JPWO2020012524A1 - Heat exchanger unit and refrigeration cycle equipment - Google Patents

Heat exchanger unit and refrigeration cycle equipment Download PDF

Info

Publication number
JPWO2020012524A1
JPWO2020012524A1 JP2020529850A JP2020529850A JPWO2020012524A1 JP WO2020012524 A1 JPWO2020012524 A1 JP WO2020012524A1 JP 2020529850 A JP2020529850 A JP 2020529850A JP 2020529850 A JP2020529850 A JP 2020529850A JP WO2020012524 A1 JPWO2020012524 A1 JP WO2020012524A1
Authority
JP
Japan
Prior art keywords
heat exchange
heat
heat exchanger
transfer tube
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020529850A
Other languages
Japanese (ja)
Other versions
JP6972346B2 (en
Inventor
龍一 永田
龍一 永田
前田 剛志
剛志 前田
石橋 晃
晃 石橋
真哉 東井上
真哉 東井上
中村 伸
伸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020012524A1 publication Critical patent/JPWO2020012524A1/en
Application granted granted Critical
Publication of JP6972346B2 publication Critical patent/JP6972346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器ユニットは、複数の熱交換部を有する熱交換器と、熱交換器に空気を供給するファンと、を備え、複数の熱交換部のそれぞれは、伝熱管と、伝熱管の風上側端部から風上側に延びた風上側フィン及び伝熱管の風下側端部から風下側に延びた風下側フィンの少なくとも一方と、を有しており、複数の熱交換部は、第1熱交換部と第2熱交換部とを有しており、伝熱管の延伸方向と交差する熱交換器の断面において、第1熱交換部には第1風速で空気が供給され、第2熱交換部には第1風速よりも速い第2風速で空気が供給され、上記断面において、空気の流れに沿う方向での第1熱交換部の長さは、空気の流れに沿う方向での第2熱交換部の長さよりも長い。The heat exchanger unit includes a heat exchanger having a plurality of heat exchangers and a fan for supplying air to the heat exchangers, and each of the plurality of heat exchangers has a heat transfer tube and a wind side of the heat transfer tube. It has at least one of the leeward fin extending from the end to the leeward side and the leeward fin extending from the leeward end of the heat transfer tube to the leeward side, and the plurality of heat exchange portions have the first heat exchange. In the cross section of the heat exchanger which has a part and a second heat exchange part and intersects the extending direction of the heat transfer tube, air is supplied to the first heat exchange part at the first wind speed, and the second heat exchange part Is supplied with air at a second wind velocity faster than the first wind velocity, and in the above cross section, the length of the first heat exchange portion in the direction along the air flow is the second heat in the direction along the air flow. Longer than the length of the exchange.

Description

本発明は、熱交換器及びファンを有する熱交換器ユニット、並びに熱交換器ユニットを備えた冷凍サイクル装置に関するものである。 The present invention relates to a heat exchanger unit having a heat exchanger and a fan, and a refrigeration cycle apparatus including the heat exchanger unit.

特許文献1には、複数の扁平管を備えた空気調和機用フィンレス熱交換器が記載されている。この空気調和機用フィンレス熱交換器において、複数の扁平管は、当該各扁平管の長径方向が空気の流れに対してほぼ平行となるように配置されている。また、複数の扁平管は、空気の流れの方向と交差する方向に一列に等間隔に並置されている。 Patent Document 1 describes a finless heat exchanger for an air conditioner including a plurality of flat tubes. In this finless heat exchanger for an air conditioner, a plurality of flat tubes are arranged so that the major axis direction of each of the flat tubes is substantially parallel to the air flow. Further, the plurality of flat tubes are arranged side by side in a row at equal intervals in a direction intersecting the direction of air flow.

