JPWO2020059710A1 - Crystal of bisfluorene compound - Google Patents

Crystal of bisfluorene compound Download PDF

Info

Publication number
JPWO2020059710A1
JPWO2020059710A1 JP2020548514A JP2020548514A JPWO2020059710A1 JP WO2020059710 A1 JPWO2020059710 A1 JP WO2020059710A1 JP 2020548514 A JP2020548514 A JP 2020548514A JP 2020548514 A JP2020548514 A JP 2020548514A JP WO2020059710 A1 JPWO2020059710 A1 JP WO2020059710A1
Authority
JP
Japan
Prior art keywords
crystal
crystals
reaction
fluorene
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020548514A
Other languages
Japanese (ja)
Other versions
JP7379770B2 (en
Inventor
中嶋 淳
淳 中嶋
祐樹 橋本
祐樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Publication of JPWO2020059710A1 publication Critical patent/JPWO2020059710A1/en
Application granted granted Critical
Publication of JP7379770B2 publication Critical patent/JP7379770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Abstract

示差走査熱量分析による特定の吸熱ピークを有する9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体および、その結晶体の製造方法を提供することを課題とする。解決手段として、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有することを特徴とする、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体を提供する。 An object of the present invention is to provide a crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having a specific endothermic peak by differential scanning calorimetry, and a method for producing the crystal. do. As a solution, it is characterized by having at least one endothermic peak by differential scanning calorimetry in a temperature range of 158 ° C. or higher and lower than 161 ° C., 9,9-bis [4- (2-hydroxyethoxy) -3-phenyl. Phenyl] provides a crystal of fluorene.

Description

本発明は、示差走査熱量分析による特定の吸熱ピークを有する9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体および、その結晶体の製造方法に関する。 The present invention relates to a crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having a specific endothermic peak by differential scanning calorimetry, and a method for producing the crystal.

従来、9,9−ビス(4−ヒドロキシフェニル)フルオレン等のフルオレン骨格を有する化合物群は、耐熱性や光学特性等において優れていることから、ポリカーボネート樹脂等の熱可塑性合成樹脂原料、エポキシ樹脂等の熱硬化性樹脂原料、酸化防止剤原料、感熱記録体原料、感光性レジスト原料などの用途で用いられている。中でも、以下化学式(1)で表される化学構造を有する9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンから製造される樹脂は、光学特性に優れるとして着目されている(例えば、特許文献1、2等)。

Figure 2020059710
上記化学式(1)で表される9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの製造方法としては、下記反応式に示すように、化学式(2)で示される9−フルオレノンと化学式(3)で示されるアルコール類とを反応させて、目的物を得る方法が知られている(特許文献3)。
Figure 2020059710
また、上記化学式(1)で表される9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンを含む反応液中に、芳香族炭化水素類とメタノールとを添加して析出した結晶を分離後、結晶を60℃以上にしてメタノールを除去する方法が知られている(特許文献4)。晶析により得られた結晶は、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンとメタノールとの包接体であり、包接されたメタノールを除去するためには、加温によるエネルギーと時間が不可欠である。
上記化学式(1)で表される9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンとトルエンとの包接体と、特定の溶媒とを、溶解することなく混合させることにより、トルエンを除去する方法が知られている(特許文献5)が、得られる結晶はほとんど高融点であるため、融解や溶解させるためにエネルギーや時間が多く必要である。また、使用する溶媒によっては低融点の結晶が得られるが、当該結晶は、包接体を形成しているため、包接体から溶媒を除去するためのエネルギーが必要であるほか、嵩密度も低い。
高嵩密度の上記化学式(1)で表される9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶の製造方法が知られている(特許文献6)が、得られた結晶は包接体であり、加熱により当該包接体から結晶を保持したまま溶媒が除去できないか、あるいは除去できる場合でも包接体から溶媒を除去するためのエネルギーが必要であるという問題があった。
包接体ではない上記化学式(1)で表される9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンを得る製造方法も知られている(特許文献7)が、最も高融点の結晶は、融解して使用する場合は多くのエネルギーが必要である。また、低融点の結晶を得るには、極めて速い速度で冷却する必要があり、商業スケールでの実施は困難であるか、特殊な装置が必要なため、工業的規模での適用は容易ではない。そのほか、低融点の結晶は色相が悪く、光学用途への使用に問題があるほか、晶析に使用する溶媒の残存量が多いという問題もあった。
9,9−ビス(4−ヒドロキシフェニル)フルオレン等のフルオレン骨格を有する化合物群は、反応溶媒や精製に使用する溶媒との間で包接体を形成することが知られている一方で、包接された溶媒を除去するためには高温と多大な時間を要するために、工業的規模で適用することは困難であるほか、溶媒が包接されたフルオレン骨格を有する化合物は、エポキシ樹脂、ポリエステル等の製造原料やその他の用途において工業的に使用するには問題があることも知られている。Conventionally, a group of compounds having a fluorene skeleton such as 9,9-bis (4-hydroxyphenyl) fluorene is excellent in heat resistance, optical properties, etc., and therefore, a thermoplastic synthetic resin raw material such as a polycarbonate resin, an epoxy resin, etc. It is used in applications such as thermosetting resin raw materials, antioxidant raw materials, heat-sensitive recorder raw materials, and photosensitive resist raw materials. Among them, a resin produced from 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having a chemical structure represented by the following chemical formula (1) has attracted attention as having excellent optical properties. (For example, Patent Documents 1, 2, etc.).
Figure 2020059710
The method for producing 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorenone represented by the above chemical formula (1) is represented by the chemical formula (2) as shown in the following reaction formula. A method is known in which 9-fluorenone is reacted with an alcohol represented by the chemical formula (3) to obtain a desired product (Patent Document 3).
Figure 2020059710
Further, aromatic hydrocarbons and methanol are added to the reaction solution containing 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1). A method is known in which the precipitated crystals are separated and then the temperature of the crystals is increased to 60 ° C. or higher to remove methanol (Patent Document 4). The crystals obtained by crystallization are inclusions of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene and methanol for removing the included methanol. Energy and time from heating are essential.
A clathrate of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1) and toluene and a specific solvent are mixed without being dissolved. A method of removing toluene by allowing it to be removed is known (Patent Document 5), but since the obtained crystal has a high melting point, a large amount of energy and time are required to melt or dissolve it. Further, depending on the solvent used, a crystal having a low melting point can be obtained, but since the crystal forms an inclusion body, energy for removing the solvent from the inclusion body is required, and the bulk density is also high. Low.
A method for producing crystals of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1) having a high bulk density is known (Patent Document 6). The obtained crystal is an inclusion body, and the solvent cannot be removed from the inclusion body while retaining the crystal by heating, or even if it can be removed, energy for removing the solvent from the inclusion body is required. There was a problem.
A production method for obtaining 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene represented by the above chemical formula (1), which is not an inclusion body, is also known (Patent Document 7). , The crystal with the highest melting point requires a lot of energy when it is melted and used. Also, in order to obtain crystals with a low melting point, it is necessary to cool them at an extremely high speed, which is difficult to implement on a commercial scale or requires special equipment, so it is not easy to apply on an industrial scale. .. In addition, low melting point crystals have a poor hue, which causes problems in use in optical applications, and also has a problem in that the amount of residual solvent used for crystallization is large.
While compounds having a fluorene skeleton, such as 9,9-bis (4-hydroxyphenyl) fluorene, are known to form clathrates with reaction solvents and solvents used for purification, they are encapsulated. It is difficult to apply on an industrial scale because it takes a large amount of time and high temperature to remove the solvent in contact with the solvent, and compounds having a fluorene skeleton in which the solvent is included are epoxy resins and polyesters. It is also known that there is a problem in industrial use in manufacturing raw materials such as fluorene and other uses.

特開2011−074222号公報Japanese Unexamined Patent Publication No. 2011-074222 特開2011−168722号公報Japanese Unexamined Patent Publication No. 2011-168722 特開2001−206863号公報Japanese Unexamined Patent Publication No. 2001-206863 特開2017−200900号公報Japanese Unexamined Patent Publication No. 2017-200900 特開2018−076245号公報Japanese Unexamined Patent Publication No. 2018-07624 中国特許出願公開第106349030号明細書Chinese Patent Application Publication No. 106349030 特開2017−200901号公報JP-A-2017-200901

本発明は、上述した事情を背景としてなされたものであって、示差走査熱量分析による特定の吸熱ピークを有する9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体および、その結晶体の製造方法の提供を課題とする。 The present invention has been made in the context of the above circumstances, and is that of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene having a specific endothermic peak by differential scanning calorimetry. An object of the present invention is to provide a crystal body and a method for producing the crystal body.

本発明者らは、上述の課題解決のために鋭意検討した結果、特定の溶媒を用いて晶析することにより、示差走査熱量分析による特定の吸熱ピークを有する9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体が得られることを見出し、本発明を完成した。 As a result of diligent studies to solve the above-mentioned problems, the present inventors have 9,9-bis [4-(4), which has a specific endothermic peak by differential scanning calorimetry by crystallization using a specific solvent. We have found that a crystal of 2-hydroxyethoxy) -3-phenylphenyl] fluorene can be obtained, and completed the present invention.

本発明は以下の通りである。
1.示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有することを特徴とする、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体。
2.包接体ではないことを特徴とする、1.に記載の結晶体。
3.アセトニトリルを用いて晶析する工程を含むことを特徴とする、1.または2.に記載の結晶体の製造方法。
4.さらに、晶析により得られた結晶を45℃以上であって融点より低い温度条件下において乾燥する工程を含むことを特徴とする、3.に記載の製造方法。
The present invention is as follows.
1. 1. Of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene, characterized by having at least one endothermic peak in the temperature range of 158 ° C. or higher and lower than 161 ° C. by differential scanning calorimetry. Crystal.
2. 1. It is not an inclusion body. The crystal according to.
3. 3. 1. It comprises a step of crystallization using acetonitrile. Or 2. The method for producing a crystal according to.
4. Further, the present invention comprises a step of drying the crystals obtained by crystallization under temperature conditions of 45 ° C. or higher and lower than the melting point. The manufacturing method described in.

