. It is 9 to 18 μm. If the thickness of the metal foil is less than 1 μm, circuit defects tend to occur due to pinholes or tears when the circuit board is manufactured, and if it exceeds 105 μm, the bonding temperature with the polyimide film becomes high. Productivity tends to decrease.

なお、金属箔の表面は、基材のポリイミドフィルムとの接着性を高めるために、粗化処理を施すことが好ましい。金属箔のポリイミドフィルムと接する面の表面粗さRzは、圧延銅箔であれば、0.1〜0.9μmであることが好ましく、電解銅箔であれば、0.1〜1.2μmであることが好ましい。表面粗さが0.1μm以上であると、ポリイミドフィルムとの接着力が向上する傾向にある。表面粗さが、圧延銅箔の場合は0.9μm以下、電解銅箔の場合は1.2μm以下であると、銅箔の粗さ(凹凸)を埋めるために必要な熱可塑ポリイミドの厚みが薄くなり、積層体の寸法変化が小さくなる傾向にある。 The surface of the metal foil is preferably roughened in order to improve the adhesiveness with the polyimide film of the base material. The surface roughness Rz of the surface of the metal foil in contact with the polyimide film is preferably 0.1 to 0.9 μm in the case of rolled copper foil, and 0.1 to 1.2 μm in the case of electrolytic copper foil. It is preferable to have. When the surface roughness is 0.1 μm or more, the adhesive force with the polyimide film tends to be improved. When the surface roughness is 0.9 μm or less in the case of rolled copper foil and 1.2 μm or less in the case of electrolytic copper foil, the thickness of the thermoplastic polyimide required to fill the roughness (unevenness) of the copper foil is high. It tends to be thinner and the dimensional change of the laminate tends to be smaller.

金属箔としては、市販品を用いてもよく、例えば、JX金属株式会社製「圧延銅箔BHY」シリーズ、福田金属箔粉工業株式会社製「圧延銅箔ROFL」シリーズ(いずれも商品名)等が好適なものとして挙げられる。 As the metal foil, a commercially available product may be used, for example, "Rolled Copper Foil BHY" series manufactured by JX Metal Co., Ltd., "Rolled Copper Foil ROFL" series manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. (both are trade names), etc. Is mentioned as a suitable one.

(保護フィルム)
保護フィルムは、金属箔が加圧ロールと直接接触しないように金属箔と加圧ロールとの間に介在させるためのフィルムである。加圧ロールの圧接面に異物等が付着していたとしても、保護フィルムにより異物等と金属箔との接触が防止され、金属箔の表面に異物等による凹みが形成されるのを防ぐことができる。また、積層体の最表面に保護フィルムを貼付することで、熱圧着後の積層体の急冷を抑制し、波打ち等の外観不良を防止することができる。
(Protective film)
The protective film is a film for interposing between the metal foil and the pressure roll so that the metal foil does not come into direct contact with the pressure roll. Even if foreign matter or the like adheres to the pressure contact surface of the pressure roll, the protective film prevents the foreign matter or the like from coming into contact with the metal foil and prevents the surface of the metal foil from forming a dent due to the foreign matter or the like. can. Further, by attaching the protective film to the outermost surface of the laminated body, it is possible to suppress rapid cooling of the laminated body after thermocompression bonding and prevent appearance defects such as waviness.

保護フィルムは、ラミネート時の熱に耐えることが出来る任意の樹脂フィルムや金属箔を用いることができ、例えば、非熱可塑性ポリイミドフィルム、ポリアミドフィルム等が挙げられる。中でも、耐熱性に優れる非熱可塑性ポリイミドフィルムがより好ましい。 As the protective film, any resin film or metal foil that can withstand the heat during lamination can be used, and examples thereof include a non-thermoplastic polyimide film and a polyamide film. Of these, a non-thermoplastic polyimide film having excellent heat resistance is more preferable.

保護フィルムの厚みとしては、25〜125μmであることが好ましく、50〜125μmがより好ましく、75〜125μmが更に好ましい。保護フィルムの厚みが25μm以上であると、加圧ロール上に存在する異物形状が圧着時に金属箔に転写されないようにすることができるとともに、熱圧着後に加圧ロールから送り出された積層体の急冷を抑制し、波うち等の外観不良を防止することができる。また125μm以下であると、熱圧着時に加圧ロールの熱を、積層板に十分伝えることができる。 The thickness of the protective film is preferably 25 to 125 μm, more preferably 50 to 125 μm, and even more preferably 75 to 125 μm. When the thickness of the protective film is 25 μm or more, the shape of foreign matter existing on the pressure roll can be prevented from being transferred to the metal foil at the time of crimping, and the laminate sent out from the pressure roll after thermocompression bonding is rapidly cooled. It is possible to prevent appearance defects such as waviness. Further, when it is 125 μm or less, the heat of the pressure roll can be sufficiently transferred to the laminated plate at the time of thermocompression bonding.

保護フィルムとしては、市販品を用いてもよく、例えば、株式会社カネカ製「アピカルNPI」シリーズ、東レ・デュポン株式会社製「カプトンH」シリーズ(いずれも商品名)等が好適なものとして挙げられる。 As the protective film, a commercially available product may be used, and examples thereof include the "Apical NPI" series manufactured by Kaneka Corporation and the "Kapton H" series manufactured by Toray DuPont Co., Ltd. (both are trade names). ..

(貼り合せ方法)
熱圧着工程では、基材であるポリイミドフィルムの熱可塑性ポリイミド層に、金属箔を貼り合せる。貼り合せる方法としては、一対の加圧ロールを有する熱ロールラミネート装置を用いてラミネートする方法が挙げられる。図1に示す実施形態では、ポリイミドフィルム(具体的に、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層)1の両面に、金属箔2a,2bと保護フィルム3a,3bがこの順に積層されるようにして各々を加圧ロール7a,7bに搬送し、加圧ロール7a,7b間で、積層されたポリイミドフィルム1、金属箔2a,2bおよび保護フィルム3a,3bをポリイミドフィルム1と金属箔2a,2bとを熱圧着する。
(Lasting method)
In the thermocompression bonding step, a metal foil is bonded to the thermoplastic polyimide layer of the polyimide film which is the base material. Examples of the method of laminating include a method of laminating using a thermal roll laminating apparatus having a pair of pressure rolls. In the embodiment shown in FIG. 1, metal foils 2a and 2b and protective films 3a and 3b are placed on both sides of the polyimide film (specifically, thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer) 1 in this order. Each of them is conveyed to the pressure rolls 7a and 7b so as to be laminated, and the laminated polyimide films 1, metal foils 2a and 2b and the protective films 3a and 3b are combined with the polyimide film 1 between the pressure rolls 7a and 7b. The metal foils 2a and 2b are heat-bonded.

