JPWO2020085079A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020085079A5
JPWO2020085079A5 JP2019556305A JP2019556305A JPWO2020085079A5 JP WO2020085079 A5 JPWO2020085079 A5 JP WO2020085079A5 JP 2019556305 A JP2019556305 A JP 2019556305A JP 2019556305 A JP2019556305 A JP 2019556305A JP WO2020085079 A5 JPWO2020085079 A5 JP WO2020085079A5
Authority
JP
Japan
Prior art keywords
fiber
molding material
reinforced resin
resin molding
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019556305A
Other languages
Japanese (ja)
Other versions
JP7363482B2 (en
JPWO2020085079A1 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2019/039607 external-priority patent/WO2020085079A1/en
Publication of JPWO2020085079A1 publication Critical patent/JPWO2020085079A1/en
Publication of JPWO2020085079A5 publication Critical patent/JPWO2020085079A5/ja
Application granted granted Critical
Publication of JP7363482B2 publication Critical patent/JP7363482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、製造時の巻き取り性や成形時の金型追随性に優れた成形材料であって、かかる成形材料を用いた成形体には高い力学特性を付与できる繊維強化樹脂成形材料に関する。 TECHNICAL FIELD The present invention relates to a fiber-reinforced resin molding material that is excellent in winding properties during production and mold followability during molding, and that can impart high mechanical properties to a molded article using such a molding material.

炭素繊維強化複合材料(CFRP)は比強度・比剛性に優れており、近年、自動車部材向けのCFRPの開発も活発化している。 Carbon fiber reinforced composite materials (CFRP) are excellent in specific strength and specific rigidity, and in recent years, the development of CFRP for automobile parts is also active.

CFRPの自動車への適用例としては、航空機やスポーツ材料で実績のある熱硬化性樹脂を用いた、プリプレグ、レジントランスファーモールディング(RTM)、フィラメントワインディング(FW)による部材が上市されている。一方、熱可塑性樹脂を用いたCFRPは、高速成形が可能で、リサイクル性に優れることから、量産車向け材料として注目されている。その中でもプレス成形は生産性が高く、複雑な形状や大面積の成形にも対応できることから、金属成形の代替としての期待が高まっている。 Examples of applications of CFRP to automobiles include prepreg, resin transfer molding (RTM), and filament winding (FW) components that use thermosetting resins that have a proven track record in aircraft and sports materials. On the other hand, CFRP using thermoplastic resin is attracting attention as a material for mass-produced vehicles because it can be molded at high speed and has excellent recyclability. Among them, press forming has high productivity and can be used to form complex shapes and large areas, so expectations are increasing as an alternative to metal forming.

プレス成形に用いる中間基材は、たとえば長さ数十mmの不連続強化繊維束を用いたシート状の材料が主流である。代表的なものとして、シートモールディングコンパウンド(SMC)、ガラスマットサーモプラスチック(GMT)がある(特許文献1、特許文献2)。いずれの中間基材も金型キャビティ内で材料が流動して充填される、いわゆるフロースタンピング成形に用いられ、比較的長い強化繊維束がまっすぐ、及び/または、湾曲した状態で熱可塑樹脂中に分散した形態をとる。しかし、その強化繊維束は単糸数が多いため、成形の際の材料(繊維や樹脂)の流動性には優れるが成形品の力学特性に劣る傾向がある。またこれらの中間基材は硬いため製造時の巻き取りが困難であったり、該中間基材を予熱せずに金型に配置すると金型形状に追随しにくい。 An intermediate base material used for press molding is mainly a sheet-like material using, for example, discontinuous reinforcing fiber bundles having a length of several tens of mm. Typical examples include sheet molding compounds (SMC) and glass mat thermoplastics (GMT) (Patent Documents 1 and 2). Any intermediate base material is used for so-called flow stamping molding, in which the material flows and is filled in the mold cavity, and relatively long reinforcing fiber bundles are straight and/or curved in the thermoplastic resin. It takes a dispersed form. However, since the reinforcing fiber bundle has a large number of single filaments, the fluidity of the material (fiber or resin) during molding is excellent, but the mechanical properties of the molded product tend to be inferior. In addition, since these intermediate base materials are hard, it is difficult to wind them up during production, and if the intermediate base material is placed in a mold without being preheated, it is difficult to follow the shape of the mold.

プレス成形に用いる中間基材としては、生産性や成形時の賦形性を向上させた繊維強化樹脂中間体(特許文献3、特許文献4)もある。加熱や加圧をすることにより、複雑な形状であっても所望の繊維体積含有率を有し、含浸が充分に行われボイドなどの欠陥の少ない繊維強化樹脂成形品を成形することができる。しかし、繊維強化樹脂中間体の表面の凹凸どうしの摩擦により、製造時に材料が脱落し繊維強化樹脂中間体を連続で巻き取ることができなかったり、金型追随性が十分でないことがあり、生産性の向上が要求されている。 As an intermediate base material used for press molding, there are also fiber-reinforced resin intermediates (Patent Documents 3 and 4) with improved productivity and shapeability during molding. By applying heat and pressure, it is possible to form a fiber-reinforced resin molded article having a desired fiber volume content even if it has a complicated shape, sufficiently impregnated, and having few defects such as voids. However, due to friction between the uneven surfaces of the fiber-reinforced resin intermediate, the material falls off during manufacturing, making it impossible to continuously wind the fiber-reinforced resin intermediate, and mold followability is not sufficient. There is a demand for improved performance.

特開2000-141502号公報JP-A-2000-141502 特開2003-80519号公報JP-A-2003-80519 特開2016-78360号公報JP 2016-78360 A 特開2017-190439号公報JP 2017-190439 A

そこで本発明は、上記要求に鑑み、製造時の巻き取り性や成形時の金型追随性に優れた成形材料であって、かかる成形材料を用いた成形体には高い力学特性を付与できる繊維強化樹脂成形材料を提供することを課題とする。 Therefore, in view of the above-mentioned requirements, the present invention provides a molding material that has excellent winding properties during production and mold followability during molding, and a fiber that can impart high mechanical properties to a molded article using such a molding material. An object of the present invention is to provide a reinforced resin molding material.

本発明者らは、鋭意検討した結果、上記課題を解決することができる繊維強化樹脂成形材料を発明するに至った。すなわち、本発明は、以下のいずれかの構成からなる。
[1] 不連続強化繊維束とマトリックス樹脂とからなり、前記マトリックス樹脂が前記不連続強化繊維束間に存在するシート状物からなる繊維強化樹脂成形材料であって、前記シート状物の表面において以下のように計測される凹凸数A(表)(個/mm)が0.1個/mm以上1個/mm以下であり、前記シート状物の厚みが0.1mm以上4mm以下であることを特徴とする、繊維強化樹脂成形材料。
凹凸数A(表)(個/mm):300mmのライン上を1mm/秒の速度でレーザー変位計(スポット径:約70μm、繰り返し精度3μm)を移動させ、サンプリング周期0.1秒でレーザー照射面からシート面までの距離Q(k=1、2、3・・・(測定順))を測定したとき、Qk+2-Qk+1が0.3mm未満、かつ、Qk+1-Qが0.3mm以上を満たすQの点の総数p(個)を300mmで割って得られる値
[2] 前記凹凸数A(表)と前記シート状物の裏面において以下のように計測される凹凸数A(裏)との比である凹凸数A(表)/凹凸数A(裏)または凹凸数A(裏)/凹凸数A(表)のうち、1未満となる方の比の範囲が0.01以上0.5未満であることを特徴とする、前記[1]に記載の繊維強化樹脂成形材料。
凹凸数A(裏)(個/mm):300mmのライン上を1mm/秒の速度でレーザー変位計(スポット径:約70μm、繰り返し精度3μm)を移動させ、サンプリング周期0.1秒でレーザー照射面からシート面までの距離Q(k=1、2、3・・・(測定順))を測定したとき、Qk+2-Qk+1が0.3mm未満、かつ、Qk+1-Qが0.3mm以上を満たすQの点の総数p(個)を300mmで割って得られる値
[3] JIS K-7112(1999年)のA法(水中置換法)にて測定される、前記繊維強化樹脂成形材料の比重ρ1(g/cm)と前記維強化樹脂成形材料からなる成形品の比重ρ2(g/cm)との比ρ1/ρ2が0.5以上0.9未満であることを特徴とする、前記[1]または[2]に記載の繊維強化樹脂成形材料。
[4] 以下のように計測されるドレープ値が3cm以上23cm以下であることを特徴とする、前記[1]~[3]のいずれかに記載の繊維強化樹脂成形材料。
ドレープ値:23±5℃の雰囲気下、長さ30cm、幅10cmの前記繊維強化樹脂成形材料を直方体の台の端に固定し、台の端から25cm突き出した前記繊維強化樹脂成形材料の先端と台の側面との最短距離
[5] 以下のように算出される平均繊維束厚みt(μm)と束内ボイド率V2(%)との積t*V2(μm・%)が500μm・%以上20000μm・%以下であることを特徴とする、前記[1]~[4]のいずれかに記載の繊維強化樹脂成形材料。
平均繊維束厚みt(μm):500℃に加熱した窒素雰囲気中(酸素濃度1%以下)の電気炉の中で前記繊維強化樹脂成形材料を2時間加熱して得られる繊維マットから前記不連続強化繊維束を50束ピックアップし、束幅垂直方向(いわゆる縦断面)である繊維束の厚みをノギスで測定した平均値
束内ボイド率V2(%):シートの任意の厚み方向断面を研磨し撮影した写真から50束を選択し、1束の断面積を100%とした場合における、二値化画像処理により求められたボイド断面積割合の、50束の平均値
[6] 以下のように算出される束内ボイド率V2(%)が10%以上50%以下であることを特徴とする、前記[1]~[5]のいずれかにに記載の繊維強化樹脂成形材料。
束内ボイド率V2(%):シートの任意の厚み方向断面を研磨し撮影した写真から50束を選択し、1束の断面積を100%とした場合における、二値化画像処理により求められたボイド断面積割合の、50束の平均値
[7] 以下のように算出される平均繊維束厚みt(μm)が40μm以上200μm以下であることを特徴とする、前記[1]~[6]のいずれかに記載の繊維強化樹脂成形材料。
平均繊維束厚みt(μm):500℃に加熱した窒素雰囲気中(酸素濃度1%以下)の電気炉の中で前記繊維強化樹脂成形材料を2時間加熱して得られる繊維マットから前記不連続強化繊維束を50束ピックアップし、束幅垂直方向(いわゆる縦断面)である繊維束の厚みをノギスで測定した平均値
[8] 以下のように求められる全体ボイド率(%)の平均値V1(%)が5%以上50%以下であることを特徴とする、前記[1]~[7]のいずれかに記載の繊維強化樹脂成形材料。
全体ボイド率V1(%):JIS K-7075(1991年)にて導出され、1枚のシートから切り出した10サンプルの平均値
[9] 前記不連続強化繊維束の切断角度が3°以上30°以下であることを特徴とする、前記[1]~[8]のいずれかに記載の繊維強化樹脂成形材料。
[10] 前記不連続強化繊維束の単位幅あたりの繊維数が500本/mm以上1600本/mm以下であることを特徴とする、前記[1]~[9]のいずれかに記載の繊維強化樹脂成形材料。
[11] 前記[1]~[10]のいずれかに記載の繊維強化樹脂成形材料を用いて成形品を製造するにあたり、前記維強化樹脂成形材料を予熱せずに前記マトリックス樹脂の融点より30℃以上高い金型内に配置し、プレス圧0.5MPa以上で加圧した後、前記金型の温度を前記マトリックス樹脂の融点より40℃以上低い温度に冷却して取り出して、以下のように測定される前記繊維強化樹脂成形材料の比重ρ1(g/cm)と成形品の比重ρ2(g/cm)との比ρ1/ρ2が0.5以上0.9未満となるようにすることを特徴とする、成形品の製造方法。
比重ρ1(g/cm)、ρ2(g/cm):JIS K-7112(1999年)のA法(水中置換法)にて測定される値
As a result of intensive studies, the inventors of the present invention have invented a fiber-reinforced resin molding material that can solve the above problems. That is, the present invention has any one of the following configurations.
[1] A fiber-reinforced resin molding material comprising a sheet-shaped material comprising discontinuous reinforcing fiber bundles and a matrix resin, wherein the matrix resin is present between the discontinuous reinforcing fiber bundles, wherein The number of irregularities A (table) (pieces/mm) measured as follows is 0.1 pieces/mm or more and 1 piece/mm or less, and the thickness of the sheet is 0.1 mm or more and 4 mm or less. A fiber-reinforced resin molding material characterized by:
Number of unevenness A (table) (pieces/mm): Move a laser displacement meter (spot diameter: about 70 μm, repeatability 3 μm) on a 300 mm line at a speed of 1 mm/s, and irradiate a laser at a sampling period of 0.1 second. When measuring the distance Q k (k = 1, 2, 3 ... (measurement order)) from the surface to the seat surface, Q k + 2 - Q k + 1 is less than 0.3 mm, and Q k + 1 - Q k is 0 A value obtained by dividing the total number p (pieces) of Qk points satisfying 3 mm or more by 300 mm [2] The unevenness number A (table) and the unevenness number measured as follows on the back surface of the sheet-like material The ratio of the unevenness number A (front) / unevenness number A (back) or the unevenness number A (back) / unevenness number A (front), which is the ratio to A (back), is less than 1. The range of the ratio is 0 The fiber-reinforced resin molding material according to the above [1], wherein the ratio is 0.01 or more and less than 0.5.
Concavo-convex number A (back) (pieces/mm): Move a laser displacement meter (spot diameter: about 70 μm, repeatability 3 μm) on a 300 mm line at a speed of 1 mm/s, and irradiate a laser at a sampling period of 0.1 second. When measuring the distance Q k (k = 1, 2, 3 ... (measurement order)) from the surface to the seat surface, Q k + 2 - Q k + 1 is less than 0.3 mm, and Q k + 1 - Q k is 0 A value obtained by dividing the total number p (pieces) of Qk points satisfying 3 mm or more by 300 mm [3] The ratio ρ1/ ρ2 of the specific gravity ρ1 (g/cm 3 ) of the fiber -reinforced resin molding material to the specific gravity ρ2 (g/cm 3 ) of the molded article made of the fiber-reinforced resin molding material is 0.5 or more and 0.9. The fiber-reinforced resin molding material according to the above [1] or [2], characterized in that it is less than
[4] The fiber-reinforced resin molding material according to any one of [1] to [3], characterized in that the drape value measured as follows is 3 cm or more and 23 cm or less.
Drape value: In an atmosphere of 23±5° C., the fiber-reinforced resin molding material having a length of 30 cm and a width of 10 cm was fixed to the end of a rectangular parallelepiped stand, and the tip of the fiber-reinforced resin molding material projecting 25 cm from the end of the stand. The shortest distance from the side of the platform [5] The product t*V2 (μm %) of the average fiber bundle thickness t (μm) and the void fraction V2 (%) in the bundle calculated as follows is 500 μm % or more. The fiber-reinforced resin molding material according to any one of [1] to [4], characterized in that the density is 20000 μm·% or less.
Average fiber bundle thickness t (μm): The fiber mat obtained by heating the fiber-reinforced resin molding material for 2 hours in an electric furnace in a nitrogen atmosphere (oxygen concentration of 1% or less) heated to 500° C. is discontinuous. 50 bundles of reinforcing fiber bundles were picked up, and the thickness of the fiber bundles in the direction perpendicular to the bundle width (so-called longitudinal section) was measured with a vernier caliper. When 50 bundles are selected from the photographed photograph and the cross-sectional area of 1 bundle is assumed to be 100%, the average value of the void cross-sectional area ratio of 50 bundles [6] obtained by binarization image processing is as follows. The fiber-reinforced resin molding material according to any one of [1] to [5], wherein the calculated intra-bundle void fraction V2 (%) is 10% or more and 50% or less.
Void ratio in bundle V2 (%): 50 bundles are selected from photographs taken by polishing an arbitrary cross section in the thickness direction of the sheet, and the cross-sectional area of one bundle is assumed to be 100%. Obtained by binarization image processing. The average value of 50 bundles of the void cross-sectional area ratio [7] The average fiber bundle thickness t (μm) calculated as follows is 40 μm or more and 200 μm or less, [1] to [6] ] The fiber-reinforced resin molding material according to any one of
Average fiber bundle thickness t (μm): The fiber mat obtained by heating the fiber-reinforced resin molding material for 2 hours in an electric furnace in a nitrogen atmosphere (oxygen concentration of 1% or less) heated to 500° C. is discontinuous. The average value obtained by picking up 50 reinforcing fiber bundles and measuring the thickness of the fiber bundle in the direction perpendicular to the bundle width (so-called longitudinal section) with a vernier caliper [8] The average value V1 of the overall void fraction (%) obtained as follows (%) is 5% or more and 50% or less, the fiber-reinforced resin molding material according to any one of the above [1] to [7].
Overall void ratio V1 (%): Derived according to JIS K-7075 (1991), average value of 10 samples cut out from one sheet [9] The cutting angle of the discontinuous reinforcing fiber bundle is 3° or more 30 ° or less, the fiber-reinforced resin molding material according to any one of the above [1] to [8].
[10] The fiber according to any one of [1] to [9], wherein the number of fibers per unit width of the discontinuous reinforcing fiber bundle is 500/mm or more and 1600/mm or less. Reinforced resin molding material.
[11] In producing a molded product using the fiber-reinforced resin molding material according to any one of [1] to [10], the fiber -reinforced resin molding material is heated from the melting point of the matrix resin without preheating. After placing in a mold at a temperature of 30° C. or more and pressing at a press pressure of 0.5 MPa or more, the temperature of the mold is cooled to a temperature at least 40° C. lower than the melting point of the matrix resin and taken out. so that the ratio ρ1/ρ2 between the specific gravity ρ1 (g/cm 3 ) of the fiber-reinforced resin molding material and the specific gravity ρ2 (g/cm 3 ) of the molded product measured in 1 is 0.5 or more and less than 0.9 A method for manufacturing a molded product, characterized in that
Specific gravity ρ1 (g/cm 3 ), ρ2 (g/cm 3 ): Values measured by A method (water replacement method) of JIS K-7112 (1999)

本発明により、製造時の巻き取り性や成形時の金型追随性に優れた成形材料であって、かかる成形材料を用いた成形体には高い力学特性を付与できる繊維強化樹脂成形材料を提供できる。 According to the present invention, there is provided a fiber-reinforced resin molding material that is excellent in winding properties during production and mold followability during molding, and that can impart high mechanical properties to a molded article using such a molding material. can.

