JPWO2020217346A1 - Lead screw mechanism and actuator - Google Patents

Lead screw mechanism and actuator Download PDF

Info

Publication number
JPWO2020217346A1
JPWO2020217346A1 JP2021515378A JP2021515378A JPWO2020217346A1 JP WO2020217346 A1 JPWO2020217346 A1 JP WO2020217346A1 JP 2021515378 A JP2021515378 A JP 2021515378A JP 2021515378 A JP2021515378 A JP 2021515378A JP WO2020217346 A1 JPWO2020217346 A1 JP WO2020217346A1
Authority
JP
Japan
Prior art keywords
thread
screw
female
male
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021515378A
Other languages
Japanese (ja)
Other versions
JP6906730B2 (en
Inventor
敦志 中筋
敦志 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6906730B2 publication Critical patent/JP6906730B2/en
Publication of JPWO2020217346A1 publication Critical patent/JPWO2020217346A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Supercharger (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

送りネジ機構(50)は、回転可能な雌ネジ部(52)と、雌ネジ部(52)にねじ込まれた状態において、回転が制限され、雌ネジ部(52)が回転することにより軸方向に直動する雄ネジ部(51)と、を備え、雌ネジ部(52)又は雄ネジ部(51)の少なくとも一方は、多条ネジとして構成され、多条ネジとして構成された雌ネジ部(52)又は多条ネジとして構成された雄ネジ部(51)の何れか一方は、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なる。The feed screw mechanism (50) is restricted in rotation while being screwed into the rotatable female screw portion (52) and the female screw portion (52), and the rotation of the female screw portion (52) causes the female screw portion (52) to rotate in the axial direction. A male threaded portion (51) that directly moves in, and at least one of the female threaded portion (52) or the male threaded portion (51) is configured as a multi-threaded screw and is configured as a multi-threaded screw. Either (52) or the male threaded portion (51) configured as a multi-threaded screw has a first pitch between the first thread and the second thread adjacent to each other in the axial direction, and The second pitch between the second thread and the third thread that are adjacent to each other in the axial direction is different.

Description

本発明は、雌ネジ部と雄ネジ部とを備える送りネジ機構に関する。 The present invention relates to a lead screw mechanism including a female screw portion and a male screw portion.

送りネジ機構は、雌ネジ部と雄ネジ部とを備え、雌ネジ部の回転運動を雄ネジ部の軸方向の直動運動に変換する機能を有する伝動機構である。例えば、送りネジの雄ネジ部が雌ネジ部にねじ込まれた状態において、雄ネジ部の回転が制限されると、雌ネジ部が回転することにより、雄ネジ部は直動する。
従来、送りネジ機構では、雄ネジと雌ネジとの相対運動を阻害しないように、雄ネジ部が雌ネジ部にねじ込まれた状態において、隣り合った雄ネジ部のネジ山と雌ネジ部のネジ山との間にはバックラッシュが設けられている。
The lead screw mechanism is a transmission mechanism including a female screw portion and a male screw portion, and has a function of converting the rotational movement of the female screw portion into a linear motion in the axial direction of the male screw portion. For example, when the male screw portion of the lead screw is screwed into the female screw portion and the rotation of the male screw portion is restricted, the female screw portion rotates and the male screw portion moves linearly.
Conventionally, in the lead screw mechanism, in a state where the male screw portion is screwed into the female screw portion so as not to hinder the relative movement between the male screw and the female screw, the threads of the adjacent male screw portions and the female screw portion are connected. There is a backlash between the threads.

一般的に、伝動機構におけるバックラッシュは、伝動機構を構成する各部品間の相対的な位置精度の悪化の原因になることが知られている。バックラッシュを原因とする問題への対策として、例えば、特許文献1には、射出成形機で使用されるような油圧式閉鎖ユニットにおいて、バックラッシュである歯面遊びを減少するか又は除去する技術が開示されている。 In general, it is known that backlash in a transmission mechanism causes deterioration of relative position accuracy between each component constituting the transmission mechanism. As a countermeasure against the problem caused by backlash, for example, Patent Document 1 describes a technique for reducing or eliminating backlash tooth surface play in a hydraulic closing unit such as that used in an injection molding machine. Is disclosed.

特表平11−507603号公報Special Table No. 11-507603

上述のような、雌ネジ部と雄ネジ部とを備える従来の送りネジ機構においても、バックラッシュの寸法の分だけ、雄ネジ部と雌ネジ部との相対位置がずれるため、直動運動の位置精度が低下してしまうという問題がある。例えば、特許文献1に記載されたような従来の技術は、送りネジ機構を対象としたものではなく、送りネジ機構における上記問題を解決するものではなかった。 Even in the conventional feed screw mechanism provided with the female screw portion and the male screw portion as described above, the relative positions of the male screw portion and the female screw portion are displaced by the size of the backlash, so that the linear motion is carried out. There is a problem that the position accuracy is lowered. For example, the conventional technique as described in Patent Document 1 does not target the lead screw mechanism, and does not solve the above problem in the lead screw mechanism.

この発明は、上記のような問題点を解決するためになされたものであり、雄ネジ部のネジ山と雌ネジ部のネジ山との間のバックラッシュによる、直動運動の位置精度の低下を抑制する技術を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and the position accuracy of the linear motion is lowered due to the backlash between the threads of the male thread and the thread of the female thread. The purpose is to provide a technique for suppressing.

この発明に係る送りネジ機構は、回転可能な雌ネジ部と、雌ネジ部にねじ込まれた状態において、回転が制限され、雌ネジ部が回転することにより軸方向に直動する雄ネジ部と、を備え、雌ネジ部又は雄ネジ部の少なくとも一方は、多条ネジとして構成され、多条ネジとして構成された雌ネジ部又は多条ネジとして構成された雄ネジ部の何れか一方は、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なる。 The lead screw mechanism according to the present invention includes a rotatable female screw portion and a male screw portion whose rotation is restricted when screwed into the female screw portion and which moves linearly in the axial direction when the female screw portion rotates. , At least one of the female threaded portion and the male threaded portion is configured as a multi-threaded screw, and either the female threaded portion configured as the multi-threaded screw or the male threaded portion configured as the multi-threaded screw is provided. The first pitch between the first and second threads adjacent in the axial direction and the second between the second and third threads adjacent in the axial direction. The pitch of 2 is different.

この発明によれば、雄ネジ部のネジ山と雌ネジ部のネジ山との間のバックラッシュによる、直動運動の位置精度の低下を抑制することができる。 According to the present invention, it is possible to suppress a decrease in the position accuracy of the linear motion due to backlash between the threads of the male thread portion and the threads of the female thread portion.

実施の形態1に係る送りネジ機構を備えるVGアクチュエータの構成を示す断面図である。It is sectional drawing which shows the structure of the VG actuator provided with the feed screw mechanism which concerns on Embodiment 1. FIG. 実施の形態1に係る送りネジ機構の雄ネジ部の構成を示す側面図である。It is a side view which shows the structure of the male screw part of the feed screw mechanism which concerns on Embodiment 1. FIG. 実施の形態1に係る雄ネジ部が雌ネジ部にねじ込まれた状態の送りネジ機構の構成を示す断面図である。FIG. 5 is a cross-sectional view showing a configuration of a feed screw mechanism in a state where the male screw portion according to the first embodiment is screwed into the female screw portion. 図4A、図4B、図4C及び図4Dは、それぞれ、ロータ部が回転することによりシャフトが直動する状況における、実施の形態1に係る送りネジ機構の状態を説明するための図である。4A, 4B, 4C, and 4D are diagrams for explaining a state of the lead screw mechanism according to the first embodiment in a situation where the shaft moves linearly due to the rotation of the rotor portion, respectively. 図5A、図5B及び図5Cは、それぞれ、実施の形態1に係るVGアクチュエータをVGターボチャージャに適用した例を示す図である。5A, 5B and 5C are diagrams showing an example in which the VG actuator according to the first embodiment is applied to the VG turbocharger, respectively.

以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。なお、本実施形態では、送りネジ機構50をVG(Variable Geometry)アクチュエータ1に適用した構成について説明するが、送りネジ機構50が適用される対象に特に限定はない。また、本実施形態では、アクチュエータとしてVGアクチュエータ1を用いるが、アクチュエータの種類に特に限定はなく、例えば、ウェイストゲートバルブを駆動するためのアクチュエータを用いてもよい。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings. In this embodiment, the configuration in which the feed screw mechanism 50 is applied to the VG (Variable Geometry) actuator 1 will be described, but the target to which the feed screw mechanism 50 is applied is not particularly limited. Further, in the present embodiment, the VG actuator 1 is used as the actuator, but the type of the actuator is not particularly limited, and for example, an actuator for driving the wastegate valve may be used.

実施の形態1.
図1は、実施の形態1に係る送りネジ機構50を備えるVGアクチュエータ1の構成を示す断面図である。VGアクチュエータ1は、後述するVGターボチャージャの可動ベーンを開閉する動力を与えるアクチュエータである。VGアクチュエータ1は、ロータ部20、ベアリング4及びベアリング5、固定子6、センサ部8、ハウジング9、制御回路部10、ケース11、シャフト30、並びにブッシュ40を備えている。ロータ部20、ベアリング4及びベアリング5、固定子6、センサ部8、ハウジング9及び制御回路部10は、VGアクチュエータ1の駆動部として、ブラシレスDCモータを構成する。なお、本実施形態では、VGアクチュエータ1の駆動部としてブラシレスDCモータを用いるが、VGアクチュエータ1の駆動部は、回転運動する機能を有していればよく、特に限定されない。例えば、VGアクチュエータ1の駆動部は、ブラシ付きDCモータ等のモータでもよい。
Embodiment 1.
FIG. 1 is a cross-sectional view showing a configuration of a VG actuator 1 including a feed screw mechanism 50 according to the first embodiment. The VG actuator 1 is an actuator that gives power to open and close the movable vane of the VG turbocharger described later. The VG actuator 1 includes a rotor unit 20, a bearing 4, a bearing 5, a stator 6, a sensor unit 8, a housing 9, a control circuit unit 10, a case 11, a shaft 30, and a bush 40. The rotor unit 20, the bearing 4, the bearing 5, the stator 6, the sensor unit 8, the housing 9, and the control circuit unit 10 form a brushless DC motor as a drive unit of the VG actuator 1. In the present embodiment, a brushless DC motor is used as the driving unit of the VG actuator 1, but the driving unit of the VG actuator 1 is not particularly limited as long as it has a function of rotating. For example, the drive unit of the VG actuator 1 may be a motor such as a DC motor with a brush.

