JPWO2020110527A1 - Electrode for hydrogen generation, its manufacturing method, and hydrogen manufacturing method - Google Patents

Electrode for hydrogen generation, its manufacturing method, and hydrogen manufacturing method Download PDF

Info

Publication number
JPWO2020110527A1
JPWO2020110527A1 JP2020558185A JP2020558185A JPWO2020110527A1 JP WO2020110527 A1 JPWO2020110527 A1 JP WO2020110527A1 JP 2020558185 A JP2020558185 A JP 2020558185A JP 2020558185 A JP2020558185 A JP 2020558185A JP WO2020110527 A1 JPWO2020110527 A1 JP WO2020110527A1
Authority
JP
Japan
Prior art keywords
platinum
electrode
nickel
hydrogen
hydrogen generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020558185A
Other languages
Japanese (ja)
Inventor
由希子 勝圓
尚平 松井
宏一 寺田
剛一 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Publication of JPWO2020110527A1 publication Critical patent/JPWO2020110527A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material

Abstract

水素発生用電極の水素発生電位から換算される過電圧を低下させることができ、さらに、電解停止時の逆電流に起因する白金触媒の有効表面積の減少が効果的に抑制された、水素発生用電極を提供する。
導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を有する、水素発生用電極。
The overvoltage converted from the hydrogen generation potential of the hydrogen generation electrode can be reduced, and the decrease in the effective surface area of the platinum catalyst due to the reverse current when electrolysis is stopped is effectively suppressed. I will provide a.
An electrode for hydrogen generation having a coating film containing at least platinum, nickel oxide, and cerium oxide on a conductive substrate.

Description

本発明は、水素発生用電極、その製造方法、及び水素の製造方法に関する。 The present invention relates to an electrode for generating hydrogen, a method for producing the same, and a method for producing hydrogen.

イオン交換膜食塩電解プロセスにおいては、エネルギー消費の削減が最も大きな課題である。イオン交換膜食塩電解法における槽電圧を詳細に解析すると、理論的に必要な電圧以外に、イオン交換膜の膜抵抗による電圧、陽極と陰極の過電圧、液抵抗及びガス抵抗による電圧が加わる。これらの電圧の中でも、電極の過電圧については、陽極に関して言えば、不溶性電極への白金族酸化物の適応によって、通常の操業条件下では50mV程度にまで削減され、これ以上の改善・改良は望めないレベルにまで到達している。 In the ion exchange membrane salt electrolysis process, reduction of energy consumption is the biggest issue. When the tank voltage in the ion exchange membrane salt electrolysis method is analyzed in detail, in addition to the theoretically required voltage, the voltage due to the membrane resistance of the ion exchange membrane, the overvoltage of the anode and the cathode, the voltage due to the liquid resistance and the gas resistance are applied. Among these voltages, the overvoltage of the electrode is reduced to about 50 mV under normal operating conditions by applying the platinum group oxide to the insoluble electrode when it comes to the anode, and further improvement / improvement can be expected. It has reached a level that does not exist.

一方、陰極に関しては、従来使用されていた軟鋼やステンレス、ニッケルの電極の場合、通常の操業条件下において、300〜400mVの過電圧を生じていた。そこで、これらの電極表面を活性化し、過電圧を低減することが検討され、これまでに多くの技術が開発されている。酸化ニッケルをプラズマ溶射することにより、電極表面が酸化物でありながら高活性な陰極を製造している例や、ラネーニッケル系のメッキや、ニッケルとスズの複合メッキ、活性炭と酸化物の複合メッキを電極表面に施している例などがあり、いずれも苛性ソーダ中での水素発生用陰極として利用が図られている。しかし、電解電圧を削減するためには、陰極過電圧の更なる低下が必要であり、このために次のような様々な陰極が提案されている。 On the other hand, regarding the cathode, in the case of the conventionally used mild steel, stainless steel, and nickel electrodes, an overvoltage of 300 to 400 mV was generated under normal operating conditions. Therefore, it has been studied to activate the surface of these electrodes and reduce the overvoltage, and many techniques have been developed so far. Examples of producing a highly active cathode with an oxide on the electrode surface by plasma spraying nickel oxide, lane nickel-based plating, nickel-tin composite plating, and activated charcoal-oxide composite plating. There are examples of plating on the electrode surface, and all of them are used as cathodes for hydrogen generation in caustic soda. However, in order to reduce the electrolytic voltage, it is necessary to further reduce the cathode overvoltage, and for this purpose, the following various cathodes have been proposed.

例えば、特許文献1には、1種類の貴金属又は2種類若しくは3種類以上の貴金属の混合物若しくは合金からなる貴金属被膜や、該貴金属被膜にニッケル等の1種類又は2種類以上の卑金属を含んだ被膜をニッケル等の導電性基材上に被膜させた水素発生用電極が提案されている。しかしながら、これらの水素発生用電極は、電解液中の鉄等の不純物による被毒を受け易いという課題を持つことが知られている(特許文献2参照)。 For example, Patent Document 1 describes a noble metal coating composed of one kind of noble metal or a mixture or alloy of two or three or more kinds of noble metals, or a coating containing one or more base metals such as nickel in the noble metal coating. Has been proposed as an electrode for hydrogen generation in which a film is formed on a conductive base metal such as nickel. However, it is known that these hydrogen generating electrodes have a problem that they are easily poisoned by impurities such as iron in the electrolytic solution (see Patent Document 2).

この様に、従来、白金を担持してなる水素過電圧が低い水素発生用電極が提案されている。しかしながら、白金を担持してなる水素発生用電極は、電解液中に存在する微量の鉄イオンに対して敏感に被毒の影響を受け易く、鉄イオン濃度が1ppm以下の微量濃度でも水素過電圧は上昇するため、電解液中に鉄イオンが混入しやすいアルカリ金属塩化物水溶液の工業電解等での使用に更なる改善が検討されている。 As described above, conventionally, a hydrogen generation electrode supporting platinum and having a low hydrogen overvoltage has been proposed. However, the hydrogen generating electrode carrying platinum is sensitive to the small amount of iron ions present in the electrolytic solution and is easily affected by poisoning, and even if the iron ion concentration is 1 ppm or less, the hydrogen overvoltage does not occur. Since it rises, further improvement in use of an alkali metal chloride aqueous solution in which iron ions are easily mixed in the electrolytic solution in industrial electrolysis and the like is being studied.

さらに、水素発生用電極自体に鉄が付着しがたい、或いは、付着しても性能が劣化しない特性を付与するための試みが従来から広く行われてきた。例えば、白金及びルテニウムと、金又は銀の少なくとも一方を含む触媒、或いは、さらに有機ポリマーの粒子を含む触媒を導電性基材に担持した水素発生用電極が提案された(特許文献3)。該水素発生用電極は陰極液中に鉄イオンが存在しても過電圧の上昇は極僅かであり、アルカリ金属塩化物水溶液の電気分解のエネルギー使用量を削減しうる点においては確かに優れた特性を有する水素発生用電極である。しかし、白金、ルテニウム、金及び銀は何れも高価な材料であり、これにポリテトラフルオロエチレンを含ませる場合は、なお一層、高価となる。従って、この場合もなお、経済的観点から改善すべき課題がある。 Further, attempts have been widely made to impart a property that iron does not easily adhere to the hydrogen generating electrode itself, or that the performance does not deteriorate even if iron adheres to the electrode itself. For example, a hydrogen generating electrode in which a catalyst containing platinum and ruthenium and at least one of gold or silver, or a catalyst containing particles of an organic polymer is supported on a conductive substrate has been proposed (Patent Document 3). The hydrogen generating electrode has excellent characteristics in that the increase in overvoltage is extremely small even if iron ions are present in the cathode solution, and the amount of energy used for electrolysis of the alkali metal chloride aqueous solution can be reduced. It is an electrode for hydrogen generation having. However, platinum, ruthenium, gold and silver are all expensive materials, and when they contain polytetrafluoroethylene, they are even more expensive. Therefore, even in this case, there are still problems to be improved from an economic point of view.