熱ロールラミネート装置は、図1に示したように、ポリイミドフィルム(基材)を供給するポリイミドフィルム供給ロール11、金属箔を供給する金属箔供給ロール12a,12b、保護フィルムを供給する保護フィルム供給ロール13a,13b、各供給ロールから送り出されたポリイミドフィルム1、金属箔2a,2b及び保護フィルム3a,3b(以下、被積層材料ともいう。)を加熱加圧する一対の加圧ロール7a,7b、並びに、熱圧着工程の後に保護フィルムを巻き取る保護フィルム巻取ロール14a,14bと積層体を巻き取る積層体巻取ロール16を備える。
各供給ロールから送り出されたポリイミドフィルム1、金属箔2a,2b、保護フィルム3a,3bは、搬送ローラー21a〜21eを介してポリイミドフィルム1と保護フィルム3a,3bとの間に金属箔2a,2bを挟むように搬送され、互いを重ね合わせて加圧ロール7a,7b間で加熱加圧されることで、ポリイミドフィルム1と金属箔2a,2bとが熱圧着される。
As shown in FIG. 1, the thermal roll laminating apparatus includes a polyimide film supply roll 11 for supplying a polyimide film (base material), metal foil supply rolls 12a and 12b for supplying a metal foil, and a protective film supply for supplying a protective film. A pair of pressure rolls 7a, 7b that heat and pressurize the rolls 13a, 13b, the polyimide film 1, the metal foils 2a, 2b, and the protective films 3a, 3b (hereinafter, also referred to as the laminated material) sent out from each supply roll. Further, the protective film winding rolls 14a and 14b for winding the protective film after the heat-bonding step and the laminate winding roll 16 for winding the laminate are provided.
The polyimide film 1, the metal foils 2a, 2b, and the protective films 3a, 3b sent out from each supply roll are placed between the polyimide film 1 and the protective films 3a, 3b via the conveying rollers 21a to 21e, and the metal foils 2a, 2b. The polyimide film 1 and the metal foils 2a and 2b are heat-bonded by being conveyed so as to sandwich the polyimide film 1 and being superposed on each other and heated and pressed between the pressure rolls 7a and 7b.

本実施形態において、少なくとも搬送方向における加圧ロール7a,7bの圧接部71直前の領域R1におけるポリイミドフィルム1の温度を70℃以上かつポリイミドフィルム1のガラス転移温度(Tg)未満となるようにする。圧接部71への搬入直前の領域R1は、圧接部71から上流側の1〜200cmの範囲であり、少なくともこの範囲のポリイミドフィルム1の温度を70℃以上かつポリイミドフィルム1のTg未満にすることで、ポリイミドフィルム1の表面を溶解しない程度に軟化した状態とすることができ、さらに加圧ロール7a,7bに入る直前までその状態を保つことができるので、加圧ロール7a,7bでの熱圧着時に短時間でポリイミドフィルム1と金属箔2a,2bとを接着することができる。また、加圧ロールでの圧着直前にポリイミドフィルムが温められていると、ポリイミドフィルム内部の歪みが緩和されるため、片面金属箔積層体を製造する場合であっても積層体内の導体厚みにおける寸法変化を小さくすることができる。領域R1は、圧接部71から上流側の1〜220cmの範囲であることが好ましく、1〜250cmの範囲がより好ましい。
なお、ポリイミドフィルム1の温度は、少なくともポリイミドフィルム1の表面の温度が前記範囲となるようにすればよく、具体的に、ポリイミドフィルム1の表面を構成する熱可塑性ポリイミド層が、70℃以上かつ当該熱可塑性ポリイミド層のガラス転移温度(Tg)未満となるようにする。領域R1におけるポリイミドフィルム1の温度は、120℃以上が好ましく、200℃以上がより好ましい。
In the present embodiment, the temperature of the polyimide film 1 in the region R1 immediately before the pressure contact portion 71 of the pressure rolls 7a and 7b in the transport direction is set to 70 ° C. or higher and lower than the glass transition temperature (Tg) of the polyimide film 1. .. The region R1 immediately before being carried into the pressure contact portion 71 is in a range of 1 to 200 cm on the upstream side from the pressure contact portion 71, and the temperature of the polyimide film 1 in this range should be at least 70 ° C. or lower and less than Tg of the polyimide film 1. Therefore, the surface of the polyimide film 1 can be softened to the extent that it does not melt, and the state can be maintained until just before entering the pressure rolls 7a and 7b. Therefore, the heat of the pressure rolls 7a and 7b can be maintained. The polyimide film 1 and the metal foils 2a and 2b can be bonded to each other in a short time at the time of crimping. Further, if the polyimide film is warmed immediately before pressure bonding with the pressure roll, the distortion inside the polyimide film is alleviated. Therefore, even when manufacturing a single-sided metal leaf laminate, the dimension in the conductor thickness in the laminate is used. The change can be small. The region R1 is preferably in the range of 1 to 220 cm on the upstream side from the pressure contact portion 71, and more preferably in the range of 1 to 250 cm.
The temperature of the polyimide film 1 may be at least within the above range of the temperature of the surface of the polyimide film 1. Specifically, the thermoplastic polyimide layer constituting the surface of the polyimide film 1 is 70 ° C. or higher. The temperature should be lower than the glass transition temperature (Tg) of the thermoplastic polyimide layer. The temperature of the polyimide film 1 in the region R1 is preferably 120 ° C. or higher, more preferably 200 ° C. or higher.