まず、VGアクチュエータ1のブラシレスDCモータの構成について説明する。ハウジング9の内部には、ロータ部20及び固定子6等が配置される。ロータ部20は、ロータマグネット2、センサマグネット7、及び樹脂部3を有する。ロータマグネット2は、ロータ部20の外周側に取り付けられる、磁極を有する部品である。センサマグネット7は、ロータ部20の軸方向における一端の端部に取り付けられる部品である。 First, the configuration of the brushless DC motor of the VG actuator 1 will be described. A rotor portion 20, a stator 6, and the like are arranged inside the housing 9. The rotor portion 20 has a rotor magnet 2, a sensor magnet 7, and a resin portion 3. The rotor magnet 2 is a component having magnetic poles attached to the outer peripheral side of the rotor portion 20. The sensor magnet 7 is a component attached to one end of the rotor portion 20 in the axial direction.

ベアリング4及びベアリング5は、それぞれ、ロータ部20を回転自在に支持する。固定子6は、ロータ部20の径方向外側に、ロータ部20と同心円状に配置される。ロータ部20の外周と固定子6の内周との間には、一定の間隔の隙間が設けられている。固定子6は、ステータコア6aと、ステータコア6aに装着されるボビン6bと、ボビン6bに巻回されるコイル(不図示)と、コイル端子6cとを有する。当該コイルには、コイル端子6cを介して電力が供給される。
センサ部8は、分離型回転角度センサである。分離型回転角度センサは、ディスクリートタイプの回転角度センサである。センサ部8は、センサマグネット7からの漏洩磁束を感知し、ロータ部20の回転位置を検出する。センサ部8は、検知した回転位置に関する信号を制御回路部10に出力する。
The bearing 4 and the bearing 5 each rotatably support the rotor portion 20. The stator 6 is arranged concentrically with the rotor portion 20 on the radial outer side of the rotor portion 20. A gap of a certain interval is provided between the outer circumference of the rotor portion 20 and the inner circumference of the stator 6. The stator 6 has a stator core 6a, a bobbin 6b mounted on the stator core 6a, a coil wound around the bobbin 6b (not shown), and a coil terminal 6c. Electric power is supplied to the coil via the coil terminal 6c.
The sensor unit 8 is a separate rotation angle sensor. The separate rotation angle sensor is a discrete type rotation angle sensor. The sensor unit 8 senses the leakage magnetic flux from the sensor magnet 7 and detects the rotational position of the rotor unit 20. The sensor unit 8 outputs a signal regarding the detected rotation position to the control circuit unit 10.

制御回路部10は、VGアクチュエータ1の駆動を制御する。制御回路部10は、電子部品で構成され、基板に搭載されている。制御回路部10は、ケース11内に収容される。ケース11には、コネクタ11aが設けられている。コネクタ11aには、ターミナル11bがインサート成形されている。 The control circuit unit 10 controls the drive of the VG actuator 1. The control circuit unit 10 is composed of electronic components and is mounted on a substrate. The control circuit unit 10 is housed in the case 11. The case 11 is provided with a connector 11a. The terminal 11b is insert-molded in the connector 11a.

制御回路部10には、ターミナル11bを介して外部から直流電源が供給される。制御回路部10は、固定子6のコイル端子6cと電気的に接続されている。制御回路部10は、センサ部8から取得した信号に基づき、上述のコイルに対する電力供給を制御する。電力供給を制御するとは、コイルへの通電をON又はOFFにすること、及びコイルにおける通電方向を切り替えることである。制御回路部10は、コイルに対する電力供給を制御して、ロータ部20の回転を制御している。制御回路部10を収容するケース11は、ハウジング9に取り付けられている。 A DC power supply is supplied to the control circuit unit 10 from the outside via the terminal 11b. The control circuit unit 10 is electrically connected to the coil terminal 6c of the stator 6. The control circuit unit 10 controls the power supply to the coil described above based on the signal acquired from the sensor unit 8. Controlling the power supply means turning on or off the energization of the coil and switching the energization direction of the coil. The control circuit unit 10 controls the power supply to the coil to control the rotation of the rotor unit 20. The case 11 accommodating the control circuit unit 10 is attached to the housing 9.

次に、VGアクチュエータ1の送りネジ機構50に関する構成について詳細に説明する。上述のロータ部20の樹脂部3は、内側にシャフト30を通す穴が貫通しており、当該穴の内周面に雌ネジ部52が設けられている(後述する図3を参照)。また、シャフト30の外周面には、ロータ部20の雌ネジ部52にねじ込まれる雄ネジ部51が設けられている(後述する図2を参照)。雌ネジ部52と雄ネジ部51とは、送りネジ機構50を構成している。本実施形態では、雌ネジ部52の素材が樹脂である。 Next, the configuration of the feed screw mechanism 50 of the VG actuator 1 will be described in detail. The resin portion 3 of the rotor portion 20 described above has a hole through which the shaft 30 passes, and a female screw portion 52 is provided on the inner peripheral surface of the hole (see FIG. 3 described later). Further, on the outer peripheral surface of the shaft 30, a male screw portion 51 screwed into the female screw portion 52 of the rotor portion 20 is provided (see FIG. 2 to be described later). The female screw portion 52 and the male screw portion 51 form a feed screw mechanism 50. In the present embodiment, the material of the female screw portion 52 is resin.

ブッシュ40は、平面部を有し、当該平面部が、シャフト30における、雄ネジ部51がロータ部20の雌ネジ部52にねじ込まれる部分以外の部分の外周に形成された平面に接するように配置されている。雄ネジ部51に形成された平面の軸方向の長さ寸法は、ブッシュ40が有する平面部の軸方向の長さ寸法よりも大きい。これにより、ブッシュ40は、シャフト30の回転運動を制限する一方で、シャフト30の直動運動を制限しない。 The bush 40 has a flat surface portion so that the flat surface portion is in contact with a flat surface formed on the outer periphery of a portion of the shaft 30 other than the portion where the male screw portion 51 is screwed into the female screw portion 52 of the rotor portion 20. Have been placed. The axial length dimension of the flat surface formed on the male screw portion 51 is larger than the axial length dimension of the flat surface portion of the bush 40. As a result, the bush 40 limits the rotational movement of the shaft 30, but does not limit the linear movement of the shaft 30.

上記のようにブッシュ40がシャフト30の回転運動を制限することにより、ロータ部20の回転運動は、送りネジ機構50を介して、シャフト30の軸方向の直動運動に変換される。より詳細には、シャフト30の雄ネジ部51がロータ部20の雌ネジ部52にねじ込まれ、且つ、ブッシュ40がシャフト30の回転運動を制限している状態において、ロータ部20の一方の方向への回転に伴ってシャフト30が図1の下方向に直動し、ロータ部20の他方の方向への回転に伴ってシャフト30が図1の上方向に直動する。 By limiting the rotational movement of the shaft 30 by the bush 40 as described above, the rotational movement of the rotor portion 20 is converted into a linear motion in the axial direction of the shaft 30 via the feed screw mechanism 50. More specifically, in a state where the male screw portion 51 of the shaft 30 is screwed into the female screw portion 52 of the rotor portion 20 and the bush 40 limits the rotational movement of the shaft 30, one direction of the rotor portion 20. The shaft 30 moves linearly in the downward direction of FIG. 1 as the rotor portion 20 rotates in the other direction, and the shaft 30 moves linearly in the upward direction of FIG. 1 as the rotor portion 20 rotates in the other direction.

次に、本実施形態に係る送りネジ機構50の雄ネジ部51の構成について図を参照して説明する。図2は、シャフト30の雄ネジ部51の構成を示す側面図である。図2が示すように、雄ネジ部51は、第1条A、第2条B、第3条C及び第4条Dを有する4条ネジである。よって、上述したように、雄ネジ部51が雌ネジ部52にねじ込まれ、ブッシュ40がシャフト30の回転運動を制限している状態において、ロータ部20が回転することにより雌ネジ部52が1回転した場合、雄ネジ部51は、雌ネジ部52に対して相対的に、4条分の距離だけ、軸方向に直動する。より詳細には、雄ネジ部51は、第1条Aのネジ山と当該ネジ山の隣の第2条Bのネジ山との間のピッチ、第2条Bのネジ山と当該ネジ山の隣の第3条Cのネジ山との間のピッチ、第3条Cのネジ山と当該ネジ山の隣の第4条Dのネジ山との間のピッチ、及び、第4条Dのネジ山と当該ネジ山の隣の第1条Aのネジ山との間のピッチを足した和であるリード分の距離だけ、軸方向に直動する。 Next, the configuration of the male screw portion 51 of the feed screw mechanism 50 according to the present embodiment will be described with reference to the drawings. FIG. 2 is a side view showing the configuration of the male screw portion 51 of the shaft 30. As shown in FIG. 2, the male threaded portion 51 is a four-threaded screw having Articles 1A, 2B, 3C and 4D. Therefore, as described above, in a state where the male screw portion 51 is screwed into the female screw portion 52 and the bush 40 limits the rotational movement of the shaft 30, the rotor portion 20 rotates to reduce the female screw portion 52 to 1. When rotated, the male screw portion 51 moves linearly in the axial direction by a distance of four threads relative to the female screw portion 52. More specifically, the male thread portion 51 has a pitch between the thread of Article 1A and the thread of Article 2B next to the thread, and the thread of Article 2B and the thread of the thread. The pitch between the adjacent Article 3C thread, the pitch between the Article 3C thread and the adjacent Article 4D thread, and the Article 4D screw. It moves linearly in the axial direction by the distance of the lead, which is the sum of the pitches between the thread and the thread of Article 1A next to the thread.

