JPWO2020172589A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020172589A5
JPWO2020172589A5 JP2021548693A JP2021548693A JPWO2020172589A5 JP WO2020172589 A5 JPWO2020172589 A5 JP WO2020172589A5 JP 2021548693 A JP2021548693 A JP 2021548693A JP 2021548693 A JP2021548693 A JP 2021548693A JP WO2020172589 A5 JPWO2020172589 A5 JP WO2020172589A5
Authority
JP
Japan
Prior art keywords
cardiomyocytes
mature
mature cardiomyocytes
afc
ecm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021548693A
Other languages
Japanese (ja)
Other versions
JP7250154B2 (en
JP2022521238A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/019311 external-priority patent/WO2020172589A1/en
Publication of JP2022521238A publication Critical patent/JP2022521238A/en
Publication of JPWO2020172589A5 publication Critical patent/JPWO2020172589A5/ja
Priority to JP2023044022A priority Critical patent/JP2023076502A/en
Application granted granted Critical
Publication of JP7250154B2 publication Critical patent/JP7250154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明のその他の目的、特色、および利点は、以下の詳細な説明から明らかになる。しかし、詳細な説明および特定の実施例は、本発明の特定の実施形態を示しているが、説明のためのみに提供していることを理解されたい。それは、本発明の精神および範囲内で種々の変形および改変がこの詳細な説明から当業者には明らかになるからである。
本発明は、例えば、以下の項目を提供する。
(項目1)
ヒト誘導多能性幹細胞に由来する未熟な心筋細胞の成熟化のための方法であって、
(a)ヒト誘導多能性幹細胞に由来する未熟な心筋細胞(未熟なhiPSC-CM)を提供するステップ;
(b)羊水から単離された細胞からin vitroで誘導された細胞外マトリックス(AFC-ECM)を提供するステップ;
(c)前記未熟なhiPSC-CMを前記AFC-ECMと接触させるステップ;および
(d)培養培地中で前記未熟なhiPSC-CMを前記AFC-ECMと共に培養して、前記未熟なhiPSC-CMの成熟化を誘導し、それにより成熟心筋細胞を形成するステップ;
を含み、前記成熟心筋細胞が、成人ヒト心組織と似た区別できるサルコメア構造を有するロッド状細胞によって特徴付けられる、方法。
(項目2)
前記未熟なhiPSC-CMが、前記AFC-ECM上にプレーティングされる、項目1に記載の方法。
(項目3)
前記成熟心筋細胞が、前記AFC-ECM上に単層を形成し、それにより、前記AFC-ECM上に成熟心筋細胞の単層を含む細胞構築物を形成し、前記成熟心筋細胞が、前記AFC-ECM上に整列される、項目1または2のいずれか一項に記載の方法。
(項目4)
前記未熟なhiPSC-CMが、内向き整流性カリウムチャネルKir2.1を発現しない、項目1から3のいずれか一項に記載の方法。
(項目5)
羊水から単離された細胞からin vitroで誘導された細胞外マトリックス(AFC-ECM)上に成熟心筋細胞の単層を含む細胞構築物であって、前記成熟心筋細胞が、AFC-ECM培養した、ヒト誘導多能性幹細胞に由来する心筋細胞(hiPSC-CM)であり、前記成熟心筋細胞が、成人ヒト心組織と似た区別できるサルコメア構造を有するロッド状細胞によって特徴付けられる、細胞構築物。
(項目6)
成熟心筋細胞の前記単層が、前記AFC-ECM上に整列される、項目5に記載の細胞構築物。
(項目7)
線維トラックが前記構築物上に存在する、項目5または6のいずれか一項に記載の細胞構築物。
(項目8)