本発明によれば、示差走査熱量分析による特定の吸熱ピークを有し、包接体ではない9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体および、その結晶体の製造方法が提供可能である。
9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンが有機溶媒等の化合物を包接している場合は、当該包接体と、例えば(メタ)アクリル酸等とを反応させる際に、包接している有機溶媒等の化合物が反応を阻害し、反応が進行しないという問題が発生する。また、当該包接体を溶融し樹脂原料として使用する際も、溶融中に発生する包接した有機溶媒等の化合物に由来する蒸気を反応装置から除去する必要があるほか、残存する有機溶媒等の化合物により目的とする樹脂の品質が低下する等の問題もあった。さらに、包接する有機溶媒等の化合物の引火点や発火点によっては、当該包接体の輸送や保管時における防災上の懸念もあった。
前述のとおり、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有し、包接体ではない9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体は、未だ知られていない。しかも、従来の包接結晶から有機溶媒を除去するより、はるかに低い熱量により包接した有機溶媒を除去できるため、製造における消費エネルギーを抑えることができる。
すなわち、示差走査熱量分析による特定の吸熱ピークを有し、包接体ではない9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの新規な結晶体とその製造方法の提供は、樹脂原料等の工業的な使用において非常に有用である。
According to the present invention, a crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene which has a specific endothermic peak by differential scanning calorimetry and is not an inclusion body, and A method for producing the crystal can be provided.
When 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene encapsulates a compound such as an organic solvent, the inclusion body and, for example, (meth) acrylic acid and the like are mixed. During the reaction, a compound such as an inclusion organic solvent inhibits the reaction, causing a problem that the reaction does not proceed. Further, when the inclusion body is melted and used as a resin raw material, it is necessary to remove the vapor derived from the compound such as the inclusiond organic solvent generated during melting from the reactor, and the remaining organic solvent or the like is used. There is also a problem that the quality of the target resin is deteriorated by the compound of. Further, depending on the flash point or ignition point of the compound such as the organic solvent to be included, there is a concern about disaster prevention during transportation or storage of the inclusion body.
As described above, it has at least one endothermic peak in the temperature range of 158 ° C. or higher and lower than 161 ° C. by differential scanning calorimetry, and is not an inclusion body, 9,9-bis [4- (2-hydroxyethoxy) -3-. Phenylphenyl] Fluorene crystals are not yet known. Moreover, since the included organic solvent can be removed with a much lower amount of heat than the conventional organic solvent is removed from the included crystals, energy consumption in production can be suppressed.
That is, a novel crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene which has a specific endothermic peak by differential scanning calorimetry and is not an inclusion body, and a method for producing the same. Is very useful in the industrial use of resin raw materials and the like.

実施例1の乾燥工程における付着溶媒を除去して得られたアセトニトリル包接体の示差熱・熱重量分析(DTG)曲線を示す図である。It is a figure which shows the differential thermal analysis (DTG) curve of the acetonitrile inclusion body obtained by removing the adhering solvent in the drying process of Example 1. FIG. 実施例1の乾燥工程により得られた包接体ではない結晶(本発明の結晶体)の示差走査熱量測定(DSC)曲線を示す図である。It is a figure which shows the differential scanning calorimetry (DSC) curve of the crystal (crystal of this invention) which is not an inclusion body obtained by the drying process of Example 1. FIG. 実施例2で得られた結晶体(本発明の結晶体)の示差走査熱量測定(DSC)曲線を示す図である。It is a figure which shows the differential scanning calorimetry (DSC) curve of the crystal body (the crystal body of this invention) obtained in Example 2. FIG. 実施例2における付着溶媒を除去して得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。It is a figure which shows the differential thermal analysis (DTG) curve of the crystal obtained by removing the adhesive solvent in Example 2. FIG. 比較例1により得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。It is a figure which shows the differential thermal analysis (DTG) curve of the crystal obtained by the comparative example 1. FIG. 比較例2により得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。It is a figure which shows the differential scanning calorimetry (DSC) curve of the crystal obtained by the comparative example 2. FIG. 比較例3により得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。It is a figure which shows the differential scanning calorimetry (DSC) curve of the crystal obtained by the comparative example 3. FIG. 比較例4により得られた結晶の示差走査熱量測定(DSC)曲線を示す図である。It is a figure which shows the differential scanning calorimetry (DSC) curve of the crystal obtained by the comparative example 4. FIG. 比較例6により得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図である。It is a figure which shows the differential thermal analysis (DTG) curve of the crystal obtained by the comparative example 6. 比較例7の乾燥前の結晶の示差熱・熱重量分析(DTG)曲線を示す図である。It is a figure which shows the differential thermal analysis (DTG) curve of the crystal before drying of Comparative Example 7. 比較例7の乾燥後の結晶の示差走査熱量測定(DSC)曲線を示す図である。It is a figure which shows the differential scanning calorimetry (DSC) curve of the crystal after drying of Comparative Example 7.

以下、本発明を詳細に説明する。
本発明の9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンは下記化学式(1)で表される化合物である。

Figure 2020059710
Hereinafter, the present invention will be described in detail.
The 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene of the present invention is a compound represented by the following chemical formula (1).
Figure 2020059710

<合成方法について>
本発明における、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの合成方法については、特に制限はなく、例えば、前述の特許文献3に記載された公知製造方法を適用できる。
下記反応式に示す、化学式(2)で示される9−フルオレノンと化学式(3)で示されるアルコール類との反応について説明する。

Figure 2020059710
化学式(2)で示される9−フルオレノンに対する化学式(3)で示されるアルコール類の仕込みモル比は、理論値(2.0)以上であれば、特に限定されるものではないが、通常2〜20倍モル量の範囲、好ましくは3〜10倍モル量の範囲で用いられる。
反応に際して、酸触媒を使用することができる。使用する酸触媒は特に制限されず、公知の酸触媒を使用することができる。具体的な酸触媒としては、例えば、塩酸、塩化水素ガス、60〜98%硫酸、85%リン酸等の無機酸、p−トルエンスルホン酸、メタンスルホン酸、シュウ酸、蟻酸、トリクロロ酢酸またはトリフルオロ酢酸等の有機酸、ヘテロポリ酸等の固体酸等を挙げることができる。好ましくは リンタングステン酸等のヘテロポリ酸である。このような酸触媒の好適な使用量は反応条件によって異なるが、例えば、リンタングステン酸等のヘテロポリ酸の場合は、9−フルオレノン100重量部に対して、1〜70重量部の範囲、好ましくは、5〜40重量部の範囲、より好ましくは10〜30重量部の範囲で用いられる。
反応に際して、酸触媒と共に必要に応じてチオール類等の助触媒を使用してもよい。使用により反応速度を加速させることができる。このようなチオール類としては、アルキルメルカプタン類やメルカプトカルボン酸類が挙げられ、好ましくは、炭素数1〜12のアルキルメルカプタン類や炭素数1〜12のメルカプトカルボン酸類である。炭素数1〜12のアルキルメルカプタン類としては、例えば、メチルメルカプタン、エチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン等やそれらのナトリウム塩等のようなアルカリ金属塩が挙げられ、炭素数1〜12のメルカプトカルボン酸類としては、例えば、チオ酢酸、β−メルカプトプロピオン酸等が挙げられる。また、これらは単独または2種類以上の組み合わせで使用できる。助触媒としてのチオール類の使用量は、原料の9−フルオレノンに対し通常1〜30モル%の範囲、好ましくは2〜10モル%の範囲で用いられる。<About synthesis method>
The method for synthesizing 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene in the present invention is not particularly limited, and for example, the known production method described in Patent Document 3 described above. Can be applied.
The reaction between 9-fluorenone represented by the chemical formula (2) and the alcohols represented by the chemical formula (3) shown in the following reaction formula will be described.
Figure 2020059710
The molar ratio of alcohols represented by the chemical formula (3) to 9-fluorenone represented by the chemical formula (2) is not particularly limited as long as it is the theoretical value (2.0) or more, but is usually 2 to 2. It is used in the range of 20 times the molar amount, preferably in the range of 3 to 10 times the molar amount.
An acid catalyst can be used in the reaction. The acid catalyst used is not particularly limited, and a known acid catalyst can be used. Specific acid catalysts include, for example, inorganic acids such as hydrochloric acid, hydrogen chloride gas, 60-98% sulfuric acid and 85% phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, formic acid, trichloroacetic acid or tri. Examples thereof include organic acids such as fluoroacetic acid and solid acids such as heteropolyacids. It is preferably a heteropolyacid such as phosphotungstic acid. The suitable amount of such an acid catalyst to be used varies depending on the reaction conditions. For example, in the case of a heteropolyacid such as phosphotungstic acid, the range is 1 to 70 parts by weight, preferably 1 to 70 parts by weight, based on 100 parts by weight of 9-fluorenone. , 5-40 parts by weight, more preferably 10-30 parts by weight.
In the reaction, a co-catalyst such as thiols may be used together with the acid catalyst, if necessary. The reaction rate can be accelerated by use. Examples of such thiols include alkyl mercaptans and mercaptocarboxylic acids, preferably alkyl mercaptans having 1 to 12 carbon atoms and mercaptocarboxylic acids having 1 to 12 carbon atoms. Examples of alkyl mercaptans having 1 to 12 carbon atoms include alkali metal salts such as methyl mercaptan, ethyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, and sodium salts thereof, and have 1 to 12 carbon atoms. Examples of the 12 mercaptocarboxylic acids include thioacetic acid and β-mercaptopropionic acid. In addition, these can be used alone or in combination of two or more types. The amount of thiols used as a co-catalyst is usually in the range of 1 to 30 mol%, preferably in the range of 2 to 10 mol% with respect to the raw material 9-fluorenone.