一方、白金とセリウム酸化物からなる触媒を用いた水素発生用電極が提案されている(特許文献4)。当該白金とセリウム酸化物の触媒からなる水素発生用電極は、過電圧が低く且つ鉄イオンによる影響は抑制され、アルカリ金属塩化物水溶液の電気分解用の水素発生用電極として優れた性能を示す。また、白金とセリウム酸化物からなる触媒と基材の間にニッケル酸化物からなる中間層を設ける提案がなされており、さらにコスト面などを改善すべく検討されている。 On the other hand, an electrode for hydrogen generation using a catalyst composed of platinum and cerium oxide has been proposed (Patent Document 4). The hydrogen generating electrode composed of the platinum and cerium oxide catalyst has a low overvoltage and the influence of iron ions is suppressed, and exhibits excellent performance as a hydrogen generating electrode for electrolysis of an aqueous alkali metal chloride solution. Further, a proposal has been made to provide an intermediate layer made of nickel oxide between a catalyst made of platinum and cerium oxide and a base material, and studies are being made to further improve cost and the like.

そのような中で、これまでに、導電性金属上にセリウム金属、セリウム酸化物またはセリウム水酸化物の少なくとも一種と白金金属とを含有するセリウム−白金混合物系の電極活性物質を被覆してなる水素発生用電極において、前記電極活性物質の組成が金属換算で白金のモル分率15〜30モル%、セリウムのモル分率70〜85モル%のセリウムリッチであることを特徴とする水素発生用電極を開発した(特許文献5)。さらに、導電性基材上に、白金と、ニッケル、コバルト、銅、銀及び鉄の群から選ばれる一種の遷移金属元素との白金合金が担持され、白金合金中の白金含有量が、モル比で0.40〜0.99の範囲である水素発生用電極も開発されている(特許文献6)。 Under such circumstances, so far, a conductive metal is coated with an electrode active substance of a cerium-platinum mixture system containing at least one of cerium metal, cerium oxide or cerium hydroxide and platinum metal. The electrode for hydrogen generation is characterized in that the composition of the electrode active substance is cerium-rich with a molar ratio of platinum of 15 to 30 mol% and a molar ratio of cerium of 70 to 85 mol% in terms of metal. An electrode was developed (Patent Document 5). Further, a platinum alloy of platinum and a kind of transition metal element selected from the group of nickel, cobalt, copper, silver and iron is supported on the conductive base material, and the platinum content in the platinum alloy is the molar ratio. A hydrogen generating electrode in the range of 0.40 to 0.99 has also been developed (Patent Document 6).

特開昭57−23083号公報JP-A-57-233083 特開昭64−8288号公報Japanese Unexamined Patent Publication No. 64-8288 特開昭63−72897号公報Japanese Unexamined Patent Publication No. 63-72897 特開2000−239882号公報Japanese Unexamined Patent Publication No. 2000-239882 国際公開第2011/040464号International Publication No. 2011/040464 特許4882218号Patent No. 4882218

前記の通り、従来、種々の水素発生用電極が開発されているが、イオン交換膜食塩電解プロセスにおいては、電力を多量に消費するため、例えば水素発生電位から換算される過電圧を僅か数mV低下させることができるだけでも、電解にかかる年間のコスト低減効果は非常に大きくなる。従って、水素発生用電極の過電圧をさらに低下させることが求められる。 As described above, various electrodes for hydrogen generation have been conventionally developed, but in the ion exchange membrane salt electrolysis process, since a large amount of electric power is consumed, for example, the overvoltage converted from the hydrogen generation potential is reduced by only a few mV. Even if it can be done, the annual cost reduction effect of electrolysis will be very large. Therefore, it is required to further reduce the overvoltage of the hydrogen generating electrode.

また、電気分解方法において、電解停止時には、陽極と陰極との間に生じた電位差を解消する方向に電流が流れる。この電流は、電解時とは逆方向に流れるため、逆電流と呼ばれている。本発明者等が検討したところ、従来の水素発生用電極においては、この逆電流によって、白金などの電極触媒の有効表面積が減少し、水素発生用電極が劣化することが明らかとなった。 Further, in the electrolysis method, when the electrolysis is stopped, a current flows in a direction for eliminating the potential difference generated between the anode and the cathode. This current flows in the opposite direction to that during electrolysis, and is therefore called reverse current. As a result of studies by the present inventors, it has been clarified that in the conventional hydrogen generating electrode, the effective surface area of the electrode catalyst such as platinum is reduced by this reverse current, and the hydrogen generating electrode is deteriorated.

このような状況下、本発明は、水素発生用電極の水素発生電位から換算される過電圧を低下させることができ、さらに、電解停止時の逆電流に起因する白金触媒の有効表面積の減少が効果的に抑制された、水素発生用電極を提供することを主な目的とする。さらに、本発明は、当該水素発生用電極の製造方法、及び当該水素発生用電極を利用した電気分解方法を提供することも目的とする。 Under such circumstances, the present invention can reduce the overvoltage converted from the hydrogen generation potential of the hydrogen generation electrode, and further, the reduction of the effective surface area of the platinum catalyst due to the reverse current when the electrolysis is stopped is effective. The main purpose is to provide an electrode for hydrogen generation that is suppressed. Another object of the present invention is to provide a method for producing the hydrogen generating electrode and an electrolysis method using the hydrogen generating electrode.

本発明者は、上記の課題を解決すべく鋭意検討を行った。その結果、導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を有する、水素発生用電極によれば、水素発生用電極の水素発生電位から換算される過電圧を低下させることができ、さらに、電解停止時の逆電流に起因する白金触媒の有効表面積の減少が効果的に抑制されることを見出した。本発明は、このような知見に基づいて、さらに検討を重ねることにより完成したものである。 The present inventor has made diligent studies to solve the above problems. As a result, according to the hydrogen generating electrode having a coating film containing at least platinum, nickel oxide, and cerium oxide on the conductive substrate, an overvoltage converted from the hydrogen generating potential of the hydrogen generating electrode is obtained. It has been found that the decrease can be achieved, and that the decrease in the effective surface area of the platinum catalyst due to the reverse current at the time of stopping the electrolysis is effectively suppressed. The present invention has been completed by further studies based on such findings.

即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を有する、水素発生用電極。
項2. 前記被膜の前記白金の担持量が、2g/m2以上である、項1に記載の水素発生用電極。
項3. 前記導電性基材が、ニッケルを含む、項1又は2に記載の水素発生用電極。
項4. 導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を形成する工程を備える、水素発生用電極の製造方法。
項5. 水を含む溶液の電気分解法において、項1〜3のいずれか1項に記載の水素発生用電極を用いる、電気分解方法。
項6. 導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を有する電極の、水素発生のための使用。
That is, the present invention provides the inventions of the following aspects.
Item 1. An electrode for hydrogen generation having a coating film containing at least platinum, nickel oxide, and cerium oxide on a conductive substrate.
Item 2. Item 2. The electrode for hydrogen generation according to Item 1, wherein the amount of platinum supported on the coating film is 2 g / m 2 or more.
Item 3. Item 2. The hydrogen generating electrode according to Item 1 or 2, wherein the conductive substrate contains nickel.
Item 4. A method for producing a hydrogen generating electrode, comprising a step of forming a film containing at least platinum, nickel oxide, and cerium oxide on a conductive substrate.
Item 5. A method for electrolyzing a solution containing water, wherein the electrode for hydrogen generation according to any one of Items 1 to 3 is used.
Item 6. Use for hydrogen generation of electrodes having a coating containing at least platinum, nickel oxide, and cerium oxide on a conductive substrate.