前記AFC-ECMが、ラミニン、コラーゲンアルファ-1(XVIII)、基底膜特異的ヘパラン硫酸プロテオグリカンコアタンパク質、アグリン、ビメンチン、およびコラーゲンアルファ-2(IV)、ならびに/またはそれらのアイソフォームを含む、項目5から7のいずれか一項に記載の細胞構築物。
(項目9)
前記コラーゲンアルファ-1(XVIII)のアイソフォームが、アイソフォーム2であり、および/または前記アグリンのアイソフォームが、アイソフォーム6である、項目8に記載の細胞構築物。
(項目10)
前記AFC-ECMが、フィブロネクチンおよび/またはそのアイソフォームをさらに含む、項目8または9のいずれか一項に記載の細胞構築物。
(項目11)
前記AFC-ECMが、デコリン、ペルレカン、および/またはコラーゲン(III)を含まない、項目5から10のいずれか一項に記載の細胞構築物。
(項目12)
羊水から単離された細胞からin vitroで誘導された細胞外マトリックス(AFC-ECM)上に成熟心筋細胞の細胞構築物を作成するための方法であって、
(a)ヒト誘導多能性幹細胞に由来する未熟な心筋細胞(未熟なhiPSC-CM)を提供するステップ、
(b)羊水から単離された細胞からin vitroで誘導された細胞外マトリックス(AFC-ECM)を提供するステップ;
(c)前記AFC-ECM上に前記未熟なhiPSC-CMをプレーティングするステップ;
(d)培養培地中で前記AFC-ECM上にプレーティングされた前記未熟なhiPSC-CMを培養して、前記未熟なhiPSC-CMの成熟心筋細胞への成熟化を誘導し、前記AFC-ECM上に前記成熟心筋細胞の単層を形成し、それにより前記細胞構築物を形成するステップ;
を含み、前記成熟心筋細胞が、成人ヒト心組織と似た区別できるサルコメア構造を有するロッド状細胞によって特徴付けられる、方法。
(項目13)
成熟心筋細胞の前記単層が、前記AFC-ECM上に整列される、項目12に記載の方法。
(項目14)
線維トラックが前記細胞構築物上に存在する、項目12または13のいずれか一項に記載の方法。
(項目15)
薬物化合物の心毒性および/または催不整脈効果をin vitroで決定するための方法であって、前記薬物化合物を、項目5から11のいずれか1つに記載の細胞構築物の前記成熟心筋細胞と接触させるステップ、ならびに前記成熟心筋細胞の電気生理学における変化を観察して、前記薬物化合物が前記成熟心筋細胞に対する心毒性および/または催不整脈効果を有するかどうかを確認するステップ、を含む方法。
(項目16)
前記成熟心筋細胞の電気生理学における前記変化が、活動電位持続時間(APD)の延長であり、APDの延長が、前記薬物化合物が前記成熟心筋細胞に対する心毒性および/または催不整脈効果を有することを裏付ける、項目15に記載の方法。
(項目17)
前記成熟心筋細胞の電気生理学における前記変化が、早期後脱分極(EAD)であり、早期後脱分極(EAD)が、前記薬物化合物が前記成熟心筋細胞に対する心毒性および/または催不整脈効果を有することを裏付ける、項目15に記載の方法。
(項目18)
前記成熟心筋細胞の電気生理学における前記変化が、遅延後脱分極(DAD)であり、遅延後脱分極(DAD)が、前記薬物化合物が前記成熟心筋細胞に対する心毒性および/または催不整脈効果を有することを裏付ける、項目15に記載の方法。
(項目19)
前記成熟心筋細胞の電気生理学における前記変化が、活動電位持続時間(APD)プラスローターであり、APDの延長プラスローターが、前記薬物化合物が前記成熟心筋細胞に対する心毒性および/または催不整脈効果を有することを裏付ける、項目15に記載の方法。
(項目20)
前記成熟心筋細胞の電気生理学における前記変化が、不整脈であり、前記不整脈が、前記薬物化合物が前記成熟心筋細胞に対する心毒性および/または催不整脈効果を有することを裏付ける、項目15に記載の方法。
Other objects, features, and advantages of the present invention will become apparent from the detailed description below. It should be understood, however, that the detailed description and specific examples, while indicating specific embodiments of the invention, are provided for purposes of illustration only. Various variations and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention provides, for example, the following items.