反応に際して反応溶媒は使用しなくてもよいが、工業的生産時の操作性や反応速度の向上などの理由で使用してもよい。反応溶媒としては、反応温度において反応器から留出せず、反応に不活性であれば特に制限はないが、例えば、トルエン、キシレン等の芳香族炭化水素、メタノール、エタノール、1−プロパノール、2−プロパノール等の低級脂肪族アルコール、ヘキサン、ヘプタン、シクロヘキサン等の飽和脂肪族炭化水素等の有機溶媒や水またはこれらの混合物が挙げられる。これらのうち、芳香族炭化水素が好ましく用いられる。
反応温度は、使用する酸触媒の種類により異なるが、酸触媒としてリンタングステン酸等のヘテロポリ酸を使用する場合は、通常20〜200℃、好ましくは40〜170℃、さらに好ましくは50〜120℃の範囲である。反応圧力は、使用する有機溶媒の沸点によっては、反応温度が前記範囲内になるように加圧または減圧下で行ってもよく、生成する水を除去しながら反応を行ってもよい。
反応時間は、使用する酸触媒の種類や、反応温度等の反応条件により異なるが、通常1〜30時間程度で終了する。
反応の終点は、液体クロマトグラフィーまたはガスクロマトグラフィー分析にて確認することができる。未反応の9−フルオレノンが消失し、目的物の増加が認められなくなった時点を反応の終点とするのが好ましい。
The reaction solvent may not be used in the reaction, but it may be used for reasons such as operability during industrial production and improvement of the reaction rate. The reaction solvent is not particularly limited as long as it is not distilled from the reactor at the reaction temperature and is inactive in the reaction. For example, aromatic hydrocarbons such as toluene and xylene, methanol, ethanol, 1-propanol and 2- Examples thereof include lower aliphatic alcohols such as propanol, organic solvents such as saturated aliphatic hydrocarbons such as hexane, heptane and cyclohexane, water, and mixtures thereof. Of these, aromatic hydrocarbons are preferably used.
The reaction temperature varies depending on the type of acid catalyst used, but when a heteropolyacid such as phosphotungstic acid is used as the acid catalyst, it is usually 20 to 200 ° C, preferably 40 to 170 ° C, and more preferably 50 to 120 ° C. Is the range of. The reaction pressure may be pressurized or reduced under pressure so that the reaction temperature is within the above range, depending on the boiling point of the organic solvent used, or the reaction may be carried out while removing the water to be produced.
The reaction time varies depending on the type of acid catalyst used and reaction conditions such as reaction temperature, but is usually completed in about 1 to 30 hours.
The end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis. It is preferable that the end point of the reaction is the time when the unreacted 9-fluorenone disappears and the increase of the target substance is no longer observed.

<反応の後処理について>
このような反応の終了後に、公知の後処理方法を適用することができる。例えば、反応終了液に、酸触媒を中和するために、水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ水溶液を加える。中和した反応混合液を静置し、必要に応じて水と分離する溶媒を加えて、水層を分離除去する。必要に応じて得られた油層に蒸留水を加え、撹拌して水洗した後、水層を分離除去する操作を1回乃至複数回繰り返し行い中和塩を除去し、得られた油層をそのまま冷却して結晶が析出すれば、析出した結晶を分離して粗結晶を得ることができる。また、得られた油層から溶媒や余剰の上記化学式(3)で示されるアルコール類を、蒸留により除去して、得られた残渣に芳香族炭化水素等の溶媒を加えて均一の溶液とし、冷却して析出した結晶を分離して粗結晶を得てもよい。この粗結晶や前記残渣は、本発明の晶析する工程を経ることにより、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有し、包接体ではない9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体を得ることができる。
<Post-treatment of reaction>
After completion of such a reaction, a known post-treatment method can be applied. For example, an alkaline aqueous solution such as a sodium hydroxide aqueous solution or an ammonia aqueous solution is added to the reaction completion solution in order to neutralize the acid catalyst. The neutralized reaction mixture is allowed to stand, and if necessary, a solvent that separates from water is added to separate and remove the aqueous layer. If necessary, distilled water is added to the obtained oil layer, stirred and washed with water, and then the operation of separating and removing the water layer is repeated once or multiple times to remove the neutralized salt, and the obtained oil layer is cooled as it is. When the crystals are precipitated, the precipitated crystals can be separated to obtain crude crystals. Further, the solvent and excess alcohols represented by the above chemical formula (3) are removed from the obtained oil layer by distillation, and a solvent such as an aromatic hydrocarbon is added to the obtained residue to prepare a uniform solution, which is cooled. The precipitated crystals may be separated to obtain crude crystals. The crude crystals and the residue have at least one endothermic peak in the temperature range of 158 ° C. or higher and lower than 161 ° C. by differential scanning calorimetry by undergoing the crystallization step of the present invention, and are not inclusion bodies. , 9-Bis [4- (2-Hydroxyethoxy) -3-phenylphenyl] fluorene crystals can be obtained.

<晶析する工程について>
本発明の製造方法は、アセトニトリルを用いて晶析する工程(以下、晶析工程ともいう。)を含むことを特徴とするものである。ここで、使用可能なアセトニトリルとしては、特に限定されることなく、一般的に市販されているアセトニトリルを使用することができる。
晶析工程に使用するアセトニトリルの量は、反応の後処理により得られた残渣または粗結晶に含まれる9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレン100重量部に対して、150〜600重量部が好ましく、200〜500重量部がより好ましく、250〜400重量部がさらに好ましく、中でも、300〜350重量部が最も好ましい。使用するアセトニトリルの量が多いと、得られる結晶量が低下してしまい、少ないと目的物の純度が低下し好ましくない。さらに、使用するアセトニトリルの量が少ないと、晶析工程に使用する反応後処理工程により得られた残渣または粗結晶に含まれる溶媒、例えば、トルエン等の芳香族炭化水素を包接する9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンが増加してしまうため好ましくない。
本発明の晶析工程においては、アセトニトリル以外の溶媒を使用すると、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有し、包接体ではない9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体を得ることができないために、好ましくない。
本発明の晶析工程では、使用する反応後処理後の残渣または粗結晶に、アセトニトリルを添加し、常圧または加圧下でアセトニトリルの沸点以下まで加温して完溶させて均一な溶液とした後、冷却して析出する結晶を得ることができる。加温して均一な溶液とした後、冷却する場合には、1時間あたり1〜10℃、好ましくは1時間あたり3〜7℃で、冷却して結晶を析出させる。結晶を析出させる温度としては、40〜58℃の温度範囲が好ましく、45〜55℃の温度範囲がより好ましく、中でも50℃程度の温度が結晶析出温度としては適している。また、結晶を析出させる際には、種晶を使用しても良い。結晶が析出開始した後は、0〜5時間同温度で保持し、前記冷却速度で、0〜40℃、好ましくは10〜35℃、より好ましくは20〜30℃まで冷却して、0〜3時間同温度で保持した後、析出した結晶を濾過操作等により分離することが好ましい。
<About the crystallization process>
The production method of the present invention is characterized by including a step of crystallization using acetonitrile (hereinafter, also referred to as a crystallization step). Here, the acetonitrile that can be used is not particularly limited, and generally commercially available acetonitrile can be used.
The amount of acetonitrile used in the crystallization step is 100 parts by weight of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene contained in the residue or crude crystal obtained by the post-treatment of the reaction. On the other hand, 150 to 600 parts by weight is preferable, 200 to 500 parts by weight is more preferable, 250 to 400 parts by weight is further preferable, and 300 to 350 parts by weight is most preferable. If the amount of acetonitrile used is large, the amount of crystals obtained will decrease, and if it is small, the purity of the target product will decrease, which is not preferable. Further, when the amount of acetonitrile used is small, the solvent contained in the residue or crude crystal obtained by the reaction post-treatment step used in the crystallization step, for example, an aromatic hydrocarbon such as toluene is encapsulated 9,9-. Bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene increases, which is not preferable.
In the crystallization step of the present invention, when a solvent other than acetonitrile is used, it has at least one endothermic peak by differential scanning calorimetry in the temperature range of 158 ° C. or higher and lower than 161 ° C., and is not an inclusion body 9,9-. It is not preferable because crystals of bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene cannot be obtained.
In the crystallization step of the present invention, acetonitrile is added to the residue or crude crystals after the post-reaction treatment to be used, and the mixture is heated to below the boiling point of acetonitrile under normal pressure or pressure to completely dissolve the solution to obtain a uniform solution. After that, it can be cooled to obtain crystals that precipitate. When the solution is heated to obtain a uniform solution and then cooled, the crystals are precipitated by cooling at 1 to 10 ° C. per hour, preferably 3 to 7 ° C. per hour. As the temperature for precipitating crystals, a temperature range of 40 to 58 ° C. is preferable, a temperature range of 45 to 55 ° C. is more preferable, and a temperature of about 50 ° C. is particularly suitable as a crystal precipitation temperature. Further, when precipitating crystals, seed crystals may be used. After the crystals start to precipitate, they are kept at the same temperature for 0 to 5 hours, cooled to 0 to 40 ° C., preferably 10 to 35 ° C., more preferably 20 to 30 ° C. at the above cooling rate, and 0 to 3 After holding at the same temperature for a time, it is preferable to separate the precipitated crystals by a filtration operation or the like.