本発明によれば、水素発生用電極の水素発生電位から換算される過電圧を低下させることができ、さらに、電解停止時の逆電流に起因する白金触媒の有効表面積の減少が効果的に抑制された、水素発生用電極を提供することができる。さらに、本発明によれば、当該水素発生用電極の製造方法、及び当該水素発生用電極を利用した電気分解方法を提供することもできる。 According to the present invention, it is possible to reduce the overvoltage converted from the hydrogen generation potential of the hydrogen generation electrode, and further, the decrease in the effective surface area of the platinum catalyst due to the reverse current when electrolysis is stopped is effectively suppressed. Further, it is possible to provide an electrode for hydrogen generation. Further, according to the present invention, it is also possible to provide a method for producing the hydrogen generating electrode and an electrolysis method using the hydrogen generating electrode.

実施例の初期水素発生電位の測定に用いたセルの模式図である。It is a schematic diagram of the cell used for the measurement of the initial hydrogen generation potential of an Example. 実施例の逆電流耐性試験におけるサイクルを示す図である。It is a figure which shows the cycle in the reverse current resistance test of an Example. 実施例で測定された初期水素発生電位を示すグラフである。It is a graph which shows the initial hydrogen generation potential measured in an Example. 実施例の逆電流耐性試験における水素発生電位を示すグラフである。It is a graph which shows the hydrogen generation potential in the reverse current resistance test of an Example.

本発明の水素発生用電極は、導電性基材と、当該導電性基材上に設けられた被膜とを備えており、当該被膜は、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含むことを特徴としている。本発明の水素発生用電極は、このような構成を備えていることにより、水素発生電位から換算される過電圧を低下させることができ、さらに、電解停止時の逆電流に起因する白金触媒の有効表面積の減少が効果的に抑制されている。以下、本発明の水素発生用電極、当該水素発生用電極の製造方法、及び当該水素発生用電極を利用した電気分解方法について詳述する。 The electrode for hydrogen generation of the present invention includes a conductive base material and a coating film provided on the conductive base material, and the coating film contains at least platinum, nickel oxide, and cerium oxide. It is characterized by that. By having such a configuration, the hydrogen generation electrode of the present invention can reduce the overvoltage converted from the hydrogen generation potential, and further, the platinum catalyst effective due to the reverse current at the time of stopping electrolysis. The decrease in surface area is effectively suppressed. Hereinafter, the hydrogen generating electrode of the present invention, the method for producing the hydrogen generating electrode, and the electrolysis method using the hydrogen generating electrode will be described in detail.

なお、本明細書において、「〜」で結ばれた数値は、「〜」の前後の数値を下限値及び上限値として含む数値範囲を意味する。複数の下限値と複数の上限値が別個に記載されている場合、任意の下限値と上限値を選択し、「〜」で結ぶことができるものとする。 In this specification, the numerical values connected by "-" mean a numerical range including the numerical values before and after "-" as the lower limit value and the upper limit value. When a plurality of lower limit values and a plurality of upper limit values are described separately, any lower limit value and upper limit value can be selected and connected by "~".

1.水素発生用電極
本発明の水素発生用電極は、導電性基材と、当該導電性基材上に設けられた被膜とを備えている。さらに、当該被膜は、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む。
1. 1. Hydrogen-generating electrode The hydrogen-generating electrode of the present invention includes a conductive base material and a coating film provided on the conductive base material. Further, the coating contains at least platinum, nickel oxide, and cerium oxide.

導電性基材としては、導電性を備えており、かつ、被膜の基材としての機能を発揮する限りにおいて、特に制限されず、公知の水素発生用電極に使用されている導電性基材を使用することができる。 The conductive base material is not particularly limited as long as it has conductivity and functions as a base material for the coating film, and a conductive base material used for a known hydrogen generation electrode can be used. Can be used.

導電性基材は、金属を含むことが好ましく、金属により構成されていることがより好ましい。また、金属としては、好ましくはニッケル、ステンレス鋼、鉄、銅、チタン、鋼などが挙げられ、これらの中でも、ニッケルが好ましい。水素発生電位から換算される過電圧を低下させつつ、電解停止時の逆電流に起因する白金触媒の有効表面積の減少を効果的に抑制する観点から、本発明の水素発生用電極において、導電性基材は、ニッケルにより
構成されていることが好ましい。ニッケルを含む導電性基材としては、ニッケルにより構成されたものの他、例えばステンレス鋼の表面がニッケルで被覆されたものなども好適である。
The conductive base material preferably contains a metal, and more preferably is made of a metal. Further, examples of the metal include nickel, stainless steel, iron, copper, titanium, steel and the like, and among these, nickel is preferable. In the hydrogen generation electrode of the present invention, the conductive group is used from the viewpoint of effectively suppressing the decrease in the effective surface area of the platinum catalyst due to the reverse current when electrolysis is stopped while reducing the overvoltage converted from the hydrogen generation potential. The material is preferably composed of nickel. As the conductive base material containing nickel, in addition to those composed of nickel, for example, those in which the surface of stainless steel is coated with nickel are also suitable.

また、導電性基材の形状についても、特に制限されず、板状、棒状、多孔状(エキスパンドメタル、パンチングメタル、すだれ状など)などが挙げられる。導電性基材の上に設けられる被膜の表面積を大きくする観点からは、多孔状などが好ましい。 The shape of the conductive base material is also not particularly limited, and examples thereof include a plate shape, a rod shape, and a porous shape (expanded metal, punching metal, blind shape, etc.). From the viewpoint of increasing the surface area of the coating film provided on the conductive base material, porous or the like is preferable.

導電性基材のサイズは、特に制限されず、電気分解のスケール、水素発生電極のサイズ等に応じて適宜設定すればよいが、例えば、長さは300mm〜2,500mm程度、幅は1,200mm〜1,500mm程度、厚みは0.1mm〜6mm程度が挙げられる。 The size of the conductive base material is not particularly limited and may be appropriately set according to the scale of electrolysis, the size of the hydrogen generating electrode, etc., but for example, the length is about 300 mm to 2,500 mm and the width is 1,. Examples thereof include about 200 mm to 1,500 mm and a thickness of about 0.1 mm to 6 mm.

導電性基材の表面は、被膜の密着性を向上させる観点などから、粗面化されていてもよい。導電性基材の表面粗さRaとしては、例えば1〜10μm程度に設定することができる。導電性基材の表面を粗面化する方法としては、ブラスト処理などが挙げられる。 The surface of the conductive base material may be roughened from the viewpoint of improving the adhesion of the coating film. The surface roughness Ra of the conductive base material can be set to, for example, about 1 to 10 μm. Examples of the method for roughening the surface of the conductive base material include blasting treatment.

また、導電性基材の表面は、被膜の密着性を向上させる観点などから、エッチング処理が施されていてもよい。エッチング処理の方法としては、例えば、塩酸などの酸に導電性基材を浸漬する方法などが挙げられる。また、エッチング処理後には、導電性基材の表面が中性になるまで水洗し、乾燥させることが好ましい。 Further, the surface of the conductive base material may be etched from the viewpoint of improving the adhesion of the coating film. Examples of the etching treatment method include a method of immersing the conductive base material in an acid such as hydrochloric acid. Further, after the etching treatment, it is preferable to wash the conductive base material with water until the surface becomes neutral and dry it.