本実施形態に係るネジ機構50の雄ネジ部51における、互いに軸方向に隣り合うネジ山間のピッチについては、軸方向に隣り合った第1のネジ山及び第2のネジ山の間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なる。例えば、図2に示すように、第1条Aのネジ山と当該ネジ山の隣の第2条Bのネジ山との間のピッチABと、第2条Bのネジ山と当該ネジ山の隣の第3条Cのネジ山との間のピッチBCとは、異なる。また、同様に、第2条Bのネジ山と当該ネジ山の隣の第3条Cのネジ山との間のピッチBCと、第3条Cのネジ山と当該ネジ山の隣の第4条Dのネジ山との間のピッチCDとは、異なる。また、同様に、第3条Cのネジ山と当該ネジ山の隣の第4条Dのネジ山との間のピッチCDと、第4条Dのネジ山と当該ネジ山の隣の第1条Aのネジ山との間のピッチDAとは、異なる。なお、以下では、「第1条Aのネジ山と当該ネジ山の隣の第2条Bのネジ山との間のピッチ」のことを、単に「第1条A及び第2条Bの間のピッチ」と表現する。 Regarding the pitch between the threads adjacent to each other in the axial direction in the male screw portion 51 of the screw mechanism 50 according to the present embodiment, the pitch between the first screw thread and the second screw thread adjacent to each other in the axial direction is the first. And the second pitch between the second thread and the third thread that are adjacent to each other in the axial direction are different. For example, as shown in FIG. 2, the pitch AB between the thread of Article 1A and the thread of Article 2B next to the thread, and the thread of Article 2B and the thread of the thread. It is different from the pitch BC between the thread of the adjacent Article 3C. Similarly, the pitch BC between the screw thread of Article 2B and the screw thread of Article 3C next to the screw thread, and the fourth screw thread of Article 3C and the screw thread of Article 3C next to the screw thread. It is different from the pitch CD between the threads of Article D. Similarly, the pitch CD between the thread of Article 3C and the thread of Article 4D next to the thread, and the first thread of Article 4D and the thread of Article 4D next to the thread. It is different from the pitch DA between the threads of Article A. In the following, "the pitch between the thread of Article 1A and the thread of Article 2B next to the thread" is simply referred to as "between Articles 1A and 2B". It is expressed as "pitch of."

また、本実施形態では、第1条A及び第2条Bの間のピッチABは、第3条C及び第4条Dの間のピッチCDと同じである。また、同様に、第2条B及び第3条Cの間のピッチBCは、第4条D及び第1条Aの間のピッチDAと同じである。なお、本実施形態における「同じ」という用語は、「略同じ」又は「実質的に同じ」等の意味も含む。また、本実施形態とは異なり、第1条A及び第2条Bの間のピッチABは、第3条C及び第4条Dの間のピッチCDと異なっていてもよい。また、同様に、第2条B及び第3条Cの間のピッチBCは、第4条D及び第1条Aの間のピッチDAと異なっていてもよい。また、本実施形態では、第1条A及び第2条Bの間のピッチAB、及び第3条C及び第4条Dの間のピッチCDは、第2条B及び第3条Cの間のピッチBC、及び第4条D及び第1条Aの間のピッチDAよりも狭い。 Further, in the present embodiment, the pitch AB between Articles 1A and 2B is the same as the pitch CD between Articles 3C and 4D. Similarly, the pitch BC between Articles 2B and 3C is the same as the pitch DA between Articles 4D and 1A. The term "same" in the present embodiment also includes meanings such as "substantially the same" or "substantially the same". Further, unlike the present embodiment, the pitch AB between Articles 1A and 2B may be different from the pitch CD between Articles 3C and 4D. Similarly, the pitch BC between Articles 2B and 3C may be different from the pitch DA between Articles 4D and 1A. Further, in the present embodiment, the pitch AB between Articles 1A and 2B and the pitch CD between Articles 3C and 4D are between Articles 2B and 3C. Pitch BC, and pitch DA between Articles 4D and 1A.

上述のように第1のピッチと第2のピッチとは異なるが、雄ネジ部51のリードは、第1条A及び第2条Bの間のピッチABと、第2条B及び第3条Cの間のピッチBCと、第3条C及び第4条Dの間のピッチCDと、第4条D及び第1条Aの間のピッチDAとの和であるため、何れのネジ山から計っても同じである。より具体的には、図2に示す雄ネジ部51において、第1条Aのリードは、第2条Bのリードと同じである。また、図2には示されていないが、同様に、第3条Cのリードと、第4条Dのリードとは、第1条Aのリードと、第2条Bのリードと同じである。 Although the first pitch and the second pitch are different as described above, the leads of the male threaded portion 51 are the pitch AB between Articles 1A and 2B, and Articles 2B and 3B. Since it is the sum of the pitch BC between C, the pitch CD between Articles 3C and 4D, and the pitch DA between Articles 4D and 1A, from any screw thread. It is the same even if it measures. More specifically, in the male screw portion 51 shown in FIG. 2, the lead of Article 1A is the same as the lead of Article 2B. Further, although not shown in FIG. 2, similarly, the lead of Article 3C and the lead of Article 4D are the same as the lead of Article 1A and the lead of Article 2B. ..

上記の例では、雄ネジ部51が4条ネジである構成について説明したが、雄ネジ部51は、多条ネジであればよい。また、上記の例では、雄ネジ部51において、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なる構成について説明した。しかし、雌ネジ部52において、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なっていてもよく、雌ネジ部52又は雄ネジ部51の何れか一方が当該構成を有していればよい。また、その場合、雌ネジ部52又は雄ネジ部51の何れか他方では、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが同じであり得る。 In the above example, the configuration in which the male screw portion 51 is a four-threaded screw has been described, but the male screw portion 51 may be a multi-threaded screw. Further, in the above example, in the male screw portion 51, the first pitch between the first screw thread and the second screw thread adjacent to each other in the axial direction and the second pitch adjacent to each other in the axial direction are provided. The configuration in which the second pitch between the threads and the third threads is different has been described. However, in the female thread portion 52, the first pitch between the first thread and the second thread adjacent to each other in the axial direction, and the second thread and the third thread adjacent to each other in the axial direction are provided. The second pitch between the threads and the threads may be different, and it is sufficient that either the female thread 52 or the male thread 51 has the configuration. Further, in that case, at either the female screw portion 52 or the male screw portion 51, the first pitch between the first screw thread and the second screw thread adjacent to each other in the axial direction and the axial direction. The second pitch between the adjacent second and third threads can be the same.

次に、雄ネジ部51が雌ネジ部52にねじ込まれた状態の送りネジ機構50の構成について説明する。本実施形態に係る送りネジ機構50は、雄ネジ部51が雌ネジ部52にねじ込まれた状態において、雄ネジ部51における第1のネジ山と当該ネジ山の隣の第2のネジ山との間に、雌ネジ部52における対向するネジ山が嵌合し、雄ネジ部51の第1のネジ山における第2のネジ山に対向するフランクと、雌ネジ部52における対向するネジ山の一方のフランクとが、接触し、且つ、雄ネジ部51の第2のネジ山における第1のネジ山に対向するフランクと、雌ネジ部52における対向するネジ山の他方のフランクとが、接触する。 Next, the configuration of the feed screw mechanism 50 in a state where the male screw portion 51 is screwed into the female screw portion 52 will be described. The lead screw mechanism 50 according to the present embodiment has a first screw thread in the male screw portion 51 and a second screw thread next to the screw thread in a state where the male screw portion 51 is screwed into the female screw portion 52. The opposing threads of the female threaded portion 52 are fitted between the two, and the flanks of the male threaded portion 51 facing the second thread of the first thread of the male threaded portion 51 and the opposite threads of the female threaded portion 52 are One flank is in contact with each other, and the flank facing the first thread on the second thread of the male thread portion 51 and the other flank of the opposite thread on the female thread portion 52 are in contact with each other. do.