<乾燥する工程について>
乾燥する工程(以下、乾燥工程ともいう。)を実施することにより、本発明の晶析工程において使用したアセトニトリルを完全に除去することができる。本発明の乾燥工程は、晶析工程により得られた結晶を、45℃以上であって融点より低い温度条件下で実施することができるが、70℃以上が好ましく、90℃以上がより好ましく、100℃以上が特に好ましい。また、その他の条件等によっては熱により結晶の色相が悪化する可能性もあるため、150℃以下が好ましく、130℃以下がより好ましい。45℃より低い温度では、晶析工程において使用したアセトニトリルを除去できないか、除去できたとしても非常に多くの時間が必要となり好ましくない。
乾燥工程を実施する際は常圧でも減圧下でも良いが、工業的に実施する場合には、減圧下において実施する方がより効率的に、晶析工程において使用したアセトニトリルを除去できることからも好適である。その他、乾燥工程は、窒素等の不活性ガス雰囲気中で行うことがより好ましい。
<About the drying process>
By carrying out a drying step (hereinafter, also referred to as a drying step), acetonitrile used in the crystallization step of the present invention can be completely removed. In the drying step of the present invention, the crystals obtained by the crystallization step can be carried out under temperature conditions of 45 ° C. or higher and lower than the melting point, but 70 ° C. or higher is preferable, 90 ° C. or higher is more preferable. 100 ° C. or higher is particularly preferable. Further, depending on other conditions and the like, the hue of the crystal may be deteriorated by heat, so 150 ° C. or lower is preferable, and 130 ° C. or lower is more preferable. At a temperature lower than 45 ° C., acetonitrile used in the crystallization step cannot be removed, or even if it can be removed, a very large amount of time is required, which is not preferable.
The drying step may be carried out under normal pressure or reduced pressure, but when carried out industrially, it is more efficient to carry out under reduced pressure because acetonitrile used in the crystallization step can be removed. Is. In addition, the drying step is more preferably performed in an atmosphere of an inert gas such as nitrogen.

<本発明の結晶体>
本発明の9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体は、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有することを特徴とする。示差走査熱量分析による吸熱ピークは、159℃以上161℃未満の温度範囲がより好ましく、160℃以上161℃未満の温度範囲がさらに好ましい。さらに、本発明の9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体は包接体ではない、すなわち、有機溶媒等の化合物を包接しない結晶体である。
本発明における、有機溶媒等の化合物を包接しない結晶体としては、残存する有機溶媒の含量が1重量%以下である結晶体が好ましく、0.5重量%以下である結晶体がより好ましく、0.3重量%以下である結晶体がさらに好ましく、0.1重量%以下が特に好ましい。また、本発明における、有機溶媒等の化合物を包接しない結晶体は、ゆるみ嵩密度が0.35〜0.45g/cmの範囲であることが好ましい。
<Crystal of the present invention>
The crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene of the present invention has at least one endothermic peak in the temperature range of 158 ° C. or higher and lower than 161 ° C. by differential scanning calorimetry. It is characterized by having. The endothermic peak by differential scanning calorimetry is more preferably in the temperature range of 159 ° C. or higher and lower than 161 ° C., and further preferably in the temperature range of 160 ° C. or higher and lower than 161 ° C. Furthermore, the crystal of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene of the present invention is not a clathrate, that is, a crystal that does not clasp a compound such as an organic solvent. be.
In the present invention, as the crystal body that does not include a compound such as an organic solvent, a crystal body having a residual organic solvent content of 1% by weight or less is preferable, and a crystal body having a residual organic solvent content of 0.5% by weight or less is more preferable. Crystals of 0.3% by weight or less are more preferable, and 0.1% by weight or less is particularly preferable. Further, the crystal body in the present invention that does not include a compound such as an organic solvent preferably has a loose bulk density in the range of 0.35 to 0.45 g / cm 3.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
分析方法は以下の通りである。
<分析方法>
1.示差走査熱量分析(DSC)
結晶体5mgをアルミパンに秤量し、示差走査熱量測定装置((株)島津製作所製:DSC−60)を用いて、酸化アルミニウムを対照として下記操作条件により測定した。
(操作条件)
昇温速度:10℃/分
測定温度範囲:30〜200℃
測定雰囲気:開放、窒素50mL/分
2.示差熱・熱重量分析(DTG)
結晶体8mgをアルミパンに秤量し、示差熱・熱重量分析装置((株)島津製作所製:DTG−60A)を用いて、下記操作条件により測定した。
(操作条件)
昇温速度:10℃/分
測定温度範囲:30〜300℃
測定雰囲気:開放、窒素50mL/分
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
The analysis method is as follows.
<Analysis method>
1. 1. Differential scanning calorimetry (DSC)
5 mg of the crystal was weighed in an aluminum pan, and measured using a differential scanning calorimetry device (manufactured by Shimadzu Corporation: DSC-60) under the following operating conditions using aluminum oxide as a control.
(Operating conditions)
Temperature rise rate: 10 ° C / min Measurement temperature range: 30-200 ° C
Measurement atmosphere: open, nitrogen 50 mL / min 2. Differential thermal / thermogravimetric analysis (DTG)
8 mg of the crystal was weighed on an aluminum pan and measured using a differential thermal / thermogravimetric analyzer (manufactured by Shimadzu Corporation: DTG-60A) under the following operating conditions.
(Operating conditions)
Temperature rise rate: 10 ° C / min Measurement temperature range: 30 to 300 ° C
Measurement atmosphere: open, nitrogen 50 mL / min

3.HS−GC(残存溶媒分析)
「HS−GC」とは、気相部分(ヘッドスペース、HS)をガスクロマトグラフ(GC)に導入して分析する手法である。バイアルに封入された試料を一定時間保温することで気相と試料を平衡状態として気相部分を分析することにより、結晶中に残存する溶媒量を測定した。具体的には、結晶体0.5gを秤量し、そこにN−メチルピロリドンを精秤しながら添加して全体を10gにする。この溶液をHS用バイアルに約3gを秤量して、漏れないようにクランプして下記条件で測定した。
(GC分析条件)
装置:(株)島津製作所製:GC−2010plus
カラム:TC−1 60m×0.25mmΦ、膜厚0.25μm
検出器:FID
INJ温度:300℃、FID温度:310℃
昇温条件:40℃(25分)→20℃/分→300℃(5分)
カラム線速度:19.9cm/秒
(HS分析条件)
機器:TurboMatrix HS 40(パーキンエルマー社)
キャリアガス圧:154kPa
バイアル加熱温度:100℃
注入時間:0.05分
3. 3. HS-GC (residual solvent analysis)
"HS-GC" is a method of introducing a gas phase portion (head space, HS) into a gas chromatograph (GC) for analysis. The amount of solvent remaining in the crystal was measured by analyzing the gas phase portion with the gas phase and the sample in an equilibrium state by keeping the sample enclosed in the vial warm for a certain period of time. Specifically, 0.5 g of the crystal is weighed, and N-methylpyrrolidone is added thereto while being weighed to make the whole amount 10 g. About 3 g of this solution was weighed in an HS vial, clamped so as not to leak, and measured under the following conditions.
(GC analysis conditions)
Equipment: Shimadzu Corporation: GC-2010plus
Column: TC-1 60m x 0.25mmΦ, film thickness 0.25μm
Detector: FID
INJ temperature: 300 ° C, FID temperature: 310 ° C
Heating conditions: 40 ° C (25 minutes) → 20 ° C / min → 300 ° C (5 minutes)
Column linear velocity: 19.9 cm / sec (HS analysis conditions)
Equipment: TurboMatrix HS 40 (PerkinElmer)
Carrier gas pressure: 154 kPa
Vial heating temperature: 100 ° C
Injection time: 0.05 minutes

4.ゆるみ嵩密度
多機能型粉体物性測定器マルチテスター(MT―1001型/(株)セイシン企業製)を用い、容量20cmの測定用セルに、空気の隙間ができないように篩を通して結晶を静かに投入し、前記測定用セルが結晶で充填した時のセル内の結晶の重量a(g)を測定し、下記計算式よりゆるみ嵩密度を算出した。
[計算式]
ゆるみ嵩密度(g/cm)=結晶体の重量a(g)÷20cm
5.粉末X線回析(XRD)分析
結晶体0.1gをガラス試験板の試料充填部に充填し、下記粉末X線回析装置を用いて、下記条件により測定した。
装置:(株)リガク製:SmartLab
X線源:CuKα
スキャン軸:2θ/θ
モード:連続
測定範囲:2θ=5°〜70°
ステップ:0.01°
スピード計測時間:2θ=2°/min
IS:1/2
RS:20.00mm
出力:40kV−30mA
6.粒度分布
結晶0.1gに、分散溶媒として水0.1g、分散剤(中性洗剤)一滴を加えて混合し、これを装置に投入し、超音波処理(3分)後、測定した。
装置:(株)島津製作所製:SALD−2200
測定方式:レーザー回析方式
7.YI値(黄色度)
結晶2.0gを、純度99重量%以上の1,4ジオキサン18.0gに溶解させ、以下の条件で得られた1,4−ジオキサン溶液のYI値(黄色度)を測定した。
装置:色差計(日本電色工業社製,ZE6000)
使用セル:ガラス試験管(直径24mm)
なお、測定に使用する1,4−ジオキサン自身の着色が測定値に影響を与えないよう、事前に1,4−ジオキサンの色相を測定して補正した。(ブランク測定)。このブランク測定を実施したうえで、サンプルを測定した値を本発明におけるYI値(黄色度)とした。
4. Loose bulk density Using a multi-function measuring instrument multi-tester (MT-1001 type / manufactured by Seishin Co., Ltd.), pass a sieve through a measuring cell with a capacity of 20 cm 3 so that there are no gaps in the air, and quietly crystallize the crystals. The weight a (g) of the crystal in the cell when the measurement cell was filled with crystals was measured, and the loose bulk density was calculated from the following formula.
[a formula]
Loose bulk density (g / cm 3 ) = Crystal weight a (g) ÷ 20 cm 3
5. Powder X-ray Diffraction (XRD) Analysis 0.1 g of the crystal was filled in the sample filling part of the glass test plate, and the measurement was carried out under the following conditions using the following powder X-ray diffractometer.
Equipment: Made by Rigaku Co., Ltd .: SmartLab
X-ray source: CuKα
Scan axis: 2θ / θ
Mode: Continuous measurement range: 2θ = 5 ° to 70 °
Step: 0.01 °
Speed measurement time: 2θ = 2 ° / min
IS: 1/2
RS: 20.00mm
Output: 40kV-30mA
6. Particle size distribution To 0.1 g of crystals, 0.1 g of water as a dispersion solvent and one drop of a dispersant (neutral detergent) were added and mixed, and this was put into an apparatus, ultrasonically treated (3 minutes), and then measured.
Equipment: Shimadzu Corporation: SALD-2200
Measurement method: Laser diffraction method 7. YI value (yellowness)
2.0 g of crystals were dissolved in 18.0 g of 1,4 dioxane having a purity of 99% by weight or more, and the YI value (yellowness) of the 1,4-dioxane solution obtained under the following conditions was measured.
Equipment: Color difference meter (manufactured by Nippon Denshoku Kogyo Co., Ltd., ZE6000)
Cell used: Glass test tube (diameter 24 mm)
The hue of 1,4-dioxane was measured and corrected in advance so that the coloring of 1,4-dioxane itself used for the measurement did not affect the measured value. (Blank measurement). After performing this blank measurement, the value measured by the sample was taken as the YI value (yellowness) in the present invention.