本発明の水素発生用電極において、被膜は、導電性基材の上に形成されている。より具体的には、被膜は、導電性基材の表面に形成されていることが好ましい。 In the hydrogen generating electrode of the present invention, the coating film is formed on a conductive base material. More specifically, the coating is preferably formed on the surface of the conductive base material.

被膜は、白金、ニッケル酸化物、及びセリウム酸化物を含む。被膜において、白金の状態は特に制限されないが、少なくとも一部は白金金属として含まれていることが好ましく、白金酸化物、白金水酸化物などが含まれていてもよい。また、ニッケルは、少なくとも一部がニッケル酸化物として含まれており、ニッケル金属、ニッケル水酸化物などがさらに含まれていてもよい。また、セリウムについても、少なくとも一部がセリウム酸化物として含まれており、セリウム金属、セリウム水酸化物などがさらに含まれていてもよい。また、上述した各金属の合金、若しくはアモルファス金属の状態となっていてもよい。 The coating contains platinum, nickel oxide, and cerium oxide. In the coating film, the state of platinum is not particularly limited, but at least a part thereof is preferably contained as a platinum metal, and platinum oxide, platinum hydroxide and the like may be contained. Further, at least a part of nickel is contained as a nickel oxide, and nickel metal, nickel hydroxide and the like may be further contained. Further, at least a part of cerium is also contained as cerium oxide, and cerium metal, cerium hydroxide and the like may be further contained. Further, it may be in the state of an alloy of each of the above-mentioned metals or an amorphous metal.

被膜に含まれる白金元素、ニッケル元素、及びセリウム元素のモル比(Pt/Ni/Ce)としては、特に制限されないが、白金1モルに対して、ニッケル元素は、好ましくは0.05〜5モル程度、より好ましくは0.5〜2モル程度が挙げられる。また、白金1モルに対して、セリウム元素は、好ましくは0.05〜10モル程度、より好ましくは0.5〜2モル程度が挙げられる。被膜に含まれる白金、ニッケル、及びセリウムの含有割合がこれらの範囲を充足することにより、水素発生電位から換算される過電圧をより一層低下させつつ、電解停止時の逆電流に起因する白金触媒の有効表面積の減少をより効果的に抑制することができる。 The molar ratio (Pt / Ni / Ce) of the platinum element, the nickel element, and the cerium element contained in the coating film is not particularly limited, but the nickel element is preferably 0.05 to 5 mol with respect to 1 mol of platinum. The degree, more preferably about 0.5 to 2 mol. The amount of the cerium element is preferably about 0.05 to 10 mol, more preferably about 0.5 to 2 mol with respect to 1 mol of platinum. By satisfying these ranges with the content ratios of platinum, nickel, and cerium contained in the coating film, the overvoltage converted from the hydrogen generation potential is further reduced, and the platinum catalyst caused by the reverse current when electrolysis is stopped. The decrease in effective surface area can be suppressed more effectively.

また、水素発生電位を低下させつつ、電解停止時の逆電流に起因する白金触媒の有効表面積の減少を効果的に抑制する観点から、被膜における白金の含有量(すなわち、白金触媒担持量)は、好ましくは2g/m2以上、より好ましくは3g/m2以上、さらに好ましくは4g/m2以上が挙げられる。白金触媒担持量は、多ければ多いほど効果を発揮するが、経済的な観点から、白金触媒担持量の上限は、例えば20g/m2が挙げられる。Further, from the viewpoint of effectively suppressing the decrease in the effective surface area of the platinum catalyst due to the reverse current when electrolysis is stopped while lowering the hydrogen generation potential, the platinum content in the coating film (that is, the amount of platinum catalyst supported) is determined. , Preferably 2 g / m 2 or more, more preferably 3 g / m 2 or more, still more preferably 4 g / m 2 or more. The larger the amount of platinum catalyst supported, the more effective it is. However, from an economical point of view, the upper limit of the amount of platinum catalyst supported is, for example, 20 g / m 2 .

また、同様の観点から、被膜の厚みとしては、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに1μm以上が挙げられる。被膜の厚みは、厚ければ厚いほど効果を発揮するが、経済的な観点から、被膜の厚みの上限は、例えば20μmが挙げられる。 From the same viewpoint, the thickness of the coating film is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further 1 μm or more. The thicker the film, the more effective it is. However, from an economical point of view, the upper limit of the film thickness is, for example, 20 μm.

導電性基材の上に被膜を形成する方法としては、特に制限されないが、後述のように、例えば、白金化合物、ニッケル化合物、及びセリウム化合物を含む溶液を、導電性基材上に塗布し、形成された塗膜を焼成してこれらの化合物を熱分解させる方法によって好適に形成することができる。 The method for forming a film on the conductive base material is not particularly limited, but as described later, for example, a solution containing a platinum compound, a nickel compound, and a cerium compound is applied onto the conductive base material. It can be suitably formed by a method in which the formed coating film is fired to thermally decompose these compounds.

被膜には、白金、ニッケル、及びセリウムとは異なる他の金属が含まれていてもよい。他の金属としては、例えば、ランタン、ジルコニウム、ニオブ、モリブデンなどが挙げられる。被膜に他の金属が含まれる場合、その含有量としては、好ましくは5モル%以下、より好ましくは1モル%以下、さらに好ましくは0.5モル%以下が挙げられる。本発明の水素発生用電極において、被膜に含まれる金属は、白金、ニッケル、及びセリウムの合計が95モル%以上であることが好ましく、99モル%以上であることがより好ましく、99.5モル%以上、99.9モル%以上、さらには100モル%(すなわち、実質的に他の金属が含まれない)であることも好ましい。 The coating may contain other metals other than platinum, nickel, and cerium. Other metals include, for example, lanthanum, zirconium, niobium, molybdenum and the like. When the coating film contains other metals, the content thereof is preferably 5 mol% or less, more preferably 1 mol% or less, still more preferably 0.5 mol% or less. In the electrode for hydrogen generation of the present invention, the total amount of platinum, nickel, and cerium in the coating film is preferably 95 mol% or more, more preferably 99 mol% or more, and 99.5 mol. It is also preferable that it is% or more, 99.9 mol% or more, and further 100 mol% (that is, substantially free of other metals).

本発明の水素発生用電極は、水を含む溶液(例えば、水や、塩化ナトリウムなどのアルカリ金属塩化物水溶液、水酸化ナトリウムなどのアルカリ金属水酸化物水溶液)の公知の電気分解法の電極として好適に使用されて、当該電極から水素が発生する。すなわち、本発明の水素発生用電極は、水を含む溶液の電気分解法における陰極として好適である。 The electrode for hydrogen generation of the present invention is used as an electrode for a known electrolysis method for a solution containing water (for example, water, an aqueous alkali metal chloride solution such as sodium chloride, or an aqueous alkali metal hydroxide solution such as sodium hydroxide). Preferably used, hydrogen is generated from the electrode. That is, the electrode for hydrogen generation of the present invention is suitable as a cathode in the electrolysis method of a solution containing water.