(Item 1)
A method for maturation of immature cardiomyocytes derived from human induced pluripotent stem cells, comprising:
(a) providing immature cardiomyocytes (immature hiPSC-CMs) derived from human induced pluripotent stem cells;
(b) providing an extracellular matrix (AFC-ECM) derived in vitro from cells isolated from amniotic fluid;
(c) contacting said immature hiPSC-CM with said AFC-ECM; and
(d) culturing said immature hiPSC-CMs with said AFC-ECM in a culture medium to induce maturation of said immature hiPSC-CMs, thereby forming mature cardiomyocytes;
wherein said mature cardiomyocytes are characterized by rod-shaped cells with a distinguishable sarcomere structure resembling adult human cardiac tissue.
(Item 2)
The method of item 1, wherein said immature hiPSC-CM are plated on said AFC-ECM.
(Item 3)
said mature cardiomyocytes form a monolayer on said AFC-ECM, thereby forming a cell construct comprising a monolayer of mature cardiomyocytes on said AFC-ECM, wherein said mature cardiomyocytes form a monolayer on said AFC-ECM; 3. The method of any one of items 1 or 2, aligned on an ECM.
(Item 4)
4. The method of any one of items 1-3, wherein said immature hiPSC-CM does not express the inward rectifying potassium channel Kir2.1.
(Item 5)
1. A cell construct comprising a monolayer of mature cardiomyocytes on an extracellular matrix (AFC-ECM) derived in vitro from cells isolated from amniotic fluid, said mature cardiomyocytes cultured in AFC-ECM A cellular construct of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), wherein said mature cardiomyocytes are characterized by rod-shaped cells with a distinguishable sarcomere structure similar to adult human cardiac tissue.
(Item 6)
6. The cell construct of item 5, wherein said monolayer of mature cardiomyocytes is arrayed on said AFC-ECM.
(Item 7)
7. Cellular construct according to any one of items 5 or 6, wherein fiber tracks are present on said construct.
(Item 8)
wherein said AFC-ECM comprises laminin, collagen alpha-1 (XVIII), basement membrane-specific heparan sulfate proteoglycan core protein, agrin, vimentin, and collagen alpha-2 (IV), and/or isoforms thereof 8. A cell construct according to any one of 5-7.
(Item 9)
9. Cell construct according to item 8, wherein said collagen alpha-1 (XVIII) isoform is isoform 2 and/or said agrin isoform is isoform 6.
(Item 10)
10. Cell construct according to any one of items 8 or 9, wherein said AFC-ECM further comprises fibronectin and/or isoforms thereof.
(Item 11)
11. Cell construct according to any one of items 5 to 10, wherein said AFC-ECM does not comprise decorin, perlecan and/or collagen (III).
(Item 12)
1. A method for creating mature cardiomyocyte cell constructs on an extracellular matrix (AFC-ECM) derived in vitro from cells isolated from amniotic fluid, comprising:
(a) providing immature cardiomyocytes (immature hiPSC-CMs) derived from human induced pluripotent stem cells;
(b) providing an extracellular matrix (AFC-ECM) derived in vitro from cells isolated from amniotic fluid;
(c) plating said immature hiPSC-CMs on said AFC-ECMs;
(d) culturing said immature hiPSC-CMs plated on said AFC-ECM in a culture medium to induce maturation of said immature hiPSC-CMs into mature cardiomyocytes; forming a monolayer of said mature cardiomyocytes thereon, thereby forming said cell construct;
wherein said mature cardiomyocytes are characterized by rod-shaped cells with a distinguishable sarcomere structure resembling adult human cardiac tissue.
(Item 13)
13. The method of item 12, wherein said monolayer of mature cardiomyocytes is arrayed on said AFC-ECM.
(Item 14)
14. The method of any one of items 12 or 13, wherein fiber tracks are present on said cell construct.
(Item 15)
12. A method for determining in vitro cardiotoxic and/or proarrhythmic effects of a drug compound comprising contacting said drug compound with said mature cardiomyocytes of the cell construct of any one of items 5-11. and observing changes in the electrophysiology of said mature cardiomyocytes to determine whether said drug compound has cardiotoxic and/or proarrhythmic effects on said mature cardiomyocytes.