特開2009−145010号公報Japanese Unexamined Patent Publication No. 2009-14510

通常、熱交換器の各伝熱管に供給される空気の風速は必ずしも均一ではない。このため、遅い風速で空気が供給される伝熱管では、空気と内部流体との熱交換量が少なくなり、速い風速で空気が供給される伝熱管では、空気と内部流体との熱交換量が多くなる。したがって、各伝熱管での熱交換量が不均一になるため、熱交換器の熱交換器性能が低下してしまうという課題があった。特に、熱交換器が冷凍サイクルの蒸発器として機能する場合、各伝熱管での熱交換量が不均一になると、各伝熱管の出口での二相冷媒の乾き度が不均一になるため、各伝熱管での冷媒の圧力損失が不均一になる。これにより、各伝熱管への冷媒の分配量が不均一になるため、熱交換器性能の低下が特に生じやすい。 Normally, the wind speed of air supplied to each heat transfer tube of a heat exchanger is not always uniform. Therefore, in a heat transfer tube in which air is supplied at a slow wind speed, the amount of heat exchange between the air and the internal fluid is small, and in a heat transfer tube in which air is supplied at a high wind speed, the amount of heat exchange between the air and the internal fluid is small. More. Therefore, since the amount of heat exchanged in each heat transfer tube becomes non-uniform, there is a problem that the heat exchanger performance of the heat exchanger is deteriorated. In particular, when the heat exchanger functions as an evaporator in a refrigeration cycle, if the amount of heat exchanged in each heat transfer tube becomes non-uniform, the dryness of the two-phase refrigerant at the outlet of each heat transfer tube becomes non-uniform. The pressure loss of the refrigerant in each heat transfer tube becomes non-uniform. As a result, the amount of the refrigerant distributed to each heat transfer tube becomes non-uniform, so that the heat exchanger performance is particularly likely to deteriorate.

本発明は、上述のような課題を解決するためになされたものであり、熱交換器の熱交換器性能を向上させることができる熱交換器ユニット及び冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a heat exchanger unit and a refrigeration cycle device capable of improving the heat exchanger performance of the heat exchanger. ..

本発明に係る熱交換器ユニットは、互いに並列して配置された複数の熱交換部を有する熱交換器と、前記熱交換器に空気を供給するファンと、を備え、前記複数の熱交換部のそれぞれは、伝熱管と、前記伝熱管の風上側端部から風上側に延びた風上側フィン及び前記伝熱管の風下側端部から風下側に延びた風下側フィンの少なくとも一方と、を有しており、前記複数の熱交換部は、第1熱交換部と、第2熱交換部と、を有しており、前記伝熱管の延伸方向と交差する前記熱交換器の断面において、前記第1熱交換部には第1風速で空気が供給され、前記第2熱交換部には前記第1風速よりも速い第2風速で空気が供給され、前記断面において、空気の流れに沿う方向での前記第1熱交換部の長さは、空気の流れに沿う方向での前記第2熱交換部の長さよりも長いものである。
本発明に係る冷凍サイクル装置は、本発明に係る熱交換器ユニットを備えるものである。
The heat exchanger unit according to the present invention includes a heat exchanger having a plurality of heat exchangers arranged in parallel with each other and a fan for supplying air to the heat exchanger, and the plurality of heat exchangers. Each has a heat transfer tube, and at least one of a wind-up fin extending from the wind-up end of the heat transfer tube to the wind-up side and a wind-down fin extending from the wind-down end of the heat transfer tube to the wind-down side. The plurality of heat exchange units include a first heat exchange unit and a second heat exchange unit, and in a cross section of the heat exchanger that intersects the extending direction of the heat transfer tube, the said. Air is supplied to the first heat exchange section at the first wind speed, air is supplied to the second heat exchange section at a second wind speed higher than the first wind speed, and the direction along the air flow in the cross section. The length of the first heat exchange section in the above is longer than the length of the second heat exchange section in the direction along the air flow.
The refrigeration cycle apparatus according to the present invention includes a heat exchanger unit according to the present invention.

本発明によれば、第1風速で空気が供給される第1熱交換部では、第1風速よりも速い第2風速で空気が供給される第2熱交換部と比較して、空気に対する伝熱面積が大きくなる。このため、第1熱交換部での熱交換量を第2熱交換部での熱交換量に近づけることができる。したがって、本発明によれば、複数の熱交換部のそれぞれでの熱交換量をより均一にすることができるため、熱交換器の熱交換器性能を向上させることができる。 According to the present invention, the first heat exchange unit in which air is supplied at the first wind speed transfers heat to air as compared with the second heat exchange unit in which air is supplied at a second wind speed faster than the first wind speed. The heat area becomes large. Therefore, the amount of heat exchanged in the first heat exchange unit can be made close to the amount of heat exchanged in the second heat exchange unit. Therefore, according to the present invention, the amount of heat exchange in each of the plurality of heat exchange units can be made more uniform, so that the heat exchanger performance of the heat exchanger can be improved.