2.水素発生用電極の製造方法
本発明の水素発生用電極の製造方法は、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を形成する工程を備える。当該被膜の形成方法としては、特に制限されず、熱分解法、粉末焼結法、電気めっき法、分散めっき法、溶射法、アークイオンプレーティング法など、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜が導電性基材の上に形成することができる、公知の方法を採用することができる。
2. Method for Producing Hydrogen Generation Electrode The method for producing a hydrogen generation electrode of the present invention includes a step of forming a film containing at least platinum, nickel oxide, and cerium oxide. The method for forming the film is not particularly limited, and platinum, nickel oxide, and cerium oxide such as a thermal decomposition method, a powder sintering method, an electroplating method, a dispersion plating method, a thermal spraying method, and an arc ion plating method are used. A known method can be adopted in which a coating containing the above can be formed on the conductive substrate.

これらの被膜の形成方法の中でも、熱分解法が好ましい。熱分解法においては、例えば、少なくとも、白金化合物、ニッケル化合物、及びセリウム化合物を含む溶液を、導電性基材上に塗布して、導電性基材上に溶液の塗膜を形成する工程と、導電性基材上の塗膜を焼成して、導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を形成する工程とを備える。 Among these film forming methods, the thermal decomposition method is preferable. In the thermal decomposition method, for example, a step of applying a solution containing at least a platinum compound, a nickel compound, and a cerium compound on a conductive base material to form a coating film of the solution on the conductive base material. The step includes a step of firing a coating film on the conductive base material to form a film containing at least platinum, nickel oxide, and cerium oxide on the conductive base material.

白金化合物としては、塗膜の焼成によって熱分解して被膜に白金が含まれるものであれば特に制限されず、例えば、ジニトロジアンミン白金、塩化白金酸、硝酸テトラアンミン白金、ヘキサアンミン白金水酸塩、ビス(アセチルアセトナト)白金などが挙げられる。白金化合物は、1種類であってもよいし、2種類以上であってもよい。 The platinum compound is not particularly limited as long as it is thermally decomposed by firing the coating film and contains platinum in the coating film. Examples include bis (acetylacetonato) platinum. The platinum compound may be one kind or two or more kinds.

また、ニッケル化合物としては、塗膜の焼成によって熱分解して被膜にニッケル酸化物が含まれるものであれば特に制限されず、例えば、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、塩化ニッケル、酢酸ニッケルなどが挙げられる。ニッケル化合物は、1種類であってもよいし、2種類以上であってもよい。 The nickel compound is not particularly limited as long as it is thermally decomposed by firing the coating film and contains nickel oxide in the coating film. For example, nickel nitrate, nickel sulfate, nickel carbonate, nickel chloride, nickel acetate, etc. Can be mentioned. The nickel compound may be one kind or two or more kinds.

また、セリウム化合物としては、塗膜の焼成によって熱分解して被膜にセリウム酸化物が含まれるものであれば特に制限されず、例えば、硝酸セリウム、硫酸セリウム、炭酸セリウム、塩化セリウム、酢酸セリウムなどが挙げられる。セリウム化合物は、1種類であってもよいし、2種類以上であってもよい。 The cerium compound is not particularly limited as long as it is thermally decomposed by firing the coating film and the film contains cerium oxide. For example, cerium nitrate, cerium sulfate, cerium carbonate, cerium chloride, cerium acetate and the like. Can be mentioned. The cerium compound may be one kind or two or more kinds.

溶液に含まれる白金元素、ニッケル元素、及びセリウム元素のモル比(Pt/Ni/Ce)としては、特に制限されず、前述の被膜におけるモル比となるように調整することができる。 The molar ratio (Pt / Ni / Ce) of the platinum element, the nickel element, and the cerium element contained in the solution is not particularly limited, and can be adjusted so as to be the molar ratio in the above-mentioned coating film.

溶液に含まれる溶媒としては、特に制限されないが、白金化合物、ニッケル化合物、及びセリウム化合物を溶解できるものが好ましい。溶媒の具体例としては、水や、硝酸、塩酸、硫酸、酢酸などの無機酸、メタノール、エタノール、プロパノール、ブタノールなどの低級アルコール、またはこれらのうち少なくとも2種を含む混合溶液などが挙げられる。また、導電性基材の溶解を抑制する観点などから、溶液にはpH調整剤などを配合してもよく、また、白金、ニッケル、セリウムを錯化させて表面積を大きくする観点などから、リシン、クエン酸などを添加してもよい。 The solvent contained in the solution is not particularly limited, but a solvent capable of dissolving a platinum compound, a nickel compound, and a cerium compound is preferable. Specific examples of the solvent include water, inorganic acids such as nitrate, hydrochloric acid, sulfuric acid and acetic acid, lower alcohols such as methanol, ethanol, propanol and butanol, and a mixed solution containing at least two of them. Further, from the viewpoint of suppressing the dissolution of the conductive base material, a pH adjuster or the like may be added to the solution, and from the viewpoint of increasing the surface area by complexing platinum, nickel and cerium, the lysine may be added. , Citric acid and the like may be added.

溶液中の白金、ニッケル、及びセリウムの合計濃度としては、特に制限されないが、被膜に含まれる白金触媒の担持量が所定量となるように、被膜を好適に形成する観点から、好ましくは2%以上、より好ましくは3〜30%程度、さらに好ましくは4〜20%程度が挙げられる。 The total concentration of platinum, nickel, and cerium in the solution is not particularly limited, but is preferably 2% from the viewpoint of preferably forming the coating so that the amount of the platinum catalyst supported on the coating is a predetermined amount. As described above, more preferably about 3 to 30%, still more preferably about 4 to 20%.

また、塗膜を形成する工程において、少なくとも白金化合物を含む溶液と、少なくともニッケル化合物を含む溶液と、少なくともセリウム化合物を含む溶液を用意し、それぞれの溶液を導電性基材の上に塗布することで、塗膜を形成してもよい。なお、このとき、少なくとも白金化合物を含む溶液にニッケル化合物及びセリウム化合物のうち少なくとも一方がさらに含まれていてもよいし、少なくともニッケル化合物を含む溶液に白金化合物及びセリウム化合物のうち少なくとも一方がさらに含まれていてもよいし、少なくともセリウム化合物を含む溶液に白金化合物及びニッケル化合物のうち少なくとも一方がさらに含まれていてもよい。また、各溶液を塗布した後、他の溶液を塗布する前に、後述の乾燥、さらには焼成を行って、組成の異なる多層構造の被膜としてもよい。 Further, in the step of forming the coating film, a solution containing at least a platinum compound, a solution containing at least a nickel compound, and a solution containing at least a cerium compound are prepared, and each solution is applied onto the conductive substrate. Then, a coating film may be formed. At this time, at least one of the nickel compound and the cerium compound may be further contained in the solution containing at least the platinum compound, and at least one of the platinum compound and the cerium compound may be further contained in the solution containing at least the nickel compound. Alternatively, the solution containing at least the cerium compound may further contain at least one of the platinum compound and the nickel compound. Further, after applying each solution and before applying another solution, drying and further firing described later may be performed to form a film having a multi-layer structure having different compositions.

溶液を導電性基材上に塗布する方法としては、特に制限されず、刷毛による塗布する方法、スプレー法、ディップコート法など公知の方法を採用することができる。なお、前述のとおり、導電性基材の表面は、粗面化してもよいし、エッチング、水洗、乾燥などの処理を行ってもよい。 The method of applying the solution onto the conductive substrate is not particularly limited, and known methods such as a method of applying with a brush, a spray method, and a dip coating method can be adopted. As described above, the surface of the conductive base material may be roughened, or may be subjected to treatments such as etching, washing with water, and drying.