(Item 16)
said alteration in the electrophysiology of said mature cardiomyocytes is a prolongation of action potential duration (APD), and prolongation of APD indicates that said drug compound has cardiotoxic and/or proarrhythmic effects on said mature cardiomyocytes. 16. The method of item 15, wherein:
(Item 17)
said alteration in the electrophysiology of said mature cardiomyocytes is early afterdepolarization (EAD) wherein said drug compound has cardiotoxic and/or proarrhythmia effects on said mature cardiomyocytes 16. The method of item 15, which supports that
(Item 18)
said change in the electrophysiology of said mature cardiomyocytes is delayed after depolarization (DAD), wherein said drug compound has cardiotoxic and/or proarrhythmic effects on said mature cardiomyocytes 16. The method of item 15, which supports that
(Item 19)
said change in the electrophysiology of said mature cardiomyocytes is an action potential duration (APD) plus rotator, and an extended plus rotator of APD indicates that said drug compound has cardiotoxic and/or proarrhythmic effects on said mature cardiomyocytes. 16. The method of item 15, which supports that
(Item 20)
16. The method of item 15, wherein said alteration in electrophysiology of said mature cardiomyocytes is an arrhythmia, and said arrhythmia confirms that said drug compound has a cardiotoxic and/or proarrhythmic effect on said mature cardiomyocytes.

Claims (9)

薬物化合物の心毒性または催不整脈効果をin vitroで決定するための方法であって、前記方法が:
(i)ヒト誘導多能性幹細胞に由来する未熟な心筋細胞を得ることであって、前記未熟な心筋細胞が、円形形状および単一の核を示す、得ること;
(ii)前記未熟な心筋細胞を、妊娠期間37週超のヒトから得られた羊水から単離された細胞を培養することから得られた細胞外マトリックス(AFC-ECM)と接触させることであって、前記AFC-ECMが、ラミニン、コラーゲンアルファ-1(XVIII)、基底膜特異的ヘパラン硫酸プロテオグリカンコアタンパク質、アグリン、ビメンチン、およびコラーゲンアルファ-2(IV)、またはそれらのアイソフォームを含む、接触させること;
(iii)前記AFC-ECM上に成熟心筋細胞の単層を形成するために、培養培地中で前記未熟な心筋細胞を前記AFC-ECMと共に培養すること;ならびに
(iv)前記薬物化合物を成熟心筋細胞と接触させること、および前記薬物化合物が前記成熟心筋細胞に対する心毒性または催不整脈効果を有するかどうかを確認するために、前記成熟心筋細胞の電気生理学における変化を観察すること、を含み、
前記AFC-ECMが、異方的な線維トラックに構造化され、
前記成熟心筋細胞が、ロッド形状および2つの核を示し、かつ
前記成熟心筋細胞が、前記AFC-ECMの前記異方的な線維トラック上に異方的に整列される、方法。
A method for determining the cardiotoxic or proarrhythmic effects of a drug compound in vitro, said method comprising:
(i) obtaining immature cardiomyocytes derived from human induced pluripotent stem cells, said immature cardiomyocytes exhibiting a round shape and a single nucleus;
(ii) contacting said immature cardiomyocytes with an extracellular matrix (AFC-ECM) obtained from culturing cells isolated from amniotic fluid obtained from a human over 37 weeks of gestation; wherein said AFC-ECM comprises laminin, collagen alpha-1 (XVIII), basement membrane-specific heparan sulfate proteoglycan core protein, agrin, vimentin, and collagen alpha-2 (IV), or isoforms thereof to cause;
(iii) culturing said immature cardiomyocytes with said AFC-ECM in a culture medium to form a monolayer of mature cardiomyocytes on said AFC-ECM; and
(iv) contacting the drug compound with mature cardiomyocytes and changes in the electrophysiology of the mature cardiomyocytes to ascertain whether the drug compound has a cardiotoxic or proarrhythmic effect on the mature cardiomyocytes; including observing
wherein the AFC-ECM is structured into anisotropic fiber tracks;
said mature cardiomyocytes exhibit a rod shape and two nuclei, and
A method, wherein said mature cardiomyocytes are anisotropically aligned on said anisotropic fiber tracks of said AFC-ECM .