繊維強化樹脂成形材料表面とレーザー照射面との距離の測定方法の概略図である。FIG. 3 is a schematic diagram of a method for measuring the distance between the surface of the fiber-reinforced resin molding material and the laser irradiation surface. 本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束の(A)平面図、(B)側面図である。1(A) is a plan view and (B) is a side view of a discontinuous reinforcing fiber bundle that constitutes the fiber-reinforced resin molding material of the present invention. FIG. 本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束の(A)平面図、(B)側面図である。1(A) is a plan view and (B) is a side view of a discontinuous reinforcing fiber bundle that constitutes the fiber-reinforced resin molding material of the present invention. FIG. 繊維束に分繊処理を施した部分分繊繊維束の一例を示す、(A)概略平面図、(B)概略側面図である。FIG. 4A is a schematic plan view and FIG. 4B is a schematic side view showing an example of a partially split fiber bundle obtained by subjecting the fiber bundle to a splitting process. 分繊手段の突出部形状の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of the shape of a protruding portion of the separating means; 強化繊維束へのサイジング剤付与のタイミング例を示す工程図である。FIG. 4 is a process diagram showing an example of the timing of applying a sizing agent to reinforcing fiber bundles. 強化繊維束へのサイジング剤付与のタイミング例を示す工程図である。FIG. 4 is a process diagram showing an example of the timing of applying a sizing agent to reinforcing fiber bundles. ドレープ値の測定方法の概略図である。It is a schematic diagram of a method of measuring a drape value. 成形品の、(A)平面図、(B)正面図である。It is (A) a top view and (B) a front view of a molded product.

本発明の繊維強化樹脂成形材料は、主に不連続強化繊維束とマトリックス樹脂とからなり、前記マトリックス樹脂が前記不連続強化繊維束間に存在するシート状物からなる。マトリックス樹脂が不連続強化繊維束間に存在するとは、基本的に樹脂がシート状物の厚み方向において繊維束と繊維束との間に介在することでそれら複数の繊維束を結合しシート状物の形態を保持している状態をいい、シート状物の表裏面に樹脂を融着させて該シート状物の形態を保持している状態とは異なる。そのため、本発明の繊維強化樹脂成形材料は、一方の面に不連続強化繊維束の凹凸が表れた状態となる。 The fiber-reinforced resin molding material of the present invention is mainly composed of discontinuous reinforcing fiber bundles and a matrix resin, and is a sheet-like article in which the matrix resin exists between the discontinuous reinforcing fiber bundles. The fact that the matrix resin is present between the discontinuous reinforcing fiber bundles basically means that the resin intervenes between the fiber bundles in the thickness direction of the sheet-shaped article, thereby binding the plurality of fiber bundles to the sheet-shaped article. It is different from the state in which resin is fused to the front and back surfaces of a sheet-like material to retain the shape of the sheet-like material. Therefore, the fiber-reinforced resin molding material of the present invention is in a state in which unevenness of the discontinuous reinforcing fiber bundles appears on one surface.

そして、不連続強化繊維束由来のシート状物表面における凹凸数A(表)の下限は0.1個/mm以上が必須であり、0.2個/mm以上が好ましく、0.3個/mm以上がより好ましい。また、シート状物表面における凹凸数A(表)の上限は1個/mm以下が必須であり、0.8個/mm以下が好ましく、0.6個/mm以下がより好ましい。この範囲であれば、繊維強化樹脂成形材料製造時の巻き取り性や成形時の金型追随性に優れ、かかる成形材料を用いた成形体には高い力学特性を付与できる。シート状物表面における凹凸数A(表)の導出方法については後述する。 The lower limit of the number of unevennesses A (table) on the surface of the sheet-like material derived from discontinuous reinforcing fiber bundles is essential to be 0.1/mm or more, preferably 0.2/mm or more, and 0.3/mm. mm or more is more preferable. Further, the upper limit of the number of irregularities A (table) on the surface of the sheet-like material must be 1/mm or less, preferably 0.8/mm or less, and more preferably 0.6/mm or less. Within this range, the windability during production of the fiber-reinforced resin molding material and mold followability during molding are excellent, and high mechanical properties can be imparted to a molded article using such a molding material. A method for deriving the unevenness number A (table) on the surface of the sheet will be described later.

本発明の繊維強化樹脂成形材料の厚みは、0.1mm以上が必須であり、0.2mm以上が好ましく、0.3mm以上がより好ましい。また、繊維強化樹脂成形材料の厚みは、4mm以下が必須であり、3.5mm以下が好ましく、3mm以下がより好ましい。この範囲であれば、繊維強化樹脂成形材料製造時の巻き取り性や成形時の金型追随性に優れる。 The thickness of the fiber-reinforced resin molding material of the present invention must be 0.1 mm or more, preferably 0.2 mm or more, and more preferably 0.3 mm or more. Moreover, the thickness of the fiber-reinforced resin molding material must be 4 mm or less, preferably 3.5 mm or less, and more preferably 3 mm or less. Within this range, the windability during production of the fiber-reinforced resin molding material and mold followability during molding are excellent.

また、シート状物表面における凹凸数A(表)と、該凹凸数A(表)と同様にして求める、シート状物裏面における凹凸数A(裏)との比である、凹凸数A(表)/凹凸数A(裏)または凹凸数A(裏)/凹凸数A(表)のうち、1未満となる方の比の範囲の下限は、0.01以上が好ましく、0.02以上がより好ましく、0.03以上がさらに好ましい。また、シート状物表面における凹凸数A(表)とシート状物裏面における凹凸数A(裏)との比である凹凸数A(表)/凹凸数A(裏)または凹凸数A(裏)/凹凸数A(表)のうち、1未満となる方の比の範囲の上限は、0.5未満が好ましく、0.45未満がより好ましく、0.4未満がさらに好ましい。この範囲であれば、繊維強化樹脂成形材料の表面の凹凸どうしの引っかかりによる材料の脱落を抑制でき、製造時の巻き取り性や成形時の金型追随性を向上することができる。 In addition, the unevenness number A (front), which is the ratio of the unevenness number A (front) on the surface of the sheet to the unevenness number A (back) on the back surface of the sheet, which is obtained in the same manner as the unevenness number A (front) ) / concave-convex number A (back) or concave-convex number A (back) / concave-convex number A (front), the lower limit of the range of the ratio of whichever is less than 1 is preferably 0.01 or more, and 0.02 or more More preferably, it is 0.03 or more. In addition, the ratio of the number of unevenness A (front) on the front surface of the sheet to the number A (back) of the back surface of the sheet-like material is the number of unevenness A (front) / the number of unevenness A (back) or the number of unevenness A (back) /The upper limit of the range of the ratio of less than 1 in the unevenness number A (table) is preferably less than 0.5, more preferably less than 0.45, and even more preferably less than 0.4. Within this range, it is possible to prevent the fiber-reinforced resin molding material from coming off due to the unevenness of the surface of the fiber-reinforced resin molding material being caught by each other, and to improve the windability during production and mold followability during molding.

繊維強化樹脂成形材料は、その比重ρ1(g/cm)と、該維強化樹脂成形材料からなる成形品の比重ρ2(g/cm)との比ρ1/ρ2の下限が、0.5以上であることが好ましい。また、繊維強化樹脂成形材料の比重ρ1(g/cm)と維強化樹脂成形材料からなる成形品の比重ρ2(g/cm)との比ρ1/ρ2の上限は、0.9以下が好ましく、0.8以下がより好ましく、0.7以下がさらに好ましい。この範囲になるような繊維強化樹脂成形材料であれば、その成形材料の製造時の巻き取り性や成形時の金型追随性に優れる。繊維強化樹脂成形材料の比重ρ1(g/cm)と維強化樹脂成形材料からなる成形品の比重ρ2(g/cm)の導出方法については後述する。 The lower limit of the ratio ρ1/ρ2 between the specific gravity ρ1 (g/cm 3 ) of the fiber -reinforced resin molding material and the specific gravity ρ2 (g/cm 3 ) of the molded article made of the fiber-reinforced resin molding material is 0. It is preferably 5 or more. Further, the upper limit of the ratio ρ1/ρ2 between the specific gravity ρ1 (g/cm 3 ) of the fiber reinforced resin molding material and the specific gravity ρ2 (g/cm 3 ) of the molded article made of the fiber reinforced resin molding material is 0.9 or less. is preferred, 0.8 or less is more preferred, and 0.7 or less is even more preferred. A fiber-reinforced resin molding material having a fiber-reinforced resin molding material within this range is excellent in windability during production of the molding material and mold followability during molding. A method of deriving the specific gravity ρ1 (g/cm 3 ) of the fiber -reinforced resin molding material and the specific gravity ρ2 (g/cm 3 ) of the molded article made of the fiber-reinforced resin molding material will be described later.

また、繊維強化樹脂成形材料のドレープ値の下限は、3cm以上が好ましく、4cm以上がより好ましく、5cm以上がさらに好ましい。また、繊維強化樹脂成形材料のドレープ値の上限は、23cm以下が好ましく、20cm以下がより好ましく、18cm未満がさらに好ましい。この範囲であれば、繊維強化樹脂成形材料の製造時の巻き取り性や成形時の金型追随性に優れる。繊維強化樹脂成形材料のドレープ値の導出方法については後述する。 Also, the lower limit of the drape value of the fiber-reinforced resin molding material is preferably 3 cm or more, more preferably 4 cm or more, and even more preferably 5 cm or more. The upper limit of the drape value of the fiber-reinforced resin molding material is preferably 23 cm or less, more preferably 20 cm or less, and even more preferably less than 18 cm. Within this range, the fiber-reinforced resin molding material is excellent in windability during production and mold followability during molding. A method for deriving the drape value of the fiber-reinforced resin molding material will be described later.

さらに、繊維強化樹脂成形材料の全体ボイド率V1(%)は5%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましい。全体ボイド率V1(%)が5%未満の場合、繊維強化樹脂成形材料の製造時の巻き取り性や成形時の金型追随性に劣る恐れがある。一方、全体ボイド率V1(%)の上限は50%であるが、45%以下が好ましく、40%以下がより好ましい。50%を超えると、熱可塑性樹脂の含浸性が悪化し、力学特性が低下する可能性がある。全体ボイド率V1(%)の導出方法については後述する。 Furthermore, the overall void ratio V1 (%) of the fiber-reinforced resin molding material is preferably 5% or more, more preferably 10% or more, and even more preferably 15% or more. If the total void fraction V1 (%) is less than 5%, the fiber-reinforced resin molding material may be poor in windability during production and mold followability during molding. On the other hand, the upper limit of the total void fraction V1 (%) is 50%, preferably 45% or less, more preferably 40% or less. If it exceeds 50%, the impregnability of the thermoplastic resin may deteriorate and the mechanical properties may deteriorate. A method of deriving the total void fraction V1 (%) will be described later.

不連続強化繊維束を構成する強化繊維の種類としては制限がないが、炭素繊維、ガラス繊維、アラミド繊維、金属繊維が好ましい。なかでも炭素繊維が好ましい。炭素繊維としては、特に限定されないが、例えば、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系などの炭素繊維が力学特性の向上、繊維強化樹脂成形品の軽量化効果の観点から好ましく使用でき、これらは1種または2種以上を併用しても良い。中でも、得られる繊維強化樹脂成形品の強度と弾性率とのバランスの観点から、PAN系炭素繊維がさらに好ましい。 Although there are no restrictions on the type of reinforcing fiber that constitutes the discontinuous reinforcing fiber bundle, carbon fiber, glass fiber, aramid fiber, and metal fiber are preferred. Among them, carbon fiber is preferred. Although the carbon fiber is not particularly limited, for example, polyacrylonitrile (PAN)-based, pitch-based, and rayon-based carbon fibers can be preferably used from the viewpoint of improving mechanical properties and reducing the weight of fiber-reinforced resin molded products. These may be used singly or in combination of two or more. Among them, PAN-based carbon fibers are more preferable from the viewpoint of the balance between the strength and the elastic modulus of the resulting fiber-reinforced resin molded article.

強化繊維の単繊維径は0.5μm以上が好ましく、2μm以上がより好ましく、4μm以上がさらに好ましい。また、強化繊維の単繊維径は20μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましい。強化繊維のストランド強度は3.0GPa以上が好ましく、4.0GPa以上がより好ましく、4.5GPa以上がさらに好ましい。強化繊維のストランド弾性率は200GPa以上が好ましく、220GPa以上がより好ましく、240GPa以上がさらに好ましい。強化繊維のストランド強度または弾性率がそれぞれこの範囲であれば、繊維強化樹脂成形品の力学特性をさらに高めることができる。 The single fiber diameter of the reinforcing fibers is preferably 0.5 μm or more, more preferably 2 μm or more, and even more preferably 4 μm or more. Further, the single fiber diameter of the reinforcing fibers is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 10 μm or less. The strand strength of the reinforcing fibers is preferably 3.0 GPa or higher, more preferably 4.0 GPa or higher, and even more preferably 4.5 GPa or higher. The strand elastic modulus of the reinforcing fiber is preferably 200 GPa or higher, more preferably 220 GPa or higher, even more preferably 240 GPa or higher. If the strand strength or elastic modulus of the reinforcing fiber is within this range, the mechanical properties of the fiber-reinforced resin molded article can be further enhanced.

本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束の平均束厚みt(μm)は40μm以上が好ましく、45μm以上がより好ましく、50μm以上がさらに好ましい。40μm未満の場合、成形材料の流動性に劣る懸念がある。また、繊維強化樹脂成形材料を構成する不連続強化繊維束の平均束厚みは200μm以下が好ましく、180μm以下がより好ましく、160μm以下がさらに好ましい。200μmを超える場合、成形品の力学特性が劣る懸念がある。繊維強化樹脂成形材料のシート状物表面における凹凸数A(表)、及び、不連続強化繊維束の平均束厚みを同時に前述した範囲にすることで、繊維強化樹脂成形材料の製造時の巻き取り性や成形時の金型追随性、成形品の力学特性を大幅に向上させることができる。不連続強化繊維束の平均束厚みの導出方法については後述する。 The average bundle thickness t (μm) of the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material of the present invention is preferably 40 μm or more, more preferably 45 μm or more, and even more preferably 50 μm or more. If it is less than 40 μm, there is a concern that the fluidity of the molding material may be poor. The average bundle thickness of the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material is preferably 200 μm or less, more preferably 180 μm or less, and even more preferably 160 μm or less. If it exceeds 200 μm, there is a concern that the mechanical properties of the molded product will be inferior. By simultaneously setting the unevenness number A (Table) on the surface of the sheet-like article of the fiber-reinforced resin molding material and the average bundle thickness of the discontinuous reinforcing fiber bundles to the ranges described above, the winding during the production of the fiber-reinforced resin molding material It is possible to greatly improve the properties, mold followability during molding, and the mechanical properties of molded products. A method of deriving the average bundle thickness of the discontinuous reinforcing fiber bundles will be described later.

また、不連続強化繊維束の束内ボイド率V2(%)の下限は、10%以上が好ましく、15%以上がより好ましく、20%以上がさらに好ましい。また、束内ボイド率V2(%)の上限は、50%以下が好ましく、45%以下がより好ましく、40%以下がさらに好ましい。この範囲であれば、繊維強化樹脂成形材料の製造時の巻き取り性や成形時の金型追随性にさらに優れる。束内ボイド率V2の導出方法については後述する。 Further, the lower limit of the intra-bundle void ratio V2 (%) of the discontinuous reinforcing fiber bundle is preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more. The upper limit of the intra-bundle void fraction V2 (%) is preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less. Within this range, the fiber-reinforced resin molding material is more excellent in windability during production and mold followability during molding. A method of deriving the intra-bundle void fraction V2 will be described later.

不連続強化繊維束の平均束厚みt(μm)と束内ボイド率V2(%)の積t*V2の下限は500μm・%以上が好ましく、1000μm・%以上がより好ましく、2000μm・%以上がさらに好ましい。一方、上限は、20000μm・%以下が好ましく、15000μm・%以下がより好ましく、10000μm・%以下がさらに好ましい。この範囲であれば、繊維強化樹脂成形材料の製造時の巻き取り性や成形時の金型追随性にさらに優れる。 The lower limit of the product t*V2 of the average bundle thickness t (μm) of the discontinuous reinforcing fiber bundle and the void fraction V2 (%) in the bundle is preferably 500 μm-% or more, more preferably 1000 μm-% or more, and 2000 μm-% or more. More preferred. On the other hand, the upper limit is preferably 20,000 μm.% or less, more preferably 15,000 μm.% or less, and even more preferably 10,000 μm.% or less. Within this range, the fiber-reinforced resin molding material is more excellent in windability during production and mold followability during molding.