領域R1のポリイミドフィルム1の温度を調整する方法としては、領域R1内のポリイミドフィルム1を一定の温度に保つことができれば特に限定されず、例えば、領域R1のポリイミドフィルム1をヒーター等の加熱装置を用いて加熱する方法、チャンバーで少なくとも領域R1のポリイミドフィルム1を囲み、チャンバー内を、加熱装置等を用いて加温する方法、熱ロールラミネート装置を設置した部屋全体を加熱する方法等が挙げられる。熱風、赤外線ヒーター、セラミックヒーター等で直接加熱する方法では、熱効率が良く、且つ熱ラミネーター装置の大型化を防ぐことができる。 The method for adjusting the temperature of the polyimide film 1 in the region R1 is not particularly limited as long as the polyimide film 1 in the region R1 can be kept at a constant temperature. For example, the polyimide film 1 in the region R1 is heated by a heater or the like. A method of heating using Be done. The method of directly heating with hot air, an infrared heater, a ceramic heater or the like has good thermal efficiency and can prevent the heat laminator device from becoming large in size.

ポリイミドフィルム1の温度を測定する方法としては、ポリイミドフィルム1に接触して測定する方法や、非接触で測定する方法等が挙げられる。ポリイミドフィルム1に接触して測定する方法としては、領域R1に搬送されるポリイミドフィルム1に熱電対を貼り付けて測定する方法等が挙げられる。非接触で測定する方法としては、領域R1に搬送されるポリイミドフィルム1を非接触温度計により測定する方法、ポリイミドフィルム1近辺の雰囲気温度を測定し、ポリイミドフィルムの温度を予測する方法等が挙げられる。
この中でも、ポリイミドフィルム1を搬送する途中における異物との接触によって、フィルムに皺が寄ったり、凹凸ができたりするのを防ぐ観点から、非接触で測定することが好ましい。なお、ポリイミドフィルム近辺の雰囲気温度を測定する場合、領域R1を搬送されるポリイミドフィルム1の上面又は下面から15cm以内の温度を測定し、その温度から約23℃を加算した温度をポリイミドフィルム1の予測温度とすることができる。
Examples of the method for measuring the temperature of the polyimide film 1 include a method of measuring in contact with the polyimide film 1 and a method of measuring in a non-contact manner. Examples of the method of measuring in contact with the polyimide film 1 include a method of attaching a thermocouple to the polyimide film 1 conveyed to the region R1 and measuring the measurement. Examples of the non-contact measuring method include a method of measuring the polyimide film 1 conveyed to the region R1 with a non-contact thermometer, a method of measuring the ambient temperature in the vicinity of the polyimide film 1 and predicting the temperature of the polyimide film. Be done.
Among these, non-contact measurement is preferable from the viewpoint of preventing wrinkles and irregularities from being formed on the film due to contact with foreign matter during the transportation of the polyimide film 1. When measuring the ambient temperature in the vicinity of the polyimide film, the temperature within 15 cm from the upper surface or the lower surface of the polyimide film 1 conveyed in the region R1 is measured, and the temperature obtained by adding about 23 ° C. from that temperature is the temperature of the polyimide film 1. It can be the predicted temperature.

加圧ロール7a,7bは、金属製ロール、ゴム製ロール等を用いることができ、中でも、耐熱性に優れる金属製ロールを用いることが好ましい。金属製ロールとしては、例えば、鉄製ロール、ステンレス製ロール等が挙げられる。 As the pressure rolls 7a and 7b, metal rolls, rubber rolls and the like can be used, and among them, metal rolls having excellent heat resistance are preferably used. Examples of the metal roll include an iron roll and a stainless steel roll.

熱圧着時の加圧ロールの温度(ラミネート温度ともいう。)は、ポリイミドフィルム1のガラス転移温度(Tg)以上かつ400℃以下であることが好ましい。なお、ポリイミドフィルム1のTgとは、フィルムの表面を構成する熱可塑性ポリイミド層の温度のことをいう。ラミネート温度をポリイミドフィルム1のTg以上とすることで、ポリイミドフィルム1と金属箔2a,2bとの接着性が良好となる。なお、400℃を超えた温度としても接着力は向上せず、逆に熱可塑ポリイミド層の粘度が大幅に低下するため、加工性が低下する。このため、上限は400℃とすることが好ましい。ラミネート温度は、ポリイミドフィルム1のTg+50℃以上がより好ましく、Tg+70℃以上が更に好ましい。 The temperature of the pressure roll (also referred to as the laminating temperature) at the time of thermocompression bonding is preferably equal to or higher than the glass transition temperature (Tg) of the polyimide film 1 and 400 ° C. or lower. The Tg of the polyimide film 1 refers to the temperature of the thermoplastic polyimide layer constituting the surface of the film. By setting the lamination temperature to Tg or higher of the polyimide film 1, the adhesiveness between the polyimide film 1 and the metal foils 2a and 2b becomes good. Even if the temperature exceeds 400 ° C., the adhesive strength does not improve, and conversely, the viscosity of the thermoplastic polyimide layer is significantly reduced, so that the processability is lowered. Therefore, the upper limit is preferably 400 ° C. The lamination temperature is more preferably Tg + 50 ° C. or higher, and even more preferably Tg + 70 ° C. or higher for the polyimide film 1.

本実施形態において、熱圧着工程における熱圧着時の被積層材料の搬送速度(ラミネート速度ともいう。)は、2.0m/分以上とすることができる。ラミネート速度が2.0m/分以上であるので、加工速度が速く、短時間で積層体を量産することができる。積層体の接着性の観点から、ラミネート速度は2.0〜6.0m/分であることが好ましく、2.0〜4.0m/分がより好ましい。 In the present embodiment, the transport speed (also referred to as laminating speed) of the material to be laminated during thermocompression bonding in the thermocompression bonding step can be 2.0 m / min or more. Since the laminating speed is 2.0 m / min or more, the processing speed is high and the laminated body can be mass-produced in a short time. From the viewpoint of the adhesiveness of the laminated body, the laminating speed is preferably 2.0 to 6.0 m / min, more preferably 2.0 to 4.0 m / min.