前記成熟心筋細胞の前記電気生理学における前記変化が、活動電位持続時間(APD)の延長であり、APDの延長が、前記薬物化合物が前記成熟心筋細胞に対する心毒性または催不整脈効果を有することを裏付ける、請求項に記載の方法。 said change in said electrophysiology of said mature cardiomyocytes is a prolongation of action potential duration (APD), wherein prolongation of APD causes said drug compound to have a cardiotoxic or proarrhythmic effect on said mature cardiomyocytes 2. The method of claim 1 , which supports that. 前記成熟心筋細胞の前記電気生理学における前記変化が、早期後脱分極(EAD)であり、早期後脱分極(EAD)が、前記薬物化合物が前記成熟心筋細胞に対する心毒性または催不整脈効果を有することを裏付ける、請求項に記載の方法。 The alteration in the electrophysiology of the mature cardiomyocytes is early afterdepolarization (EAD), wherein the drug compound has a cardiotoxic or proarrhythmic effect on the mature cardiomyocytes. 2. The method of claim 1 , wherein the method comprises: 前記成熟心筋細胞の前記電気生理学における前記変化が、遅延後脱分極(DAD)であり、遅延後脱分極(DAD)が、前記薬物化合物が前記成熟心筋細胞に対する心毒性または催不整脈効果を有することを裏付ける、請求項に記載の方法。 Said change in said electrophysiology of said mature cardiomyocytes is a delayed after-depolarization (DAD), wherein said drug compound has a cardiotoxic or proarrhythmic effect on said mature cardiomyocytes. 2. The method of claim 1 , wherein the method comprises: 前記成熟心筋細胞の前記電気生理学における前記変化が、活動電位持続時間(APD)プラスローターであり、APDの延長プラスローターが、前記薬物化合物が前記成熟心筋細胞に対する心毒性または催不整脈効果を有することを裏付ける、請求項に記載の方法。 The alteration in the electrophysiology of the mature cardiomyocyte is action potential duration (APD) plus rotator, and the prolongation of APD plus rotator indicates that the drug compound has a cardiotoxic or proarrhythmic effect on the mature cardiomyocyte. 2. The method of claim 1 , wherein the method comprises: 前記成熟心筋細胞の前記電気生理学における前記変化が、不整脈であり、前記不整脈が、前記薬物化合物が前記成熟心筋細胞に対する心毒性または催不整脈効果を有することを裏付ける、請求項に記載の方法。 2. The method of Claim 1 , wherein said alteration in said electrophysiology of said mature cardiomyocytes is an arrhythmia, said arrhythmia confirming that said drug compound has a cardiotoxic or proarrhythmic effect on said mature cardiomyocytes. the method of. 前記コラーゲンアルファ-1(XVIII)のアイソフォームが、アイソフォーム2であるか、または前記アグリンのアイソフォームが、アイソフォーム6である、請求項1に記載の方法。2. The method of claim 1, wherein the isoform of collagen alpha-1 (XVIII) is isoform 2 or the isoform of agrin is isoform 6. 前記AFC-ECMが、フィブロネクチンまたはそのアイソフォームをさらに含む、請求項1に記載の方法。2. The method of claim 1, wherein said AFC-ECM further comprises fibronectin or an isoform thereof. 羊水から単離された前記細胞が、羊膜、皮膚、ならびに消化管、呼吸器官、および尿生殖器官からの胎児の細胞を含む、請求項1に記載の方法。2. The method of claim 1, wherein the cells isolated from amniotic fluid comprise amniotic membrane, skin, and fetal cells from the gastrointestinal, respiratory, and genitourinary tracts.