本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束内の平均繊維数の上限は4000本以下が好ましく、3000本以下がより好ましく、2000本以下がさらに好ましい。また、束内平均繊維数の下限は50本以上が好ましく、100本以上がより好ましく、200本以上がさらに好ましい。この範囲であれば、繊維強化樹脂成形材料の流動性と成形品の力学特性を高めることができる。平均繊維数の導出方法については後述する。 The upper limit of the average number of fibers in the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material of the present invention is preferably 4000 or less, more preferably 3000 or less, and even more preferably 2000 or less. Moreover, the lower limit of the average number of fibers in the bundle is preferably 50 or more, more preferably 100 or more, and even more preferably 200 or more. Within this range, the fluidity of the fiber-reinforced resin molding material and the mechanical properties of the molded product can be enhanced. A method for deriving the average number of fibers will be described later.

本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束の平均束幅の下限は0.03mm以上が好ましく、0.05mm以上がより好ましく、0.07mm以上がさらに好ましい。また、繊維強化樹脂成形材料を構成する不連続強化繊維束の平均束幅の上限は3mm以下が好ましく、2mm以下がより好ましく、1mm以下がさらに好ましい。この範囲であれば、繊維強化樹脂成形材料の流動性と成形品の力学特性を高めることができる。不連続強化繊維束の平均束幅の導出方法については後述する。 The lower limit of the average bundle width of the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material of the present invention is preferably 0.03 mm or more, more preferably 0.05 mm or more, and even more preferably 0.07 mm or more. The upper limit of the average bundle width of the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1 mm or less. Within this range, the fluidity of the fiber-reinforced resin molding material and the mechanical properties of the molded product can be enhanced. A method for deriving the average bundle width of discontinuous reinforcing fiber bundles will be described later.

本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束の単位幅あたりの繊維数の下限は500本/mm以上が好ましく、600本/mm以上がより好ましく、700本/mm以上がさらに好ましい。また、本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束の単位幅あたりの繊維数の上限は1600本/mm以下が好ましく、1400本/mm以下がより好ましく、1200本/mm以下がさらに好ましい。この範囲であれば、繊維強化樹脂成形材料の流動性と成形品の力学特性を高めることができる。繊維強化樹脂成形材料を構成する不連続強化繊維束の単位幅あたり繊維数の導出方法については後述する。 The lower limit of the number of fibers per unit width of the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material of the present invention is preferably 500/mm or more, more preferably 600/mm or more, and further preferably 700/mm or more. preferable. The upper limit of the number of fibers per unit width of the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material of the present invention is preferably 1600/mm or less, more preferably 1400/mm or less, and 1200/mm or less. is more preferred. Within this range, the fluidity of the fiber-reinforced resin molding material and the mechanical properties of the molded product can be enhanced. A method for deriving the number of fibers per unit width of the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material will be described later.

本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束は、所望の長さに切断されたチョップド強化繊維束である。チョップド強化繊維束の平均繊維長は、5mm以上が好ましく、7mm以上がより好ましく、10mm以上がさらに好ましい。チョップド繊維束の平均繊維長は、100mm以下が好ましく、50mm以下がより好ましく、25mm以下がさらに好ましい。強化繊維束の平均繊維長が5mm未満であると、繊維強化樹脂成形材料とした際の力学特性が低下する。一方、強化繊維束の平均繊維長が100mmを超えると、成形性が低下する。なお、平均繊維長は、100個のチョップド強化繊維束それぞれについて、図2あるいは図3に示すように不連続強化繊維束20(炭素繊維束など)の繊維方向の最大長を繊維長Lf(mm)として測定し、その算術平均値を平均繊維長とする。 The discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material of the present invention are chopped reinforcing fiber bundles cut to a desired length. The average fiber length of the chopped reinforcing fiber bundle is preferably 5 mm or longer, more preferably 7 mm or longer, and even more preferably 10 mm or longer. The average fiber length of the chopped fiber bundle is preferably 100 mm or less, more preferably 50 mm or less, and even more preferably 25 mm or less. If the average fiber length of the reinforcing fiber bundle is less than 5 mm, the mechanical properties of the fiber-reinforced resin molding material will be deteriorated. On the other hand, when the average fiber length of the reinforcing fiber bundle exceeds 100 mm, the moldability is deteriorated. Note that the average fiber length is the fiber length Lf (mm ), and the arithmetic mean value is taken as the average fiber length.

また、図2あるいは図3に示すように、不連続強化繊維束20の繊維方向に対する切断面の角度(切断角度θ)は、3°以上が好ましく、4°以上がより好ましく、5°以上がさらに好ましい。この範囲であれば、安定的に繊維束を切断できる。また、30°以下が好ましく、25°以下がより好ましく、20°以下がさらに好ましい。この範囲であれば、成形の際の良好な流動性と成形品の高い力学特性を実現できる。なお、θは絶対値で表される。 Further, as shown in FIG. 2 or FIG. 3, the angle (cutting angle θ) of the cut surface of the discontinuous reinforcing fiber bundle 20 with respect to the fiber direction is preferably 3° or more, more preferably 4° or more, and 5° or more. More preferred. Within this range, the fiber bundle can be stably cut. Also, it is preferably 30° or less, more preferably 25° or less, and even more preferably 20° or less. Within this range, good fluidity during molding and high mechanical properties of the molded product can be achieved. Note that θ is represented by an absolute value.

本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束には、サイジング剤が付与されていることが好ましい。サイジング剤としては、特に限定されないが、熱分解開始温度が200℃以上のものが好ましく、250℃以上のものがより好ましく、300℃以上のものがさらに好ましい。この範囲であれば成形時にサイジング剤の分解を抑制でき、成形品の力学特性を高めることができる。熱分解開始温度の導出方法については後述する。 A sizing agent is preferably applied to the discontinuous reinforcing fiber bundles constituting the fiber-reinforced resin molding material of the present invention. Although the sizing agent is not particularly limited, it preferably has a thermal decomposition initiation temperature of 200° C. or higher, more preferably 250° C. or higher, and even more preferably 300° C. or higher. Within this range, the decomposition of the sizing agent can be suppressed during molding, and the mechanical properties of the molded product can be enhanced. A method for deriving the thermal decomposition initiation temperature will be described later.

具体的に、サイジング剤としては、エポキシ基、ウレタン基、アミノ基、カルボキシル基等の官能基を有する化合物を使用できる。好ましくは、エポキシ樹脂を主成分とするサイジング剤、または、ポリアミド樹脂を主成分とするサイジング剤を用いることである。これらは1種または2種以上を併用してもよい。また、サイジング剤を付与した強化繊維束に更に該サイジング剤とは異種のサイジング剤で処理することも可能である。なおここで、主成分とは溶質成分の70質量%以上を占める成分のことをいう。 Specifically, compounds having functional groups such as epoxy groups, urethane groups, amino groups, and carboxyl groups can be used as sizing agents. Preferably, a sizing agent containing an epoxy resin as a main component or a sizing agent containing a polyamide resin as a main component is used. These may be used singly or in combination of two or more. Moreover, it is possible to further treat the reinforcing fiber bundle to which the sizing agent is applied with a sizing agent different from the sizing agent. Here, the main component means a component that accounts for 70% by mass or more of the solute component.

エポキシ樹脂の種類としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族型エポキシ樹脂、グリシジルアミン型エポキシ樹脂の1種または2種以上を併用して用いることができる。 As the type of epoxy resin, one or more of bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, aliphatic type epoxy resin, and glycidylamine type epoxy resin can be used in combination. .

また、ポリアミド樹脂としては、好ましく水溶性ポリアミド樹脂を用いることができ、例えば、水溶性ポリアミドは、主鎖中に三級アミノ基、及び/または、オキシエチレン基を有するジアミンとカルボン酸より重縮合して得られるポリアミド樹脂が好ましく、前記ジアミンとしては、ピペラジン環を有するN、N′-ビス(γ―アミノプロピル)ピペラジン、N-(β―アミノエチル)ピペラジン等主鎖中に三級アミノ基を含むモノマ、オキシエチレンアルキルアミン等の主鎖中にオキシエチレン基を含むアルキルジアミンが有用である。又、ジカルボン酸としてはアジピン酸、セバシン酸等を用いることができる。 Further, as the polyamide resin, a water-soluble polyamide resin can be preferably used. For example, the water-soluble polyamide is polycondensed from a diamine having a tertiary amino group and/or an oxyethylene group in the main chain and a carboxylic acid. Polyamide resin obtained by the above is preferable, and the diamine has a piperazine ring, such as N,N'-bis(γ-aminopropyl)piperazine, N-(β-aminoethyl)piperazine, etc., having a tertiary amino group in the main chain. and alkyldiamines containing oxyethylene groups in the backbone such as oxyethylenealkylamines are useful. Moreover, adipic acid, sebacic acid, etc. can be used as a dicarboxylic acid.

水溶性のポリアミドは共重合体であってもよい。共重合成分としては、例えばα-ピロリドン、α-ピペリドン、ε-カプロラクタム、α-メチル-ε-カプロラクタム、ε-メチル-ε-カプロラクタム、ε-ラウロラクタムなどのラクタムをあげることができ、二元共重合もしくは多元共重合も可能である。共重合比率は水溶性という物性を妨げない範囲において決定される。好ましくはラクタム環を持つ共重合成分比率を30質量%以内にしてポリマーを水に完溶せしめる。 The water-soluble polyamide may be a copolymer. Examples of copolymer components include lactams such as α-pyrrolidone, α-piperidone, ε-caprolactam, α-methyl-ε-caprolactam, ε-methyl-ε-caprolactam, and ε-laurolactam. Copolymerization or multi-copolymerization is also possible. The copolymerization ratio is determined within a range that does not interfere with the physical property of water solubility. Preferably, the proportion of copolymer components having a lactam ring is within 30% by mass so that the polymer is completely dissolved in water.

しかしながら、前記範囲外の共重合成分比率に難水溶性のポリマーであっても、有機、無機酸を用いて溶液を酸性にした場合溶解性が増大し、水可溶性になり使用が可能になる。有機酸としては、酢酸、クロル酢酸、プロピオン酸、マレイン酸、しゅう酸、フルオロ酢酸等があり、無機酸としては、一般的な鉱酸類である塩酸、硫酸、リン酸等を挙げることができる。 However, even a poorly water-soluble polymer with a copolymer component ratio outside the above range becomes more soluble in water and usable when the solution is acidified with an organic or inorganic acid. Examples of organic acids include acetic acid, chloroacetic acid, propionic acid, maleic acid, oxalic acid and fluoroacetic acid. Examples of inorganic acids include common mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid.

この水溶性ポリアミドはサイジング剤が付与されていない強化繊維に1次サイジング剤として用いても良いし、サイジング剤が前もって付与されている強化繊維に2次サイジング剤として用いてもよい。 This water-soluble polyamide may be used as a primary sizing agent for reinforcing fibers to which no sizing agent is applied, or may be used as a secondary sizing agent for reinforcing fibers to which a sizing agent is previously applied.

サイジング剤の付着量は、サイジング剤が付着した強化繊維束を100質量%とした場合、5質量%以下が好ましく、4.5質量%以下がより好ましく、4質量%以下がさらに好ましい。サイジング剤の付着量が5質量%を超えると、繊維束の柔軟性が欠けて硬くなりすぎ、ボビンの巻き取り、巻きだしがスムーズにいかなくなる可能性がある。また、カット時に単糸割れを引き起こし、理想のチョップド繊維束形態が得られないことがある。サイジング剤の付着量は0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上がさらに好ましい。サイジング剤の付着量が0.1質量%未満の場合、フィラメントがばらけ、毛羽が発生することにより、ボビンからの巻き出し性が低下したり、ニップローラー、カッター刃への巻きつきが発生しうる。サイジング剤の付着量を上記範囲にすることで、繊維束を例えばカッターで切断する際に、ボビンからの巻き出し性の向上、ニップローラー、カッター刃への巻きつき低減といった効果が得られ、生産性の向上を図ることができる。さらに、切断された繊維束が割れたり単糸分散することを抑制でき、均一かつ最適な形態のチョップド繊維束を得ることが可能である。さらに、束状集合体の目付バラつきを低減化することができるため、成形品の力学特性のバラつきを低減することが可能である。なお、サイジング剤の付着量の導出方法については後述する。 The adhesion amount of the sizing agent is preferably 5% by mass or less, more preferably 4.5% by mass or less, and even more preferably 4% by mass or less, when the reinforcing fiber bundle to which the sizing agent is attached is taken as 100% by mass. If the amount of the sizing agent adhered exceeds 5% by mass, the fiber bundle lacks flexibility and becomes too hard, which may hinder smooth winding and unwinding of the bobbin. In addition, single filament splitting may occur during cutting, and an ideal chopped fiber bundle shape may not be obtained. The amount of the sizing agent attached is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and even more preferably 0.5% by mass or more. If the amount of the sizing agent attached is less than 0.1% by mass, the filaments will be loosened and fuzz will be generated, which will reduce the unwindability from the bobbin and cause the filament to wind around the nip roller and cutter blade. sell. By setting the amount of the sizing agent adhered to the above range, when the fiber bundle is cut by a cutter, for example, it is possible to improve the unwindability from the bobbin and reduce the winding around the nip roller and the cutter blade. It is possible to improve the quality. Furthermore, it is possible to suppress the splitting of the cut fiber bundles and the dispersion of single filaments, and to obtain chopped fiber bundles of uniform and optimum shape. Furthermore, since it is possible to reduce the variation in basis weight of the bundle aggregate, it is possible to reduce the variation in the mechanical properties of the molded product. A method for deriving the adhesion amount of the sizing agent will be described later.

これらのサイジング剤は、強化繊維表面に均質に付着されていることが好ましい。均質に付着させる方法としては特に限定されるものではないが、例えば、これらサイジング剤を水またはアルコール、酸性水溶液に、0.1質量%以上、好ましくは1質量%~20質量%の濃度になるように溶解して、その高分子溶液(サイジング剤処理液)にローラーを介して繊維束を浸漬する方法、サイジング剤処理液の付着したローラーに繊維束を接する方法、サイジング剤処理液を霧状にして繊維束に吹き付ける方法などがある。この際、繊維束に対するサイジング剤有効成分の付着量が適正範囲内で均一に付着するように、サイジング剤処理液濃度、温度、糸条張力などをコントロールすることが好ましい。また、サイジング剤付与時に繊維束を超音波で加振させることはより好ましい。 These sizing agents are preferably uniformly adhered to the surface of the reinforcing fibers. Although the method for homogeneously attaching the sizing agent is not particularly limited, for example, these sizing agents are added to water, alcohol, or an acidic aqueous solution to a concentration of 0.1% by mass or more, preferably 1% to 20% by mass. and immersing the fiber bundle in the polymer solution (sizing agent treatment liquid) through a roller; There is also a method of blowing onto the fiber bundle. At this time, it is preferable to control the concentration of the sizing agent treatment liquid, temperature, yarn tension, etc. so that the amount of the sizing agent active ingredient attached to the fiber bundle is uniformly adhered within an appropriate range. Further, it is more preferable to vibrate the fiber bundle with ultrasonic waves when applying the sizing agent.

なお、強化繊維束に付着したサイジング剤中の水やアルコールなどの溶剤を除去するには、熱処理や風乾、遠心分離などのいずれの方法を用いても良いが、中でもコストの観点から熱処理が好ましい。熱処理の加熱手段としては、例えば、熱風、熱板、ローラー、赤外線ヒーターなどを使用することができる。この加熱処理条件は、取り扱い性、マトリックス材である熱可塑性樹脂との接着性の良否に影響を及ぼすので、サイジング剤を繊維束に付与した後の加熱処理温度と時間をサイジング剤の成分と付着量によって調整することも好ましい。 In order to remove the solvent such as water and alcohol in the sizing agent adhering to the reinforcing fiber bundle, any method such as heat treatment, air drying, or centrifugation may be used, but heat treatment is preferable from the viewpoint of cost. . As heating means for the heat treatment, for example, hot air, a hot plate, a roller, an infrared heater, or the like can be used. Since this heat treatment condition affects the handleability and adhesion to the thermoplastic resin matrix material, the heat treatment temperature and time after the sizing agent is applied to the fiber bundle are determined by the sizing agent component and adhesion. It is also preferable to adjust the amount.