加圧ロール7a,7bでの貼り合せ圧力(ラミネート圧力ともいう。)は、高ければ高いほどラミネート温度を低く、かつラミネート速度を速くすることができる利点があるが、一般にラミネート圧力が高すぎると得られる積層体の寸法変化が悪化する傾向にある。また、逆に、ラミネート圧力が低すぎると得られる積層体の接着性が劣る傾向にある。したがって、ラミネート圧力は、5〜50kNの範囲内であることが好ましく、10〜30kNの範囲内であることがより好ましい。 The higher the bonding pressure (also referred to as laminating pressure) on the pressure rolls 7a and 7b, the lower the laminating temperature and the faster the laminating speed. Generally, if the laminating pressure is too high, the laminating pressure can be increased. The dimensional change of the obtained laminate tends to be aggravated. On the contrary, if the laminating pressure is too low, the adhesiveness of the obtained laminate tends to be inferior. Therefore, the laminating pressure is preferably in the range of 5 to 50 kN, more preferably in the range of 10 to 30 kN.

また、ラミネート時のポリイミドフィルム1に与えられる張力(ポリイミドフィルム張力)は、0.1〜20kg/mであることが好ましく、より好ましくは0.2〜15kg/mであり、さらに好ましくは0.5〜10kg/mである。張力が0.1kg/m未満であると、外観の良好な積層体を得ることが困難となる傾向にあり、20kg/mを超えると寸法安定性が劣る傾向にある。 The tension applied to the polyimide film 1 at the time of laminating (polyimide film tension) is preferably 0.1 to 20 kg / m, more preferably 0.2 to 15 kg / m, and even more preferably 0. It is 5 to 10 kg / m. If the tension is less than 0.1 kg / m, it tends to be difficult to obtain a laminated body having a good appearance, and if it exceeds 20 kg / m, the dimensional stability tends to be inferior.

(後加熱工程)
本実施形態では、加圧ロール7a,7bで熱圧着され、加圧ロール7a,7bから送り出された保護フィルム付き積層体5を、加圧ロール7a,7bの圧接部71直後の領域R2において200〜350℃となるようにする。圧接部71から搬出直後の領域R2は、少なくとも圧接部71から下流側の1〜100cmの範囲であり、この範囲の保護フィルム付き積層体5の温度を200〜350℃とすることで、保護フィルム付き積層体5が急激に冷却されるのを防ぎ、徐々に温度を下げることができるので、外観不良や寸法変化のバラツキが発生するのを抑制することができる。領域R2は、圧接部71から下流側の1〜120cmの範囲であることが好ましく、1〜150cmの範囲がより好ましい。
なお、保護フィルム付き積層体5の温度は、その表面の温度が前記範囲となるようにすればよく、具体的に、保護フィルム付き積層体5の表層である保護フィルム3a,3bの温度が200〜350℃となるようにすることが好ましい。領域R2における保護フィルム付き積層体5の温度は、250〜350℃が好ましく、280〜350℃がより好ましい。
(Post-heating process)
In the present embodiment, the laminated body 5 with a protective film that is thermocompression-bonded by the pressure rolls 7a and 7b and sent out from the pressure rolls 7a and 7b is 200 in the region R2 immediately after the pressure contact portion 71 of the pressure rolls 7a and 7b. The temperature should be ~ 350 ° C. The region R2 immediately after being carried out from the pressure contact portion 71 is at least in the range of 1 to 100 cm on the downstream side from the pressure contact portion 71, and by setting the temperature of the laminated body 5 with the protective film in this range to 200 to 350 ° C., the protective film Since the laminated body 5 can be prevented from being cooled rapidly and the temperature can be gradually lowered, it is possible to suppress the occurrence of poor appearance and variation in dimensional change. The region R2 is preferably in the range of 1 to 120 cm downstream from the pressure contact portion 71, and more preferably in the range of 1 to 150 cm.
The temperature of the laminated body 5 with the protective film may be set so that the temperature of the surface thereof is within the above range. Specifically, the temperature of the protective films 3a and 3b which are the surface layers of the laminated body 5 with the protective film is 200. It is preferable that the temperature is ~ 350 ° C. The temperature of the laminated body 5 with the protective film in the region R2 is preferably 250 to 350 ° C., more preferably 280 to 350 ° C.

領域R2の保護フィルム付き積層体5の温度を調整する方法としては、領域R2内の保護フィルム付き積層体を所定の温度に保つことができれば特に限定されず、例えば、領域R2の保護フィルム付き積層体5をヒーター等の加熱装置を用いて加熱する方法、チャンバーで少なくとも領域R2の保護フィルム付き積層体5を囲み、チャンバー内を加熱装置等を用いて加温する方法、熱ロールラミネート装置を設置した部屋全体を加熱する方法等が挙げられる。なお、本実施形態では、領域R1と領域R2を加圧ロール7a,7bとともに1つのチャンバーで囲んでもよい。 The method for adjusting the temperature of the laminated body 5 with the protective film in the region R2 is not particularly limited as long as the laminated body with the protective film in the region R2 can be maintained at a predetermined temperature. A method of heating the body 5 using a heating device such as a heater, a method of surrounding the laminated body 5 with a protective film of at least region R2 in a chamber and heating the inside of the chamber using a heating device or the like, and installing a thermal roll laminating device. Examples include a method of heating the entire room. In this embodiment, the region R1 and the region R2 may be surrounded by one chamber together with the pressure rolls 7a and 7b.

保護フィルム付き積層体5の温度を測定する方法としては、上記と同様であり、接触方式と非接触方式のいずれも採用することができる。 The method for measuring the temperature of the laminated body 5 with the protective film is the same as described above, and either the contact method or the non-contact method can be adopted.

以上のようにして保護フィルム付き積層体5が得られるが、本実施形態においては、熱圧着工程は不活性ガス雰囲気下で行うことが好ましい。不活性ガス雰囲気下で行うことで、金属箔の酸化を抑制することができる。不活性ガスとしては、窒素ガス、アルゴンガス等が挙げられる。 The laminate 5 with a protective film can be obtained as described above, but in the present embodiment, the thermocompression bonding step is preferably performed in an inert gas atmosphere. Oxidation of the metal foil can be suppressed by performing the operation in an atmosphere of an inert gas. Examples of the inert gas include nitrogen gas and argon gas.