JP2021548693A 2019-02-21 2020-02-21 Methods, Cell Constructs, and Use of Drug Compounds for Cardiotoxicity and Proarrhythmia Screening for Cardiomyocyte Maturation on Amniocyte-Derived ECM Active JP7250154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023044022A JP2023076502A (en) 2019-02-21 2023-03-20 Methods for the maturation of cardiomyocytes on amniotic fluid cell-derived ecm, cellular constructs, and uses for cardiotoxicity and proarrhythmic screening of drug compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962808690P 2019-02-21 2019-02-21
US62/808,690 2019-02-21
PCT/US2020/019311 WO2020172589A1 (en) 2019-02-21 2020-02-21 Methods for the maturation of cardiomyocytes on amniotic fluid cell-derived ecm, cellular constructs, and uses for cardiotoxicity and proarrhythmic screening of drug compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023044022A Division JP2023076502A (en) 2019-02-21 2023-03-20 Methods for the maturation of cardiomyocytes on amniotic fluid cell-derived ecm, cellular constructs, and uses for cardiotoxicity and proarrhythmic screening of drug compounds

Publications (3)

Publication Number Publication Date
JP2022521238A JP2022521238A (en) 2022-04-06
JPWO2020172589A5 true JPWO2020172589A5 (en) 2023-01-30
JP7250154B2 JP7250154B2 (en) 2023-03-31

Family

ID=69846590

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021548693A Active JP7250154B2 (en) 2019-02-21 2020-02-21 Methods, Cell Constructs, and Use of Drug Compounds for Cardiotoxicity and Proarrhythmia Screening for Cardiomyocyte Maturation on Amniocyte-Derived ECM
JP2023044022A Pending JP2023076502A (en) 2019-02-21 2023-03-20 Methods for the maturation of cardiomyocytes on amniotic fluid cell-derived ecm, cellular constructs, and uses for cardiotoxicity and proarrhythmic screening of drug compounds

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023044022A Pending JP2023076502A (en) 2019-02-21 2023-03-20 Methods for the maturation of cardiomyocytes on amniotic fluid cell-derived ecm, cellular constructs, and uses for cardiotoxicity and proarrhythmic screening of drug compounds

Country Status (7)

Country Link
US (2) US11220671B2 (en)
EP (1) EP3927814A1 (en)
JP (2) JP7250154B2 (en)
KR (1) KR102639023B1 (en)
CN (1) CN113728092A (en)
CA (1) CA3130860A1 (en)
WO (1) WO2020172589A1 (en)

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563067A (en) 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
TWM243483U (en) 1996-01-24 2004-09-11 Matsushita Electric Ind Co Ltd A test instrument for electric physiological properties of organism, cell, and the section from live organ
WO2000034434A1 (en) 1998-12-07 2000-06-15 Acacia Biosciences, Inc. Multi-channel electrode arrays
US6969449B2 (en) 2000-07-10 2005-11-29 Vertex Pharmaceuticals (San Diego) Llc Multi-well plate and electrode assemblies for ion channel assays
MX348185B (en) 2001-02-14 2017-06-02 Anthrogenesis Corp Post-partum mammalian placenta, its use and placental stem cells therefrom.