図3は、雄ネジ部51が雌ネジ部52にねじ込まれた状態の送りネジ機構50の構成を示す断面図である。なお、雌ネジ部52は、軸方向に隣り合ったネジ山間のピッチが一定である4条ネジである。図3が示すように、雄ネジ部51が雌ネジ部52にねじ込まれた状態において、雄ネジ部51の隣り合った第1条Aのネジ山と第2条Bのネジ山との間に、対向する雌ネジ部52のネジ山Eが嵌合している。より詳細には、雄ネジ部51の第1条Aのネジ山におけるフランクA´と、雌ネジ部52の対向するネジ山Eの一方のフランクE´とが、接触し、且つ、雄ネジ部51の第2条Bのネジ山における第1条Aに対向するフランクB´と、雌ネジ部52の対向するネジ山Eの他方のフランクE´´とが、接触している。また、雄ネジ部51が雌ネジ部52にねじ込まれた状態において、雄ネジ部51の隣り合った第3条Cのネジ山と第4条Dのネジ山との間に、対向する雌ネジ部52のネジ山Gが嵌合している。より詳細には、雄ネジ部51の第3条Cのネジ山におけるフランクC´と、雌ネジ部52の対向するネジ山Gの一方のフランクG´とが、接触し、且つ、雄ネジ部51の第4条Dのネジ山における第3条Cのネジ山に対向するフランクD´と、雌ネジ部52の対向するネジ山Gの他方のフランクG´´とが、接触している。 FIG. 3 is a cross-sectional view showing the configuration of the feed screw mechanism 50 in a state where the male screw portion 51 is screwed into the female screw portion 52. The female screw portion 52 is a four-thread screw having a constant pitch between threads adjacent to each other in the axial direction. As shown in FIG. 3, in a state where the male threaded portion 51 is screwed into the female threaded portion 52, between the adjacent threads of Article 1A and the threads of Article 2B of the male threaded portion 51. , The thread E of the female screw portion 52 facing each other is fitted. More specifically, the flank A'in the thread of Article 1A of the male threaded portion 51 and one flank E'of the opposite thread E of the female threaded portion 52 are in contact with each other and the male threaded portion The flank B ′ facing Article 1 A in the thread of Article 2 B of 51 and the other flank E ″ of the opposite thread E of the female thread 52 are in contact with each other. Further, in a state where the male threaded portion 51 is screwed into the female threaded portion 52, the female threads facing each other between the adjacent threads of Article 3C and the threads of Article 4D of the male threaded portion 51. The thread G of the portion 52 is fitted. More specifically, the flank C'in the thread of Article 3C of the male threaded portion 51 and one flank G'of the opposing thread G of the female threaded portion 52 are in contact with each other and the male threaded portion The flank D ′ facing the thread of Article 3C in the thread of Article 4D of 51 and the other flank G ″ of the opposite thread G of the female thread 52 are in contact with each other.

一方、雄ネジ部51を対象とした形態とは異なり、雌ネジ部52の構成として、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なる構成を採用した場合、送りネジ機構50は、以下の構成を有する。つまり、雄ネジ部51が雌ネジ部52にねじ込まれた状態において、雌ネジ部52における第1のネジ山と当該ネジ山の隣の第2のネジ山との間に、雄ネジ部51における対向するネジ山がはまり、雌ネジ部52の第1のネジ山における第2のネジ山に対向するフランクと、雄ネジ部51における対向するネジ山の一方のフランクとが、接触し、且つ、雌ネジ部52の第22のネジ山における第1のネジ山に対向するフランクと、雄ネジ部51における対向するネジ山の他方のフランクとが、接触する。 On the other hand, unlike the form in which the male screw portion 51 is targeted, the configuration of the female screw portion 52 is such that the first pitch between the first screw thread and the second screw thread adjacent to each other in the axial direction and the first pitch. When a configuration in which the second pitch between the second screw thread and the third screw thread adjacent to each other in the axial direction is different is adopted, the feed screw mechanism 50 has the following configuration. That is, in a state where the male threaded portion 51 is screwed into the female threaded portion 52, the male threaded portion 51 is formed between the first thread of the female threaded portion 52 and the second thread adjacent to the thread. The opposing threads are fitted, and the flank of the female thread 52 facing the second thread in the first thread and the flank of one of the opposing threads in the male thread 51 are in contact with each other and are in contact with each other. The flank facing the first thread on the 22nd thread of the female thread 52 and the other flank of the opposite thread on the male thread 51 come into contact with each other.

また、本実施形態に係る送りネジ機構50は、上述の構成に加えて、雄ネジ部51における第1のネジ山と当該ネジ山の隣の第2のネジ山との間の谷底と、雌ネジ部52における対向するネジ山の山の頂との間には隙間が存在する。より詳細には、雄ネジ部51における隣り合った第1条Aのネジ山と第2条Bのネジ山との間の谷底と、雌ネジ部52における対向するネジ山Eの山の頂との間には隙間Pが存在する。また、雄ネジ部51における隣り合った第3条Cのネジ山と第4条Dのネジ山との間の谷底と、雌ネジ部52における対向するネジ山Gの山の頂との間には隙間Qが存在する。 Further, in the lead screw mechanism 50 according to the present embodiment, in addition to the above-described configuration, the valley bottom between the first screw thread in the male screw portion 51 and the second screw thread next to the screw thread and the female There is a gap between the threaded portion 52 and the peak of the opposite thread. More specifically, the valley bottom between the adjacent threads of Article 1A and the threads of Article 2B in the male thread portion 51, and the peaks of the opposite threads E in the female thread portion 52. There is a gap P between them. Further, between the valley bottom between the adjacent threads of Article 3C and the threads of Article 4D in the male thread portion 51 and the peaks of the opposite threads G in the female thread portion 52. Has a gap Q.

一方、雄ネジ部51を対象とした形態とは異なり、上述のように、雌ネジ部52の構成として、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なる構成を採用した場合、雌ネジ部52における第1のネジ山と当該ネジ山の隣の第2のネジ山との間の谷底と、雌ネジ部52における対向するネジ山の山の頂との間には隙間が存在する。 On the other hand, unlike the form in which the male screw portion 51 is targeted, as described above, as the configuration of the female screw portion 52, the second screw thread between the first screw thread and the second screw thread adjacent to each other in the axial direction is formed. When a configuration in which the pitch of 1 and the second pitch between the second screw thread and the third screw thread adjacent to each other in the axial direction are different from each other, the first screw thread in the female screw portion 52 is adopted. There is a gap between the bottom of the valley between the thread and the second thread next to the thread and the top of the thread of the opposite thread at the female thread 52.

なお、図3が示す送りネジ機構50では、雌ネジ部52は、4条ネジであるため、雄ネジ部51の隣り合った第2条Bのネジ山と第3条Cのネジ山との間に、これらのネジ山と接触しない雌ネジ部52のネジ山Fが存在するが、雌ネジ部52は、ネジ山Fが属する条と、雄ネジ部51の第4条Dと第1条Aとの間に位置するネジ山が属する条と、を備えていない2条ネジであってもよい。しかし、雌ネジ部52が4条ネジである場合、送りネジ機構50の製造に際し、既存の4条の雄ネジ部及び雌ネジ部に対して、雄ネジ部及び雌ネジ部の何れか一方のピッチを変更するだけで済むという利点がある。また、雌ネジ部52が4条ネジである場合、雌ネジ部52のネジ山Eの代わりに、ネジ山Fも、雄ネジ部51の隣り合った第1条Aのネジ山と第2条Bのネジ山との間に嵌合することができるため、雄ネジ部51を雌ネジ部52にねじ込みやすくなるという利点がある。なお、雄ネジ部51を対象とした形態とは異なり、上述のように、雌ネジ部52の構成として、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なる構成を採用した場合、雄ネジ部51は、2条ネジであってもよい。 In the lead screw mechanism 50 shown in FIG. 3, since the female screw portion 52 is a four-threaded screw, the thread of Article 2B and the thread of Article 3C adjacent to each other of the male screw portion 51 There is a thread F of the female threaded portion 52 that does not come into contact with these threads, but the female threaded portion 52 has a thread to which the thread F belongs and Articles 4D and 1 of the male threaded portion 51. It may be a double-threaded screw that does not have a thread to which a thread located between A and A belongs. However, when the female screw portion 52 is a four-threaded screw, when the feed screw mechanism 50 is manufactured, one of the male-threaded portion and the female-threaded portion is compared with the existing four-threaded male-threaded portion and female-threaded portion. The advantage is that you only have to change the pitch. Further, when the female screw portion 52 is a 4-thread screw, instead of the screw thread E of the female screw portion 52, the screw thread F is also the thread of Article 1A and Article 2 adjacent to the male screw portion 51. Since it can be fitted between the threads of B, there is an advantage that the male threaded portion 51 can be easily screwed into the female threaded portion 52. In addition, unlike the form in which the male screw portion 51 is targeted, as described above, as the configuration of the female screw portion 52, the first screw thread between the first screw thread and the second screw thread adjacent to each other in the axial direction is formed. When a configuration in which the pitch of 1 and the second pitch between the second and third threads adjacent to each other in the axial direction are different is adopted, the male screw portion 51 is a double-threaded screw. There may be.

次に、ロータ部20が回転することによりシャフト30が直動する状況における送りネジ機構50の状態について図を参照して説明する。図4A、図4B、図4C及び図4Dは、それぞれ、ロータ部20が回転することによりシャフト30が直動する状況における送りネジ機構50の状態を説明するための図である。 Next, the state of the feed screw mechanism 50 in the situation where the shaft 30 moves linearly due to the rotation of the rotor portion 20 will be described with reference to the drawings. 4A, 4B, 4C, and 4D are diagrams for explaining the state of the lead screw mechanism 50 in a situation where the shaft 30 is linearly moved by the rotation of the rotor portion 20, respectively.