<保護フィルム回収工程>
その後、保護フィルム付き積層体5から保護フィルム3a,3bを剥離し、搬送ローラー22a〜22dを介して保護フィルム3a,3bを保護フィルム巻取ロール14a,14bに巻き取るとともに、ポリイミドフィルム1と金属箔2a,2bが積層された積層体6を積層体巻取ロール16に巻き取る。
<Protective film recovery process>
After that, the protective films 3a and 3b are peeled off from the laminated body 5 with the protective film, and the protective films 3a and 3b are wound around the protective film winding rolls 14a and 14b via the transport rollers 22a to 22d, and the polyimide film 1 and the metal are wound. The laminated body 6 on which the foils 2a and 2b are laminated is wound around the laminated body winding roll 16.

本実施形態において、積層体の厚みは、30〜100μmであることが好ましい。積層体の厚みが前記範囲であると、FPCとしての折り曲げ性が向上するので好ましい。厚みが30μm未満になると加工時のハンドリングが困難になる場合があり、100μmを超えるとFPCとしての折り曲げ性が低下し、薄型化が困難になる場合がある。 In the present embodiment, the thickness of the laminated body is preferably 30 to 100 μm. When the thickness of the laminated body is within the above range, the bendability as an FPC is improved, which is preferable. If the thickness is less than 30 μm, it may be difficult to handle during processing, and if it exceeds 100 μm, the bendability as an FPC may be lowered and it may be difficult to reduce the thickness.

なお、本実施形態において、熱ロールラミネート装置における被積層材料、保護フィルム付き積層体を搬送する搬送ローラーは、任意の数で、任意の場所に設けることができる。例えば、加圧ロールに近い位置にも搬送ローラーを配置し、保護フィルムを加圧ロールに沿わせるようにして搬送すると、保護フィルム中の水分が加圧ロールの熱により除去され、積層時に金属箔と保護フィルムとの間に空気が溜まって接着性が低下する虞がない。また、加圧ロールの直後に搬送ローラーを複数設置し、保護フィルム付き積層体を屈曲させながら搬送させるようにすると、熱ロールラミネート装置の長さ方向に占める領域R2の長さを短くすることができるので、装置の大型化を防ぐことができる。 In the present embodiment, any number of transport rollers for transporting the material to be laminated and the laminate with the protective film in the thermal roll laminating apparatus can be provided at any place. For example, if a transport roller is placed near the pressure roll and the protective film is transported along the pressure roll, the moisture in the protective film is removed by the heat of the pressure roll, and the metal foil is laminated. There is no risk that air will collect between the film and the protective film and the adhesiveness will deteriorate. Further, if a plurality of transfer rollers are installed immediately after the pressure roll and the laminated body with the protective film is conveyed while being bent, the length of the region R2 occupied in the length direction of the thermal roll laminating device can be shortened. Therefore, it is possible to prevent the device from becoming large in size.

以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例及び比較例において用いた各材料は以下のとおりである。
(ポリイミドフィルム)
・カネカ社製「ピクシオFRS−522#SW」(商品名、厚さ12.5μm、熱可塑性ポリイミドのTg=280℃)
(銅箔)
・JX金属社製「圧延銅箔BHY」(商品名、厚さ12μm)
(保護フィルム)
・カネカ社製「アピカル125NPI」(商品名、厚さ125μm)
The materials used in the examples and comparative examples are as follows.
(Polyimide film)
-Kaneka Corporation "Pixio FRS-522 # SW" (trade name, thickness 12.5 μm, thermoplastic polyimide Tg = 280 ° C)
(Copper foil)
・ "Rolled copper foil BHY" manufactured by JX Nippon Mining & Metals Co., Ltd. (trade name, thickness 12 μm)
(Protective film)
・ "Apical 125 NPI" manufactured by Kaneka Corporation (trade name, thickness 125 μm)

各測定方法及び評価方法は以下のとおりである。 Each measurement method and evaluation method are as follows.

[領域R1でのポリイミドフィルムの温度]
試験運転において、熱ラミネート装置の加圧ロールの圧接部から上流側200cmのポリイミドフィルムに熱電対を貼り付け、PCリンク型高機能レコーダ(株式会社キーエンス製「GR−3500」(商品名))により測定を行った。
[Temperature of polyimide film in region R1]
In the test operation, a thermocouple was attached to a polyimide film 200 cm upstream from the pressure welding part of the pressure roll of the thermal laminating device, and a PC-link type high-performance recorder (“GR-3500” (trade name) manufactured by KEYENCE CORPORATION) was used. The measurement was performed.

[領域R2での保護フィルム付き積層体の温度]
熱ラミネート装置の加圧ロールの圧接部から下流側100cmの保護フィルム付き積層体の上面から15cm以内の温度を、非接触温度計(OPTEX社製「THERMO−HUNTER MODEL PT−2LD」(商品名))により測定を行い、その温度から23℃を加算した温度を保護フィルム付き積層体の予測温度とした。
[Temperature of laminate with protective film in region R2]
A non-contact thermometer (“THERMO-HUNTER MODEL PT-2LD” (trade name) manufactured by OPTEX) measures the temperature within 15 cm from the upper surface of the laminated body with a protective film 100 cm downstream from the pressure contact portion of the pressure roll of the thermal laminating device. ), And the temperature obtained by adding 23 ° C. from that temperature was used as the predicted temperature of the laminated body with the protective film.