JP4745056B2 (en) 2002-07-20 2011-08-10 アセア バイオサイエンシーズ,インク. Apparatus and method for measuring cells and fine particles by impedance
US8263375B2 (en) 2002-12-20 2012-09-11 Acea Biosciences Dynamic monitoring of activation of G-protein coupled receptor (GPCR) and receptor tyrosine kinase (RTK) in living cells using real-time microelectronic cell sensing technology
US8206903B2 (en) 2002-12-20 2012-06-26 Acea Biosciences Device and method for electroporation-based delivery of molecules into cells and dynamic monitoring of cell responses
US7470533B2 (en) 2002-12-20 2008-12-30 Acea Biosciences Impedance based devices and methods for use in assays
US10551371B2 (en) 2003-11-10 2020-02-04 Acea Biosciences, Inc. System and method for monitoring cardiomyocyte beating, viability and morphology and for screening for pharmacological agents which may induce cardiotoxicity or modulate cardiomyocyte function
US9612234B2 (en) 2008-05-05 2017-04-04 Acea Biosciences, Inc. Data analysis of impedance-based cardiomyocyte-beating signals as detected on real-time cell analysis (RTCA) cardio instruments
US7501301B2 (en) 2004-03-10 2009-03-10 The Board Of Trustees Of The Leland Stanford Junior University Low cost fabrication of microelectrode arrays for cell-based biosensors and drug discovery methods
US20060153894A1 (en) 2004-06-30 2006-07-13 Ragae Ghabrial Multi-compartment delivery system
EP2267114B1 (en) 2005-10-28 2014-03-12 Universität Zürich Tissue engineering using pure populations of isolated non-embryoblastic fetal cells
US8084023B2 (en) 2007-01-22 2011-12-27 The Board Of Trustees Of The University Of Arkansas Maintenance and propagation of mesenchymal stem cells
WO2009035612A2 (en) 2007-09-11 2009-03-19 The University Of Miami Multilineage-inducible cells and uses thereof
WO2009052132A1 (en) 2007-10-15 2009-04-23 Children's Medical Center Corporation Human amniotic fluid derived mesenchymal stem cells
CA2723223C (en) 2008-05-05 2017-06-06 Acea Biosciences, Inc. Label-free monitoring of excitation-contraction coupling and excitable cells using impedance based systems with millisecond time resolution
US9290756B2 (en) 2008-11-10 2016-03-22 The Board Of Trustees Of The University Of Illinois Apparatus and methods for high throughput network electrophysiology and cellular analysis
JP2012521780A (en) 2009-03-31 2012-09-20 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム Method for isolating mesenchymal stem cells derived from human umbilical cord blood
EP2524034A1 (en) 2010-01-14 2012-11-21 Organogenesis, Inc. Bioengineered tissue constructs and methods for producing and using thereof
WO2012033763A2 (en) 2010-09-07 2012-03-15 The Board Of Regents Of The University Of Texas System Tissue-specific differentiation matrices and uses thereof
US9994812B2 (en) 2012-04-04 2018-06-12 University Of Washington Through Its Center For Commercialization Systems and method for engineering muscle tissue
MX2015002711A (en) 2012-09-04 2015-06-05 Anthrogenesis Corp Methods of tissue generation.
SG10201802167TA (en) 2013-09-20 2018-04-27 Repairon Gmbh A method to direct differentiation of pluripotent stem cells into functional heart muscle
US9587221B2 (en) 2013-11-11 2017-03-07 Auburn University Encapsulation and cardiac differentiation of hiPSCs in 3D PEG-fibrinogen hydrogels
WO2015175534A2 (en) * 2014-05-13 2015-11-19 The Regents Of The University Of Michigan Compositions and methods employing stem cell-derived cardiomyocytes
US20170182216A1 (en) 2014-05-14 2017-06-29 NuTech Spine, Inc. Wound care treatment and methods of making and using same
WO2016025646A1 (en) 2014-08-12 2016-02-18 Axion Biosystems, Inc. Cell-based biosensor array and associated methods for manufacturing the same
US20170335286A1 (en) 2014-10-30 2017-11-23 Stembiosys, Inc. Methods for maintaining and expanding mesenchymal stem cells on extracellular matrix coated microcarriers
US9694104B2 (en) 2014-12-08 2017-07-04 Cormatrix Cardiovascular, Inc. Vascular casted prostheses and methods of forming same for treating biological tissue