本発明の実施の形態1に係る熱交換器ユニット100の要部構成を示す断面図である。It is sectional drawing which shows the main part structure of the heat exchanger unit 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器ユニット100の要部構成の変形例を示す断面図である。It is sectional drawing which shows the modification of the main part structure of the heat exchanger unit 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱交換器ユニット100の要部構成を示す断面図である。It is sectional drawing which shows the main part structure of the heat exchanger unit 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器ユニット100の要部構成の変形例を示す断面図である。It is sectional drawing which shows the modification of the main part structure of the heat exchanger unit 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器ユニット100の要部構成を示す断面図である。It is sectional drawing which shows the main part structure of the heat exchanger unit 100 which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置200の構成を示す回路図である。It is a circuit diagram which shows the structure of the refrigeration cycle apparatus 200 which concerns on Embodiment 4 of this invention.

実施の形態1.
本発明の実施の形態1に係る熱交換器ユニットについて説明する。図1は、本実施の形態に係る熱交換器ユニット100の要部構成を示す断面図である。図1及び後述する図2〜図5では、以下のような座標系が定義されている。すなわち、伝熱管30の延伸方向と平行な方向にz軸をとり、z軸と垂直な平面内で空気の流れに沿う方向にx軸をとり、風上側を+x方向とし、z軸及びx軸のいずれとも直交する方向にy軸をとる。図1及び後述する図2〜図5では、x軸及びy軸の双方と平行なx−y平面で熱交換器20を切断した断面構成を示している。また、図1及び後述する図2〜図5では、熱交換器20に供給される空気の風速分布を併せて示している。熱交換器ユニット100は、例えば、冷凍サイクル装置の室外機又は室内機として用いられる。
Embodiment 1.
The heat exchanger unit according to the first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a configuration of a main part of the heat exchanger unit 100 according to the present embodiment. In FIG. 1 and FIGS. 2 to 5 described later, the following coordinate systems are defined. That is, the z-axis is taken in the direction parallel to the extending direction of the heat transfer tube 30, the x-axis is taken in the direction along the air flow in the plane perpendicular to the z-axis, the wind side is the + x direction, and the z-axis and the x-axis The y-axis is taken in the direction orthogonal to any of the above. 1 and 2 to 5 described later show a cross-sectional configuration in which the heat exchanger 20 is cut in an xy plane parallel to both the x-axis and the y-axis. Further, in FIG. 1 and FIGS. 2 to 5 described later, the wind speed distribution of the air supplied to the heat exchanger 20 is also shown. The heat exchanger unit 100 is used, for example, as an outdoor unit or an indoor unit of a refrigeration cycle device.

図1に示すように、熱交換器ユニット100は、熱交換器20と、熱交換器20に空気を供給するファン50と、少なくとも熱交換器20及びファン50を収容する不図示の筐体と、を有している。ファン50は、熱交換器20と対面して配置されたプロペラファンである。ファン50は、回転軸O上に設けられたボス51と、ボス51の外周側に設けられた複数の翼52と、を有している。ファン50は、回転軸Oがx軸と平行になるように配置されている。すなわち、図1に示す熱交換器ユニット100は、サイドフロー型の構成を有している。 As shown in FIG. 1, the heat exchanger unit 100 includes a heat exchanger 20, a fan 50 that supplies air to the heat exchanger 20, and a housing (not shown) that houses at least the heat exchanger 20 and the fan 50. ,have. The fan 50 is a propeller fan arranged facing the heat exchanger 20. The fan 50 has a boss 51 provided on the rotation shaft O, and a plurality of blades 52 provided on the outer peripheral side of the boss 51. The fan 50 is arranged so that the rotation axis O is parallel to the x-axis. That is, the heat exchanger unit 100 shown in FIG. 1 has a side flow type configuration.