[寸法変化率]
JIS C 6471の9.6項に準拠して測定した。具体的には以下のとおりに測定した。
図2に示すとおり、500mm幅のフレキシブル銅張積層体6から幅方向に、略同じ大きさの2枚のサンプルを切り出した。図2に示すとおり、それぞれのサンプル8A,8Bに、長さ方向に沿う2つの基準点を決め、これらの基準点から幅方向に195mm離れた場所に他の基準点を決め、長さ方向に対向する基準点間の長さMD−L1〜MD−L4を測定した(初期長さ)。なお、基準点間の初期長さMD−L1〜MD−L4は255mmとした。積層体表面の銅箔をエッチングで除去し、標準状態で12時間以上放置した後、再び基準点間の長さMD−L1〜MD−L4を測定した(エッチング後長さ)。各基準点間の長さMD−L1、MD−L2、MD−L3及びMD−L4の寸法変化率を下記式に従って算出した。
寸法変化率(%)=(エッチング後長さ−初期長さ)/初期長さ×100
次いで、MD−L1、MD−L2、MD−L3及びMD−L4の寸法変化率の最大値と最小値の差を求め、その差が0.05%以内である場合を「A」と評価し、0.05%を超える場合を「B」と評価した。なお、「A」評価が「可」であり、「B」評価が「不可」である。
[Dimensional change rate]
The measurement was performed according to Section 9.6 of JIS C 6471. Specifically, the measurement was performed as follows.
As shown in FIG. 2, two samples having substantially the same size were cut out from the flexible copper-clad laminate 6 having a width of 500 mm in the width direction. As shown in FIG. 2, for each of the samples 8A and 8B, two reference points along the length direction are determined, another reference point is determined at a location 195 mm in the width direction from these reference points, and the other reference points are determined in the length direction. The lengths MD-L1 to MD-L4 between the opposing reference points were measured (initial length). The initial lengths MD-L1 to MD-L4 between the reference points were set to 255 mm. The copper foil on the surface of the laminate was removed by etching, left in a standard state for 12 hours or more, and then the lengths MD-L1 to MD-L4 between the reference points were measured again (length after etching). The dimensional change rates of the lengths MD-L1, MD-L2, MD-L3 and MD-L4 between the reference points were calculated according to the following formula.
Dimensional change rate (%) = (length after etching-initial length) / initial length x 100
Next, the difference between the maximum value and the minimum value of the dimensional change rate of MD-L1, MD-L2, MD-L3 and MD-L4 is obtained, and the case where the difference is within 0.05% is evaluated as "A". , When it exceeds 0.05%, it was evaluated as "B". The "A" evaluation is "possible" and the "B" evaluation is "impossible".

[外観(波打ち)]
フレキシブル銅張積層体の表面を目視により観察し、波打ちがなかった場合を「A」と評価し、波打ちがあった場合を「B」と評価した。なお、「A」評価が「可」であり、「B」評価が「不可」である。
[Appearance (wavy)]
The surface of the flexible copper-clad laminate was visually observed, and the case where there was no waviness was evaluated as "A", and the case where there was waviness was evaluated as "B". The "A" evaluation is "possible" and the "B" evaluation is "impossible".

[判定]
寸法変化率、外観(波打ち)ともに「A」評価の場合は「A」とし、寸法変化率、外観(波打ち)の少なくとも一方が「B」評価の場合は「B」とした。なお、「A」評価が「可」であり、「B」評価が「不可」である。
[judgement]
When both the dimensional change rate and the appearance (wavy) were evaluated as "A", the evaluation was "A", and when at least one of the dimensional change rate and the appearance (wavy) was evaluated as "B", the evaluation was "B". The "A" evaluation is "possible" and the "B" evaluation is "impossible".

[実施例1]
図1に示したような一対の加圧ロール7a,7bを有する熱ラミネート装置を用いて、ポリイミドフィルムの両面に銅箔と保護フィルムがこの順に積層されてなるフレキシブル銅張積層体を作製した。装置は、窒素ガス下で稼働させた。
ポリイミドフィルム1と保護フィルム3a,3bとの間に銅箔2a,2bを挟むようにして各々を4.0m/分の速度で搬送しながら互いを重ね合わせて加圧ロール7a,7b間で熱圧着した。加圧ロールの温度は365℃、圧力は21kNとした。また、加圧ロール7a,7bの圧接部71から上流側の200cmの位置にヒーターを設置し、この位置のポリイミドフィルムの温度が70℃となるように加熱した。そして、加圧ロール7a,7bの圧接部71から下流側の100cmの位置にヒーターを設置し、この位置の保護フィルム付き積層体5の温度が200℃となるように加熱した。
熱圧着後、加圧ロール7a、7bよりも下流側300cmの位置で、保護フィルム付き積層体5から保護フィルム3a,3bを剥離し、フレキシブル銅張積層体6を積層体巻取ロール16に巻き取った。
得られたフレキシブル銅張積層体を用いて、寸法変化率、および外観(波打ち)の評価を行った。結果を表1に示す。
[Example 1]
Using a thermal laminating apparatus having a pair of pressure rolls 7a and 7b as shown in FIG. 1, a flexible copper-clad laminate in which a copper foil and a protective film were laminated in this order on both sides of a polyimide film was produced. The device was operated under nitrogen gas.
Copper foils 2a and 2b were sandwiched between the polyimide film 1 and the protective films 3a and 3b, and each of them was conveyed at a speed of 4.0 m / min while being overlapped with each other and thermocompression bonded between the pressure rolls 7a and 7b. .. The temperature of the pressure roll was 365 ° C. and the pressure was 21 kN. Further, a heater was installed at a position 200 cm upstream from the pressure contact portion 71 of the pressure rolls 7a and 7b, and the polyimide film at this position was heated so as to have a temperature of 70 ° C. Then, a heater was installed at a position 100 cm downstream from the pressure contact portion 71 of the pressure rolls 7a and 7b, and the laminate 5 with a protective film at this position was heated so as to have a temperature of 200 ° C.
After thermocompression bonding, the protective films 3a and 3b are peeled off from the laminate 5 with the protective film at a position 300 cm downstream of the pressure rolls 7a and 7b, and the flexible copper-clad laminate 6 is wound around the laminate take-up roll 16. I took it.
Using the obtained flexible copper-clad laminate, the dimensional change rate and appearance (waviness) were evaluated. The results are shown in Table 1.