<合成例>
9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの合成
温度計、撹拌機、冷却管を備えた1リットル4つ口フラスコ内を窒素置換し、9−フルオレノン76.3g(0.423モル)、化学式(3)で示されるアルコール類907.0g(4.24モル)、リンタングステン酸13.7g、トルエン388.7gを仕込み、反応温度100℃、圧力42kPaにおいて、反応生成水を除去しながら反応を行った。液体クロマトグラフィー分析により原料消失を確認し、反応終了とした。反応液を80℃にまで冷却し、トルエン339.1g、15%水酸化ナトリウム水溶液26.69g、蒸留水250gを加えて反応液を中和して静置し、水層を除去した。得られた油層に蒸留水250gを加えて撹拌後静置し、水層を除去する水洗操作を4回実施した。得られた油層から、蒸留により溶媒等の低沸点物質と未反応の化学式(3)で示されるアルコール類を取り除いた後、残渣をトルエン1500gで溶解した。このトルエン溶液を25℃にまで冷却し、析出した結晶を濾過し、目的物のトルエン包接体232.0g(高速液体クロマトグラフィー分析による純度98.0%、トルエン5重量%包接)を得た。
<Synthesis example>
Synthesis of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene The inside of a 1-liter four-necked flask equipped with a thermometer, a stirrer, and a cooling tube was replaced with nitrogen to make 9-fluorenone 76. .3 g (0.423 mol), 907.0 g (4.24 mol) of alcohols represented by the chemical formula (3), 13.7 g of phosphotungstate, and 388.7 g of toluene were charged, and the reaction temperature was 100 ° C. and the pressure was 42 kPa. , The reaction was carried out while removing the reaction-generated water. The disappearance of the raw materials was confirmed by liquid chromatography analysis, and the reaction was terminated. The reaction mixture was cooled to 80 ° C., and 339.1 g of toluene, 26.69 g of a 15% aqueous sodium hydroxide solution, and 250 g of distilled water were added to neutralize the reaction solution and allowed to stand to remove the aqueous layer. 250 g of distilled water was added to the obtained oil layer, and the mixture was stirred and allowed to stand, and a water washing operation for removing the aqueous layer was carried out four times. A low boiling point substance such as a solvent and unreacted alcohols represented by the chemical formula (3) were removed from the obtained oil layer by distillation, and then the residue was dissolved in 1500 g of toluene. This toluene solution is cooled to 25 ° C., and the precipitated crystals are filtered to obtain 232.0 g of the target toluene clathrate (purity 98.0% by high performance liquid chromatography analysis, 5 wt% toluene inclusion). rice field.

<実施例1>
(晶析工程)
温度計、撹拌機、冷却管を備えた200ミリリットル4つ口フラスコに、上記「合成例」で得られた白色結晶10gとアセトニトリル30gを入れて、60℃で溶解後、1時間あたり5℃の速度で冷却すると、50℃付近で結晶が析出した。その後、同じ冷却速度でさらに25℃まで冷却して、析出した結晶を濾過した。
(乾燥工程)
晶析工程により得られた結晶を、温度20℃、1.2kPaで2時間乾燥させた。得られた結晶は、HS−GC分析により残存溶媒がトルエン0.05重量%、アセトニトリル3.6重量%であった。さらに、同一条件でこの結晶を4時間乾燥したが、残存溶媒の含有量に変化はなかった。このことから、晶析工程で得られた結晶は、アセトニトリル包接体であることが明らかになった。このアセトニトリル包接体について示差熱・熱重量分析(DTG)を行った結果、包接するアセトニトリルを除去する熱量は約40J/gであることが確認された。このアセトニトリル包接体の示差熱・熱重量分析(DTG)曲線を示す図を図1に示す。
このアセトニトリル包接体を温度100℃、圧力1.2kPaの環境で4時間乾燥し、包接体ではない結晶9.0gが得られた。
(分析結果)
乾燥工程により得られた結晶は、高速液体クロマトグラフィー分析による純度が98.7%であり、HS−GC分析により残存溶媒がトルエン0.05重量%、アセトニトリル0.2重量%であることが確認できた。
上記分析を行った、包接体ではない結晶の示差走査熱量測定(DSC)曲線を示す図を図2に示す。
<Example 1>
(Crystalization process)
In a 200 ml four-necked flask equipped with a thermometer, a stirrer, and a cooling tube, 10 g of the white crystals and 30 g of acetonitrile obtained in the above "Synthesis Example" were placed, dissolved at 60 ° C., and then dissolved at 5 ° C. per hour. When cooled at a rate, crystals were precipitated at around 50 ° C. Then, it was further cooled to 25 ° C. at the same cooling rate, and the precipitated crystals were filtered.
(Drying process)
The crystals obtained by the crystallization step were dried at a temperature of 20 ° C. and 1.2 kPa for 2 hours. The obtained crystals had a residual solvent of 0.05% by weight of toluene and 3.6% by weight of acetonitrile by HS-GC analysis. Further, the crystals were dried under the same conditions for 4 hours, but the content of the residual solvent did not change. From this, it was clarified that the crystal obtained in the crystallization step was an acetonitrile clathrate. As a result of differential thermal analysis (DTG) of this acetonitrile inclusion body, it was confirmed that the amount of heat for removing the acetonitrile to be included was about 40 J / g. The figure which shows the differential thermal analysis (DTG) curve of this acetonitrile inclusion body is shown in FIG.
The acetonitrile inclusion body was dried in an environment of a temperature of 100 ° C. and a pressure of 1.2 kPa for 4 hours to obtain 9.0 g of crystals that were not inclusion bodies.
(result of analysis)
The crystals obtained by the drying step were confirmed to have a purity of 98.7% by high performance liquid chromatography analysis and a residual solvent of 0.05% by weight of toluene and 0.2% by weight of acetonitrile by HS-GC analysis. did it.
FIG. 2 shows a differential scanning calorimetry (DSC) curve of a non-inclusion crystal that has undergone the above analysis.

<実施例2>
(晶析工程)
温度計、撹拌機、冷却管を備えた1リットル四つ口フラスコに、上記「合成例」で得られた白色結晶208.7gとアセトニトリル626.1gを入れて60℃で溶解後、1時間あたり5℃の冷却速度で冷却し、実施例1で得られた種結晶概略0.1gを55℃で添加したところ、50℃で析出結晶の増加を確認できた。同じ冷却速度で25℃まで冷却し、25℃で2時間保持し、析出した結晶を濾別した。
(乾燥工程)
晶析工程により得られた結晶を、温度20℃、圧力1.2kPaの環境で2時間乾燥させた。得られた結晶は、HS−GC分析により残存溶媒がトルエン0.08重量%、アセトニトリル3.7重量%であった。さらに、同一条件でこの結晶を2時間乾燥したが、残存溶媒の含有量に変化はなかった。このことから、晶析工程により得られた結晶は、アセトニトリル包接体であることが明らかとなった。このアセトニトリル包接体について示差熱・熱重量分析(DTG)を行った結果、包接するアセトニトリルを除去する熱量は約94J/gであることが確認された。
アセトニトリル包接体を、温度100℃、圧力1.2kPaの環境で14時間乾燥させることにより、包接体ではない結晶156.6gが得られた。
(分析結果)
乾燥工程により得られた結晶は、高速液体クロマトグラフィー分析による純度が98.8%であり、HS−GC分析により残存溶媒がトルエン0.08重量%、アセトニトリル0.003重量%であること、さらに、示差走査熱量分析による吸熱ピークトップ温度は160℃、YI値(黄色度)は、0.47、ゆるみ嵩密度0.4g/cmであることが確認できた。また、得られた結晶のメディアン径(D50)は34.0μm、モード径は39.6μmであった。
上記分析を行った、包接体ではない結晶の示差走査熱量測定(DSC)曲線を示す図を図3に示す。また、上記付着溶媒を除去して得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図4に示し、粉末X線の主なピーク(5%を超える相対積分強度を有するもの)を表1に列挙する。
<Example 2>
(Crystalization process)
208.7 g of white crystals and 626.1 g of acetonitrile obtained in the above "Synthesis Example" were placed in a 1-liter four-necked flask equipped with a thermometer, a stirrer, and a cooling tube and dissolved at 60 ° C. per hour. When the mixture was cooled at a cooling rate of 5 ° C. and approximately 0.1 g of the seed crystal obtained in Example 1 was added at 55 ° C., an increase in precipitated crystals was confirmed at 50 ° C. The crystals were cooled to 25 ° C. at the same cooling rate, held at 25 ° C. for 2 hours, and the precipitated crystals were filtered off.
(Drying process)
The crystals obtained by the crystallization step were dried in an environment at a temperature of 20 ° C. and a pressure of 1.2 kPa for 2 hours. The obtained crystals were found to have a residual solvent of 0.08% by weight of toluene and 3.7% by weight of acetonitrile by HS-GC analysis. Further, the crystals were dried under the same conditions for 2 hours, but the content of the residual solvent did not change. From this, it was clarified that the crystal obtained by the crystallization step was an acetonitrile clathrate. As a result of differential thermal analysis (DTG) of this acetonitrile inclusion body, it was confirmed that the calorific value for removing the acetonitrile included was about 94 J / g.
The acetonitrile inclusion body was dried in an environment of a temperature of 100 ° C. and a pressure of 1.2 kPa for 14 hours to obtain 156.6 g of crystals that were not inclusion bodies.
(result of analysis)
The crystals obtained by the drying step have a purity of 98.8% by high performance liquid chromatography analysis, a residual solvent of 0.08% by weight of toluene and 0.003% by weight of acetonitrile by HS-GC analysis, and further. It was confirmed that the heat absorption peak top temperature was 160 ° C., the YI value (yellowness) was 0.47, and the loose bulk density was 0.4 g / cm 3 by the differential scanning calorific value analysis. The median diameter (D50) of the obtained crystal was 34.0 μm, and the mode diameter was 39.6 μm.
FIG. 3 shows a differential scanning calorimetry (DSC) curve of a non-inclusion crystal that has undergone the above analysis. Further, FIG. 4 shows a diagram showing a differential thermal / thermogravimetric analysis (DTG) curve of the crystal obtained by removing the adhesive solvent, and has a main peak of powder X-rays (relative integrated intensity exceeding 5%). Things) are listed in Table 1.