溶液を導電性基材上に塗布した後、塗膜を焼成させる前に、塗膜を乾燥させることが好ましい。乾燥は、溶媒が蒸発する程度の条件で行えばよく、例えば200℃以下の温度で5〜60分間程度行えばよく、150℃以下の温度で行うことがより好ましい。 After applying the solution on the conductive substrate, it is preferable to dry the coating film before firing the coating film. Drying may be carried out under conditions such that the solvent evaporates. For example, the drying may be carried out at a temperature of 200 ° C. or lower for about 5 to 60 minutes, and more preferably at a temperature of 150 ° C. or lower.

次に、得られた塗膜を焼成し、導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を形成して、水素発生用電極を得る。焼成は、例えば、空気中等の酸化性雰囲気中(例えば大気中)において行うことができる。 Next, the obtained coating film is fired to form a film containing at least platinum, nickel oxide, and cerium oxide on the conductive substrate to obtain an electrode for hydrogen generation. Firing can be performed, for example, in an oxidizing atmosphere such as in the air (for example, in the atmosphere).

焼成は、塗膜中の白金化合物、ニッケル化合物、及びセリウム化合物が熱分解して、得られる被膜中に白金、ニッケル酸化物、及びセリウム酸化物が含まれる条件で行えばよい。焼成温度としては、好ましくは200〜700℃程度、より好ましくは350〜550℃程度が挙げられる。また、焼成時間としては、好ましくは5〜60分間程度、より好ましくは10〜30分間程度が挙げられる。 The firing may be carried out under the condition that the platinum compound, the nickel compound and the cerium compound in the coating film are thermally decomposed and the film obtained contains platinum, the nickel oxide and the cerium oxide. The firing temperature is preferably about 200 to 700 ° C, more preferably about 350 to 550 ° C. The firing time is preferably about 5 to 60 minutes, more preferably about 10 to 30 minutes.

以上の塗布、乾燥、及び焼成の一連の工程を1回以上、好ましくは複数回繰り返して行い、導電性基材の上に被膜を形成する。当該一連の工程の回数としては、特に制限されず、白金触媒の担持量が所定量となるまで繰り返すことが好ましい。また、一連の工程を繰り返す場合、塗布する溶液の組成は同一であってもよいし、異なっていてもよいが、通常は同一とする。 The above series of coating, drying, and firing steps are repeated once or more, preferably a plurality of times, to form a film on the conductive substrate. The number of times of the series of steps is not particularly limited, and it is preferable to repeat until the amount of the platinum catalyst supported reaches a predetermined amount. When the series of steps is repeated, the composition of the solution to be applied may be the same or different, but usually they are the same.

以上の方法により、本発明の水素発生用電極を好適に製造することができる。 By the above method, the electrode for hydrogen generation of the present invention can be suitably manufactured.

3.電気分解方法
本発明の電気分解方法は、水を含む溶液(例えば、水や、塩化ナトリウムなどのアルカリ金属塩化物水溶液、水酸化ナトリウムなどのアルカリ金属水酸化物水溶液)の電気分解法において、本発明の水素発生用電極を用いる方法である。具体的には、水を含む溶液の公知の電気分解法において、水素発生用電極として、本発明の水素発生用電極を用いる。
3. 3. Electrolysis method The electrolysis method of the present invention is a method for electrolyzing a solution containing water (for example, water, an aqueous alkali metal chloride solution such as sodium chloride, or an aqueous alkali metal hydroxide solution such as sodium hydroxide). This is a method using the hydrogen generating electrode of the present invention. Specifically, in a known electrolysis method for a solution containing water, the hydrogen generating electrode of the present invention is used as the hydrogen generating electrode.

例えば、本発明の水素発生用電極をイオン交換膜法食塩電解の水素発生用電極に供する場合、使用開始時の電解液温度は70〜90℃程度、陰極室の電解液濃度(水酸化ナトリウム)は20〜40質量%程度、電流密度は0.1〜10kA/m2程度とすることができる。For example, when the electrode for hydrogen generation of the present invention is used for the electrode for hydrogen generation of ion exchange membrane method salt electrolysis, the electrolyte temperature at the start of use is about 70 to 90 ° C., and the electrolyte concentration (sodium hydroxide) in the cathode chamber. Can be about 20 to 40% by mass, and the current density can be about 0.1 to 10 kA / m 2.

以下の実施例において本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be described in more detail in the following examples, but the present invention is not limited thereto.

<水素発生用電極の被膜を形成する溶液の調製>
(実施例1)
ジニトロジアンミン白金硝酸溶液と、硝酸ニッケル(II)六水和物と、硝酸セリウム(III)六水和物とを、Pt/Ni/Ce=1/1/0.05のモル比となるように混合して、水素発生用電極の被膜を形成する溶液を調製した。
<Preparation of the solution that forms the film of the electrode for hydrogen generation>
(Example 1)
Dinitrodiammine platinum nitrate solution, nickel (II) nitrate hexahydrate, and cerium (III) nitrate hexahydrate so as to have a molar ratio of Pt / Ni / Ce = 1/1/0.05. A solution was prepared by mixing to form a film of a hydrogen generating electrode.

(実施例2)
ジニトロジアンミン白金硝酸溶液と、硝酸ニッケル(II)六水和物と、硝酸セリウム(III)六水和物とを、Pt/Ni/Ce=1/1/0.1のモル比となるように混合して、水素発生用電極の被膜を形成する溶液を調製した。
(Example 2)
Dinitrodiammine platinum nitrate solution, nickel (II) nitrate hexahydrate, and cerium (III) nitrate hexahydrate so as to have a molar ratio of Pt / Ni / Ce = 1/1 / 0.1. A solution was prepared by mixing to form a film of a hydrogen generating electrode.

(実施例3)
ジニトロジアンミン白金硝酸溶液と、硝酸ニッケル(II)六水和物と、硝酸セリウム(III)六水和物とを、Pt/Ni/Ce=1/1/0.5のモル比となるように混合して、水素発生用電極の被膜を形成する溶液を調製した。
(Example 3)
Dinitrodiammine platinum nitrate solution, nickel (II) nitrate hexahydrate, and cerium (III) nitrate hexahydrate so as to have a molar ratio of Pt / Ni / Ce = 1/1 / 0.5. A solution was prepared by mixing to form a film of a hydrogen generating electrode.

(実施例4)
ジニトロジアンミン白金硝酸溶液と、硝酸ニッケル(II)六水和物と、硝酸セリウム(III)六水和物とを、Pt/Ni/Ce=1/1/1のモル比となるように混合して、水素発生用電極の被膜を形成する溶液を調製した。
(Example 4)
Dinitrodiammine platinum nitrate solution, nickel (II) nitrate hexahydrate, and cerium (III) nitrate hexahydrate were mixed so as to have a molar ratio of Pt / Ni / Ce = 1/1/1. To prepare a solution for forming a film of a hydrogen generating electrode.

(比較例1)
比較用の水素発生用電極として、MD−C50(ダイソーエンジニアリング株式会社製)を用いた。なお、触媒層における、Pt/Ceの比率は1/0.6である。
(Comparative Example 1)
MD-C50 (manufactured by Daiso Engineering Co., Ltd.) was used as a hydrogen generating electrode for comparison. The ratio of Pt / Ce in the catalyst layer is 1 / 0.6.