[実施例2]
加圧ロールの圧接部から上流側200cmの位置のポリイミドフィルムの温度が200℃になる様に加熱した以外は、実施例1と同様の方法によりフレキシブル銅張積層体を得て、寸法変化率、および外観(波打ち)の評価を行った。結果を表1に示す。
[Example 2]
A flexible copper-clad laminate was obtained by the same method as in Example 1 except that the temperature of the polyimide film at a position 200 cm upstream from the pressure contact portion of the pressure roll was heated to 200 ° C. And the appearance (wavy) was evaluated. The results are shown in Table 1.

[実施例3]
加圧ロールの圧接部から下流側100cmの位置の保護フィルム付き積層体の温度が250℃になる様に加熱した以外は、実施例1と同様の方法によりフレキシブル銅張積層体を得て、寸法変化率、および外観(波打ち)の評価を行った。結果を表1に示す。
[Example 3]
A flexible copper-clad laminate was obtained by the same method as in Example 1 except that the temperature of the laminate with the protective film at a position 100 cm downstream from the pressure contact portion of the pressure roll was heated to 250 ° C. The rate of change and appearance (waviness) were evaluated. The results are shown in Table 1.

[比較例1]
加圧ロールの圧接部から上流側200cmの位置のポリイミドフィルムの温度が30℃となる様にした以外は、実施例1と同様の方法によりフレキシブル銅張積層体を得て、寸法変化率、および外観(波打ち)の評価を行った。結果を表1に示す。
[Comparative Example 1]
A flexible copper-clad laminate was obtained by the same method as in Example 1 except that the temperature of the polyimide film at a position 200 cm upstream from the pressure contact portion of the pressure roll was set to 30 ° C., and the dimensional change rate and the dimensional change rate were determined. The appearance (wavy) was evaluated. The results are shown in Table 1.

[比較例2]
加圧ロールの圧接部から下流側100cmの位置の保護フィルム付き積層体の温度が、100℃となる様にした以外は、実施例1と同様の方法によりフレキシブル銅張積層体を得て、寸法変化率、および外観(波打ち)の評価を行った。なお、フレキシブル銅張積層体を作製した際の熱ラミネート装置の加工速度は4m/分とした。結果を表1に示す。
[Comparative Example 2]
A flexible copper-clad laminate was obtained by the same method as in Example 1 except that the temperature of the laminate with the protective film at a position 100 cm downstream from the pressure contact portion of the pressure roll was set to 100 ° C. The rate of change and appearance (waviness) were evaluated. The processing speed of the thermal laminating apparatus when the flexible copper-clad laminate was produced was set to 4 m / min. The results are shown in Table 1.

Figure 2021024988
Figure 2021024988

表1の結果より、実施例1〜3はいずれも、エッチング後の寸法変化のバラツキがほとんどなく、波打ちの発生も抑制された。これに対し、比較例1〜2は寸法変化のバラツキの抑制と波打ちの抑制を両立させることができなかった。 From the results in Table 1, in all of Examples 1 to 3, there was almost no variation in the dimensional change after etching, and the occurrence of waviness was suppressed. On the other hand, in Comparative Examples 1 and 2, it was not possible to suppress the variation in dimensional change and the waviness at the same time.

本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2019年8月8日出願の日本特許出願(特願2019−146663)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on August 8, 2019 (Japanese Patent Application No. 2019-146663), the contents of which are incorporated herein by reference.

1 ポリイミドフィルム(基材)
2a,2b 金属箔(銅箔)
3a,3b 保護フィルム
5 保護フィルム付き積層体
6 積層体(フレキシブル銅張積層体)
7a,7b 加圧ロール
8A,8B サンプル
11 ポリイミドフィルム供給ロール
12a,12b 金属箔供給ロール
13a,13b 保護フィルム供給ロール
14a,14b 保護フィルム巻取ロール
16 積層体巻取ロール
21a〜21e、22a〜22d 搬送ローラー
71 圧接部
R1 圧接部への搬入直前の領域
R2 圧接部から搬出直後の領域
MD−L1〜MD−L4 基準点間の長さ
1 Polyimide film (base material)
2a, 2b Metal leaf (copper foil)
3a, 3b Protective film 5 Laminate with protective film 6 Laminate (flexible copper-clad laminate)
7a, 7b Pressurized rolls 8A, 8B Sample 11 Polyimide film supply rolls 12a, 12b Metal leaf supply rolls 13a, 13b Protective film supply rolls 14a, 14b Protective film winding rolls 16 Laminated body winding rolls 21a to 21e, 22a to 22d Conveyor roller 71 Pressure welding part R1 Area immediately before loading into the pressure welding part R2 Area immediately after loading from the pressure welding part MD-L1 to MD-L4 Length between reference points

Claims (7)