前記水溶性ポリアミドの場合、熱劣化を防止する観点から、室温~180℃下で乾燥し、水分を除去した後、熱処理するのが好ましい。熱処理温度の下限は130℃以上が好ましく、200℃以上がより好ましい。熱処理温度の上限は350℃以下が好ましく、280℃以下がより好ましい。この熱処理温度は、前記水溶性ポリアミドが空気中の酸素によって自己架橋したり、水溶性を失う温度である。この処理により、水溶性ポリマーが不溶になり吸湿性も失うため、フィラメントを集束したストランドのべたつきがなくなり、後加工の作業性が向上するだけでなく、マトリックス材への密着性がよくなり取り扱いやすい繊維束を提供できる。また、溶剤に架橋促進剤を添加し、熱処理温度を低くしたり、時間を短縮したりすることも可能である。また、23±5℃の雰囲気下でエイジング処理を行うことで、繊維束の硬度を高めることもできる。 In the case of the water-soluble polyamide, from the viewpoint of preventing thermal deterioration, it is preferable to heat-treat after drying at room temperature to 180° C. to remove moisture. The lower limit of the heat treatment temperature is preferably 130°C or higher, more preferably 200°C or higher. The upper limit of the heat treatment temperature is preferably 350°C or lower, more preferably 280°C or lower. This heat treatment temperature is the temperature at which the water-soluble polyamide undergoes self-crosslinking or loses its water-solubility due to oxygen in the air. As a result of this treatment, the water-soluble polymer becomes insoluble and loses its hygroscopicity, so the strands of the bundled filaments are not sticky and workability in post-processing is improved. We can provide fiber bundles. It is also possible to add a cross-linking accelerator to the solvent to lower the heat treatment temperature or shorten the heat treatment time. Moreover, the hardness of the fiber bundle can be increased by performing the aging treatment in an atmosphere of 23±5°C.

水溶性ポリアミド樹脂を用いたサイジング剤は、各種マトリックス材との親和性に優れておりコンポジット物性を著しく向上せしめるが、特にポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、及び、ポリエーテルアミドイミド系樹脂において優れた密着性の改善効果がある。 Sizing agents using water-soluble polyamide resins have excellent affinity with various matrix materials and significantly improve the physical properties of composites. There is an excellent effect of improving adhesion in system resins.

本発明の繊維強化樹脂成形材料を構成する不連続強化繊維束には、例えば部分分繊繊維束を所望する繊維長に切断して用いることができる。なお、以下に部分分繊繊維束について例を挙げて具体的に説明するが、具体的な態様に限定して解釈されるものではない。 For the discontinuous reinforcing fiber bundle constituting the fiber-reinforced resin molding material of the present invention, for example, a partially split fiber bundle can be cut into a desired fiber length and used. Although the partially split fiber bundle will be specifically described below with an example, it should not be construed as being limited to a specific embodiment.

部分分繊繊維束は、巻き出し装置などから連続する繊維束を巻き出した後、繊維束を拡幅し、分繊処理を行う工程を経て得られる。以下、各工程について詳述する。 The partially split fiber bundle is obtained through a step of unwinding a continuous fiber bundle from an unwinding device or the like, widening the fiber bundle, and subjecting it to a fiber separation treatment. Each step will be described in detail below.

最初に、繊維束の巻き出しについて説明する。繊維束走行方向上流側に配置した、繊維束を巻き出す巻き出し装置などから繊維束を連続的に巻き出す。繊維束の巻き出し方向は、ボビンの回転軸と垂直に交わる方向に引き出す横出し方式や、ボビン(紙管)の回転軸と同一方向に引き出す縦出し方式が考えられるが、解除撚りが少ないことを勘案すると横出し方式が好ましい。 First, unwinding of the fiber bundle will be described. The fiber bundle is continuously unwound from a fiber bundle unwinding device or the like arranged on the upstream side in the fiber bundle traveling direction. Regarding the unwinding direction of the fiber bundle, it is possible to use a horizontal method in which the fiber bundle is drawn out in a direction perpendicular to the bobbin rotation axis, or a vertical method in which the fiber bundle is drawn out in the same direction as the bobbin (paper tube) rotation axis. Considering this, the lateral extension method is preferable.

また、巻き出し時のボビンの設置姿勢については、任意の方向に設置することができる。中でも、クリールにボビンを突き刺した状態において、クリール回転軸の固定面でない側のボビンの端面が水平方向以外の方向を向いた状態で設置する場合は、繊維束に一定の張力がかかった状態で保持されることが好ましい。繊維束に一定の張力が無い場合は、繊維束がパッケージ(ボビンに繊維束が巻き取られた巻体)からズレ落ちパッケージから離れる、もしくは、パッケージから離れた繊維束がクリール回転軸に巻きつくことで、巻き出しが困難になることが考えられる。 In addition, the bobbin can be installed in any direction during unwinding. Above all, when the bobbin is pierced into the creel and the end surface of the bobbin that is not the fixed surface of the creel rotating shaft faces in a direction other than the horizontal direction, a certain tension is applied to the fiber bundle. preferably retained. If the fiber bundle does not have a constant tension, the fiber bundle slips and falls from the package (a winding body in which the fiber bundle is wound on the bobbin), or the fiber bundle that has separated from the package winds around the creel rotating shaft. Therefore, it is conceivable that unwinding becomes difficult.

また、巻き出しパッケージの回転軸固定方法としては、クリールを使う方法の他に、平行に並べた2本のローラーの上に、ローラーと平行にパッケージを載せ、並べたローラーの上でパッケージを転がすようにして、繊維束を巻き出す、サーフェス巻き出し方式も適用可能である。 In addition to using a creel as a method of fixing the rotation axis of the unwinding package, the package is placed on two parallel rollers and rolled on the rollers. A surface unwinding method, in which the fiber bundle is unwound in this manner, is also applicable.

また、クリールを使った巻き出しの場合、クリールにベルトをかけ、その一方を固定し、もう一方に錘を吊るす、バネで引っ張るなどして、クリールにブレーキをかけることで、巻き出し繊維束に張力を付与する方法が考えられる。この場合、巻き径に応じて、ブレーキ力を可変することが、張力を安定させる手段として有効である。 In the case of unwinding using a creel, a belt is attached to the creel, one of which is fixed, and the other is hung with a weight or pulled by a spring to apply a brake to the creel, thereby allowing the unwound fiber bundle to A method of applying tension is conceivable. In this case, varying the braking force in accordance with the winding diameter is effective as means for stabilizing the tension.

次に、拡幅および分繊処理工程の説明をする。なお、この処理は常に一定の条件で行う必要は無く、一定の周期あるいは所望の箇所で拡幅の幅を変動させても構わない。 Next, the widening and separating process steps will be described. It should be noted that this process does not always need to be performed under constant conditions, and the widening width may be varied at constant intervals or at desired locations.

拡幅工程では、たとえば前述のように巻き出された繊維束を走行させながら、該繊維束に圧縮した空気を吹き付けたり、あるいは、該繊維束を軸方向へ振動する振動拡幅ロールに通すとともにその後に幅規制ロールに通し、任意の幅へ拡幅する。 In the widening process, for example, compressed air is blown onto the fiber bundle while the fiber bundle unwound as described above is running, or the fiber bundle is passed through a vibrating widening roll that vibrates in the axial direction, and then It is passed through a width regulation roll and widened to an arbitrary width.

分繊処理工程では、拡幅した繊維束に対して分繊刃を間欠的に挿入して強化繊維束内に部分的な分繊箇所を形成する。図4は、分繊処理の一例を示している。(A)は概略平面図、(B)は概略側面図で、繊維束は図の左(上流側)から右(下流側)に走行している。図中の繊維束走行方向(矢印X)が繊維束100の長手方向であり、図示されない繊維束供給装置から連続的に繊維束100が供給されていることを表す。分繊手段200は、繊維束100に突き入れ易い突出形状を有する突出部210を具備しており、走行する繊維束100に突き入れ、繊維束100の長手方向に略平行な分繊処理部150を生成する。ここで、分繊手段200は、繊維束100の側面に沿う方向に突き入れることが好ましい。繊維束の側面とは、繊維束の断面が、横長の楕円もしくは横長の長方形のような扁平形状であるとした場合の断面端部における垂直方向の面である。また、具備する突出部210は、1つの分繊手段200につき1つでもよく、また複数であってもよい。1つの分繊手段200で突出部210が複数ある場合、1つの突出部210あたりの磨耗頻度が減ることから、交換頻度を減らすことも可能となる。さらに、分繊する繊維束数に応じて、複数の分繊手段200を同時に用いることも可能である。複数の分繊手段200を、並列、互い違い、位相をずらす等して、繊維束100に対して複数の突出部210を任意に配置することができる。 In the splitting process, a splitting blade is intermittently inserted into the widened fiber bundle to form partial splitting points in the reinforcing fiber bundle. FIG. 4 shows an example of the fiber separation process. (A) is a schematic plan view and (B) is a schematic side view, in which the fiber bundle runs from the left (upstream side) to the right (downstream side) in the drawing. The fiber bundle traveling direction (arrow X) in the drawing is the longitudinal direction of the fiber bundle 100, and represents that the fiber bundle 100 is continuously supplied from a fiber bundle supply device (not shown). The fiber separating means 200 includes a protruding portion 210 having a protruding shape that can be easily inserted into the fiber bundle 100. A fiber separating portion 150 that protrudes into the running fiber bundle 100 and is substantially parallel to the longitudinal direction of the fiber bundle 100. to generate Here, it is preferable that the fiber separating means 200 pierce the fiber bundle 100 in a direction along the side surface thereof. The side surface of the fiber bundle is the vertical surface at the end of the cross section of the fiber bundle when the cross section of the fiber bundle has a flattened shape such as a horizontally elongated ellipse or a horizontally elongated rectangle. Moreover, the protruding portion 210 provided may be one per one fiber separating means 200, or may be plural. If one fiber sorting means 200 has a plurality of projecting portions 210, the frequency of wear per projecting portion 210 is reduced, so it is possible to reduce the frequency of replacement. Furthermore, it is also possible to use a plurality of separating means 200 simultaneously according to the number of fiber bundles to be separated. A plurality of projections 210 can be arbitrarily arranged with respect to the fiber bundle 100 by arranging the plurality of separating means 200 in parallel, staggered, out of phase, or the like.

繊維束100において、複数の単糸は実質的に引き揃った状態ではなく、単糸レベルでは交差・交絡している部分が多いため、分繊手段200により本数のより少ない分繊束に分けていく場合、分繊処理中に突出部210と繊維束100との接触部211付近に単糸が交絡する絡合部160を形成する場合がある。ここで、絡合部160を形成するとは、例えば、分繊処理区間内に予め存在していた単糸同士の交差・交絡を分繊手段200により接触部211に形成(移動)させる場合や、分繊手段200によって新たに単糸が交絡した集合体を形成(製造)させる場合等が挙げられる。 In the fiber bundle 100, the plurality of single yarns are not in a substantially aligned state, and there are many crossed and entangled portions at the single yarn level. In some cases, an entangled portion 160 where the single yarns are entangled may be formed near the contact portion 211 between the projecting portion 210 and the fiber bundle 100 during the fiber separation process. Here, forming the entangled portion 160 means, for example, forming (moving) the crossing/entangling of the single filaments that have previously existed in the separating section to the contact portion 211 by the separating means 200, or A case of forming (manufacturing) a new aggregate in which single yarns are entangled by the separating means 200 can be mentioned.

任意の範囲に分繊処理部150を生成した後、分繊手段200を繊維束100から抜き取る。この抜き取りによって分繊処理が施された分繊処理区間110が生成され、それと同時に上記のように生成された絡合部160が分繊処理区間110の端部部位に蓄積される。また、分繊処理中に繊維束から発生した毛羽は毛羽溜まり140となる。 After generating the fiber separation processing part 150 in an arbitrary range, the fiber separation means 200 is pulled out from the fiber bundle 100. - 特許庁The fiber separation processing section 110 subjected to the fiber separation processing is generated by this extraction, and at the same time, the entangled portion 160 generated as described above is accumulated at the end portion of the fiber separation processing section 110 . Also, the fluff generated from the fiber bundle during the fiber separation process forms a fluff pool 140 .

その後、再度分繊手段200を繊維束100に突き入れることで、未分繊処理区間130が生成され、繊維束100の長手方向に沿って、分繊処理区間110と未分繊処理区間130とが交互に配置されてなる部分分繊繊維束が形成される。 After that, by inserting the separating means 200 into the fiber bundle 100 again, the undivided section 130 is generated. are alternately arranged to form a partially split fiber bundle.

繊維束100の走行速度は変動の少ない安定した速度が好ましく、一定の速度がより好ましい。 The running speed of the fiber bundle 100 is preferably a stable speed with little fluctuation, more preferably a constant speed.

突出部210の先端における、繊維束100との接触部211の形状は、突き入れが可能であれば特に制限はないが、図5に示すような形状が好ましい。先端が鋭い突出部(2a1~2a3)は突き入れ性が良好であり、先端にR形状を持つ突出部(2a4~2a6)は単糸の切断防止による毛羽の発生が少ない。(2a7、2a8)に図示する突出部は回転式の分繊手段に用いた場合、特に突き入れ性が向上する。 The shape of the contact portion 211 with the fiber bundle 100 at the tip of the projecting portion 210 is not particularly limited as long as it can be pushed through, but the shape shown in FIG. 5 is preferable. The protrusions (2a1 to 2a3) with sharp tips are easy to insert, and the protrusions (2a4 to 2a6) with R-shaped tips prevent the single yarn from being cut, resulting in less fluff. The projecting portions shown in (2a7, 2a8) improve the penetration performance particularly when used in a rotary type separating means.

分繊間隔を調整するには、繊維束の幅方向に並べて配置した複数の分繊手段のピッチによって調整が可能である。分繊手段のピッチを小さくし、繊維束幅方向により多くの分繊手段を設けることで、より単糸本数の少ない、いわゆる細束に分繊処理が可能となる。細束にするための分繊手段と分繊手段のすきま(以下分繊幅と称す)の下限は、0.1mm以上が好ましく、0.2mm以上がより好ましい。また、分繊幅の上限は10mm以下が好ましい。分繊幅が0.1mm未満といった狭い幅では、毛羽等により分繊手段の走行方向が蛇行し接触による分繊手段の損傷等が懸念される。一方、分繊幅が10mmを超える場合、分繊手段同士が接触する心配はないものの、毛羽や単糸の交絡等により走行方向が蛇行し、一定幅の分繊幅が得にくくなる場合がある。また、成形品とした場合、力学特性の発現率が低下する懸念がある。 In order to adjust the splitting interval, it is possible to adjust the pitch of a plurality of splitting means arranged side by side in the width direction of the fiber bundle. By reducing the pitch of the separating means and providing more separating means in the width direction of the fiber bundle, it is possible to separate a so-called fine bundle, which has a smaller number of single yarns. The lower limit of the gap between the separating means for forming a fine bundle (hereinafter referred to as the separating width) is preferably 0.1 mm or more, more preferably 0.2 mm or more. Moreover, the upper limit of the splitting width is preferably 10 mm or less. If the separation width is as narrow as less than 0.1 mm, fluff or the like causes the running direction of the separation means to meander, and there is concern that the separation means may be damaged due to contact. On the other hand, if the splitting width exceeds 10 mm, there is no concern that the splitting means will come into contact with each other, but the running direction may meander due to fluff or entanglement of single yarns, making it difficult to obtain a constant splitting width. . In addition, when it is used as a molded product, there is a concern that the expression rate of mechanical properties may decrease.

なお、繊維束の拡幅処理や分繊処理は、後に詳しく述べる通り、様々なタイミングで実施することができ、例えばサイジング剤塗布工程と乾燥工程の間に行うことができる。 As will be described later in detail, the fiber bundle widening treatment and fiber separation treatment can be performed at various timings, for example, between the sizing agent application step and the drying step.

次にサイジング剤付与のタイミングについて説明する。 Next, the timing of application of the sizing agent will be described.

図6は、本発明に係る繊維強化樹脂成形材料を構成する強化繊維束の製造工程におけるサイジング剤付与工程400のタイミング例を示しており、かかるサイジング剤付与工程400は、サイジング剤塗布工程401と、乾燥工程402と、熱処理工程403とを含んでいる。なお、サイジング剤付与工程において乾燥工程と熱処理工程は必ずしも含む必要はないが、図6には、これらサイジング剤塗布工程401、乾燥工程402、熱処理工程403を含むサイジング剤付与工程400が、繊維束100が分繊処理工程300を経て分繊繊維束180に形成される工程中において、分繊処理工程300よりも前に行われるパターンAと、分繊処理工程300よりも後に行われるパターンBとが示されている。パターンA、パターンBのいずれのタイミングも可能である。 FIG. 6 shows an example of the timing of the sizing agent application step 400 in the manufacturing process of the reinforcing fiber bundle that constitutes the fiber-reinforced resin molding material according to the present invention. , a drying step 402 and a heat treatment step 403 . The sizing agent application step does not necessarily include the drying step and the heat treatment step, but FIG. 100 is formed into the split fiber bundle 180 through the splitting treatment step 300, the pattern A performed before the splitting treatment step 300 and the pattern B performed after the splitting treatment step 300. It is shown. Either timing of pattern A or pattern B is possible.

図7は、繊維束拡幅工程301を含む強化繊維束の製造工程におけるサイジング剤付与工程400のタイミング例を示している。図7には、繊維束100が繊維束拡幅工程301と分繊処理工程300とをこの順を経て分繊繊維束180に形成される工程中において、図6と同様のサイジング剤付与工程400が、繊維束拡幅工程301よりも前に行われるパターンCと、繊維束拡幅工程301と分繊処理工程300との間で行われるパターンDと、分繊処理工程300よりも後に行われるパターンEとが示されている。パターンC、パターンD、パターンEのいずれのタイミングも可能であるが、最適な分繊処理を達成できる観点から、パターンDのタイミングが最も好ましい。なお、この図に示すパターンにおいても、乾燥工程と熱処理工程は必ずしも含む必要はない。 FIG. 7 shows a timing example of the sizing agent application step 400 in the reinforcing fiber bundle manufacturing process including the fiber bundle widening step 301 . In FIG. 7, a sizing agent applying step 400 similar to that in FIG. , pattern C performed before the fiber bundle widening process 301, pattern D performed between the fiber bundle widening process 301 and the fiber separation process 300, and pattern E performed after the fiber bundle process 300. It is shown. Any timing of pattern C, pattern D, and pattern E is possible, but the timing of pattern D is most preferable from the viewpoint of achieving the optimum fiber separation treatment. Note that the pattern shown in this figure does not necessarily include the drying process and the heat treatment process.