<水素発生用電極の製造>
導電性基材として用いるためのニッケル板(100mm×100mm×1mmサイズ)を用意した。次に、ブラスト処理により、ニッケル板の表面を粗面化(表面粗さRa=3〜5μm程度)した。次に、10%塩酸水溶液にニッケル板を10分間浸漬した後、ニッケル板の表面が中性になるまで水洗し、乾燥させて導電性基材とした。次に、大気中で、実施例1〜4及び比較例1で得られた各溶液を、それぞれ、導電性基材の表面に塗布、乾燥、焼成(熱分解)の一連の工程を、白金触媒の担持量が規定量(8g/m2)になるまで繰り返して、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜が導電性基材表面に形成された水素発生用電極を得た。なお、溶液の塗布は刷毛を用いた塗布であり、乾燥は120℃で10分間であり、焼成は460℃で10分間である。
<Manufacturing of electrodes for hydrogen generation>
A nickel plate (100 mm × 100 mm × 1 mm size) for use as a conductive base material was prepared. Next, the surface of the nickel plate was roughened by blasting (surface roughness Ra = about 3 to 5 μm). Next, the nickel plate was immersed in a 10% aqueous hydrochloric acid solution for 10 minutes, washed with water until the surface of the nickel plate became neutral, and dried to obtain a conductive base material. Next, in the air, each of the solutions obtained in Examples 1 to 4 and Comparative Example 1 was applied to the surface of the conductive substrate, and a series of steps of drying and firing (pyrolysis) were carried out with a platinum catalyst. This was repeated until the amount of the material supported was the specified amount (8 g / m 2 ) to obtain an electrode for hydrogen generation in which a film containing platinum, nickel oxide, and cerium oxide was formed on the surface of the conductive substrate. The solution is applied using a brush, drying is performed at 120 ° C. for 10 minutes, and firing is performed at 460 ° C. for 10 minutes.

<水素発生電位の測定>
実施例1〜4及び比較例1の水素発生用電極を用いて、水素発生電位を測定した。具体的には、各水素発生用電極を作用極とし、図1の模式図に示すようなセルを組み立て、6kA/m2の条件で、カレントインターラプト法により水素発生電位を測定した。結果を図3のグラフに示す。セルの構成は以下の通りである。なお、前処理として、4kA/m2で1分間の電気分解を行った。なお、図3中、実施例1をEx1、実施例2をEx2、実施例3をEx3、実施例4をEx4、比較例1をRf1と表す。
電解液:32wt%水酸化ナトリウム水溶液(容量約300mL)
液温:80℃
作用極:実施例1〜4及び比較例1の各水素発生用電極
対極:白金板(25mm×25mm)
参照極:水銀/酸化水銀電極(Hg/HgO)(32wt%水酸化ナトリウム水溶液(25℃)に浸す)
<Measurement of hydrogen generation potential>
The hydrogen generation potential was measured using the hydrogen generation electrodes of Examples 1 to 4 and Comparative Example 1. Specifically, each hydrogen generating electrode was used as a working electrode, a cell as shown in the schematic diagram of FIG. 1 was assembled, and the hydrogen generating potential was measured by the current interrupt method under the condition of 6 kA / m 2. The results are shown in the graph of FIG. The cell configuration is as follows. As a pretreatment, electrolysis was performed at 4 kA / m 2 for 1 minute. In FIG. 3, Example 1 is referred to as Ex1, Example 2 is referred to as Ex2, Example 3 is referred to as Ex3, Example 4 is referred to as Ex4, and Comparative Example 1 is referred to as Rf1.
Electrolyte: 32 wt% sodium hydroxide aqueous solution (capacity: about 300 mL)
Liquid temperature: 80 ° C
Working electrode: Electrode counter electrode for hydrogen generation in Examples 1 to 4 and Comparative Example 1: Platinum plate (25 mm × 25 mm)
Reference electrode: Mercury / mercury oxide electrode (Hg / HgO) (immersed in 32 wt% sodium hydroxide aqueous solution (25 ° C))

<逆電流耐性試験>
実施例1〜4の水素発生用電極を用いて、逆電流耐性試験を行った。具体的には、各水素発生用電極を作用極とし、図1の模式図に示すようなセルを組み立てた。次に、10kA/m2で60分間、陰分極電解を行い、試験前のサンプル調整を行った(電流は、通常使用される方向である)。次に、1kA/m2で45分間の陽分極電解(電流は、通常使用される方向とは逆方向である)と9kA/m2で15分間の陰分極電解(電流は、通常使用される方向である)とを1サイクルとし、これを20サイクル繰り返すサイクル試験(図2のサイクル図を参照)を行い、20サイクル後の水素発生電極を測定した。結果を図4のグラフに示す。なお、図4中、実施例1をEx1、実施例2をEx2、実施例3をEx3、実施例4をEx4と表す。
<Reverse current resistance test>
A reverse current resistance test was performed using the hydrogen generating electrodes of Examples 1 to 4. Specifically, each hydrogen generating electrode was used as a working electrode, and a cell as shown in the schematic diagram of FIG. 1 was assembled. Next, negative polarization electrolysis was performed at 10 kA / m 2 for 60 minutes to prepare the sample before the test (current is in the direction normally used). Next, positive polarization electrolysis at 1 kA / m 2 for 45 minutes (current is in the opposite direction to the direction normally used) and negative polarization electrolysis at 9 kA / m 2 for 15 minutes (current is normally used). A cycle test (see the cycle diagram of FIG. 2) was performed in which 20 cycles were repeated with (direction) as one cycle, and the hydrogen generating electrode after 20 cycles was measured. The results are shown in the graph of FIG. In FIG. 4, Example 1 is referred to as Ex1, Example 2 is referred to as Ex2, Example 3 is referred to as Ex3, and Example 4 is referred to as Ex4.

<白金触媒の有効表面積の評価>
サイクリックボルタンメトリー(CV)により、実施例3及び比較例1の水素発生用電極の逆電流耐性試験後における白金触媒の有効表面積の減少率を測定した。サイクリックボルタンメトリー(CV)の条件は以下の通りである。
電解液:1mol/L H2SO4水溶液
温度:室温(25〜28℃)
作用極:実施例3及び比較例1の各水素発生用電極
対極:白金板(25mm×25mm)
参照電極:銀/塩化銀(Ag/AgCl)(飽和塩化カリウム水溶液(室温)に浸す)
電位走査範囲:1.1〜−0.23V vs.Ag/AgCl
電位走査速度:100mV/s
結果を表1に示す。なお、サイクリックボルタンメトリー(CV)を用いた白金触媒の有効表面積の減少率の測定は、「固体高分子型燃料電池の目標・研究開発課題と評価方法の提案(平成23年1月発行、発行者:燃料電池実用化推進協議会)の第22頁に記載の「III−3−4 試験名:CV評価方法」に記載された方法を参照とした。
<Evaluation of effective surface area of platinum catalyst>
Cyclic voltammetry (CV) was used to measure the rate of decrease in the effective surface area of the platinum catalyst after the reverse current resistance test of the hydrogen generating electrodes of Example 3 and Comparative Example 1. The conditions for cyclic voltammetry (CV) are as follows.
Electrolyte: 1 mol / L H 2 SO 4 aqueous solution Temperature: Room temperature (25-28 ° C)
Working electrode: Electrode counter electrode for hydrogen generation in Example 3 and Comparative Example 1: Platinum plate (25 mm x 25 mm)
Reference electrode: Silver / silver chloride (Ag / AgCl) (immersed in saturated potassium chloride aqueous solution (room temperature))
Potential scanning range: 1.1 to −0.23 V vs. Ag / AgCl
Potential scanning speed: 100 mV / s
The results are shown in Table 1. The measurement of the reduction rate of the effective surface area of the platinum catalyst using cyclic voltammetry (CV) is described in "Protons for solid polymer fuel cells, R & D issues and evaluation method proposals (issued in January 2011). Person: The method described in "III-3-4 Test name: CV evaluation method" described on page 22 of the Fuel Cell Practical Use Promotion Council) was referred to.