熱交換器20は、互いに並列して配置された複数の熱交換部35を有している。図1では9個の熱交換部35を示している。以下の説明では、9個の熱交換部35を識別するために、各熱交換部35を図1中の左方から順に熱交換部35A、35B、35C、35D、35E、35F、35G、35H、35Iという場合がある。複数の熱交換部35のそれぞれは、1つの伝熱管30と、伝熱管30の風上側に設けられた1つの風上側フィン31と、伝熱管30の風下側に設けられた1つの風下側フィン32と、を有している。熱交換器20は、伝熱管30を流れる内部流体と、空気と、の熱交換を行う空気熱交換器である。熱交換器20が冷凍サイクル装置の一部を構成する場合、伝熱管30を流れる内部流体としては冷媒が用いられる。 The heat exchanger 20 has a plurality of heat exchange units 35 arranged in parallel with each other. FIG. 1 shows nine heat exchange units 35. In the following description, in order to identify the nine heat exchange units 35, the heat exchange units 35 are arranged in order from the left in FIG. 1 in order of heat exchange units 35A, 35B, 35C, 35D, 35E, 35F, 35G, 35H. , 35I. Each of the plurality of heat exchange portions 35 has one heat transfer tube 30, one windward fin 31 provided on the windward side of the heat transfer tube 30, and one leeward fin provided on the leeward side of the heat transfer tube 30. 32 and. The heat exchanger 20 is an air heat exchanger that exchanges heat between the internal fluid flowing through the heat transfer tube 30 and air. When the heat exchanger 20 constitutes a part of the refrigeration cycle device, a refrigerant is used as the internal fluid flowing through the heat transfer tube 30.

複数の伝熱管30は、互いに並列して配置されている。複数の伝熱管30の並列方向は、例えば、伝熱管30の延伸方向及び空気の流れ方向のいずれとも垂直となるy軸方向である。複数の伝熱管30は、一対のヘッダ(図示せず)によって挟まれている。各伝熱管30の一端は一方のヘッダに接続されており、各伝熱管30の他端は他方のヘッダに接続されている。各ヘッダの長手方向は、複数の伝熱管30の並列方向と同じ方向である。 The plurality of heat transfer tubes 30 are arranged in parallel with each other. The parallel direction of the plurality of heat transfer tubes 30 is, for example, the y-axis direction that is perpendicular to both the extension direction of the heat transfer tubes 30 and the air flow direction. The plurality of heat transfer tubes 30 are sandwiched by a pair of headers (not shown). One end of each heat transfer tube 30 is connected to one header, and the other end of each heat transfer tube 30 is connected to the other header. The longitudinal direction of each header is the same as the parallel direction of the plurality of heat transfer tubes 30.

複数の熱交換部35のそれぞれにおいて、伝熱管30、風上側フィン31及び風下側フィン32は熱的及び物理的に接続されている。伝熱管30、風上側フィン31及び風下側フィン32は、同一材料を用いて一体成形されていてもよいし、別部材として形成されていてもよい。伝熱管30、風上側フィン31及び風下側フィン32はいずれも、アルミニウム、銅又は真鍮などの高い熱伝導性を有する金属材料を用いて形成されるのが望ましい。 In each of the plurality of heat exchange units 35, the heat transfer tube 30, the leeward fin 31 and the leeward fin 32 are thermally and physically connected. The heat transfer tube 30, the leeward fin 31 and the leeward fin 32 may be integrally molded using the same material, or may be formed as separate members. It is desirable that the heat transfer tube 30, the leeward fin 31 and the leeward fin 32 are all formed by using a metal material having high thermal conductivity such as aluminum, copper or brass.

本実施の形態では、伝熱管30として、一方向に扁平な断面形状を有する扁平管が用いられている。以下、扁平管の延伸方向と垂直な断面における扁平管の長径方向のことを、単に扁平管の長径方向という場合がある。伝熱管30として扁平管が用いられる場合には、扁平管の長径方向のことを伝熱管30の長径方向という場合がある。伝熱管30は、伝熱管30の長径方向が空気の流れ方向と平行になるように設けられている。すなわち、伝熱管30の長径方向は、x軸方向と平行になっている。各伝熱管30の長径寸法は全て同一である。伝熱管30の内部には、内部流体を流通させる複数の流体通路40が形成されている。各伝熱管30の複数の流体通路40は、伝熱管30の長径方向に沿って並列している。各流体通路40は、伝熱管30の延伸方向に沿って延伸している。 In the present embodiment, as the heat transfer tube 30, a flat tube having a flat cross-sectional shape in one direction is used. Hereinafter, the major axis direction of the flat tube in the cross section perpendicular to the extension direction of the flat tube may be simply referred to as the major axis direction of the flat tube. When a flat tube is used as the heat transfer tube 30, the major axis direction of the flat tube may be referred to as the major axis direction of the heat transfer tube 30. The heat transfer tube 30 is provided so that the major axis direction of the heat transfer tube 30 is parallel to the air flow direction. That is, the major axis direction of the heat transfer tube 30 is parallel to the x-axis direction. The major axis dimensions of each heat transfer tube 30 are all the same. Inside the heat transfer tube 30, a plurality of fluid passages 40 through which the internal fluid flows are formed. The plurality of fluid passages 40 of each heat transfer tube 30 are arranged in parallel along the major axis direction of the heat transfer tube 30. Each fluid passage 40 extends along the extending direction of the heat transfer tube 30.