まず、図4Aは、ロータ部20が回転する前の送りネジ機構50の状態を示す断面図である。図4Aが示すように、第1条Aは、位置(1)にネジ山が位置し、第2条Bは、位置(2)にネジ山が位置し、第3条Cは、位置(3)にネジ山が位置し、且つ、第4条Dは、位置(4)にネジ山が位置している。また、図4Aが示すように、雄ネジ部51の隣り合った第1条Aのネジ山と第2条Bのネジ山との間に、対向する雌ネジ部52のネジ山Eが嵌合している。また、雄ネジ部51の隣り合った第3条Cのネジ山と第4条Dのネジ山との間に、対向する雌ネジ部52のネジ山Gが嵌合している。より詳細には、雄ネジ部51の第1条Aのネジ山におけるフランクA´と、雌ネジ部52の対向するネジ山Eの一方のフランクE´とは、接触し、且つ、雄ネジ部51の第2条Bのネジ山における第1条Aのネジ山に対向するフランクB´と、雌ネジ部52の対向するネジ山Eの他方のフランクE´´とは、接触している。また、同様に、雄ネジ部51の第3条Cのネジ山におけるフランクC´と、雌ネジ部52の対向するネジ山Gの一方のフランクG´とは、接触し、且つ、雄ネジ部51の第4条Dのネジ山における第3条Cのネジ山に対向するフランクD´と、雌ネジ部52の対向するネジ山Gの他方のフランクG´´とは、接触している。図4Bは、図4Aの点線α―αで切断した断面図を示す。図4Bが示すように、雄ネジ部51の第1条Aは、雌ネジ部52のネジ山Eに接している。 First, FIG. 4A is a cross-sectional view showing a state of the feed screw mechanism 50 before the rotor portion 20 rotates. As shown in FIG. 4A, Article 1A has a thread located at position (1), Article 2B has a thread located at position (2), and Article 3C has a thread located at position (3). ), And in Article 4D, the screw thread is located at the position (4). Further, as shown in FIG. 4A, the thread E of the female threaded portion 52 facing the male threaded portion 51 is fitted between the threaded threads of the adjacent Article 1A and the threads of the threaded Article 2B of the male threaded portion 51. doing. Further, the thread G of the female threaded portion 52 facing the male threaded portion 51 is fitted between the threaded threads of the adjacent Article 3C and the threads of the threaded Article 4D. More specifically, the flank A'in the thread of Article 1A of the male threaded portion 51 and one flank E'of the opposite thread E of the female threaded portion 52 are in contact with each other and have a male threaded portion. The flank B ′ facing the thread of Article 1A in the thread of Article 2B of 51 and the other flank E ″ of the opposite thread E of the female thread 52 are in contact with each other. Similarly, the flank C'in the thread of Article 3C of the male threaded portion 51 and one flank G'of the opposite thread G of the female threaded portion 52 are in contact with each other and the male threaded portion. The flank D ′ facing the thread of Article 3C in the thread of Article 4D of 51 and the other flank G ″ of the opposite thread G of the female thread 52 are in contact with each other. FIG. 4B shows a cross-sectional view taken along the dotted line α—α of FIG. 4A. As shown in FIG. 4B, Article 1A of the male threaded portion 51 is in contact with the thread E of the female threaded portion 52.

次に、図4Cは、ロータ部20が一回転、回転した後の送りネジ機構50の状態を示す断面図である。図4Cが示すように、シャフト30が、4条分の距離だけ、軸方向に直動することにより、位置(1)に位置していた第1条Aのネジ山は、位置(1)´に移動し、位置(2)に位置していた第2条Bのネジ山は、位置(2)´に移動し、位置(3)に位置していた第3条Cのネジ山は、位置(3)´に移動し、且つ、位置(4)に位置していた第4条Dのネジ山は、位置(4)´に移動している。なお、シャフト30が直動した後においても、雄ネジ部51の隣り合った第1条Aのネジ山と第2条Bのネジ山との間に、対向する雌ネジ部52のネジ山Eが嵌合している。また、雄ネジ部51の隣り合った第3条Cのネジ山と第4条Dのネジ山との間に、対向する雌ネジ部52のネジ山Gがはまっている。より詳細には、シャフト30が直動した後においても、雄ネジ部51の第1条Aのネジ山におけるフランクA´と、雌ネジ部52の対向するネジ山Eの一方のフランクE´とは、接触し、且つ、雄ネジ部51の第2条Bのネジ山における第1条Aのネジ山に対向するフランクB´と、雌ネジ部52の対向するネジ山Eの他方のフランクE´´とは、接触している。また、同様に、雄ネジ部51の第3条Cのネジ山におけるフランクC´と、雌ネジ部52の対向するネジ山Gの一方のフランクG´とは、接触し、且つ、雄ネジ部51の第4条Dのネジ山における第3条Cのネジ山に対向するフランクD´と、雌ネジ部52の対向するネジ山Gの他方のフランクG´´とは、接触している。図4Dは、図4Cの点線β―βで切断した断面図を示す。ロータ部20が回転した後においても、雄ネジ部51の第1条Aは、雌ネジ部52のネジ山Eに接している。 Next, FIG. 4C is a cross-sectional view showing a state of the feed screw mechanism 50 after the rotor portion 20 makes one rotation and rotates. As shown in FIG. 4C, the screw thread of Article 1A, which was located at the position (1), is moved to the position (1) ′ by the shaft 30 moving linearly in the axial direction by the distance of four rows. The thread of Article 2B, which was located at position (2), moved to position (2)', and the thread of Article 3C, which was located at position (3), is located. The screw thread of Article 4D, which has moved to (3)'and was located at position (4), has moved to position (4)'. Even after the shaft 30 moves linearly, the thread E of the female thread 52 facing the male thread 51 between the adjacent thread of Article 1A and the thread of Article 2B B. Are fitted. Further, the thread G of the female threaded portion 52 facing the male threaded portion 51 is fitted between the threaded threads of Article 3C and the threads of Article 4D adjacent to each other. More specifically, even after the shaft 30 moves linearly, the flank A'at the thread of Article 1A of the male thread portion 51 and the flank E'of one of the opposite threads E of the female thread portion 52. Is in contact with the flank B'that faces the thread of Article 1A in the thread of Article 2B of the male thread portion 51, and the other flank E of the thread E of the female thread portion 52 that faces the thread E. It is in contact with ´´. Similarly, the flank C'in the thread of Article 3C of the male threaded portion 51 and one flank G'of the opposite thread G of the female threaded portion 52 are in contact with each other and the male threaded portion. The flank D ′ facing the thread of Article 3C in the thread of Article 4D of 51 and the other flank G ″ of the opposite thread G of the female thread 52 are in contact with each other. FIG. 4D shows a cross-sectional view taken along the dotted line β-β of FIG. 4C. Even after the rotor portion 20 has rotated, Article 1A of the male screw portion 51 is in contact with the thread E of the female screw portion 52.

以上のように、ロータ部20が回転する前においても、ロータ部20が回転し、シャフト30が軸方向に直動した後においても、雄ネジ部51の第1条Aのネジ山におけるフランクA´と、雌ネジ部52の対向するネジ山Eの一方のフランクE´とは、接触し、且つ、雄ネジ部51の第2条Bのネジ山における第1条Aのネジ山に対向するフランクB´と、雌ネジ部52の対向するネジ山Eの他方のフランクE´´とは、接触している。また、同様に、雄ネジ部51の第3条Cのネジ山におけるフランクC´と、雌ネジ部52の対向するネジ山Gの一方のフランクG´とは、接触し、且つ、雄ネジ部51の第4条Dのネジ山における第3条Cのネジ山に対向するフランクD´と、雌ネジ部52の対向するネジ山Gの他方のフランクG´´とは、接触している。つまり、雄ネジ部51の隣り合った2つのネジ山の間に雌ネジ部52の対向するネジ山が嵌合した状態で、シャフト30は、軸方向に直動運動する。従って、バックラッシュによる雄ネジ部51と雌ネジ部52との相対位置のずれが生じないため、シャフト30の直動運動の位置精度を向上させることができる。 As described above, even before the rotor portion 20 rotates and after the rotor portion 20 rotates and the shaft 30 moves linearly in the axial direction, the flank A at the thread of Article 1A of the male screw portion 51 'And one of the flanks E'of the thread E of the female thread 52 facing each other are in contact with each other and face the thread of Article 1A in the thread of Article 2B of the male thread 51. The flank B ′ and the other flank E ″ of the opposite thread E of the female thread portion 52 are in contact with each other. Similarly, the flank C'in the thread of Article 3C of the male threaded portion 51 and one flank G'of the opposite thread G of the female threaded portion 52 are in contact with each other and the male threaded portion. The flank D ′ facing the thread of Article 3C in the thread of Article 4D of 51 and the other flank G ″ of the opposite thread G of the female thread 52 are in contact with each other. That is, the shaft 30 moves linearly in the axial direction in a state where the opposite threads of the female thread 52 are fitted between two adjacent threads of the male thread 51. Therefore, since the relative positions of the male screw portion 51 and the female screw portion 52 do not deviate due to backlash, the positional accuracy of the linear motion of the shaft 30 can be improved.

また、ロータ部20が回転する前においても、ロータ部20が回転した後においても、雄ネジ部51における隣り合った第1条Aのネジ山と第2条Bのネジ山との間の谷底と、雌ネジ部52における対向するネジ山Eの山の頂との間には隙間Pが存在する。また、雄ネジ部51における隣り合った第3条Cのネジ山と第4条Dのネジ山との間の谷底と、雌ネジ部52における対向するネジ山Gの山の頂との間には隙間Qが存在する。つまり、隙間P及び隙間Qが存在する状態で、シャフト30は、軸方向に直動運動する。これにより、雌ネジ部52と雄ネジ部51との間に、例えば、グリスなどの潤滑剤が添加されている場合、当該潤滑剤は、雌ネジ部52と雄ネジ部51との接触によって隙間P又は隙間Qに押し流され、隙間P又は隙間Qに溜まる。よって、当該潤滑剤は、雌ネジ部52と雄ネジ部51との間から外部に漏れづらくなり、送りネジ機構50の摺動性を維持しやすくなる。 Further, before the rotor portion 20 rotates and after the rotor portion 20 rotates, the valley bottom between the adjacent threads of Article 1A and the threads of Article 2B in the male screw portion 51. There is a gap P between and the top of the thread E of the opposite thread E in the female thread portion 52. Further, between the valley bottom between the adjacent threads of Article 3C and the threads of Article 4D in the male thread portion 51 and the peaks of the opposite threads G in the female thread portion 52. Has a gap Q. That is, in the state where the gap P and the gap Q exist, the shaft 30 moves linearly in the axial direction. As a result, when a lubricant such as grease is added between the female screw portion 52 and the male screw portion 51, the lubricant has a gap due to contact between the female screw portion 52 and the male screw portion 51. It is swept away by P or gap Q and accumulates in gap P or gap Q. Therefore, the lubricant is less likely to leak to the outside from between the female screw portion 52 and the male screw portion 51, and the slidability of the feed screw mechanism 50 can be easily maintained.