本発明において、シート状物を構成するマトリックス樹脂としては、熱可塑性樹脂が好ましく、かかる熱可塑性樹脂としては特に限定されない。例えば、ポリアミド樹脂、ポリアセタール樹脂、ポリアクリレート樹脂、ポリスルフォン樹脂、ABS樹脂、ポリエステル樹脂、アクリル樹脂、ポリブチレンテレフタラート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、液晶ポリマー樹脂、塩化ビニル樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。特に、上記熱可塑性樹脂としてポリアミド樹脂を使用することが好ましく、さらにポリアミドに無機系の酸化防止剤を配合させることが好ましい。 In the present invention, a thermoplastic resin is preferable as the matrix resin constituting the sheet-like article, and the thermoplastic resin is not particularly limited. For example, polyamide resin, polyacetal resin, polyacrylate resin, polysulfone resin, ABS resin, polyester resin, acrylic resin, polybutylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin, polyethylene resin, polypropylene resin, polyphenylene sulfide ( PPS) resin, polyetheretherketone (PEEK) resin, liquid crystal polymer resin, vinyl chloride resin, fluorine-based resin such as polytetrafluoroethylene, and silicone. In particular, it is preferable to use a polyamide resin as the thermoplastic resin, and it is preferable to blend an inorganic antioxidant with the polyamide.

かかるポリアミド樹脂としては、例えば、環状ラクタムの開環重合またはω-アミノカルボン酸の重縮合で得られるナイロン6、ナイロン11、ナイロン12やジアミンとジカルボン酸の重縮合で得られるナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロンMFD6、2種以上のジアミンとジカルボン酸の重縮合で得られるナイロン66・6・6I、ナイロン66・6・12などの共重合ナイロンなどが好適に使用することができる。特にナイロン6、66、610は機械的特性とコストの観点から好ましい。 Such polyamide resins include, for example, nylon 6, nylon 11, and nylon 12 obtained by ring-opening polymerization of cyclic lactams or polycondensation of ω-aminocarboxylic acids, and nylon 66 and nylon 610 obtained by polycondensation of diamines and dicarboxylic acids. , Nylon 612, Nylon 6T, Nylon 6I, Nylon 9T, Nylon M5T, Nylon MFD6, Nylon 66.6.6I obtained by polycondensation of two or more diamines and dicarboxylic acids, Nylon 66.6.12, etc. Nylon and the like can be preferably used. In particular, nylon 6, 66, 610 is preferable from the viewpoint of mechanical properties and cost.

また、無機系の酸化防止剤としては、ハロゲン化銅あるいはその誘導体を用いることができ、たとえば、ヨウ化銅、臭化銅、塩化銅、メルカプトベンズイミダゾールとヨウ化銅との錯塩などが挙げられる。なかでもヨウ化銅、メルカプトベンズイミダゾールとヨウ化銅との錯塩を好適に使用できる。ハロゲン化銅あるいはその誘導体の添加量としては、熱可塑性ポリアミド樹脂100重量部に対し0.001~5重量部の範囲にあることが好ましい。添加量が0.001部未満では予熱時の樹脂分解や発煙、臭気を抑えることができず、5重量部以上では改善効果の向上が見られなくなる。更に0.002~1重量部が熱安定化効果とコストのバランスから好ましい。 As inorganic antioxidants, copper halides or derivatives thereof can be used, and examples thereof include copper iodide, copper bromide, copper chloride, and complex salts of mercaptobenzimidazole and copper iodide. . Among them, copper iodide and a complex salt of mercaptobenzimidazole and copper iodide can be preferably used. The amount of copper halide or its derivative to be added is preferably in the range of 0.001 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic polyamide resin. If the amount added is less than 0.001 part, resin decomposition, smoke and odor during preheating cannot be suppressed, and if the amount is 5 parts by weight or more, the improvement effect cannot be improved. Furthermore, 0.002 to 1 part by weight is preferable from the balance between the heat stabilization effect and the cost.

以上のような構成の本発明の繊維強化樹脂成形材料は、例えば下記工程[A]~[D]によって製造される。
[A]不連続強化繊維束のマット基材を作製する工程
[B]熱可塑性樹脂を前記マット基材に散布、あるいは、積層する工程
[C]熱可塑性樹脂を溶融する工程
[D]冷却・固化する工程
上記工程[A]においては、例えば上述した部分分繊繊維束を所望する長さに切断し、シート状に散布することで、不連続強化繊維束からなるマット基材とする。
The fiber-reinforced resin molding material of the present invention having the structure as described above is produced, for example, by the following steps [A] to [D].
[A] Step of preparing a mat base material of discontinuous reinforcing fiber bundles
[B] A step of spraying or laminating a thermoplastic resin on the mat base material
[C] Melting the thermoplastic resin
[D] Step of cooling and solidifying In the above step [A], for example, the above-described partially split fiber bundle is cut to a desired length and scattered in a sheet to form a mat base made of discontinuous reinforcing fiber bundles. material.

工程[B]においては、前記工程[A]で得られたマット基材にマトリックス樹脂となる熱可塑性樹脂の粒子を散布したり、フィルム、不織布又は織物等のシート状の熱可塑性樹脂を、マット基材上に積層する。このとき、シート状の熱可塑性樹脂の目付を適宜小さく調整することで、得られる繊維強化樹脂成形材料の表面における凹凸数A(表)を上記のとおりに調整する。なお、工程[A]において、所望の繊維長に切断したチョップド繊維束をシート状に散布する際に同時に熱可塑性樹脂の粒子を散布し、マット基材内部に熱可塑性樹脂を混ぜても良い。 In the step [B], particles of a thermoplastic resin as a matrix resin are dispersed on the mat substrate obtained in the step [A], or a sheet-like thermoplastic resin such as a film, nonwoven fabric or woven fabric is applied to the mat base material. Lamination onto a substrate. At this time, the basis weight of the sheet-shaped thermoplastic resin is appropriately adjusted to be small, and the unevenness number A (table) on the surface of the resulting fiber-reinforced resin molding material is adjusted as described above. In the step [A], particles of a thermoplastic resin may be dispersed at the same time as the chopped fiber bundles cut to a desired fiber length are dispersed in a sheet to mix the thermoplastic resin inside the mat base material.

そして、上記工程[C]、[D]は、プレス機を用い行うことができ、これら工程により、繊維束間や繊維束内へ樹脂を含浸せしめて繊維束同士・繊維同士を接着することが可能となる。 The above steps [C] and [D] can be performed using a press machine, and by these steps, the fiber bundles and the fibers can be bonded to each other by impregnating the fiber bundles and the fiber bundles with the resin. It becomes possible.

プレス機としては樹脂の含浸に必要な温度、圧力を実現できるものであれば特に制限はなく、上下する平面状のプラテンを有する通常のプレス機や、1対のエンドレススチールベルトが走行する機構を有するいわゆるダブルベルトプレス機を用いることができる。 There are no particular restrictions on the press as long as it can achieve the temperature and pressure required for resin impregnation, and a normal press with a flat platen that moves up and down, or a mechanism in which a pair of endless steel belts run can be used. A so-called double belt press can be used.

プレス圧は0.5MPa以下が好ましく、0.3MPa以下がより好ましく、0.1MPa以下がさらに好ましい。この範囲であれば、マット基材を構成する不連続強化繊維束の配向の乱れやマット基材の目付変動を抑えることができる。 The press pressure is preferably 0.5 MPa or less, more preferably 0.3 MPa or less, and even more preferably 0.1 MPa or less. Within this range, it is possible to suppress the disturbance of the orientation of the discontinuous reinforcing fiber bundles constituting the mat base material and the change in basis weight of the mat base material.

また、プレス面の温度は繊維強化樹脂成形材料を構成するマトリックス樹脂の融点より30℃以上高い温度が好ましく、予熱することが好ましい。なお、樹脂融点はJIS K-7121(2012年)に準じて測定される。さらに、マット基材の内部温度がマトリックス樹脂の融点より30℃以上高い状態を30秒以上キープすることが好ましく、該時間は40秒以上がより好ましく、50秒以上がさらに好ましい。この範囲であればマトリックス樹脂と強化繊維束の接着性が良好で、マット基材の形態を崩さずにシートを持ち運ぶことができる。 The temperature of the pressing surface is preferably 30° C. or more higher than the melting point of the matrix resin constituting the fiber-reinforced resin molding material, and preheating is preferable. The resin melting point is measured according to JIS K-7121 (2012). Further, the internal temperature of the mat base material is preferably maintained at 30° C. or more higher than the melting point of the matrix resin for 30 seconds or more, more preferably 40 seconds or more, and even more preferably 50 seconds or more. Within this range, the adhesiveness between the matrix resin and the reinforcing fiber bundles is good, and the sheet can be carried without destroying the shape of the mat base material.

以上のような一連の工程によって得られる繊維強化樹脂成形材料は、特定の物性を有する強化繊維束を用い、かつ、成形材料におけるボイド率が上記したような範囲になるので、生産性を高めることができるうえに、かかる成形材料を用いた成形体としては高い力学特性を発現できるものとなる。 The fiber-reinforced resin molding material obtained by the series of steps as described above uses reinforcing fiber bundles having specific physical properties, and the void ratio in the molding material is within the range described above, so productivity can be improved. In addition, a molded article using such a molding material can exhibit high mechanical properties.

さらに、以上のような構成の本発明の繊維強化樹脂成形材料は、例えば下記工程[E]~[H]によって成形される。
[E]繊維強化樹脂成形材料を予熱する工程
[F]繊維強化樹脂成形材料を金型に配置する工程
[G]型締めする工程
[H]繊維強化樹脂成形材料を冷却・固化する工程
上記工程[E]においては、繊維強化樹脂成形材料を構成するマトリックス樹脂の融点より30℃以上高い温度で予熱することが好ましい。なお予熱炉を使わず、金型内に材料を配置し、型締めして予熱してもよい。
Furthermore, the fiber-reinforced resin molding material of the present invention having the above structure is molded, for example, by the following steps [E] to [H].
[E] Step of preheating the fiber-reinforced resin molding material
[F] The step of placing the fiber-reinforced resin molding material in the mold
[G] Mold clamping process
[H] Step of cooling and solidifying the fiber-reinforced resin molding material In the above step [E], it is preferable to preheat at a temperature higher than the melting point of the matrix resin constituting the fiber-reinforced resin molding material by 30°C or more. Instead of using a preheating furnace, the material may be placed in a mold, clamped and preheated.

上記工程[G]において、プレス圧は0.5MPa以上が好ましく、5MPa以上がより好ましく、10MPa以上がさらに好ましい。また、加圧時間は10秒以上が好ましく、20秒以上がより好ましく、30秒以上がさらに好ましい。この範囲であれば、マトリックス樹脂をマット基材に十分に含浸でき、成形品のボイド率を低下させ力学特性を高めることができる。 In the above step [G], the pressing pressure is preferably 0.5 MPa or higher, more preferably 5 MPa or higher, and even more preferably 10 MPa or higher. Also, the pressurization time is preferably 10 seconds or longer, more preferably 20 seconds or longer, and even more preferably 30 seconds or longer. Within this range, the mat base material can be sufficiently impregnated with the matrix resin, the void fraction of the molded product can be reduced, and the mechanical properties can be improved.

上記工程[H]において、樹脂融点をTmとすると材料を冷却して取り出す金型温度の上限は、Tm-40℃以下であることが好ましい。また、材料を冷却して取り出す金型温度の下限は、Tm-150℃以上であることが好ましく、Tm-120℃以上であることがより好ましく、Tm-90℃以上であることがさらに好ましい。この範囲であれば、金型に樹脂を残さず金型の消費電力を抑制して成形品を取り出すことができる。 In the above step [H], the upper limit of the mold temperature for cooling and taking out the material is preferably Tm−40° C. or less, where Tm is the melting point of the resin. The lower limit of the mold temperature for cooling and taking out the material is preferably Tm-150°C or higher, more preferably Tm-120°C or higher, and even more preferably Tm-90°C or higher. Within this range, the molded article can be taken out without leaving any resin in the mold while suppressing the power consumption of the mold.

また、維強化樹脂成形材料を、予熱せずに、例えばマトリックス樹脂の融点より30℃以上高い金型内に配置し、プレス圧0.5MPa以上で加圧した後、前記金型の温度を前記マトリックス樹脂の融点より40℃以上低い温度に冷却して取り出してもよい。このようにして、繊維強化樹脂成形材料の比重ρ1(g/cm)と成形品の比重ρ2(g/cm)との比ρ1/ρ2が0.5以上となるようにすることも好ましい。該比ρ1/ρ2の上限は、0.9以下が好ましく、0.8以下がより好ましく、0.7以下がさらに好ましい。この範囲であれば、繊維強化樹脂成形材料の製造時の巻き取り性や成形時の金型追随性に優れる。繊維強化樹脂成形材料の比重ρ1(g/cm)と維強化樹脂成形材料からなる成形品の比重ρ2(g/cm)の導出方法については後述する。 Alternatively, the fiber -reinforced resin molding material is placed in a mold having a temperature higher than the melting point of the matrix resin by, for example, 30° C. or more without preheating, and pressurized at a press pressure of 0.5 MPa or more, and then the temperature of the mold is increased. It may be taken out after cooling to a temperature lower than the melting point of the matrix resin by 40° C. or more. In this way, it is also preferable to set the ratio ρ1/ρ2 of the specific gravity ρ1 (g/cm 3 ) of the fiber-reinforced resin molding material to the specific gravity ρ2 (g/cm 3 ) of the molded product to 0.5 or more. . The upper limit of the ratio ρ1/ρ2 is preferably 0.9 or less, more preferably 0.8 or less, and even more preferably 0.7 or less. Within this range, the fiber-reinforced resin molding material is excellent in windability during production and mold followability during molding. A method of deriving the specific gravity ρ1 (g/cm 3 ) of the fiber -reinforced resin molding material and the specific gravity ρ2 (g/cm 3 ) of the molded article made of the fiber-reinforced resin molding material will be described later.

以下実施例を用いて本発明の詳細を説明する。各種測定方法、計算方法、及び、評価方法は以下の通りである。 The details of the present invention will be described below using examples. Various measurement methods, calculation methods, and evaluation methods are as follows.

(1)凹凸数A
図1に示す通り、繊維強化樹脂成形材料10の表面において、任意の300mmのライン上を1mm/秒の速度でレーザー変位計(メーカー:KEYENCE、型式:LK-080、スポット径:約70μm、繰り返し精度3μm)を移動させ、サンプリング周期0.1秒でレーザー照射面11からシート面までの距離Q(k=1、2、3・・・(測定順))を測定する。距離Qの測定0.1秒後のデータをQk+1、0.2秒後のデータをQk+2となる。このようにして測定されたデータから、Qk+2-Qk+1が0.3mm未満、かつ、Qk+1-Qが0.3mm以上となるQの点の総数p(個)をカウントする。総数p(個)を300mmで割ることで、凹凸数A(個/mm)を導出した。繊維強化樹脂成形材料10の裏面においても同様にした。表面、裏面それぞれにおいて得られた凹凸数A(個/mm)を、それぞれ凹凸数A(表)、凹凸数A(裏)とした。
(1) Unevenness number A
As shown in FIG. 1, on the surface of the fiber-reinforced resin molding material 10, a laser displacement meter (manufacturer: KEYENCE, model: LK-080, spot diameter: about 70 μm, repeated at a speed of 1 mm / sec on an arbitrary 300 mm line) accuracy of 3 μm), and the distance Q k (k=1, 2, 3, . The data 0.1 seconds after the measurement of the distance Qk is Qk + 1 , and the data 0.2 seconds after is Qk+2 . From the data measured in this way, the total number p of Q k points where Q k+2 −Q k+1 is less than 0.3 mm and Q k+1 −Q k is 0.3 mm or more is counted. The number of irregularities A (pieces/mm) was derived by dividing the total number p (pieces) by 300 mm. The rear surface of the fiber-reinforced resin molding material 10 was also treated in the same manner. The unevenness number A (pieces/mm) obtained on each of the front surface and the back surface was defined as the unevenness number A (front) and the unevenness number A (back), respectively.

(2)繊維強化樹脂成形材料の比重ρ1と維強化樹脂成形材料からなる成形品の比重ρ2
繊維強化樹脂成形材料の比重ρ1(g/cm)、及び、成形品の比重ρ2(g/cm)は、JIS K-7112(1999年)のA法(水中置換法)により測定した。なお、内部のボイドが連続で存在し外部まで繋がっている場合、材料周囲にテープ等を貼って、材料内部への水の浸入を防いで測定した。
(2) Specific gravity ρ1 of the fiber -reinforced resin molding material and specific gravity ρ2 of the molded article made of the fiber-reinforced resin molding material
The specific gravity ρ1 (g/cm 3 ) of the fiber-reinforced resin molding material and the specific gravity ρ2 (g/cm 3 ) of the molded product were measured according to JIS K-7112 (1999) A method (water substitution method). In addition, when the internal voids existed continuously and connected to the outside, a tape or the like was attached around the material to prevent water from entering the inside of the material.