伝熱管30は、当該伝熱管30の長径方向の端部として、風上側に位置する風上側端部30aと、風下側に位置する風下側端部30bと、を有している。風上側フィン31は、伝熱管30の延伸方向と垂直な断面において、風上側端部30aから伝熱管30の長径方向に沿って風上側に延びている。また、風上側フィン31は、伝熱管30の延伸方向に沿っても延びている。風上側フィン31は、例えば、伝熱管30の延伸方向に沿った長辺を有する長方形平板状の形状を有している。伝熱管30として扁平管が用いられている場合、風上側フィン31の板厚寸法は、当該扁平管の短径寸法よりも小さくなっている。伝熱管30として円管が用いられている場合、風上側フィン31の板厚寸法は、当該円管の外径寸法よりも小さくなっている。風上側フィン31には、流体通路40が形成されていない。 The heat transfer tube 30 has a windward end 30a located on the leeward side and a leeward end 30b located on the leeward side as end portions in the major axis direction of the heat transfer tube 30. The windward fin 31 extends from the windward end 30a to the windward side along the major axis direction of the heat transfer tube 30 in a cross section perpendicular to the extending direction of the heat transfer tube 30. The windward fin 31 also extends along the extending direction of the heat transfer tube 30. The windward fin 31 has, for example, a rectangular flat plate shape having a long side along the extending direction of the heat transfer tube 30. When a flat tube is used as the heat transfer tube 30, the plate thickness dimension of the windward fin 31 is smaller than the minor axis dimension of the flat tube. When a circular tube is used as the heat transfer tube 30, the plate thickness dimension of the windward fin 31 is smaller than the outer diameter dimension of the circular tube. The fluid passage 40 is not formed in the windward fin 31.

風下側フィン32は、伝熱管30の延伸方向と垂直な断面において、風下側端部30bから伝熱管30の長径方向に沿って風下側に延びている。また、風下側フィン32は、伝熱管30の延伸方向に沿っても延びている。風下側フィン32は、例えば、伝熱管30の延伸方向に沿った長辺を有する長方形平板状の形状を有している。伝熱管30として扁平管が用いられている場合、風下側フィン32の板厚寸法は、当該扁平管の短径寸法よりも小さくなっている。伝熱管30として円管が用いられている場合、風下側フィン32の板厚寸法は、当該円管の外径寸法よりも小さくなっている。風下側フィン32には、流体通路40が形成されていない。 The leeward fin 32 extends from the leeward end 30b to the leeward side along the major axis direction of the heat transfer tube 30 in a cross section perpendicular to the extension direction of the heat transfer tube 30. The leeward fin 32 also extends along the extending direction of the heat transfer tube 30. The leeward fin 32 has, for example, a rectangular flat plate shape having a long side along the extending direction of the heat transfer tube 30. When a flat tube is used as the heat transfer tube 30, the plate thickness dimension of the leeward fin 32 is smaller than the minor axis dimension of the flat tube. When a circular tube is used as the heat transfer tube 30, the plate thickness dimension of the leeward fin 32 is smaller than the outer diameter dimension of the circular tube. The fluid passage 40 is not formed on the leeward fin 32.

熱交換部35が風上側フィン31及び風下側フィン32を有することにより、熱交換部35と空気との伝熱面積を増加させることができるため、熱交換器20の熱交換器性能を向上させることができる。なお、本実施の形態において、風上側フィン31又は風下側フィン32の一方は省略することも可能である。 Since the heat exchange unit 35 has the wind upper fin 31 and the leeward fin 32, the heat transfer area between the heat exchange unit 35 and the air can be increased, so that the heat exchanger performance of the heat exchanger 20 is improved. be able to. In this embodiment, one of the leeward fin 31 and the leeward fin 32 can be omitted.