また、本実施形態のように、雌ネジ部52の素材が樹脂である場合、雌ネジ部52の製造時に、例えば、上記のように、雄ネジ部51の隣り合った第1条Aのネジ山と第2条Bのネジ山との間に、対向する雌ネジ部52のネジ山Eがはまるような、ネジ山Eの幅よりも、ネジ山Eの幅を広くしてもよい。そして、雄ネジ部51が雌ネジ部52にねじ込まれた状態において、ロータ部20を回転させることによりシャフト30を直動させ、雌ネジ部52のネジ山EのフランクE´及びフランクE´´を摩耗させ、雄ネジ部51の隣り合った第1条Aのネジ山と第2条Bのネジ山との間に、対向するネジ山Eがはまるように、雌ネジ部52をエージングしてもよい。これにより、軸方向に隣り合った第1のネジ山と第2のネジ山との間に、対向するネジ山がはまる構成の送りネジ機構50を容易に製造することができる。なお、ネジ山Gについても同様である。 Further, when the material of the female screw portion 52 is resin as in the present embodiment, when the female screw portion 52 is manufactured, for example, as described above, the screw of Article 1A adjacent to the male screw portion 51 is screwed. The width of the thread E may be wider than the width of the thread E such that the thread E of the female screw portion 52 facing the thread is fitted between the thread and the thread of Article 2B. Then, in a state where the male screw portion 51 is screwed into the female screw portion 52, the shaft 30 is linearly moved by rotating the rotor portion 20, and the flanks E ″ and the flank E ″ of the screw thread E of the female screw portion 52. The female screw portion 52 is aged so that the opposite screw thread E fits between the adjacent threads of Article 1A and the threads of Article 2B of the male screw portion 51. May be good. As a result, it is possible to easily manufacture the feed screw mechanism 50 having a structure in which the facing threads are fitted between the first threads and the second threads that are adjacent to each other in the axial direction. The same applies to the screw thread G.

また、雌ネジ部52の素材が樹脂である形態とは異なり、雄ネジ部51の素材が樹脂である場合、雄ネジ部51の製造時に、例えば、上記のように、雄ネジ部51の隣り合った第1条Aのネジ山と第2条Bのネジ山との間に、対向する雌ネジ部52のネジ山Eがはまるような、第1条Aのネジ山と第2条Bのネジ山との間のピッチよりも、第1条Aのネジ山と第2条Bのネジ山との間のピッチを狭くしてもよい。そして、雄ネジ部51が雌ネジ部52にねじ込まれた状態において、ロータ部20を回転させることによりシャフト30を直動させ、雄ネジ部51の第1条Aのネジ山のフランクA´と第2条Bのネジ山のフランクB´とを摩耗させ、第1条Aのネジ山と第2条Bのネジ山との間に、対向する雌ネジ部52のネジ山Eがはまるように、雄ネジ部51をエージングしてもよい。なお、第3条C及び第4条Dについても同様である。 Further, unlike the form in which the material of the female screw portion 52 is resin, when the material of the male screw portion 51 is resin, when the male screw portion 51 is manufactured, for example, as described above, next to the male screw portion 51. The thread of Article 1A and the thread of Article 2B so that the thread E of the female thread 52 facing each other fits between the thread of Article 1A and the thread of Article 2B that match. The pitch between the threads of Article 1A and the threads of Article 2B may be narrower than the pitch between the threads. Then, in a state where the male screw portion 51 is screwed into the female screw portion 52, the shaft 30 is linearly moved by rotating the rotor portion 20, and the screw thread Frank A'of Article 1A of the male screw portion 51 is formed. The flank B'of the thread of Article 2B is worn so that the thread E of the female thread 52 facing each other fits between the thread of Article 1A and the thread of Article 2B. , The male screw portion 51 may be aged. The same applies to Articles 3C and 4D.

また、雄ネジ部51を転造ネジとして製造してもよい。その場合、通常の多条ネジの金型において、隣り合うピッチを変更した金型を作製し、当該金型を用いることにより、上述の第1のネジ山及び第2のネジ山の間の第1のピッチと、第2のネジ山及び第3のネジ山の間の第2のピッチとが異なる雄ネジ部51を製造することができる。 Further, the male screw portion 51 may be manufactured as a rolled screw. In that case, in a normal multi-thread screw mold, a mold in which adjacent pitches are changed is manufactured, and by using the mold, the first screw thread between the first screw thread and the second screw thread described above is used. A male threaded portion 51 having a pitch of 1 and a second pitch between the second thread and the third thread is different from each other can be manufactured.

次に、本実施形態に係るVGアクチュエータ1の適用例について図面を参照して説明する。図5A、図5B及び図5Cは、それぞれ、本実施形態に係るVGアクチュエータ1をVGターボチャージャ60に適用した例を示す図である。図5A及び図5Bが示すように、VGアクチュエータ1は、シャフト30の先端がリンク機構を介して、VGターボチャージャの可動ベーン62に接続しており、当該可動ベーンを開閉する機能を有する。図5Cは、可動ベーン62を備えているVGターボチャージャ60をエンジンシステム70に適用した例を示す図である。なお、上述の図5A及び図5Bは、それぞれ、図5Cにおける矢印Rから見た矢視図である。図5Cが示すように、VGターボチャージャ60は、同軸上のタービン61とコンプレッサ63とを備えている。当該適用例では、VGアクチュエータ1は、タービン61の可動ベーン62の開閉を行うことにより、排気ガスの流量を制御するという機能を有する。 Next, an application example of the VG actuator 1 according to the present embodiment will be described with reference to the drawings. 5A, 5B, and 5C are diagrams showing an example in which the VG actuator 1 according to the present embodiment is applied to the VG turbocharger 60, respectively. As shown in FIGS. 5A and 5B, the tip of the shaft 30 of the VG actuator 1 is connected to the movable vane 62 of the VG turbocharger via a link mechanism, and has a function of opening and closing the movable vane. FIG. 5C is a diagram showing an example in which a VG turbocharger 60 having a movable vane 62 is applied to an engine system 70. The above-mentioned FIGS. 5A and 5B are arrows viewed from the arrow R in FIG. 5C, respectively. As shown in FIG. 5C, the VG turbocharger 60 includes a coaxial turbine 61 and a compressor 63. In the application example, the VG actuator 1 has a function of controlling the flow rate of exhaust gas by opening and closing the movable vane 62 of the turbine 61.

以上のように、実施の形態1に係る送りネジ機構50は、回転可能な雌ネジ部52と、雌ネジ部52にねじ込まれた状態において、回転が制限され、雌ネジ部52が回転することにより軸方向に直動する雄ネジ部51と、を備え、雌ネジ部52又は雄ネジ部51の少なくとも一方は、多条ネジとして構成され、多条ネジとして構成された雌ネジ部52又は多条ネジとして構成された雄ネジ部51の何れか一方は、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なる。 As described above, in the feed screw mechanism 50 according to the first embodiment, the rotation is restricted and the female screw portion 52 rotates while being screwed into the rotatable female screw portion 52 and the female screw portion 52. A male screw portion 51 that moves linearly in the axial direction by One of the male threaded portions 51 configured as the threaded thread is the first pitch between the first thread and the second thread adjacent to each other in the axial direction, and the thread is adjacent to the first thread in the axial direction. The second pitch between the second and third threads is different.

上記の構成によれば、雌ネジ部52及び雄ネジ部51の何れか一方における第1のネジ山と第2のネジ山との間に、雌ネジ部52及び雄ネジ部51の何れか他方の対向するネジ山が嵌合するように、雌ネジ部52及び雄ネジ部51をさらに構成することにより、当該第1のネジ山と第2のネジ山と当該対向するネジ山との間にバックラッシュが生じなくなる。これにより、バックラッシュによる雄ネジ部51と雌ネジ部52との相対位置のずれが生じないため、シャフト30の直動運動の位置精度を向上させることができる。 According to the above configuration, between the first thread and the second thread in either the female threaded portion 52 or the male threaded portion 51, either the female threaded portion 52 or the male threaded portion 51 is located between the female threaded portion 52 and the male threaded portion 51. By further configuring the female screw portion 52 and the male screw portion 51 so that the opposing threads of the screw threads are fitted to each other, the first screw thread, the second screw thread, and the opposite screw thread are provided between the first screw thread and the second screw thread. Backlash no longer occurs. As a result, the relative positions of the male screw portion 51 and the female screw portion 52 do not deviate due to backlash, so that the position accuracy of the linear motion of the shaft 30 can be improved.

また、上記のようにバックラッシュが生じなくなるため、雌ネジ部52のネジ山と雄ネジ部51のネジ山との衝突とこれによる衝突音とを抑制することができる。また、雌ネジ部52のネジ山と雄ネジ部51のネジ山との衝突を抑制することができるため、送りネジ機構50の耐久性を向上することができる。 Further, since the backlash does not occur as described above, it is possible to suppress the collision between the screw thread of the female screw portion 52 and the screw thread of the male screw portion 51 and the collision noise caused by the collision. Further, since the collision between the screw thread of the female screw portion 52 and the screw thread of the male screw portion 51 can be suppressed, the durability of the feed screw mechanism 50 can be improved.