(3)ドレープ値の測定
図8に示すように、23±5℃の雰囲気下、直方体の台の端に、長さ30cm、幅10cmに切断した繊維強化樹脂成形材料を固定した。この時、繊維強化樹脂成形材料が台の端から25cm突き出るように固定した。すなわち、繊維強化樹脂成形材料の端から5cmの部分が、台の端に来るようにした。この状態で5分間静置した後、台に固定していない方の繊維強化樹脂成形材料の先端と、台の側面との最短距離dを測定し、ドレープ値とした。
(3) Measurement of Drape Value As shown in FIG. 8, a fiber-reinforced resin molding material cut into a length of 30 cm and a width of 10 cm was fixed to the end of a rectangular parallelepiped stand in an atmosphere of 23±5°C. At this time, the fiber-reinforced resin molding material was fixed so as to protrude from the end of the table by 25 cm. That is, a portion of 5 cm from the edge of the fiber-reinforced resin molding material was positioned at the edge of the table. After standing in this state for 5 minutes, the shortest distance d between the tip of the fiber-reinforced resin molding material not fixed to the table and the side surface of the table was measured and taken as the drape value.

(4)束内ボイド率
繊維強化樹脂成形材料の厚み方向の任意の断面において、1束の面積を100%として、束内のボイド面積割合を二値化画像処理により求めた。50束の束内のボイド面積割合を測定し、その平均値を束内ボイド率V2(%)とした。
(4) Void Ratio in Bundle In an arbitrary cross section in the thickness direction of the fiber-reinforced resin molding material, the void area ratio in the bundle was obtained by binarization image processing, with the area of one bundle set as 100%. The void area ratio in 50 bundles was measured, and the average value was defined as the void ratio in the bundle V2 (%).

(5)全体ボイド率
繊維強化樹脂成形材料の全体ボイド率はJIS K-7075(1991年)に沿って下記(4)式より導出し、1枚のシートから切り出した10サンプルの平均値を全体ボイド率とした。なお、繊維質量含有率Wf(%)は500℃、2時間、窒素雰囲気条件の燃焼法により測定し、下記(1)式から導出した。
Wf=M1/M0×100(質量%) (1)
(M1:燃焼後の強化繊維質量(mg)、M0:燃焼前の繊維強化樹脂成形材料の質量(mg))
Vf=(Wf/ρf)/(Wf/ρf+(100-Wf)/ρr)×100(%) (2)
(Vf:樹脂完全含浸時の繊維強化樹脂成形材料の繊維体積含有率、ρf:強化繊維の比重、ρr:熱可塑性樹脂の比重)
Vr=100-Vf(%) (3)
(Vr:樹脂完全含浸時の繊維強化樹脂成形材料の樹脂体積含有率、ρr:熱可塑性樹脂の比重)
全体ボイド率V1=(1-100×ρ1/(ρf×Vf+ρr×Vr))×100(%) (4)
(6)平均繊維束厚みtの測定法
繊維強化樹脂成形材料を500℃に加熱した窒素雰囲気中(酸素濃度1%以下)の電気炉の中で2時間加熱してマトリックス樹脂等の有機物を焼き飛ばして繊維マットを取り出した。得られた繊維マットから繊維束を50束ピックアップし、束幅直交方向(いわゆる縦断面)で最も厚い箇所の厚みの平均値を平均繊維束厚みt(μm)とした。
(5) Overall void fraction
The total void ratio of the fiber-reinforced resin molding material was derived from the following formula (4) according to JIS K-7075 (1991), and the average value of 10 samples cut out from one sheet was taken as the total void ratio. The fiber mass content Wf (%) was measured by a combustion method in a nitrogen atmosphere at 500° C. for 2 hours and derived from the following formula (1).
Wf=M1/M0×100 (% by mass) (1)
(M1: mass of reinforcing fiber after combustion (mg), M0: mass of fiber-reinforced resin molding material before combustion (mg))
Vf=(Wf/ρf)/(Wf/ρf+(100−Wf)/ρr)×100(%) (2)
(Vf: fiber volume content of fiber reinforced resin molding material when completely impregnated with resin, ρf: specific gravity of reinforcing fiber, ρr: specific gravity of thermoplastic resin)
Vr = 100 - Vf (%) (3)
(Vr: resin volume content of fiber-reinforced resin molding material when fully impregnated with resin, ρr: specific gravity of thermoplastic resin)
Overall void fraction V1 = (1-100 x ρ1/(ρf x Vf + ρr x Vr)) x 100 (%) (4)
(6) Measurement method of average fiber bundle thickness t
The fiber-reinforced resin molding material was heated to 500° C. in an electric furnace in a nitrogen atmosphere (oxygen concentration of 1% or less) for 2 hours to burn off organic matter such as the matrix resin, and the fiber mat was taken out. 50 bundles of fiber bundles were picked up from the obtained fiber mat, and the average value of the thickness at the thickest point in the direction orthogonal to the bundle width (so-called longitudinal section) was taken as the average fiber bundle thickness t (μm).

(7)平均繊維数の測定方法
分繊処理する前の強化繊維束の1mあたりの質量とフィラメント数からフィラメント1m長あたりの質量a(mg/m)を導出した。次に、分繊処理された強化繊維束を10mm程度の長さにカットした強化繊維束の繊維長さl(mm)と質量b(mg)を測定し、下記式により繊維数を導出した。平均繊維数は計20個のカットした強化繊維束の繊維数の平均値とした。
繊維数=(b×1000/(a×l))
なお、繊維強化樹脂成形材料から平均繊維数を測定する場合には、以下の方法で測定すればよい。すなわち、まず、繊維強化樹脂成形材料を500℃に加熱した窒素雰囲気中(酸素濃度1%以下)の電気炉の中で2時間加熱してマトリックス樹脂等の有機物を焼き飛ばして繊維マットを取り出す。次に、得られた繊維マットから繊維束を1束ピックアップし、繊維長l2(mm)と重量c(mg)を測定し、下記式より繊維数を導出する。平均繊維数は計50束の繊維数の平均値とする。
繊維数=(c/(π×r×l2×ρf)×10
(r:繊維半径(μm))
(8)平均繊維束幅の測定法
束幅を繊維束長手方向(繊維方向)に30cm間隔で20点測定し、その平均値を平均繊維束幅(mm)とした。
(7) Method for Measuring Average Number of Fibers The mass a (mg/m) per 1 m of filament length was derived from the mass per 1 m of the reinforcing fiber bundle before the fiber separation treatment and the number of filaments. Next, the fiber length l (mm) and the mass b (mg) of the reinforcing fiber bundle obtained by cutting the separated reinforcing fiber bundle to a length of about 10 mm were measured, and the number of fibers was derived from the following formula. The average number of fibers was taken as the average value of the number of fibers of a total of 20 cut reinforcing fiber bundles.
Number of fibers = (b x 1000/(a x l))
When measuring the average number of fibers from the fiber-reinforced resin molding material, the following method may be used. That is, first, the fiber-reinforced resin molding material is heated to 500° C. in an electric furnace in a nitrogen atmosphere (oxygen concentration of 1% or less) for 2 hours to burn off organic matter such as the matrix resin and take out the fiber mat. Next, one fiber bundle is picked up from the obtained fiber mat, the fiber length l 2 (mm) and weight c (mg) are measured, and the number of fibers is derived from the following formula. The average number of fibers is the average number of fibers of 50 bundles in total.
Number of fibers = (c/(π×r 2 ×l 2 ×ρf)×10 6 )
(r: fiber radius (μm))
(8) Measurement method of average fiber bundle width The bundle width was measured at 20 points at intervals of 30 cm in the longitudinal direction (fiber direction) of the fiber bundle, and the average value was taken as the average fiber bundle width (mm).

なお、繊維強化樹脂成形材料から平均繊維束幅を測定する場合には、以下の方法で測定すればよい。すなわち、まず、繊維強化樹脂成形材料を500℃に加熱した窒素雰囲気中(酸素濃度1%以下)の電気炉の中で2時間加熱してマトリックス樹脂等の有機物を焼き飛ばして繊維マットを取り出す。次に、得られた繊維マットから繊維束を1束ピックアップし、繊維束幅(mm)を測定する。平均繊維束幅は計50束の繊維束幅の平均値とする。 When measuring the average fiber bundle width from the fiber-reinforced resin molding material, the following method may be used. That is, first, the fiber-reinforced resin molding material is heated to 500° C. in an electric furnace in a nitrogen atmosphere (oxygen concentration of 1% or less) for 2 hours to burn off organic matter such as the matrix resin and take out the fiber mat. Next, one bundle of fiber bundles is picked up from the obtained fiber mat, and the fiber bundle width (mm) is measured. The average fiber bundle width is the average value of the fiber bundle widths of a total of 50 bundles.

(9)単位幅あたりの繊維数
平均繊維数を平均繊維束幅で割ることで単位幅あたりの繊維数(本/mm)とした。
(9) Number of fibers per unit width The number of fibers per unit width (fibers/mm) was obtained by dividing the average number of fibers by the average fiber bundle width.

(10)熱分解開始温度の測定法
サイジング剤の熱分解開始温度を下記のように測定した。まず、サイジング剤が塗布された強化繊維を5mgほど採取し、110℃で2時間乾燥後、デシケーター内で室温で1時間、冷却した。その後、秤量し、窒素雰囲気中でTGA測定する。窒素流量を100ml/分、昇温速度を10℃/分とし、室温から650℃までの重量減少を測定した。縦軸を初期重量に対するサイズ糸の重量比(%)、横軸を温度(℃)とするTGA曲線において、重量減少速度(%/℃)の最大となる温度、及び、それより低温側で最も隣接する、重量減少速度が極小となる温度を探し、各々の接線の交点を熱分解開始温度と定義した。
(10) Measurement method of thermal decomposition initiation temperature The thermal decomposition initiation temperature of the sizing agent was measured as follows. First, about 5 mg of reinforcing fiber coated with a sizing agent was collected, dried at 110° C. for 2 hours, and then cooled in a desiccator at room temperature for 1 hour. After that, it is weighed and TGA is measured in a nitrogen atmosphere. The weight loss was measured from room temperature to 650°C with a nitrogen flow rate of 100 ml/min and a heating rate of 10°C/min. In the TGA curve where the vertical axis is the weight ratio (%) of the sizing yarn to the initial weight and the horizontal axis is temperature (°C), the temperature at which the weight loss rate (%/°C) is maximized, and the temperature on the lower temperature side Adjacent temperatures at which the rate of weight loss was minimized were searched for, and the intersection point of each tangent line was defined as the thermal decomposition initiation temperature.

ただし熱分解開始温度の定義は、サイジング剤の化学変性後、マトリックス樹脂含浸前の状態において適用した。サイジング剤が塗布された強化繊維の熱分解開始温度が測定できない場合、サイジング剤を強化繊維の代わりに使用した。 However, the definition of the thermal decomposition initiation temperature was applied to the state after chemical modification of the sizing agent and before impregnation with the matrix resin. When the thermal decomposition initiation temperature of the reinforcing fibers coated with the sizing agent could not be measured, the sizing agent was used instead of the reinforcing fibers.

(11)サイジング剤の付着量の測定方法
サイジング剤が付着している強化繊維束を5g採取し、耐熱製の容器に投入した。次にこの容器を80℃、真空条件下で24時間乾燥し、吸湿しないように注意しながら室温まで冷却後、秤量した強化繊維の質量をm1(g)とし、続いて容器ごと、窒素雰囲気中、500℃、15分間の灰化処理を行った。吸湿しないように注意しながら室温まで冷却し、秤量した強化繊維の質量をm2(g)とした。以上の処理を経て、強化繊維へのサイジング剤の付着量を次式により求めた。測定は10本の強化繊維束について行い、その平均値を算出した。
サイジング剤の付着量(質量%)=100×{(m1-m2)/m1}
(12)強化繊維束の切断角度の測定方法
繊維強化樹脂成形材料を500℃に加熱した窒素雰囲気中(酸素濃度1%以下)の電気炉の中で2時間加熱してマトリックス樹脂等の有機物を焼き飛ばして繊維マットを取り出した。次に、得られた繊維マットから繊維束をピックアップし、図2や図3に示すように鋭角となる切断角度θを測定した。平均切断角度は計50束の切断角度の平均値とした。
(11) Method for measuring adhesion amount of sizing agent 5 g of the reinforcing fiber bundle to which the sizing agent was adhered was sampled and put into a heat-resistant container. Next, this container is dried at 80° C. under vacuum conditions for 24 hours, cooled to room temperature while being careful not to absorb moisture, and then the mass of the weighed reinforcing fiber is set to m1 (g), and then the container is placed in a nitrogen atmosphere. , 500° C. for 15 minutes. The reinforcing fibers were cooled to room temperature while taking care not to absorb moisture, and the mass of the weighed reinforcing fibers was defined as m2 (g). After the above treatment, the adhesion amount of the sizing agent to the reinforcing fibers was determined by the following formula. The measurement was performed on 10 reinforcing fiber bundles, and the average value was calculated.
Adhesion amount of sizing agent (mass%) = 100 × {(m1-m2) / m1}
(12) Method for measuring cutting angle of reinforcing fiber bundle A fiber-reinforced resin molding material is heated to 500°C in an electric furnace in a nitrogen atmosphere (oxygen concentration of 1% or less) for 2 hours to remove organic substances such as matrix resin. The fiber mat was taken out by burning off. Next, a fiber bundle was picked up from the obtained fiber mat, and an acute cutting angle θ was measured as shown in FIGS. 2 and 3 . The average cutting angle was the average value of the cutting angles of a total of 50 bundles.

(13)製造時の巻き取り性
幅500mmの繊維強化樹脂成形材料を500mm径の芯に1時間巻き取るテストを行った。強化繊維や樹脂の脱落量が5g未満の場合をA、強化繊維や樹脂の脱落量が5g以上の場合をB、巻き取れない場合をCと判定した。
(13) Windability during production A test was conducted in which a fiber-reinforced resin molding material with a width of 500 mm was wound around a core with a diameter of 500 mm for 1 hour. When the amount of reinforcing fiber or resin dropped was less than 5 g, it was judged as A, when the amount of reinforcing fiber or resin dropped was 5 g or more, and as C when it could not be wound.

(14)成形時の金型追随性
繊維強化樹脂成形材料を280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置して成形した。R部において強化繊維が折れず表面に0.3mm以上の窪みがない場合をA、R部において強化繊維が折れず表面に0.3mm以上の窪みがある場合をB、R部において強化繊維が折れる場合をCと判定した。
(14) Mold Followability During Molding The fiber-reinforced resin molding material was placed in a U-shaped mold (standing wall height: 100 mm) with a clearance of 2 mm and an R of 3 mm at 280° C. and molded. A case where the reinforcing fiber does not break in the R part and there is no depression of 0.3 mm or more on the surface, B is the case where the reinforcing fiber does not break in the R part and there is a depression of 0.3 mm or more on the surface, and there is no reinforcing fiber in the R part. A case of breaking was judged as C.

(15)力学特性
繊維強化樹脂成形材料を用いて後記する方法により成形し、300×200mmの平板成形品を得た。平板長手方向を0°とし、得られた平板より0°と90°方向から、それぞれ100×25×2mmの試験片6片(合計12片)を切り出し、JIS K7074(1988年)に準拠し測定を実施し、曲げ強度の平均値を求めた。曲げ強度の平均値が350MPa以上をA、200MPa以上350MPa未満をB、200MPa未満をCと判定した。
(15) Mechanical Properties A fiber-reinforced resin molding material was molded by the method described below to obtain a flat molded product of 300×200 mm. With the longitudinal direction of the flat plate set at 0°, 6 test pieces of 100 x 25 x 2 mm each (12 pieces in total) were cut from the obtained flat plate from the 0° and 90° directions, and measured according to JIS K7074 (1988). was carried out, and the average value of the bending strength was obtained. An average bending strength of 350 MPa or more was evaluated as A, 200 MPa or more and less than 350 MPa as B, and less than 200 MPa as C.