Figure 2020059710
Figure 2020059710

これらの分析により、得られた結晶体は、示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有する結晶体であり、さらには、包接体ではない結晶体であることが明らかとなった。 The crystals obtained by these analyzes are crystals having at least one endothermic peak in the temperature range of 158 ° C. or higher and lower than 161 ° C. by differential scanning calorimetry, and further, a crystal that is not an inclusion body. It became clear that there was.

<比較例1>
上記特許文献4の実施例1に記載された製造方法について、追試験を行った。
詳しくは、撹拌機、冷却管、および温度計を備えた1リットル4つ口フラスコ内を窒素置換し、9,9’−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン75g(0.149mol)、炭酸カリウム1.7g、エチレンカーボネート30.05g(0.341mol)、トルエン112.5g、およびメチルトリグライム7.5gを仕込み、110℃まで昇温し、同温度で16時間撹拌後、高速液体クロマトグラフィー(以下HPLC)測定にて原料が消失していることを確認した。
その後、水3.07g添加し、100℃で5時間加水分解を行った。
得られた反応液を90℃まで冷却した後、水113gを加え、80〜85℃で30分撹拌し、静置後、水層を分離した。同じ水洗操作を3回繰り返した後、得られた有機溶媒層から溶媒を除去し、濃縮物を得た。得られた濃縮物にトルエン92g、メタノール348gを添加し晶析溶液を得た。得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、1分あたり0.1℃で冷却することにより50℃で結晶を析出させ、同温度で2時間撹拌した。更に22℃まで冷却した後、濾過し結晶を得た。
得られた結晶を1.3kPaの減圧下、55℃で3時間乾燥した後、結晶の一部をHS-GCで分析した。その結果、晶析工程で用いた溶媒であるメタノールを3.5重量%含有していることが確認された。更に同条件で3時間乾燥を継続し分析しても、メタノールの含有量が4重量%と減少しなかった。この結晶から、包接した溶媒を除去するのに必要な熱量をDTGで測定した結果、約875J/gであった。この結晶を内圧1.3kPaの減圧下、内温を90℃に昇温し、更に3時間乾燥した。メタノールの含有量が0.02重量%となった為、乾燥終了とした。
得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図5に、各分析値を下記に示す。
得られた結晶の重さ:77.9g(収率:88%)
HPLC純度:98.6%
トルエン含量:0.01重量%
メタノール含量:0.02重量%
比較例2の結果より、メタノール包接体からメタノールを除去するためには、概略900J/g程度のエネルギーが必要であることが確認された。
また、得られた結晶のメディアン径(D50)は18.5μm、モード径は21.2μmであった。
<Comparative example 1>
A follow-up test was performed on the production method described in Example 1 of Patent Document 4.
Specifically, the inside of a 1-liter four-necked flask equipped with a stirrer, a cooling tube, and a thermometer was substituted with toluene, and 75 g (0.149 mol) of 9,9'-bis (4-hydroxy-3-phenylphenyl) fluorene was substituted. , 1.7 g of potassium carbonate, 30.05 g (0.341 mol) of ethylene carbonate, 112.5 g of toluene, and 7.5 g of methyl triglime were charged, heated to 110 ° C., stirred at the same temperature for 16 hours, and then a high performance liquid. It was confirmed by chromatography (hereinafter referred to as HPLC) measurement that the raw material had disappeared.
Then, 3.07 g of water was added, and hydrolysis was carried out at 100 ° C. for 5 hours.
The obtained reaction solution was cooled to 90 ° C., 113 g of water was added, the mixture was stirred at 80 to 85 ° C. for 30 minutes, allowed to stand, and then the aqueous layer was separated. After repeating the same washing operation three times, the solvent was removed from the obtained organic solvent layer to obtain a concentrate. To the obtained concentrate, 92 g of toluene and 348 g of methanol were added to obtain a crystallization solution. The obtained crystallization solution was heated to 65 ° C. and stirred at the same temperature for 1 hour to completely dissolve the crystals, and then cooled at 0.1 ° C. per minute to precipitate the crystals at 50 ° C. The mixture was stirred at the same temperature for 2 hours. After further cooling to 22 ° C., the crystals were obtained by filtration.
The obtained crystals were dried at 55 ° C. for 3 hours under a reduced pressure of 1.3 kPa, and then a part of the crystals was analyzed by HS-GC. As a result, it was confirmed that the solvent used in the crystallization step, methanol, was contained in an amount of 3.5% by weight. Further, even when the drying was continued for 3 hours under the same conditions and analyzed, the methanol content did not decrease to 4% by weight. The amount of heat required to remove the included solvent from this crystal was measured by DTG and found to be about 875 J / g. The crystals were heated to 90 ° C. under a reduced pressure of 1.3 kPa and further dried for 3 hours. Since the content of methanol was 0.02% by weight, drying was completed.
The figure showing the differential thermal / thermogravimetric analysis (DTG) curve of the obtained crystal is shown in FIG. 5, and each analysis value is shown below.
Weight of obtained crystals: 77.9 g (yield: 88%)
HPLC purity: 98.6%
Toluene content: 0.01% by weight
Methanol content: 0.02% by weight
From the results of Comparative Example 2, it was confirmed that about 900 J / g of energy was required to remove methanol from the methanol inclusion body.
The median diameter (D50) of the obtained crystal was 18.5 μm, and the mode diameter was 21.2 μm.

上記特許文献5の比較例1、実施例8、12、17、19、20に記載された製造方法について、追試験を行った。
<参考例1>
(特許文献5の比較例1)
撹拌器、加熱冷却器、および温度計を備えた1リットル4つ口フラスコ内を窒素置換し、9,9’−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン60g(0.119mol)、炭酸カリウム1.2g、エチレンカーボネート24.15g(0.274mol)、およびトルエン60gを仕込み、110℃で34時間撹拌した。次いで水4.86g添加し、100℃で11時間反応(加水分解)を行った。得られた反応液を85℃まで冷却した後、トルエン30gと水102gを加え、80〜85℃で30分撹拌し、静置後、水層を分離した。同じ水洗操作を3回繰り返した後、得られた有機溶媒層からディーンスターク装置を用いて還流下で水を除去し、冷却により75℃で結晶が析出し、同温度で2時間撹拌した。更に26℃まで冷却した後、濾過し結晶を得た。得られた結晶を、12時間、内圧1.1kPaの減圧下、110℃〜112℃で乾燥した。
得られた結晶を上述した方法により分析した結果、トルエン包接体であることを確認した。
得られた結晶の分析結果を下記に示す。
得られた結晶の重さ:68.5g
HPLC純度:97.5%
トルエン(ゲスト分子)含量:4.46重量%
A follow-up test was performed on the production methods described in Comparative Example 1, Examples 8, 12, 17, 19, and 20 of Patent Document 5.
<Reference example 1>
(Comparative Example 1 of Patent Document 5)
Nitro was substituted in a 1-liter 4-neck flask equipped with a stirrer, a heating / cooling device, and a thermometer, and 60 g (0.119 mol) of 9,9'-bis (4-hydroxy-3-phenylphenyl) fluorene, carbonic acid. 1.2 g of potassium, 24.15 g (0.274 mol) of ethylene carbonate, and 60 g of toluene were charged and stirred at 110 ° C. for 34 hours. Then, 4.86 g of water was added, and the reaction (hydrolysis) was carried out at 100 ° C. for 11 hours. After cooling the obtained reaction solution to 85 ° C., 30 g of toluene and 102 g of water were added, and the mixture was stirred at 80 to 85 ° C. for 30 minutes, allowed to stand, and then the aqueous layer was separated. After repeating the same washing operation three times, water was removed from the obtained organic solvent layer under reflux using a Dean-Stark apparatus, crystals were precipitated at 75 ° C. by cooling, and the mixture was stirred at the same temperature for 2 hours. After further cooling to 26 ° C., it was filtered to obtain crystals. The obtained crystals were dried at 110 ° C. to 112 ° C. for 12 hours under a reduced pressure of 1.1 kPa.
As a result of analyzing the obtained crystals by the above-mentioned method, it was confirmed that they were toluene inclusions.
The analysis results of the obtained crystals are shown below.
Weight of obtained crystals: 68.5 g
HPLC purity: 97.5%
Toluene (guest molecule) content: 4.46% by weight

<比較例2>
(特許文献5の実施例8:イソブチルケトン)
上記参考例2で得られたトルエン包接体の結晶5gとジイソブチルケトン25gを撹拌子の入った試験管に入れ、100℃で5時間撹拌し、そのまま冷却せずに濾過した。その後、窒素気流中で2時間乾燥した。
得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図6に、各分析値を下記に示す。
HPLC純度:98.40%
トルエン(ゲスト分子)含量:検出限界以下(HS−GC)
融点:192℃
ゆるみ嵩密度:0.31g/cm
なお、上記ゆるみ嵩密度は、試験管での簡易試験によるデータである。
比較例3の結果より、上記特許文献5の実施例8により得られる結晶は、融点が192℃と高融点結晶であることが、さらに、ゆるみ嵩密度は0.31g/cmと低いことも確認された。
<Comparative example 2>
(Example 8 of Patent Document 5: Isobutyl Ketone)
5 g of the toluene clathrate crystal obtained in Reference Example 2 and 25 g of the diisobutyl ketone were placed in a test tube containing a stirrer, stirred at 100 ° C. for 5 hours, and filtered without cooling. Then, it was dried in a nitrogen stream for 2 hours.
The figure showing the differential scanning calorimetry (DSC) curve of the obtained crystal is shown in FIG. 6, and each analytical value is shown below.
HPLC purity: 98.40%
Toluene (guest molecule) content: below detection limit (HS-GC)
Melting point: 192 ° C
Loose bulk density: 0.31 g / cm 3
The loose bulk density is data obtained by a simple test in a test tube.
From the results of Comparative Example 3, the crystal obtained in Example 8 of Patent Document 5 has a melting point of 192 ° C., which is a high melting point crystal, and further, the loose bulk density is as low as 0.31 g / cm 3. confirmed.