CN107636149A (en) 2015-04-03 2018-01-26 普罗帕格尼克斯公司 The vitro proliferation of epithelial cell
SG11201705939RA (en) 2015-05-15 2017-08-30 Agency Science Tech & Res A contractile cellular construct for cell culture
CA3004296A1 (en) 2015-11-04 2017-05-11 The Board Of Regents Of The University Of Texas System Enrich and amplify highly potent human mesenchymal stem cells from elderly cell populations
WO2017136786A1 (en) * 2016-02-05 2017-08-10 The Trustees Of Columbia University In The City Of New York Rigionally specific tissua-derived extracellular metrix
WO2017168343A1 (en) 2016-03-30 2017-10-05 Stembiosys, Inc. Bone marrow stromal cell derived extracellular matrix protein extract and uses thereof
WO2018029535A1 (en) 2016-08-11 2018-02-15 Novoheart Limited Systems and methods for modeling disease and assessing adverse side effects of therapeutics therefor
AU2017314870B2 (en) 2016-08-26 2023-11-30 The Council Of The Queensland Institute Of Medical Research Cardiomyocyte maturation
US20190017028A1 (en) 2017-07-12 2019-01-17 The Regents Of The University Of Michigan Systems and methods for cardiomyocyte pacing
WO2019126315A1 (en) 2017-12-19 2019-06-27 The Regents Of The University Of Michigan Cardiac microtissue and uses thereof
US11846631B2 (en) * 2018-02-02 2023-12-19 Organos, Inc. Methods for determining drug effects on a mature cardiomyocyte
KR20210072033A (en) 2018-10-03 2021-06-16 스템바이오시스, 인크. Amniotic fluid cell-derived extracellular matrix and uses thereof

Similar Documents

Publication Publication Date Title
US11920158B2 (en) Cardiomyocyte maturation
Shakibaei et al. Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study
Trounson The production and directed differentiation of human embryonic stem cells
Parrag et al. Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell‐derived cardiomyocytes for cardiac tissue engineering
DeQuach et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture
JP6712016B2 (en) THREE-DIMENSIONAL TISSUE AND METHOD FOR PRODUCING THE SAME, AND FORMING AGENT FOR THREE-DIMENSIONAL TISSUE
Cole et al. Cytodifferentiation and embryogenesis in cell colonies and tissue cultures derived from ova and blastocysts of the rabbit
Burridge et al. Multi-cellular interactions sustain long-term contractility of human pluripotent stem cell-derived cardiomyocytes
CN104293730B (en) Multipotential stem cell vitro directed differentiation is the method for cardiac muscle cell
JP2011514169A5 (en)
US20050227353A1 (en) Methods of inducing differentiation of stem cells
JP2022097752A (en) Genetic markers for engraftment of human cardiac ventricular progenitor cells
JP2006523091A5 (en)
van Kerrebroeck et al. Expression of the electrophysiological system during murine embryonic stem cell cardiac differentiation
CN110268048A (en) Myocardium of atrium cell and ventricular cardiac myocytes pedigree are generated from human pluripotent stem cells
CN109880791A (en) A kind of vitro construction method of liver fibrosis organoid model
Vidyasekar et al. A simplified protocol for the isolation and culture of cardiomyocytes and progenitor cells from neonatal mouse ventricles
Togo et al. Differentiation of embryonic stem cells into fibroblast-like cells in three-dimensional type I collagen gel cultures
CN114149971A (en) Method for obtaining midbrain organoid by using hPSCs (human brain cells) induced differentiation and midbrain organoid
Weder et al. Measuring cell adhesion forces during the cell cycle by force spectroscopy
Hashimoto et al. Formation of the Primitive Streak and Mesoderm Cells in Mouse Embryos—Detailed Scanning Electron Microscopical Study: (primitive streak/cell migration/extracellular matrix/mouse gastrulation/scanning electron microscopy)
CN115627251A (en) Method for constructing in-vitro pulmonary fibrosis organoid model
Feiertag et al. From Cord to Eye: Wharton Jelly-Derived Stem Cells Differentiate Into Corneal Endothelial–Like Cells
JPWO2020172589A5 (en)
Wasnik et al. Enhanced ex vivo expansion of human hematopoietic progenitors on native and spin coated acellular matrices prepared from bone marrow stromal cells