[使用原料]
・強化繊維束1:炭素繊維束(ZOLTEK社製“PX35”、単糸数50,000本、“13”サイジング)を用いた。
・強化繊維束2:炭素繊維束(東レ(株)社製、“トレカ”T700SC-24K-50C、単糸数24,000本)
・樹脂1: ポリアミド6樹脂(東レ(株)社製、“アミラン”(登録商標)CM1001P、粒径120μm、融点225℃)
・樹脂2: ポリアミド6樹脂(東レ(株)社製、“アミラン”(登録商標)CM1001、融点225℃)からなるポリアミドマスターバッチを用いて作製したシート
・樹脂3: 未変性ポリプロピレン樹脂(プライムポリマー(株)社製、“プライムポリプロ”(登録商標)J106MG、融点160℃)90質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製、“アドマー”(登録商標)QE800、融点140℃)10質量%とからなるポリプロピレンマスターバッチを用いて作製したシート
・サイジング剤1: 水溶性ポリアミド(東レ(株)社製、“T-70”)
・サイジング剤2: 水溶性ポリアミド(東レ(株)社製、“A-90”)
[繊維強化樹脂成形材料の製造方法]
強化繊維束を、ワインダーを用いて一定速度10m/分で巻出し、10Hzで軸方向へ振動する振動拡幅ロールに通し、拡幅処理を施した後に、幅規制ロールを通すことで任意の幅へ拡幅した拡幅繊維束を得た。
[raw materials used]
- Reinforcing fiber bundle 1: A carbon fiber bundle (“PX35” manufactured by ZOLTEK, 50,000 single yarns, “13” sizing) was used.
・ Reinforcing fiber bundle 2: Carbon fiber bundle (manufactured by Toray Industries, Inc., “Torayca” T700SC-24K-50C, number of single yarns: 24,000)
- Resin 1: Polyamide 6 resin (manufactured by Toray Industries, Inc., "Amilan" (registered trademark) CM1001P, particle size 120 µm, melting point 225°C)
・ Resin 2: A sheet produced using a polyamide masterbatch made of polyamide 6 resin ("Amilan" (registered trademark) CM1001, melting point 225 ° C., manufactured by Toray Industries, Inc.) ・ Resin 3: Unmodified polypropylene resin (prime polymer Co., Ltd., "Prime Polypro" (registered trademark) J106MG, melting point 160 ° C.) 90% by mass, and acid-modified polypropylene resin (manufactured by Mitsui Chemicals, Inc., "ADMER" (registered trademark) QE800, melting point 140 ° C.) Sheet sizing agent 1 made using a polypropylene masterbatch consisting of 10% by mass: Water-soluble polyamide (manufactured by Toray Industries, Inc., "T-70")
- Sizing agent 2: water-soluble polyamide (manufactured by Toray Industries, Inc., "A-90")
[Method for producing fiber-reinforced resin molding material]
A reinforcing fiber bundle is unwound at a constant speed of 10 m/min using a winder, passed through a vibrating widening roll that vibrates in the axial direction at 10 Hz, subjected to widening treatment, and then passed through a width regulating roll to widen to an arbitrary width. A widened fiber bundle was obtained.

その後、拡幅繊維束を、精製水で希釈したサイジング剤に連続的に浸漬させた。次いで250℃のホットローラと250℃の乾燥炉(大気雰囲気下)にサイジング剤を塗布した拡幅繊維束を供し、乾燥して水分を除去し、1.5分熱処理を施した。 After that, the expanded fiber bundle was continuously immersed in a sizing agent diluted with purified water. Then, the widened fiber bundle coated with the sizing agent was subjected to hot rollers at 250° C. and a drying oven (under an air atmosphere) at 250° C., dried to remove moisture, and heat-treated for 1.5 minutes.

厚み0.2mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートを、強化繊維束の幅方向に対して等間隔に並行にセットした分繊処理手段を準備した。この分繊処理手段を、熱処理を終えた前記拡幅繊維束に対して、間欠式に抜き挿しし、任意の分割数の強化繊維束を得た。この時、分繊処理手段は、一定速度10m/分で走行する拡幅繊維束に対して、3秒間分繊処理手段が突き刺された分繊処理区間と、0.2秒間分繊処理手段が抜かれた未分繊処理区間とを生成する動作を繰り返し行なった。得られた強化繊維束は、狙いの平均繊維数になるように分繊処理区間で繊維束が幅方向に対して分繊されており、少なくとも1つの分繊処理区間の少なくとも1つの端部に、単糸が交絡した絡合部が蓄積されてなる絡合蓄積部を有していた。 A fiber separating means was prepared by setting iron plates for fiber dividing processing having projecting shapes of 0.2 mm in thickness, 3 mm in width and 20 mm in height in parallel with the width direction of the reinforcing fiber bundle at equal intervals. This fiber separating means was intermittently inserted into and removed from the widened fiber bundle that had been heat-treated to obtain an arbitrary number of divided reinforcing fiber bundles. At this time, the fiber separation processing means has a fiber separation processing section where the fiber separation processing means is stuck for 3 seconds and the fiber separation processing means is pulled out for 0.2 seconds with respect to the widened fiber bundle traveling at a constant speed of 10 m / minute. The operation of generating the undivided treated section was repeated. The resulting reinforcing fiber bundle is split in the width direction in the splitting treatment section so that the target average number of fibers is obtained, and at least one end of at least one splitting treatment section , had an entangled accumulation portion in which the entangled portions in which the single yarns were entangled were accumulated.

続いて、得られた強化繊維束を、ロータリーカッターへ連続的に挿入して繊維束を任意の繊維長に切断、均一分散するように散布することにより、繊維配向が等方的である不連続繊維マットを得た。 Subsequently, the obtained reinforcing fiber bundle is continuously inserted into a rotary cutter to cut the fiber bundle into arbitrary fiber lengths, and is scattered so as to be uniformly dispersed, thereby obtaining a discontinuous fiber having an isotropic fiber orientation. A fiber mat was obtained.

熱可塑性樹脂と不連続繊維マット(積層構成:[熱可塑性樹脂/不連続繊維マット/熱可塑性樹脂/不連続繊維マット/熱可塑性樹脂])を任意の隙間を有するダブルベルトプレス機で上下から挟み込み、シート状の繊維強化樹脂成形材料を得た。 A thermoplastic resin and a discontinuous fiber mat (laminated structure: [Thermoplastic resin/Discontinuous fiber mat/Thermoplastic resin/Discontinuous fiber mat/Thermoplastic resin]) are sandwiched from above and below by a double belt press with an arbitrary gap. , a sheet-like fiber-reinforced resin molding material was obtained.

(参考例1)
表1に示す通り、強化繊維束の単位幅あたりの単糸数700本/mm、サイジング剤1を含むトータルサイジング剤付着量3質量%である、強化繊維束1からなる強化繊維束を作製した。
(Reference example 1)
As shown in Table 1, a reinforcing fiber bundle composed of the reinforcing fiber bundle 1 having a number of single yarns per unit width of the reinforcing fiber bundle of 700/mm and a total sizing agent adhesion amount including the sizing agent 1 of 3% by mass was produced.

(参考例2)
表1に示す通り、強化繊維束の単位幅あたりの単糸数800本/mm、サイジング剤1を含むトータルサイジング剤付着量3質量%である、強化繊維束1からなる強化繊維束を作製した。
(Reference example 2)
As shown in Table 1, a reinforcing fiber bundle composed of the reinforcing fiber bundle 1 having a number of single yarns per unit width of the reinforcing fiber bundle of 800/mm and a total sizing agent adhesion amount including the sizing agent 1 of 3% by mass was produced.

(参考例3)
表1に示す通り、強化繊維束の単位幅あたりの単糸数765本/mm、サイジング剤1を含むトータルサイジング剤付着量3質量%である、強化繊維束2からなる強化繊維束を作製した。
(Reference example 3)
As shown in Table 1, a reinforcing fiber bundle composed of the reinforcing fiber bundle 2 having a number of single yarns per unit width of the reinforcing fiber bundle of 765/mm and a total sizing agent adhesion amount including the sizing agent 1 of 3% by mass was produced.

(参考例4)
表1に示す通り、強化繊維束の単位幅あたりの単糸数1630本/mm、サイジング剤2を含むトータルサイジング剤付着量3質量%である、強化繊維束2からなる強化繊維束を作製した。
(Reference example 4)
As shown in Table 1, a reinforcing fiber bundle composed of the reinforcing fiber bundle 2 having a number of single yarns per unit width of the reinforcing fiber bundle of 1630/mm and a total sizing agent adhesion amount including the sizing agent 2 of 3% by mass was produced.

(参考例5)
表1に示す通り、強化繊維束の単位幅あたりの単糸数1340本/mm、サイジング剤2を含むトータルサイジング剤付着量3質量%である、強化繊維束1からなる強化繊維束を作製した。
(Reference example 5)
As shown in Table 1, a reinforcing fiber bundle composed of reinforcing fiber bundle 1 having a number of single yarns per unit width of the reinforcing fiber bundle of 1340/mm and a total sizing agent adhesion amount including sizing agent 2 of 3% by mass was produced.

(参考例6)
表1に示す通り、強化繊維束の単位幅あたりの単糸数2040本/mm、サイジング剤2を含むトータルサイジング剤付着量3質量%である、強化繊維束1からなる強化繊維束を作製した。
(Reference example 6)
As shown in Table 1, a reinforcing fiber bundle composed of reinforcing fiber bundle 1 having a number of single yarns per unit width of the reinforcing fiber bundle of 2040/mm and a total sizing agent adhesion amount including sizing agent 2 of 3% by mass was produced.

(参考例7)
表1に示す通り、強化繊維束の単位幅あたりの単糸数760本/mm、サイジング剤1を含むトータルサイジング剤付着量3質量%である、強化繊維束1からなる強化繊維束を作製した。
(Reference example 7)
As shown in Table 1, a reinforcing fiber bundle composed of the reinforcing fiber bundle 1 having a number of single yarns per unit width of the reinforcing fiber bundle of 760/mm and a total sizing agent adhesion amount including the sizing agent 1 of 3% by mass was produced.

(参考例8)
表1に示す通り、強化繊維束の単位幅あたりの単糸数1720本/mm、サイジング剤1を含むトータルサイジング剤付着量3質量%である、強化繊維束1からなる強化繊維束を作製した。
(Reference example 8)
As shown in Table 1, a reinforcing fiber bundle composed of the reinforcing fiber bundle 1 having a number of single yarns per unit width of the reinforcing fiber bundle of 1720/mm and a total sizing agent adhesion amount including the sizing agent 1 of 3% by mass was produced.

(参考例9)
表1に示す通り、強化繊維束の単位幅あたりの単糸数1830本/mm、サイジング剤2を含むトータルサイジング剤付着量3質量%である、強化繊維束2からなる強化繊維束を作製した。
(Reference example 9)
As shown in Table 1, a reinforcing fiber bundle composed of the reinforcing fiber bundle 2 having a number of single yarns per unit width of the reinforcing fiber bundle of 1830/mm and a total sizing agent adhesion amount including the sizing agent 2 of 3% by mass was produced.

(実施例1)
参考例1で作製した強化繊維束を角度10°でカットした束からなるマット(目付:540g/m)と樹脂1(目付:532g/m)を、[樹脂1/マット/樹脂1/マット/樹脂1]になるように積層し、加熱ゾーン(350℃、加熱時間100秒、クリアランス3mm)と冷却ゾーン(150℃、冷却時間60秒、加圧ゼロ)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Example 1)
A mat (basis weight: 540 g/m 2 ) made of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 1 at an angle of 10° and a resin 1 (basis weight: 532 g/m 2 ) were combined into [resin 1/mat/resin 1/ Mat/Resin 1], and a double belt press including a heating zone (350°C, heating time 100 seconds, clearance 3 mm) and a cooling zone (150°C, cooling time 60 seconds, zero pressure) to form a sheet. manufactured. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所(0°方向と90°方向それぞれにおける#1~#6)を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized at a press pressure of 10 MPa for 30 seconds. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where 12 test pieces were cut out (#1 to #6 in the 0° direction and 90° direction, respectively). Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

(実施例2)
参考例2で作製した強化繊維束を角度10°でカットした束からなるマット(目付:558g/m)と樹脂1(目付:524g/m)を、[樹脂1/マット/樹脂1/マット/樹脂1]になるように積層し、加熱ゾーン(300℃、加熱時間100秒、クリアランス3mm)と冷却ゾーン(150℃、冷却時間60秒、加圧ゼロ)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Example 2)
A mat (basis weight: 558 g/m 2 ) consisting of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 2 at an angle of 10° and resin 1 (basis weight: 524 g/m 2 ) were combined into [resin 1/mat/resin 1/ Mat/Resin 1], and a double belt press including a heating zone (300°C, heating time 100 seconds, clearance 3 mm) and a cooling zone (150°C, cooling time 60 seconds, zero pressure) to form a sheet. manufactured. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized at a press pressure of 10 MPa for 30 seconds. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where the 12 test pieces were cut. Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

(実施例3)
参考例3で作製した強化繊維束を角度13°でカットした束からなるマット(目付:612g/m)と樹脂2(目付:502g/m)を、[樹脂2/マット/樹脂2/マット/樹脂2]になるように積層し、加熱ゾーン(300℃、加熱時間100秒、クリアランス3mm)と冷却ゾーン(150℃、冷却時間60秒、加圧ゼロ)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Example 3)
A mat (basis weight: 612 g/m 2 ) made of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 3 at an angle of 13° and a resin 2 (basis weight: 502 g/m 2 ) were combined into [resin 2/mat/resin 2/ Matt/Resin 2], and a double belt press including a heating zone (300 ° C., heating time 100 seconds, clearance 3 mm) and a cooling zone (150 ° C., cooling time 60 seconds, no pressure) to form a sheet. manufactured. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized at a press pressure of 10 MPa for 30 seconds. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where the 12 test pieces were cut. Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

(実施例4)
参考例4で作製した強化繊維束を角度12°でカットした束からなるマット(目付:558g/m)と樹脂2(目付:524g/m)を、[樹脂2/マット/樹脂2/マット/樹脂2]になるように積層し、加熱ゾーン(350℃、加熱時間100秒、クリアランス3mm)と冷却ゾーン(150℃、冷却時間60秒、加圧ゼロ)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Example 4)
A mat (basis weight: 558 g/m 2 ) made of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 4 at an angle of 12° and a resin 2 (basis weight: 524 g/m 2 ) were combined into [resin 2/mat/resin 2/ Matt/Resin 2], and a double belt press including a heating zone (350 ° C., heating time 100 seconds, clearance 3 mm) and a cooling zone (150 ° C., cooling time 60 seconds, zero pressure). manufactured. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized at a press pressure of 10 MPa for 30 seconds. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where the 12 test pieces were cut. Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

(実施例5)
参考例5で作製した強化繊維束を角度24°でカットした束からなるマット(目付:576g/m)と樹脂3(目付:408g/m)を、[樹脂3/マット/樹脂3/マット/樹脂3]になるように積層し、加熱ゾーン(300℃、加熱時間100秒、クリアランス3mm)と冷却ゾーン(150℃、冷却時間60秒、加圧ゼロ)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Example 5)
A mat (basis weight: 576 g/m 2 ) made of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 5 at an angle of 24° and resin 3 (basis weight: 408 g/m 2 ) were combined into [resin 3/mat/resin 3/ Mat/Resin 3], and a double belt press including a heating zone (300°C, heating time 100 seconds, clearance 3 mm) and a cooling zone (150°C, cooling time 60 seconds, no pressure) to form a sheet. manufactured. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized at a press pressure of 10 MPa for 30 seconds. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where the 12 test pieces were cut. Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

(実施例6)
参考例6で作製した強化繊維束を角度23°でカットした束からなるマット(目付:522g/m)と樹脂3(目付:426g/m)を、[樹脂3/マット/樹脂3/マット/樹脂3]になるように積層し、加熱ゾーン(300℃、加熱時間100秒、クリアランス3mm)と冷却ゾーン(150℃、冷却時間60秒、加圧ゼロ)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Example 6)
A mat (basis weight: 522 g/m 2 ) consisting of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 6 at an angle of 23° and resin 3 (basis weight: 426 g/m 2 ) were combined into [resin 3/mat/resin 3/ Mat/Resin 3], and a double belt press including a heating zone (300°C, heating time 100 seconds, clearance 3 mm) and a cooling zone (150°C, cooling time 60 seconds, no pressure) to form a sheet. manufactured. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized at a press pressure of 10 MPa for 30 seconds. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where the 12 test pieces were cut. Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

(比較例1)
参考例7で作製した強化繊維束を角度13°でカットした束からなるマット(目付:558g/m)と樹脂2(目付:524g/m)を、[樹脂2/マット/樹脂2/マット/樹脂2]になるように積層し、加熱ゾーン(350℃、加熱時間100秒、クリアランス2mm)と冷却ゾーン(150℃、冷却時間60秒、クリアランス2mm)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Comparative example 1)
A mat (basis weight: 558 g/m 2 ) consisting of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 7 at an angle of 13° and resin 2 (basis weight: 524 g/m 2 ) were combined into [resin 2/mat/resin 2/ Matt/Resin 2], and a double belt press including a heating zone (350°C, heating time 100 seconds, clearance 2 mm) and a cooling zone (150°C, cooling time 60 seconds, clearance 2 mm) to produce a sheet. did. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized for 30 seconds at a press pressure of 10 MPa. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where the 12 test pieces were cut. Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

(比較例2)
参考例8で作製した強化繊維束を角度13°でカットした束からなるマット(目付:594g/m)と樹脂3(目付:402g/m)を、[樹脂3/マット/樹脂3/マット/樹脂3]になるように積層し、加熱ゾーン(210℃、加熱時間100秒、クリアランス3mm)と冷却ゾーン(150℃、冷却時間60秒、加圧ゼロ)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Comparative example 2)
A mat (basis weight: 594 g/m 2 ) made of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 8 at an angle of 13° and resin 3 (basis weight: 402 g/m 2 ) were combined into [resin 3/mat/resin 3/ Matt/Resin 3], and a double belt press including a heating zone (210 ° C., heating time 100 seconds, clearance 3 mm) and a cooling zone (150 ° C., cooling time 60 seconds, no pressure) to form a sheet. manufactured. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized for 30 seconds at a press pressure of 10 MPa. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where the 12 test pieces were cut. Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

(比較例3)
参考例9で作製した強化繊維束を角度45°でカットした束からなるマット(目付:576g/m)と樹脂1(目付:517g/m)を、[樹脂1/マット/樹脂1/マット/樹脂1]になるように積層し、加熱ゾーン(下ベルト:240℃、上ベルト:260℃、加熱時間100秒、クリアランス3mm)と冷却ゾーン(150℃、冷却時間60秒、加圧ゼロ)を含むダブルベルトプレスでシートを製造した。得られた成形材料の製造時の巻き取り性の結果を表2に示す。
(Comparative Example 3)
A mat (basis weight: 576 g/m 2 ) made of a bundle obtained by cutting the reinforcing fiber bundle prepared in Reference Example 9 at an angle of 45° and a resin 1 (basis weight: 517 g/m 2 ) were combined into [resin 1/mat/resin 1/ Matt/Resin 1], heating zone (lower belt: 240 ° C., upper belt: 260 ° C., heating time 100 seconds, clearance 3 mm) and cooling zone (150 ° C., cooling time 60 seconds, pressure zero ) was produced on a double belt press. Table 2 shows the results of the winding properties of the obtained molding material during production.