<比較例3>(特許文献5の実施例12:ヘプタン)
上記参考例2で得られたトルエン包接体の結晶5gとへプタン25gを撹拌子の入った試験管に入れ、100℃で2時間撹拌し、そのまま冷却せずに濾過した。その後、窒素気流中で2時間乾燥した。
得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図7に、各分析値を下記に示す。
HPLC純度:98.74%
トルエン(ゲスト分子)含量:検出限界以下(HS−GC)
融点:191℃
ゆるみ嵩密度:0.38g/cm
なお、上記ゆるみ嵩密度は、試験管での簡易試験によるデータである。
比較例4の結果より、上記特許文献5の実施例12により得られる結晶は、融点が191℃と高融点結晶であることが確認された。
<Comparative Example 3> (Example 12 of Patent Document 5: Heptane)
5 g of the toluene clathrate crystal obtained in Reference Example 2 and 25 g of heptane were placed in a test tube containing a stirrer, stirred at 100 ° C. for 2 hours, and filtered without cooling. Then, it was dried in a nitrogen stream for 2 hours.
The figure showing the differential scanning calorimetry (DSC) curve of the obtained crystal is shown in FIG. 7, and each analytical value is shown below.
HPLC purity: 98.74%
Toluene (guest molecule) content: below detection limit (HS-GC)
Melting point: 191 ° C
Loose bulk density: 0.38 g / cm 3
The loose bulk density is data obtained by a simple test in a test tube.
From the results of Comparative Example 4, it was confirmed that the crystal obtained in Example 12 of Patent Document 5 had a melting point of 191 ° C. and was a high melting point crystal.

<比較例4>
(特許文献5の実施例17:ジブチルエーテル)
上記参考例2で得られたトルエン包接体の結晶5gとジブチルエーテル25gを撹拌子の入った試験管に入れ、100℃で5時間撹拌し、そのまま冷却せずに濾過した。その後、窒素気流中で2時間乾燥した。
得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図8に、各分析値を下記に示す。
HPLC純度:97.88%
トルエン(ゲスト分子)含量:検出限界以下(HS−GC)
融点:192℃
ゆるみ嵩密度:0.35g/cm
なお、上記ゆるみ嵩密度は、試験管での簡易試験によるデータである。
比較例5の結果より、上記特許文献5の実施例17により得られる結晶は、融点が192℃と高融点結晶であることが確認された。
<Comparative example 4>
(Example 17 of Patent Document 5: dibutyl ether)
5 g of the toluene clathrate crystal obtained in Reference Example 2 and 25 g of dibutyl ether were placed in a test tube containing a stirrer, stirred at 100 ° C. for 5 hours, and filtered without cooling. Then, it was dried in a nitrogen stream for 2 hours.
The figure showing the differential scanning calorimetry (DSC) curve of the obtained crystal is shown in FIG. 8, and each analytical value is shown below.
HPLC purity: 97.88%
Toluene (guest molecule) content: below detection limit (HS-GC)
Melting point: 192 ° C
Loose bulk density: 0.35 g / cm 3
The loose bulk density is data obtained by a simple test in a test tube.
From the results of Comparative Example 5, it was confirmed that the crystal obtained in Example 17 of Patent Document 5 had a melting point of 192 ° C. and was a high melting point crystal.

<比較例5>
温度計、撹拌機、冷却管を備えた500ミリリットル4つ口フラスコを窒素置換し、そこに、上記「合成例」で得られたトルエン包接体14.1g(YI値0.80)とメチルイソブチルケトン60gとへプタン24gを仕込み、100℃まで昇温し、30分間撹拌して結晶をすべて溶解させた。得られた溶液を1分間あたり0.8℃の速度で冷却することにより65℃で結晶が析出した。同温度で2時間撹拌後、20℃ まで冷却し、ろ過を行った。得られた結晶を1.3kPaの減圧下、90℃で3時間乾燥し、下記品質の結晶10.6gを得た。
HPLC純度:99.3%
残存トルエン:112ppm
残存メチルイソブチルケトン:1680ppm
残存へプタン:321ppm
YI値:1.26(10%ジオキサン溶液)
DSC融解吸熱最大温度:171℃
<Comparative example 5>
A 500 ml four-necked flask equipped with a thermometer, a stirrer, and a cooling tube was replaced with nitrogen, and 14.1 g (YI value 0.80) of the toluene clathrate obtained in the above "Synthesis Example" and methyl were added thereto. 60 g of isobutyl ketone and 24 g of heptane were charged, the temperature was raised to 100 ° C., and the mixture was stirred for 30 minutes to dissolve all the crystals. Crystals were precipitated at 65 ° C. by cooling the resulting solution at a rate of 0.8 ° C. per minute. After stirring at the same temperature for 2 hours, the mixture was cooled to 20 ° C. and filtered. The obtained crystals were dried at 90 ° C. for 3 hours under a reduced pressure of 1.3 kPa to obtain 10.6 g of crystals having the following quality.
HPLC purity: 99.3%
Residual toluene: 112 ppm
Residual Methyl Isobutyl Ketone: 1680 ppm
Residual heptane: 321 ppm
YI value: 1.26 (10% dioxane solution)
DSC melting endothermic maximum temperature: 171 ° C

上記特許文献6の実施例1、2に記載された製造方法について、追試験を行った。
<比較例6>
(特許文献6の実施例1)
温度計、撹拌機、冷却管を備えた1リットル4つ口フラスコ内を窒素置換し、9−フルオレノン18.0g(0.1モル)、2−[(2−フェニル)フェノキシ]エタノール53.5g(0.25モル)、3−メルカプトプロピオン酸1g、トルエン60mLを仕込み、65℃で溶解させてから、98%硫酸25mLを1時間かけて滴下した。その後65℃で6時間撹拌して反応させた。反応終了後、水酸化ナトリウム溶液を加えて中和し、さらに、トルエン100g、水50g加えて撹拌し、静置後、水層を除去した。得られた有機層に水60gを加えて撹拌して静置後、水層を除去する操作を4回実施した。
洗浄した有機層を10℃/時間で冷却して晶析し、25℃で15時間撹拌後、濾過して9,9−ビス[3−フェニル−4−(2−ヒドロキシエトキシ)フェニル]フルオレンの粗生成物を得た。
この粗生成物20.2gをトルエン60.6gで溶解後、冷却して晶析を行い、25℃で濾過し、9,9−ビス[3−フェニル−4−(2−ヒドロキシエトキシ)フェニル]フルオレンの結晶を得た。その後、80℃、1.3kPaで6時間乾燥して結晶11gを得た。(収率19.0%)
結晶をHPLCで分析した結果、その純度は92.8%であった。
得られた結晶の示差熱・熱重量分析(DTG)曲線を示す図を図9に示す。
図9より、融点以上の温度において結晶重量が減少していることから、上記特許文献6の実施例1により得られる結晶は、トルエン包接体であることが明らかとなった。
A follow-up test was performed on the production methods described in Examples 1 and 2 of Patent Document 6.
<Comparative Example 6>
(Example 1 of Patent Document 6)
The inside of a 1-liter four-necked flask equipped with a thermometer, a stirrer, and a cooling tube was replaced with nitrogen, and 9-fluorenone 18.0 g (0.1 mol), 2-[(2-phenyl) phenoxy] ethanol 53.5 g. (0.25 mol), 1 g of 3-mercaptopropionic acid and 60 mL of toluene were charged and dissolved at 65 ° C., and then 25 mL of 98% sulfuric acid was added dropwise over 1 hour. Then, the reaction was carried out by stirring at 65 ° C. for 6 hours. After completion of the reaction, a sodium hydroxide solution was added for neutralization, 100 g of toluene and 50 g of water were added and stirred, and the mixture was allowed to stand and the aqueous layer was removed. After adding 60 g of water to the obtained organic layer, stirring and allowing it to stand, the operation of removing the aqueous layer was carried out four times.
The washed organic layer is cooled at 10 ° C./hour for crystallization, stirred at 25 ° C. for 15 hours, and then filtered through 9,9-bis [3-phenyl-4- (2-hydroxyethoxy) phenyl] fluorene. A crude product was obtained.
20.2 g of this crude product is dissolved in 60.6 g of toluene, cooled to perform crystallization, filtered at 25 ° C., and 9,9-bis [3-phenyl-4- (2-hydroxyethoxy) phenyl]. Fluorene crystals were obtained. Then, it was dried at 80 ° C. and 1.3 kPa for 6 hours to obtain 11 g of crystals. (Yield 19.0%)
As a result of analyzing the crystals by HPLC, the purity was 92.8%.
The figure which shows the differential thermal analysis (DTG) curve of the obtained crystal is shown in FIG.
From FIG. 9, since the crystal weight decreases at a temperature equal to or higher than the melting point, it was clarified that the crystal obtained in Example 1 of Patent Document 6 is a toluene clathrate.