Figure 2020110527
Figure 2020110527

表1に示すように、逆電流耐性試験前後で白金触媒の有効表面積を比較すると、実施例3は比較例1よりも3倍程度減少率が抑制された。これは、逆電流の負荷がかかった後も、実施例3は比較例1に比べ、白金触媒がより有効に機能していることを示しており、実施例3は逆電流に対する耐性を有していると言える。また、図3に示すように、全ての実施例(Ex1〜Ex4)で初期の水素発生電位の絶対値が比較例1(Rf1)より低くなっており、過電圧の低下が認められる。加えて、図4に示すように、この低過電圧は逆電流の負荷がかかった後も持続した。よって、本発明の水素発生用電極は、水素発生電位から換算される過電圧を低下させることができ、さらに、電解停止時の逆電流に起因する白金触媒の有効表面積の減少が効果的に抑制されており、逆電流に対する耐性を有していることが表1及び図3、4に示されている。 As shown in Table 1, when the effective surface area of the platinum catalyst was compared before and after the reverse current resistance test, the reduction rate of Example 3 was suppressed by about 3 times as compared with that of Comparative Example 1. This indicates that the platinum catalyst functions more effectively in Example 3 as compared with Comparative Example 1 even after the load of reverse current is applied, and Example 3 has resistance to reverse current. It can be said that it is. Further, as shown in FIG. 3, in all the examples (Ex1 to Ex4), the absolute value of the initial hydrogen generation potential is lower than that of the comparative example 1 (Rf1), and a decrease in overvoltage is observed. In addition, as shown in FIG. 4, this low overvoltage persisted even after the reverse current load was applied. Therefore, the hydrogen generation electrode of the present invention can reduce the overvoltage converted from the hydrogen generation potential, and further, the decrease in the effective surface area of the platinum catalyst due to the reverse current when the electrolysis is stopped is effectively suppressed. It is shown in Table 1 and FIGS. 3 and 4 that it has resistance to reverse current.

Claims (6)

導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を有する、水素発生用電極。 An electrode for hydrogen generation having a coating film containing at least platinum, nickel oxide, and cerium oxide on a conductive substrate. 前記被膜の前記白金の担持量が、2g/m2以上である、請求項1に記載の水素発生用電極。The hydrogen generating electrode according to claim 1, wherein the amount of platinum supported on the coating film is 2 g / m 2 or more. 前記導電性基材が、ニッケルを含む、請求項1又は2に記載の水素発生用電極。 The hydrogen generating electrode according to claim 1 or 2, wherein the conductive substrate contains nickel. 導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を形成する工程を備える、水素発生用電極の製造方法。 A method for producing a hydrogen generating electrode, comprising a step of forming a film containing at least platinum, nickel oxide, and cerium oxide on a conductive substrate. 水を含む溶液の電気分解法において、請求項1〜3のいずれか1項に記載の水素発生用電極を用いる、電気分解方法。 A method for electrolyzing a solution containing water, wherein the electrode for hydrogen generation according to any one of claims 1 to 3 is used. 導電性基材上に、少なくとも、白金、ニッケル酸化物、及びセリウム酸化物を含む被膜を有する電極の、水素発生のための使用。 Use for hydrogen generation of electrodes having a coating containing at least platinum, nickel oxide, and cerium oxide on a conductive substrate.
JP2020558185A 2018-11-27 2019-10-24 Electrode for hydrogen generation, its manufacturing method, and hydrogen manufacturing method Pending JPWO2020110527A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018221279 2018-11-27
JP2018221279 2018-11-27
PCT/JP2019/041653 WO2020110527A1 (en) 2018-11-27 2019-10-24 Hydrogen generation electrode, method of producing same, and hydrogen production method

Publications (1)

Publication Number Publication Date
JPWO2020110527A1 true JPWO2020110527A1 (en) 2021-10-14

Family

ID=70853399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020558185A Pending JPWO2020110527A1 (en) 2018-11-27 2019-10-24 Electrode for hydrogen generation, its manufacturing method, and hydrogen manufacturing method

Country Status (4)

Country Link
JP (1) JPWO2020110527A1 (en)
CN (1) CN113166958A (en)
TW (1) TW202035795A (en)
WO (1) WO2020110527A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577725B1 (en) * 2021-03-30 2023-09-12 전남대학교산학협력단 A hydrogen evolution reaction catalytic electrode, its manufacturing method, and the hydrogen production method by water electrolysis using it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633492B2 (en) * 1987-06-29 1994-05-02 ペルメレック電極株式会社 Electrolytic cathode and method of manufacturing the same
JP2000239882A (en) * 1999-02-24 2000-09-05 Permelec Electrode Ltd Activated cathode and its production
WO2015098058A1 (en) * 2013-12-26 2015-07-02 東ソー株式会社 Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith
CN107687002A (en) * 2017-08-17 2018-02-13 沈阳中科惠友科技发展有限责任公司 A kind of activated cathode of doped graphene and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1012970B (en) * 1987-06-29 1991-06-26 耐用电极株式会社 Cathode for electrolysis and process for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633492B2 (en) * 1987-06-29 1994-05-02 ペルメレック電極株式会社 Electrolytic cathode and method of manufacturing the same
JP2000239882A (en) * 1999-02-24 2000-09-05 Permelec Electrode Ltd Activated cathode and its production
WO2015098058A1 (en) * 2013-12-26 2015-07-02 東ソー株式会社 Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith
CN107687002A (en) * 2017-08-17 2018-02-13 沈阳中科惠友科技发展有限责任公司 A kind of activated cathode of doped graphene and preparation method thereof

Also Published As

Publication number Publication date
WO2020110527A1 (en) 2020-06-04
TW202035795A (en) 2020-10-01
CN113166958A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
US7959774B2 (en) Cathode for hydrogen generation
WO2015098058A1 (en) Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith
JP4673628B2 (en) Cathode for hydrogen generation
TW200304503A (en) Electrode for generation of hydrogen
JP5307270B2 (en) Cathode for hydrogen generation used for salt electrolysis
US8343329B2 (en) Electrode for hydrogen generation, method for manufacturing the same and electrolysis method using the same
JP6515509B2 (en) ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME
WO2011040464A1 (en) Electrode for generation of hydrogen, and electrolysis method
Liu et al. Effect of molar ratio of ruthenium and antimony on corrosion mechanism of Ti/Sn-Sb-RuOx electrode for zinc electrowinning
JPWO2020110527A1 (en) Electrode for hydrogen generation, its manufacturing method, and hydrogen manufacturing method
JP4961825B2 (en) Anode for electrochemical reaction
CN112342566B (en) Method for manufacturing electrode for electrolysis
FI84496B (en) ANOD FOER ANVAENDNING FOER FRAMSTAELLNING AV VAETEPEROXIDLOESNING OCH FOERFARANDE FOER FRAMSTAELLNING AV ANODEN.
JP2022166266A (en) Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
JP6878917B2 (en) Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it
JP6609913B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
JP2021028418A (en) Method for producing electrode for electrolysis
JP6926782B2 (en) Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode
JP6753195B2 (en) Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode
TW202407156A (en) Hydrogen generating electrode and method of manufacturing same
JP2024011284A (en) Hydrogen generating electrode and method for manufacturing the same
AU2021335079A1 (en) Electrode for gas evolution in electrolytic processes
JPH09157879A (en) Electrolyzing electrode and production thereof
JP2023500091A (en) Electrodes for the electrochemical generation of hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003