その後、得られた成形材料を400×300mmにカットし、280℃、クリアランス2mm、R3mmのコの字形状(立ち壁高さ:100mm)の金型に設置し、プレス圧10MPaで30秒間加圧した。100℃まで冷却後、成形品を取り出した。図9に成形品形状および12本の試験片の切り出し箇所を示す。成形時の金型追随性、成形品の力学特性の結果を表2に示す。 After that, the obtained molding material was cut into 400 × 300 mm, placed in a U-shaped mold (standing wall height: 100 mm) at 280 ° C., clearance 2 mm, R3 mm, and pressurized for 30 seconds at a press pressure of 10 MPa. did. After cooling to 100° C., the molded article was taken out. FIG. 9 shows the shape of the molded product and the locations where the 12 test pieces were cut. Table 2 shows the mold followability during molding and the mechanical properties of the molded product.

Figure 2020085079000001
Figure 2020085079000001

Figure 2020085079000002
Figure 2020085079000002

本発明の繊維強化樹脂成形材料は自動車内外装、電気・電子機器筐体、自転車、航空機内装材、輸送用箱体など等に好適に用いることができる。 The fiber-reinforced resin molding material of the present invention can be suitably used for automobile interiors and exteriors, electrical and electronic device housings, bicycles, aircraft interior materials, transportation boxes, and the like.

100 繊維束
110 分繊処理区間
130 未分繊処理区間
140 毛羽溜まり
150 分繊処理部
160 絡合部
180 分繊繊維束
200 分繊手段
210 突出部
211 接触部
300 分繊処理工程
301 繊維束拡幅工程
400 サイジング剤付与工程
401 サイジング剤塗布工程
402 乾燥工程
403 熱処理工程
100 Fiber bundle 110 Fiber separation treatment section 130 Non-fiber separation treatment section 140 Fluff accumulation 150 Fiber separation treatment section 160 Entanglement section 180 Fiber separation fiber bundle 200 Fiber separation means 210 Protruding section 211 Contact section 300 Fiber separation treatment process 301 Fiber bundle widening Step 400 Sizing agent application step 401 Sizing agent application step 402 Drying step 403 Heat treatment step

Claims (11)

不連続強化繊維束とマトリックス樹脂とからなり、前記マトリックス樹脂が前記不連続強化繊維束間に存在するシート状物からなる繊維強化樹脂成形材料であって、前記シート状物の表面において以下のように計測される凹凸数A(表)(個/mm)が0.1個/mm以上1個/mm以下であり、前記シート状物の厚みが0.1mm以上4mm以下であることを特徴とする、繊維強化樹脂成形材料。
凹凸数A(表)(個/mm):300mmのライン上を1mm/秒の速度でレーザー変位計(スポット径:約70μm、繰り返し精度3μm)を移動させ、サンプリング周期0.1秒でレーザー照射面からシート面までの距離Q(k=1、2、3・・・(測定順))を測定したとき、Qk+2-Qk+1が0.3mm未満、かつ、Qk+1-Qが0.3mm以上を満たすQの点の総数p(個)を300mmで割って得られる値
A fiber-reinforced resin molding material comprising a discontinuous reinforcing fiber bundle and a matrix resin, wherein the matrix resin is present between the discontinuous reinforcing fiber bundles. The number of irregularities A (table) (pieces / mm) measured in 1 is 0.1 pieces / mm or more and 1 piece / mm or less, and the thickness of the sheet is 0.1 mm or more and 4 mm or less. A fiber-reinforced resin molding material.
Number of unevenness A (table) (pieces/mm): Move a laser displacement meter (spot diameter: about 70 μm, repeatability 3 μm) on a 300 mm line at a speed of 1 mm/s, and irradiate a laser at a sampling period of 0.1 second. When measuring the distance Q k (k = 1, 2, 3 ... (measurement order)) from the surface to the seat surface, Q k + 2 - Q k + 1 is less than 0.3 mm, and Q k + 1 - Q k is 0 A value obtained by dividing the total number p of Qk points satisfying 3 mm or more by 300 mm
前記凹凸数A(表)と前記シート状物の裏面において以下のように計測される凹凸数A(裏)との比である凹凸数A(表)/凹凸数A(裏)または凹凸数A(裏)/凹凸数A(表)のうち、1未満となる方の比の範囲が0.01以上0.5未満であることを特徴とする、請求項1に記載の繊維強化樹脂成形材料。
凹凸数A(裏)(個/mm):300mmのライン上を1mm/秒の速度でレーザー変位計(スポット径:約70μm、繰り返し精度3μm)を移動させ、サンプリング周期0.1秒でレーザー照射面からシート面までの距離Q(k=1、2、3・・・(測定順))を測定したとき、Qk+2-Qk+1が0.3mm未満、かつ、Qk+1-Qが0.3mm以上を満たすQの点の総数p(個)を300mmで割って得られる値
Number of unevenness A (front) / number of unevenness A (back) or number of unevenness A, which is the ratio of the number of unevenness A (front) and the number of unevenness A (back) measured as follows on the back surface of the sheet-like material 2. The fiber-reinforced resin molding material according to claim 1, wherein the range of the ratio of the ratio of less than 1 of (back side)/number of unevenness A (front side) is 0.01 or more and less than 0.5. .
Concavo-convex number A (back) (pieces/mm): Move a laser displacement meter (spot diameter: about 70 μm, repeatability 3 μm) on a 300 mm line at a speed of 1 mm/s, and irradiate a laser at a sampling period of 0.1 second. When measuring the distance Q k (k = 1, 2, 3 ... (measurement order)) from the surface to the seat surface, Q k + 2 - Q k + 1 is less than 0.3 mm, and Q k + 1 - Q k is 0 A value obtained by dividing the total number p of Qk points satisfying 3 mm or more by 300 mm
JIS K-7112(1999年)のA法(水中置換法)にて測定される、前記繊維強化樹脂成形材料の比重ρ1(g/cm)と前記維強化樹脂成形材料からなる成形品の比重ρ2(g/cm)との比ρ1/ρ2が0.5以上0.9未満であることを特徴とする、請求項1または2に記載の繊維強化樹脂成形材料。 Specific gravity ρ1 (g/cm 3 ) of the fiber - reinforced resin molding material measured by JIS K-7112 (1999) A method (submerged method) and molding made of the fiber-reinforced resin molding material 3. The fiber-reinforced resin molding material according to claim 1, wherein the ratio ρ1/ρ2 to the specific gravity ρ2 (g/cm 3 ) of the product is 0.5 or more and less than 0.9. 以下のように計測されるドレープ値が3cm以上23cm以下であることを特徴とする、請求項1~3のいずれかに記載の繊維強化樹脂成形材料。
ドレープ値:23±5℃の雰囲気下、長さ30cm、幅10cmの前記繊維強化樹脂成形材料を直方体の台の端に固定し、台の端から25cm突き出した前記繊維強化樹脂成形材料の先端と台の側面との最短距離
The fiber-reinforced resin molding material according to any one of claims 1 to 3, characterized in that the drape value measured as follows is 3 cm or more and 23 cm or less.
Drape value: In an atmosphere of 23±5° C., the fiber-reinforced resin molding material having a length of 30 cm and a width of 10 cm was fixed to the end of a rectangular parallelepiped stand, and the tip of the fiber-reinforced resin molding material projecting 25 cm from the end of the stand. Shortest distance to the side of the platform
以下のように算出される平均繊維束厚みt(μm)と束内ボイド率V2(%)との積t*V2(μm・%)が500μm・%以上20000μm・%以下であることを特徴とする、請求項1~4のいずれかに記載の繊維強化樹脂成形材料。
平均繊維束厚みt(μm):500℃に加熱した窒素雰囲気中(酸素濃度1%以下)の電気炉の中で前記繊維強化樹脂成形材料を2時間加熱して得られる繊維マットから前記不連続強化繊維束を50束ピックアップし、束幅垂直方向(いわゆる縦断面)である繊維束の厚みをノギスで測定した平均値
束内ボイド率V2(%):シートの任意の厚み方向断面を研磨し撮影した写真から50束を選択し、1束の断面積を100%とした場合における、二値化画像処理により求められたボイド断面積割合の、50束の平均値
The product t*V2 (μm %) of the average fiber bundle thickness t (μm) and the void fraction V2 (%) in the bundle calculated as follows is 500 μm % or more and 20000 μm % or less. The fiber-reinforced resin molding material according to any one of claims 1 to 4.
Average fiber bundle thickness t (μm): The fiber mat obtained by heating the fiber-reinforced resin molding material for 2 hours in an electric furnace in a nitrogen atmosphere (oxygen concentration of 1% or less) heated to 500° C. is discontinuous. 50 bundles of reinforcing fiber bundles were picked up, and the thickness of the fiber bundles in the direction perpendicular to the bundle width (so-called longitudinal section) was measured with a vernier caliper. Average value of 50 bundles of void cross-sectional area ratio obtained by binarization image processing when 50 bundles are selected from the photographed photograph and the cross-sectional area of 1 bundle is set to 100%
以下のように算出される束内ボイド率V2(%)が10%以上50%以下であることを特徴とする、請求項1~5のいずれかに記載の繊維強化樹脂成形材料。
束内ボイド率V2(%):シートの任意の厚み方向断面を研磨し撮影した写真から50束を選択し、1束の断面積を100%とした場合における、二値化画像処理により求められたボイド断面積割合の、50束の平均値
The fiber-reinforced resin molding material according to any one of claims 1 to 5, wherein the intra-bundle void ratio V2 (%) calculated as follows is 10% or more and 50% or less.
Void ratio in bundle V2 (%): 50 bundles are selected from photographs taken by polishing an arbitrary cross section in the thickness direction of the sheet, and the cross-sectional area of one bundle is assumed to be 100%. Obtained by binarization image processing. Average value of 50 bundles of void cross-sectional area ratio
以下のように算出される平均繊維束厚みt(μm)が40μm以上200μm以下であることを特徴とする、請求項1~6のいずれかに記載の繊維強化樹脂成形材料。
平均繊維束厚みt(μm):500℃に加熱した窒素雰囲気中(酸素濃度1%以下)の電気炉の中で前記繊維強化樹脂成形材料を2時間加熱して得られる繊維マットから前記不連続強化繊維束を50束ピックアップし、束幅垂直方向(いわゆる縦断面)である繊維束の厚みをノギスで測定した平均値
The fiber-reinforced resin molding material according to any one of claims 1 to 6, characterized in that the average fiber bundle thickness t (μm) calculated as follows is 40 μm or more and 200 μm or less.
Average fiber bundle thickness t (μm): The fiber mat obtained by heating the fiber-reinforced resin molding material for 2 hours in an electric furnace in a nitrogen atmosphere (oxygen concentration of 1% or less) heated to 500° C. is discontinuous. The average value of 50 reinforcing fiber bundles picked up and the thickness of the fiber bundle in the direction perpendicular to the bundle width (so-called longitudinal section) measured with a vernier caliper.
以下のように求められる全体ボイド率(%)の平均値V1(%)が5%以上50%以下であることを特徴とする、請求項1~7のいずれかに記載の繊維強化樹脂成形材料。
全体ボイド率V1(%):JIS K-7075(1991年)にて導出され、1枚のシートから切り出した10サンプルの平均値
The fiber-reinforced resin molding material according to any one of claims 1 to 7, wherein the average value V1 (%) of the total void fraction (%) obtained as follows is 5% or more and 50% or less. .
Overall void ratio V1 (%): Average value of 10 samples cut out from one sheet derived according to JIS K-7075 (1991)
前記不連続強化繊維束の切断角度が3°以上30°以下であることを特徴とする、請求項1~8のいずれかに記載の繊維強化樹脂成形材料。 The fiber-reinforced resin molding material according to any one of claims 1 to 8, wherein the cutting angle of the discontinuous reinforcing fiber bundle is 3° or more and 30° or less. 前記不連続強化繊維束の単位幅あたりの繊維数が500本/mm以上1600本/mm以下であることを特徴とする、請求項1~9のいずれかに記載の繊維強化樹脂成形材料。 The fiber-reinforced resin molding material according to any one of claims 1 to 9, wherein the number of fibers per unit width of said discontinuous reinforcing fiber bundle is 500/mm or more and 1600/mm or less. 請求項1~10のいずれかに記載の繊維強化樹脂成形材料を用いて成形品を製造するにあたり、前記維強化樹脂成形材料を予熱せずに前記マトリックス樹脂の融点より30℃以上高い金型内に配置し、プレス圧0.5MPa以上で加圧した後、前記金型の温度を前記マトリックス樹脂の融点より40℃以上低い温度に冷却して取り出して、以下のように測定される前記繊維強化樹脂成形材料の比重ρ1(g/cm)と成形品の比重ρ2(g/cm)との比ρ1/ρ2が0.5以上0.9未満となるようにすることを特徴とする、成形品の製造方法。
比重ρ1(g/cm)、ρ2(g/cm):JIS K-7112(1999年)のA法(水中置換法)にて測定される値
In producing a molded product using the fiber-reinforced resin molding material according to any one of claims 1 to 10, a mold having a melting point higher than the melting point of the matrix resin by 30°C or more without preheating the fiber -reinforced resin molding material. After placing it in the mold and pressing it with a press pressure of 0.5 MPa or more, the temperature of the mold is cooled to a temperature that is 40 ° C. or more lower than the melting point of the matrix resin, and the fiber is taken out and measured as follows. The ratio ρ1/ρ2 between the specific gravity ρ1 (g/cm 3 ) of the reinforced resin molding material and the specific gravity ρ2 (g/cm 3 ) of the molded product is set to 0.5 or more and less than 0.9. , a method of manufacturing moldings.
Specific gravity ρ1 (g/cm 3 ), ρ2 (g/cm 3 ): Values measured by A method (water replacement method) of JIS K-7112 (1999)
JP2019556305A 2018-10-24 2019-10-08 Fiber-reinforced resin molding material and method for producing molded products Active JP7363482B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018199788 2018-10-24
JP2018199788 2018-10-24
PCT/JP2019/039607 WO2020085079A1 (en) 2018-10-24 2019-10-08 Fiber-reinforced resin molding material and method for manufacturing molded article

Publications (3)

Publication Number Publication Date
JPWO2020085079A1 JPWO2020085079A1 (en) 2021-09-16
JPWO2020085079A5 true JPWO2020085079A5 (en) 2022-08-09
JP7363482B2 JP7363482B2 (en) 2023-10-18

Family

ID=70331037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556305A Active JP7363482B2 (en) 2018-10-24 2019-10-08 Fiber-reinforced resin molding material and method for producing molded products

Country Status (3)

Country Link
JP (1) JP7363482B2 (en)
TW (1) TW202031744A (en)
WO (1) WO2020085079A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1132325A (en) * 1977-07-18 1982-09-28 Michael P. Dellavecchia Fiber reinforced multi-ply stampable thermoplastic sheet
JP5421476B1 (en) 2013-02-25 2014-02-19 株式会社gloops Game server, game control method, game program, game program recording medium, and game system
CN105916918B (en) * 2014-01-17 2018-12-07 东丽株式会社 It can punching press sheet material
JP2015140353A (en) * 2014-01-27 2015-08-03 東レ株式会社 Fiber-reinforced thermoplastic resin composition, method for producing the same, and method for producing fiber-reinforced thermoplastic resin molding
WO2017110532A1 (en) * 2015-12-25 2017-06-29 東レ株式会社 Structure
JP6846015B2 (en) 2016-03-15 2021-03-24 東レ株式会社 Fiber reinforced resin molding material and its manufacturing method
JP6521895B2 (en) * 2016-04-15 2019-05-29 株式会社日本製鋼所 Fiber-reinforced resin intermediate material and method for producing the same
KR20190107676A (en) * 2017-02-02 2019-09-20 도레이 카부시키가이샤 Fiber Reinforced Resin Molding Material

Similar Documents

Publication Publication Date Title
JP6478180B2 (en) Partially split fiber bundle and method for producing the same, chopped fiber bundle using the same, and fiber reinforced resin molding material
JP7259739B2 (en) REINFORCED FIBER MAT AND FIBER REINFORCED RESIN MOLDING MATERIAL AND METHOD FOR MANUFACTURING SAME
KR102595469B1 (en) Reinforced fiber bundle base material and manufacturing method thereof, and fiber-reinforced thermoplastic resin material using the same and manufacturing method thereof
WO2017221658A1 (en) Production method for partially separated fiber bundle, partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle
JP7329193B2 (en) Fiber-reinforced resin material and manufacturing method thereof
JP7363482B2 (en) Fiber-reinforced resin molding material and method for producing molded products
JPWO2020085079A5 (en)
JP7236057B2 (en) Reinforcing fiber bundle
US11845629B2 (en) Partially separated fiber bundle and method of manufacturing same
WO2019146486A1 (en) Reinforcing fiber bundle and method for manufacturing same, and chopped fiber bundle and fiber-reinforced resin molding material using same