<比較例7>
(特許文献6の実施例2)
上記比較例8の結晶10gをエタノール60gで溶解後、冷却して晶析を行い、25℃で濾過し、結晶を得た。25℃、1.3kPaで3時間乾燥した後、HS−GCで分析した結果、エタノールの含有量が6.0重量%であった。この結晶について示差熱・熱重量分析(DTG)を行った結果、包接するエタノールを除去する熱量は約147J/gであることが確認された。この結晶の示差熱・熱重量分析(DTG)曲線を示す図を図10に示す。
さらに、この結晶を80℃、1.3kPaで6時間乾燥した結果、エタノールの含有量が0.14重量%の結晶6.9gが得られた。(収率69%)
得られた結晶の示差走査熱量測定(DSC)曲線を示す図を図11に、各分析値を下記に示す。
HPLC純度:94.5%
エタノール含量:0.14重量%(HS−GC)
トルエン含量:検出限界以下(HS−GC)
融点:132℃
ゆるみ嵩密度:0.33g/cm
なお、上記ゆるみ嵩密度は、試験管での簡易試験によるデータである。また、HPLC純度が特許文献6に記載された数値より低いのは、実施例6には、硫酸滴下温度等の詳細が説明されていないので、反応条件が完全に一致していないことも理由として考えられる。
また、得られた結晶のメディアン径(D50)は20.7μm、モード径は26.1μmであった。得られた結晶は、本発明の結晶混合体に比べて粒子径が非常に細かく、また、上記「比較例2」のメタノール包接体から得られた結晶に比べて流動性が向上した様子は確認されなかった。
比較例9の結果より、エタノール包接体からエタノールを除去するためには、概略150J/g程度のエネルギーが必要であることが、さらに、包接体からエタノールを除去した結晶の融点は132℃であることが確認された。
<Comparative Example 7>
(Example 2 of Patent Document 6)
After dissolving 10 g of the crystals of Comparative Example 8 in 60 g of ethanol, the crystals were cooled, crystallized, and filtered at 25 ° C. to obtain crystals. After drying at 25 ° C. and 1.3 kPa for 3 hours, the analysis by HS-GC revealed that the ethanol content was 6.0% by weight. As a result of differential thermal analysis (DTG) of this crystal, it was confirmed that the calorific value for removing the inclusion ethanol was about 147 J / g. A diagram showing a differential thermal / thermogravimetric analysis (DTG) curve of this crystal is shown in FIG.
Further, as a result of drying the crystals at 80 ° C. and 1.3 kPa for 6 hours, 6.9 g of crystals having an ethanol content of 0.14% by weight was obtained. (Yield 69%)
The figure showing the differential scanning calorimetry (DSC) curve of the obtained crystal is shown in FIG. 11, and each analytical value is shown below.
HPLC purity: 94.5%
Ethanol content: 0.14% by weight (HS-GC)
Toluene content: below detection limit (HS-GC)
Melting point: 132 ° C
Loose bulk density: 0.33 g / cm 3
The loose bulk density is data obtained by a simple test in a test tube. Further, the reason why the HPLC purity is lower than the numerical value described in Patent Document 6 is that the reaction conditions are not completely matched because the details such as the sulfuric acid dropping temperature are not described in Example 6. Conceivable.
The median diameter (D50) of the obtained crystal was 20.7 μm, and the mode diameter was 26.1 μm. The obtained crystals have a very fine particle size as compared with the crystal mixture of the present invention, and the fluidity is improved as compared with the crystals obtained from the methanol clathrate of "Comparative Example 2". Not confirmed.
From the results of Comparative Example 9, it is found that energy of about 150 J / g is required to remove ethanol from the ethanol inclusion body, and further, the melting point of the crystal obtained by removing ethanol from the inclusion body is 132 ° C. It was confirmed that.

Claims (4)

示差走査熱量分析による吸熱ピークを158℃以上161℃未満の温度範囲に少なくとも1つ有することを特徴とする、9,9−ビス[4−(2−ヒドロキシエトキシ)−3−フェニルフェニル]フルオレンの結晶体。 Of 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene, characterized by having at least one endothermic peak in the temperature range of 158 ° C. or higher and lower than 161 ° C. by differential scanning calorimetry. Crystal. 包接体ではないことを特徴とする、請求項1に記載の結晶体。 The crystal according to claim 1, wherein the crystal is not an inclusion body. アセトニトリルを用いて晶析する工程を含むことを特徴とする、請求項1または2に記載の結晶体の製造方法。 The method for producing a crystal according to claim 1 or 2, which comprises a step of crystallization using acetonitrile. さらに、晶析により得られた結晶を45℃以上であって融点より低い温度条件下において乾燥する工程を含むことを特徴とする、請求項3に記載の製造方法。
The production method according to claim 3, further comprising a step of drying the crystals obtained by crystallization under a temperature condition of 45 ° C. or higher and lower than the melting point.
JP2020548514A 2018-09-19 2019-09-17 Crystalline form of bisfluorene compound Active JP7379770B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018174723 2018-09-19
JP2018174723 2018-09-19
PCT/JP2019/036374 WO2020059710A1 (en) 2018-09-19 2019-09-17 Crystal of bisfluorene compound

Publications (2)

Publication Number Publication Date
JPWO2020059710A1 true JPWO2020059710A1 (en) 2021-08-30
JP7379770B2 JP7379770B2 (en) 2023-11-15

Family

ID=69887098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020548514A Active JP7379770B2 (en) 2018-09-19 2019-09-17 Crystalline form of bisfluorene compound

Country Status (5)

Country Link
JP (1) JP7379770B2 (en)
KR (1) KR20210063323A (en)
CN (1) CN112638852A (en)
TW (1) TWI810366B (en)
WO (1) WO2020059710A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890877B (en) * 2022-01-28 2024-03-26 江苏永星化工股份有限公司 9, 9-bis [ 3-phenyl-4- (2-hydroxyethoxy) phenyl ] fluorene and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206863A (en) 2000-01-25 2001-07-31 Osaka Gas Co Ltd Fluorene compound and method for the same
US8093434B2 (en) * 2007-02-15 2012-01-10 Taoka Chemical Company, Limited Crystal polymorph of fluorene derivative and production method thereof
JP5285561B2 (en) 2009-09-30 2013-09-11 大阪瓦斯株式会社 Polyester resin having a fluorene skeleton
JP5437106B2 (en) 2010-02-19 2014-03-12 大阪ガスケミカル株式会社 Polyester resin having a fluorene skeleton
CN104230671B (en) * 2014-07-18 2016-03-09 宿迁市永星化工有限公司 The solvate crystals of two (the 6-hydroxyl naphthalene-2-base) fluorenes of 9,9-and preparation thereof
JP6739136B2 (en) * 2015-07-08 2020-08-12 田岡化学工業株式会社 Crystal of alcohol having fluorene skeleton and method for producing the same
CN106242955A (en) * 2015-07-17 2016-12-21 宿迁市永星化工有限公司 The preparation of high-bulk-density 9,9-bis-[3-phenyl-4-(2-hydroxyl-oxethyl) phenyl] fluorenes crystal
JP6739137B2 (en) 2015-07-21 2020-08-12 田岡化学工業株式会社 Crystal of alcohol having fluorene skeleton and method for producing the same
JP6931984B2 (en) 2016-09-21 2021-09-08 田岡化学工業株式会社 Crystals of alcohol compounds having a fluorene skeleton and methods for producing them
JP6830304B2 (en) * 2016-11-08 2021-02-17 田岡化学工業株式会社 Method for Purifying Dihydroxy Compound with Fluorene Skeleton

Also Published As

Publication number Publication date
CN112638852A (en) 2021-04-09
TW202031630A (en) 2020-09-01
JP7379770B2 (en) 2023-11-15
WO2020059710A1 (en) 2020-03-26
KR20210063323A (en) 2021-06-01
TWI810366B (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6426226B2 (en) Crystal form of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
JP6083901B2 (en) Method for producing binaphthalene compound
EP3805195B1 (en) Crystal of 2,2&#39;-bis(carboxymethoxy)-1,1&#39;-binaphthyl
CN107848933B (en) Crystal of alcohol having fluorene skeleton and method for producing same
KR102564609B1 (en) Crystals of alcohol having fluorene skeleton, and method for producing same
KR102219152B1 (en) Crystal polymorph of 2,2&#39;-bis(2-hydroxyethoxy)-1,1&#39;-binaphthalene and method for producing same
JP7379770B2 (en) Crystalline form of bisfluorene compound
WO2021015083A1 (en) Crystal of 2, 2&#39;-bis(ethoxycarbonylmethoxy)-1, 1&#39;-binaphthyl
JP5014724B2 (en) Method for producing dioxane glycol
JP7358696B2 (en) Crystalline mixture of bisfluorene compounds
WO2020171039A1 (en) Novel fluorene compound
JP6994299B2 (en) A method for purifying a dihydroxy compound having a fluorene skeleton
JPWO2020004207A1 (en) Crystals of 9,9-bis (4-hydroxyphenyl) -2,3-benzofluorene
JP2021042191A (en) (±)-2,2&#39;-bis-(2-hydroxyethoxy)-1,1&#39;-binaphthyl crystal and preparation method thereof
JP4662026B2 (en) Method for producing glycidyl methacrylate
WO2023234158A1 (en) Crystal of 4,4&#39;-bis(1,1-bis(4-hydroxy-3-methylphenyl)ethyl)biphenyl and method for producing same
WO2023176736A1 (en) Novel 1,3-bis(1-methyl-1-phenylethyl)benzene compound
JP2019026627A (en) Novel bisphenol compound
WO2017170096A1 (en) Method for producing novel dihydroxy compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230919

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7379770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150