また、従来の送りネジ機構の製造時には、雄ネジ部51が雌ネジ部52にねじ込まれた状態において、隣り合った雌ネジ部52のネジ山と雄ネジ部51のネジ山との間にバックラッシュを設けるため、全ての雌ネジ部52のネジ山と雄ネジ部51のネジ山との間のバックラッシュの公差を累積した累積公差を考慮する必要がある。しかし、本実施形態に係る送りネジ機構50の上記の構成によれば、第1のピッチ又は第2のピッチの公差を考慮するのみで、他のピッチの公差が決まるため、従来の送りネジ機構よりも製造が容易である。 Further, at the time of manufacturing the conventional feed screw mechanism, when the male screw portion 51 is screwed into the female screw portion 52, the back is made between the threads of the adjacent female screw portions 52 and the threads of the male screw portion 51. In order to provide the rush, it is necessary to consider the cumulative tolerance obtained by accumulating the backlash tolerances between the threads of all the female threads 52 and the threads of the male threads 51. However, according to the above configuration of the lead screw mechanism 50 according to the present embodiment, the tolerances of other pitches are determined only by considering the tolerance of the first pitch or the second pitch. Therefore, the conventional lead screw mechanism It is easier to manufacture than.

また、実施の形態1に係る送りネジ機構50は、雄ネジ部51が雌ネジ部52にねじ込まれた状態において、多条ネジとして構成された雌ネジ部52又は多条ネジとして構成された雄ネジ部51の何れか一方における第1のネジ山と第2のネジ山との間に、雌ネジ部52及び雄ネジ部51の他方における対向するネジ山が嵌合し、第1のネジ山における第2のネジ山に対向するフランクと、対向するネジ山の一方のフランクとが、接触し、且つ、第2のネジ山における第1のネジ山に対向するフランクと、対向するネジ山の他方のフランクとが、接触する。 Further, the lead screw mechanism 50 according to the first embodiment has a male screw portion 52 configured as a multi-threaded screw or a male screw configured as a multi-threaded screw in a state where the male screw portion 51 is screwed into the female screw portion 52. Between the first thread and the second thread on one of the screw portions 51, the opposite threads on the other of the female thread portion 52 and the male thread portion 51 are fitted, and the first screw thread is formed. The flank facing the second screw thread and one of the flanks of the opposite screw thread are in contact with each other, and the flank facing the first screw thread in the second screw thread and the flank facing the first screw thread are in contact with each other. The other Frank comes into contact.

上記の構成によれば、第1のネジ山と第2のネジ山との間に、対向するネジ山が嵌合した状態で、シャフト30は、軸方向に直動運動する。従って、バックラッシュによる雄ネジ部51と雌ネジ部52との相対位置のずれが生じないため、シャフト30の直動運動の位置精度を向上させることができる。
また、実施の形態1に係るネジ機構50は、第1のネジ山と第2のネジ山との間の谷底と、対向するネジ山の山の頂との間には隙間が存在する。
According to the above configuration, the shaft 30 moves linearly in the axial direction in a state where the opposing threads are fitted between the first threads and the second threads. Therefore, since the relative positions of the male screw portion 51 and the female screw portion 52 do not deviate due to backlash, the positional accuracy of the linear motion of the shaft 30 can be improved.
Further, in the screw mechanism 50 according to the first embodiment, there is a gap between the valley bottom between the first screw thread and the second screw thread and the peak of the opposite screw thread.

上記の構成によれば、当該隙間が存在する状態で、シャフト30は、軸方向に直動運動する。これにより、雌ネジ部52と雄ネジ部51との間に潤滑剤が添加されている場合、当該潤滑剤は、雌ネジ部52と雄ネジ部51との接触によって当該隙間に押し流され、当該隙間に溜まる。よって、潤滑剤は、雌ネジ部52と雄ネジ部51との間から外部に漏れづらくなり、送りネジ機構50の摺動性を維持しやすくなる。 According to the above configuration, the shaft 30 moves linearly in the axial direction in the presence of the gap. As a result, when a lubricant is added between the female screw portion 52 and the male screw portion 51, the lubricant is swept into the gap by contact between the female screw portion 52 and the male screw portion 51, and the lubricant is washed away. It collects in the gap. Therefore, the lubricant is less likely to leak to the outside from between the female screw portion 52 and the male screw portion 51, and the slidability of the feed screw mechanism 50 can be easily maintained.

また、実施の形態1に係るネジ機構50は、雌ネジ部52及び雄ネジ部51の何れか一方の素材は、樹脂である。
上記の構成によれば、上述のように、素材が樹脂である雌ネジ部52又は雄ネジ部51をエージングすることにより、第1のネジ山と第2のネジ山との間に、対向するネジ山が嵌合する構成の送りネジ機構50を容易に製造することができる。
Further, in the screw mechanism 50 according to the first embodiment, the material of either the female screw portion 52 or the male screw portion 51 is resin.
According to the above configuration, as described above, by aging the female screw portion 52 or the male screw portion 51 whose material is resin, the first screw thread and the second screw thread face each other. The feed screw mechanism 50 having a structure in which the threads are fitted can be easily manufactured.

また、実施の形態1に係るVGアクチュエータ1は、上記の何れか1つの構成を有する送りネジ機構50を備えたアクチュエータであって、雄ネジ部51を外周面に有するシャフト30と、雌ネジ部52を内周面に有し、雌ネジ部52を回転させる駆動部と、シャフト30の回転を制限するブッシュ40とを備え、駆動部が、雄ネジ部51がねじ込まれた雌ネジ部52を回転させることによりシャフト30が軸方向に直動する。
上記の構成によれば、VGアクチュエータ1において、上記の各構成の効果を奏することができる。
Further, the VG actuator 1 according to the first embodiment is an actuator provided with a feed screw mechanism 50 having any one of the above configurations, and has a shaft 30 having a male screw portion 51 on the outer peripheral surface and a female screw portion. A drive unit having 52 on the inner peripheral surface to rotate the female screw portion 52 and a bush 40 for limiting the rotation of the shaft 30 are provided, and the drive unit has a female screw portion 52 into which the male screw portion 51 is screwed. By rotating the shaft 30, the shaft 30 moves linearly in the axial direction.
According to the above configuration, the VG actuator 1 can exert the effects of each of the above configurations.

また、実施の形態1に係るVGアクチュエータ1の駆動部は、モータである。
上記の構成によれば、モータにより雌ネジ部52を回転させることによって、雌ネジ部52にねじ込まれた雄ネジ部51を外周面に有するシャフト30を直動させることができる。
The drive unit of the VG actuator 1 according to the first embodiment is a motor.
According to the above configuration, by rotating the female screw portion 52 by the motor, the shaft 30 having the male screw portion 51 screwed into the female screw portion 52 on the outer peripheral surface can be directly moved.

また、実施の形態1に係るVGアクチュエータ1は、駆動部の回転運動によるシャフト30の直動運動によって、VGターボチャージャ60の可動ベーン62を開閉する。
上記の構成によれば、上述の送りネジ機構50の効果により、VGターボチャージャの可動ベーンの開閉の位置精度を向上させることができる。
なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
Further, the VG actuator 1 according to the first embodiment opens and closes the movable vane 62 of the VG turbocharger 60 by the linear motion of the shaft 30 due to the rotational motion of the drive unit.
According to the above configuration, the position accuracy of opening and closing the movable vane of the VG turbocharger can be improved by the effect of the feed screw mechanism 50 described above.
In the present invention, it is possible to modify any component of the embodiment or omit any component of the embodiment within the scope of the invention.

この発明に係る送りネジ機構は、雄ネジ部のネジ山と雌ネジ部のネジ山との間のバックラッシュによる、直動運動の位置精度の低下を抑制することができるため、雌ネジ部と雄ネジ部とを備える送りネジ機構に利用可能である。 The lead screw mechanism according to the present invention can suppress a decrease in the position accuracy of the linear motion due to backlash between the screw thread of the male screw portion and the screw thread of the female screw portion. It can be used for a feed screw mechanism provided with a male screw portion.

1 VGアクチュエータ、2 ロータマグネット、3 樹脂部、4 ベアリング、5 ベアリング、6 固定子、6a ステータコア、6b ボビン、6c コイル端子、7 センサマグネット、8 センサ部、9 ハウジング、10 制御回路部、11 ケース、11a コネクタ、11b ターミナル、20 ロータ部、30 シャフト、40 ブッシュ、50 送りネジ機構、51 雄ネジ部、52 雌ネジ部、60 VGターボチャージャ、61 タービン、62 可動ベーン、63 コンプレッサ、70 エンジンシステム。 1 VG actuator, 2 rotor magnet, 3 resin part, 4 bearing, 5 bearing, 6 stator, 6a stator core, 6b bobbin, 6c coil terminal, 7 sensor magnet, 8 sensor part, 9 housing, 10 control circuit part, 11 cases , 11a connector, 11b terminal, 20 rotor part, 30 shaft, 40 bush, 50 feed thread mechanism, 51 male thread part, 52 female thread part, 60 VG turbocharger, 61 turbine, 62 movable vane, 63 compressor, 70 engine system ..