ポリイミドフィルムに金属箔が積層された積層体を製造する方法であって、
ポリイミドフィルムの少なくとも一方の面と保護フィルムとの間に金属箔を挟むように前記ポリイミドフィルム、前記金属箔及び前記保護フィルムの各々を搬送しながら、前記ポリイミドフィルム、前記金属箔及び前記保護フィルムを互いに重ね合わせて前記ポリイミドフィルムと前記金属箔とを一対の加圧ロール間で熱圧着する熱圧着工程を有し、
搬送方向における前記加圧ロールの圧接部から上流側の1〜200cmの範囲において、前記ポリイミドフィルムの温度を、70℃以上かつ前記ポリイミドフィルムのガラス転移温度(Tg)未満となるようにするとともに、
搬送方向における前記加圧ロールの圧接部から下流側の1〜100cmの範囲において、前記加圧ロールから送り出された保護フィルム付き積層体の温度を、200〜350℃となるようにする積層体の製造方法。
It is a method of manufacturing a laminate in which a metal foil is laminated on a polyimide film.
While transporting each of the polyimide film, the metal foil and the protective film so as to sandwich the metal foil between at least one surface of the polyimide film and the protective film, the polyimide film, the metal foil and the protective film are transferred. It has a heat crimping step of superimposing each other and hot-bonding the polyimide film and the metal foil between a pair of pressure rolls.
In the range of 1 to 200 cm upstream from the pressure contact portion of the pressure roll in the transport direction, the temperature of the polyimide film is set to 70 ° C. or higher and lower than the glass transition temperature (Tg) of the polyimide film.
In the range of 1 to 100 cm downstream from the pressure contact portion of the pressure roll in the transport direction, the temperature of the laminate with the protective film sent out from the pressure roll is 200 to 350 ° C. Production method.
熱圧着時の前記加圧ロールの温度を、前記ポリイミドフィルムのガラス転移温度(Tg)以上かつ400℃以下とする、請求項1に記載の積層体の製造方法。 The method for producing a laminate according to claim 1, wherein the temperature of the pressure roll at the time of thermocompression bonding is equal to or higher than the glass transition temperature (Tg) of the polyimide film and 400 ° C. or lower. 前記熱圧着工程後に、前記加圧ロールから搬出された保護フィルム付き積層体から前記保護フィルムを剥離する保護フィルム回収工程を有する、請求項1又は2に記載の積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, further comprising a protective film recovery step of peeling the protective film from the laminate with a protective film carried out from the pressure roll after the thermocompression bonding step. 不活性ガス雰囲気下で行う、請求項1〜3のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 3, which is carried out in an inert gas atmosphere. 前記ポリイミドフィルムの膜厚が12.5〜50μmである、請求項1〜4のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 4, wherein the polyimide film has a film thickness of 12.5 to 50 μm. 前記金属箔の膜厚が9〜70μmである、請求項1〜5のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 5, wherein the thickness of the metal foil is 9 to 70 μm. 前記ポリイミドフィルムは熱可塑性ポリイミドを含み、
前記保護フィルムが非熱可塑性ポリイミドからなる、請求項1〜6のいずれか1項に記載の積層体の製造方法。
The polyimide film contains a thermoplastic polyimide and contains
The method for producing a laminate according to any one of claims 1 to 6, wherein the protective film is made of non-thermoplastic polyimide.
JP2020542922A 2019-08-08 2020-08-03 Method of manufacturing a laminate Active JP7082206B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019146663 2019-08-08
JP2019146663 2019-08-08
PCT/JP2020/029687 WO2021024988A1 (en) 2019-08-08 2020-08-03 Method for manufacturing laminate

Publications (2)

Publication Number Publication Date
JPWO2021024988A1 true JPWO2021024988A1 (en) 2021-09-30
JP7082206B2 JP7082206B2 (en) 2022-06-07

Family

ID=74503813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020542922A Active JP7082206B2 (en) 2019-08-08 2020-08-03 Method of manufacturing a laminate

Country Status (4)

Country Link
JP (1) JP7082206B2 (en)
KR (1) KR20220044501A (en)
CN (1) CN114206616A (en)
WO (1) WO2021024988A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147900B (en) * 2021-12-07 2024-03-12 河南玖龙塑料科技有限公司 PVC film production device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063466A1 (en) * 2003-12-26 2005-07-14 Kaneka Corporation Method of producing flexible laminate sheet
JP2005199615A (en) * 2004-01-16 2005-07-28 Nippon Steel Chem Co Ltd Process for continuously producing polyimide laminated body with conductor at both faces
WO2016208730A1 (en) * 2015-06-26 2016-12-29 株式会社カネカ Manufacturing device and manufacturing method for one-side metal-clad laminated sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838509B2 (en) * 2004-11-12 2011-12-14 株式会社カネカ Method for producing flexible metal-clad laminate
JP4695421B2 (en) 2005-03-29 2011-06-08 新日鐵化学株式会社 Manufacturing method of laminate
JP5620093B2 (en) * 2009-12-18 2014-11-05 株式会社カネカ Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
WO2016171078A1 (en) 2015-04-23 2016-10-27 日本メクトロン株式会社 Flexible printed laminate board manufacturing device and flexible printed laminate board manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063466A1 (en) * 2003-12-26 2005-07-14 Kaneka Corporation Method of producing flexible laminate sheet
JP2005199615A (en) * 2004-01-16 2005-07-28 Nippon Steel Chem Co Ltd Process for continuously producing polyimide laminated body with conductor at both faces
WO2016208730A1 (en) * 2015-06-26 2016-12-29 株式会社カネカ Manufacturing device and manufacturing method for one-side metal-clad laminated sheet

Also Published As

Publication number Publication date
KR20220044501A (en) 2022-04-08
CN114206616A (en) 2022-03-18
WO2021024988A1 (en) 2021-02-11
JP7082206B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
JP5035220B2 (en) Copper-clad laminate and manufacturing method thereof
JP5661051B2 (en) Method for producing single-sided metal-clad laminate
JPWO2008004496A1 (en) Thermoplastic polyimide, laminated polyimide film using the same, and metal foil laminated polyimide film
JP6031352B2 (en) Method for producing double-sided metal-clad laminate
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
KR20180022827A (en) METHOD AND APPARATUS FOR MANUFACTURING SINGLE-SIDED METAL LAM
WO2005063466A1 (en) Method of producing flexible laminate sheet
JP7082206B2 (en) Method of manufacturing a laminate
JP6948418B2 (en) Manufacturing method of flexible metal-clad laminate
JP2005167006A (en) Manufacturing method of flexible metal foil polyimide substrate
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP5023667B2 (en) Flexible heater
JP4500773B2 (en) Method for producing flexible laminate
WO2004041517A1 (en) Heat-resistant flexible laminated board manufacturing method
JP2003311882A (en) Manufacturing method for heat-resistant flexible laminated sheet
JP4231227B2 (en) Method for producing heat-resistant flexible laminate
JP4389338B2 (en) Manufacturing method of flexible metal foil laminate
JP2005205731A (en) Flexible laminated sheet and its manufacturing method
JP2007223205A (en) Flexible laminate and its manufacturing method
JP2007216688A (en) Copper clad laminated sheet and its manufacturing method
JP4389627B2 (en) Method for producing flexible metal laminate
JP4389337B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP2007223052A (en) Method for manufacturing heat-resistant flexible metal laminate
JP2002361744A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP2005088402A (en) Manufacturing method for roll-shaped metal clad sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220526

R150 Certificate of patent or registration of utility model

Ref document number: 7082206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150