この発明に係る送りネジ機構は、回転可能な雌ネジ部と、雌ネジ部にねじ込まれた状態において、回転が制限され、雌ネジ部が回転することにより軸方向に直動する雄ネジ部と、を備え、雌ネジ部又は雄ネジ部の少なくとも一方は、多条ネジとして構成され、多条ネジとして構成された雌ネジ部又は多条ネジとして構成された雄ネジ部の何れか一方は、軸方向に隣り合った第1のネジ山及び第2のネジ山との間の第1のピッチと、軸方向に隣り合った当該第2のネジ山と第3のネジ山との間の第2のピッチとが異なり、前記雄ネジ部が前記雌ネジ部にねじ込まれた状態において、多条ネジとして構成された前記雌ネジ部又は多条ネジとして構成された前記雄ネジ部の何れか一方における前記第1のネジ山と前記第2のネジ山との間に、前記雌ネジ部及び前記雄ネジ部の他方における対向するネジ山が嵌合し、前記第1のネジ山における前記第2のネジ山に対向するフランクと、前記対向するネジ山の一方のフランクとが、接触し、且つ、前記第2のネジ山における前記第1のネジ山に対向するフランクと、前記対向するネジ山の他方のフランクとが、接触するThe lead screw mechanism according to the present invention includes a rotatable female screw portion and a male screw portion whose rotation is restricted when screwed into the female screw portion and which moves linearly in the axial direction when the female screw portion rotates. , At least one of the female threaded portion and the male threaded portion is configured as a multi-threaded screw, and either the female threaded portion configured as the multi-threaded screw or the male threaded portion configured as the multi-threaded screw is provided. The first pitch between the first and second threads adjacent in the axial direction and the second between the second and third threads adjacent in the axial direction. and second pitch Ri is Do different, in a state in which the male threaded portion is screwed into the female threaded portion, one of the male threaded portion that is configured as the female screw portion or the multi-start thread is configured as a multiple thread screw The female thread and the opposite thread on the other side of the male thread are fitted between the first thread and the second thread on one side, and the first thread on the first thread. The flank facing the screw thread of 2 and one of the flanks of the facing screw thread are in contact with each other, and the flank facing the first screw thread in the second screw thread and the facing screw The other Frank on the mountain makes contact .

Claims (7)

回転可能な雌ネジ部と、
前記雌ネジ部にねじ込まれた状態において、回転が制限され、前記雌ネジ部が回転することにより軸方向に直動する雄ネジ部と、を備え、
前記雌ネジ部又は前記雄ネジ部の少なくとも一方は、多条ネジとして構成され、
多条ネジとして構成された前記雌ネジ部又は多条ネジとして構成された前記雄ネジ部のうち何れか一方は、軸方向に隣り合った第1のネジ山及び第2のネジ山の間の第1のピッチと、軸方向に隣り合った当該第2のネジ山及び第3のネジ山の間の第2のピッチとが異なることを特徴とする、送りネジ機構。
With a rotatable female thread
In the state of being screwed into the female screw portion, the rotation is restricted, and the male screw portion that moves linearly in the axial direction by the rotation of the female screw portion is provided.
At least one of the female threaded portion and the male threaded portion is configured as a multi-threaded screw.
One of the female threaded portion configured as a multi-threaded screw and the male threaded portion configured as a multi-threaded screw is between the first screw thread and the second thread thread adjacent to each other in the axial direction. A lead screw mechanism, characterized in that the first pitch is different from the second pitch between the second and third threads adjacent to each other in the axial direction.
前記雄ネジ部が前記雌ネジ部にねじ込まれた状態において、多条ネジとして構成された前記雌ネジ部又は多条ネジとして構成された前記雄ネジ部の何れか一方における前記第1のネジ山と前記第2のネジ山との間に、前記雌ネジ部及び前記雄ネジ部の他方における対向するネジ山が嵌合し、前記第1のネジ山における前記第2のネジ山に対向するフランクと、前記対向するネジ山の一方のフランクとが、接触し、且つ、前記第2のネジ山における前記第1のネジ山に対向するフランクと、前記対向するネジ山の他方のフランクとが、接触することを特徴とする、請求項1に記載の送りネジ機構。 With the male threaded portion screwed into the female threaded portion, the first thread on either the female threaded portion configured as a multi-threaded screw or the male threaded portion configured as a multi-threaded screw. A flank facing the second thread in the first thread is fitted with the opposite thread of the female thread and the other of the male thread between the thread and the second thread. And one of the flanks of the opposite screw thread are in contact with each other, and the flank of the second screw thread facing the first screw thread and the other flank of the opposite screw thread are in contact with each other. The feed screw mechanism according to claim 1, wherein the feed screw mechanism is in contact with each other. 前記第1のネジ山と前記第2のネジ山との間の谷底と、前記対向するネジ山の山の頂との間には隙間が存在することを特徴とする、請求項2に記載の送りネジ機構。 The second aspect of the present invention, wherein there is a gap between the valley bottom between the first screw thread and the second screw thread and the top of the thread of the opposite screw thread. Lead screw mechanism. 前記雌ネジ部及び前記雄ネジ部の何れか一方の素材は、樹脂であることを特徴とする、請求項1に記載の送りネジ機構。 The feed screw mechanism according to claim 1, wherein the material of either the female screw portion or the male screw portion is a resin. 請求項1から請求項4の何れか1項に記載の送りネジ機構を備えたアクチュエータであって、
前記雄ネジ部を外周面に有するシャフトと、
前記雌ネジ部を内周面に有し、前記雌ネジ部を回転させる駆動部と、
前記シャフトの回転を制限するブッシュとを備え、
前記駆動部が、前記雄ネジ部がねじ込まれた前記雌ネジ部を回転させることにより前記シャフトが軸方向に直動することを特徴とする、アクチュエータ。
An actuator provided with the feed screw mechanism according to any one of claims 1 to 4.
A shaft having the male screw portion on the outer peripheral surface and
A drive unit having the female screw portion on the inner peripheral surface and rotating the female screw portion,
With a bush that limits the rotation of the shaft
An actuator characterized in that the drive portion rotates the female screw portion into which the male screw portion is screwed so that the shaft moves linearly in the axial direction.
前記駆動部は、モータであることを特徴とする、請求項5に記載のアクチュエータ。 The actuator according to claim 5, wherein the drive unit is a motor. 前記駆動部の回転運動による前記シャフトの直動運動によって、VGターボチャージャの可動ベーンを開閉することを特徴とする、請求項5に記載のアクチュエータ。 The actuator according to claim 5, wherein the movable vane of the VG turbocharger is opened and closed by the linear motion of the shaft due to the rotational motion of the drive unit.
JP2021515378A 2019-04-24 2019-04-24 Lead screw mechanism and actuator Active JP6906730B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017464 WO2020217346A1 (en) 2019-04-24 2019-04-24 Feed screw mechanism and actuator

Publications (2)

Publication Number Publication Date
JP6906730B2 JP6906730B2 (en) 2021-07-21
JPWO2020217346A1 true JPWO2020217346A1 (en) 2021-09-13

Family

ID=72940640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021515378A Active JP6906730B2 (en) 2019-04-24 2019-04-24 Lead screw mechanism and actuator

Country Status (2)

Country Link
JP (1) JP6906730B2 (en)
WO (1) WO2020217346A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345253U (en) * 1986-09-04 1988-03-26
JP2003148107A (en) * 2001-11-14 2003-05-21 Mitsubishi Heavy Ind Ltd Actuator adjusting device for variable displacement turbine
JP2004055043A (en) * 2002-07-19 2004-02-19 Sanyo Electric Co Ltd Pickup drive device
WO2005038301A1 (en) * 2003-10-20 2005-04-28 Thk Co., Ltd. Roller screw
JP2018059494A (en) * 2016-09-28 2018-04-12 大豊工業株式会社 Electric actuator and electric waste gate valve system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345253U (en) * 1986-09-04 1988-03-26
JP2003148107A (en) * 2001-11-14 2003-05-21 Mitsubishi Heavy Ind Ltd Actuator adjusting device for variable displacement turbine
JP2004055043A (en) * 2002-07-19 2004-02-19 Sanyo Electric Co Ltd Pickup drive device
WO2005038301A1 (en) * 2003-10-20 2005-04-28 Thk Co., Ltd. Roller screw
JP2018059494A (en) * 2016-09-28 2018-04-12 大豊工業株式会社 Electric actuator and electric waste gate valve system

Also Published As

Publication number Publication date
WO2020217346A1 (en) 2020-10-29
JP6906730B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US20020043880A1 (en) Linear type actuator
JP4575891B2 (en) Rotating electric machine
JP6906730B2 (en) Lead screw mechanism and actuator
JP5325068B2 (en) Engine intake system
JP5463273B2 (en) Linear actuator
JP5449559B2 (en) Electric control actuator and turbo wastegate actuator
US7475662B2 (en) Actuator for valve lift controller
JP4837043B2 (en) Actuator
WO2018216526A1 (en) Electric valve actuator and valve device
KR20160091825A (en) Gear drive and actuator arrangement
US9945447B2 (en) Gear drive and actuator arrangement
JP5785016B2 (en) Linear actuator
US20210341076A1 (en) Gear train for a valve actuator
US20060238050A1 (en) Stepping motor
JP3948016B2 (en) Throttle device
JP6315933B2 (en) Rotor and brushless motor
KR101701511B1 (en) Stepping motor
WO2022097252A1 (en) Actuator
WO2012014697A1 (en) Encoder and actuator
JP2002218707A (en) Structure of electromagnetic actuator
US11772606B2 (en) Reversible motor configured with motion stops for aircraft windshield wiper system
WO2016125303A1 (en) Actuator
KR100367364B1 (en) Intake air quantity control device for internal combustion engine
KR101077977B1 (en) Rotor supporting structure for slim step motor
KR20140004478U (en) Motor for exhaust gas recirculation valve

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210402

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210402

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250