複数の熱交換部35のうち互いに隣り合う2つの熱交換部35の間には、空気が流通する風路となる間隙33が形成されている。互いに隣り合う2つの熱交換部35の間には、当該2つの熱交換部35を接続する伝熱フィンが設けられていない。すなわち、熱交換器20は、いわゆるフィンレス型の熱交換器である。互いに隣り合う2つの熱交換部35の間に伝熱フィンが設けられていないことから、複数の熱交換部35は、一対のヘッダを介してのみ、互いに機械的に接続されている。また、複数の熱交換部35は、実質的に、一対のヘッダを介してのみ、互いに熱的に接続されている。 A gap 33 that serves as an air passage for air is formed between two heat exchange units 35 that are adjacent to each other among the plurality of heat exchange units 35. A heat transfer fin for connecting the two heat exchange units 35 is not provided between the two heat exchange units 35 adjacent to each other. That is, the heat exchanger 20 is a so-called finless type heat exchanger. Since no heat transfer fins are provided between the two heat exchange units 35 adjacent to each other, the plurality of heat exchange units 35 are mechanically connected to each other only via a pair of headers. Also, the plurality of heat exchange units 35 are substantially thermally connected to each other only via a pair of headers.

複数の熱交換部35は、伝熱管30の並列方向に沿って概ね等間隔にかつ互いに平行に配置されている。これにより、伝熱管30、風上側フィン31及び風下側フィン32のそれぞれも、伝熱管30の並列方向に沿って概ね等間隔でかつ互いに平行に配置されている。 The plurality of heat exchange units 35 are arranged at substantially equal intervals and parallel to each other along the parallel direction of the heat transfer tubes 30. As a result, the heat transfer tube 30, the leeward fin 31 and the leeward fin 32 are also arranged at substantially equal intervals and parallel to each other along the parallel direction of the heat transfer tube 30.

複数の熱交換部35のそれぞれの長さについて説明する。熱交換部35の長さは、伝熱管30の延伸方向と交差する断面において、空気の流れに沿う方向での熱交換部35の風上側端部から風下側端部までの距離によって特定される。熱交換部35の風上側端部とは、風上側フィン31を備える熱交換部35では風上側フィン31の風上側端部31aのことであり、風上側フィン31を備えない熱交換部35では伝熱管30の風上側端部30aのことである。また、熱交換部35の風下側端部とは、風下側フィン32を備える熱交換部35では風下側フィン32の風下側端部32aのことであり、風下側フィン32を備えない熱交換部35では伝熱管30の風下側端部30bのことである。風上側フィン31及び風下側フィン32の双方を備える熱交換部35の長さは、伝熱管30の長径寸法と、風上側フィン31の長さと、風下側フィン32の長さとの和になる。 The length of each of the plurality of heat exchange units 35 will be described. The length of the heat exchange portion 35 is specified by the distance from the windward end portion to the leeward end portion of the heat exchange portion 35 in the direction along the air flow in the cross section intersecting the extending direction of the heat transfer tube 30. .. The windward end of the heat exchange unit 35 is the windward end 31a of the windward fin 31 in the heat exchange 35 having the windward fin 31, and the heat exchange unit 35 not having the windward fin 31. This is the windward end 30a of the heat transfer tube 30. The leeward end of the heat exchange unit 35 is the leeward end 32a of the leeward fin 32 in the heat exchange 35 having the leeward fin 32, and the heat exchange unit does not have the leeward fin 32. In No. 35, it means the leeward end portion 30b of the heat transfer tube 30. The length of the heat exchange portion 35 including both the leeward fin 31 and the leeward fin 32 is the sum of the major axis dimension of the heat transfer tube 30, the length of the leeward fin 31, and the length of the leeward fin 32.

ここで、ファン50の回転軸Oを含み伝熱管30の延伸方向と平行な平面を基準面P0とする。基準面P0は、x−z平面と平行になる。サイドフロー型の熱交換器ユニット100では、大まかには、図1に示すような風速分布で熱交換器20に空気が供給される。すなわち、基準面P0に近い熱交換部35ほど速い風速で空気が供給され、基準面P0から離れた熱交換部35ほど遅い風速で空気が供給される。 Here, the plane including the rotation axis O of the fan 50 and parallel to the extending direction of the heat transfer tube 30 is defined as the reference plane P0. The reference plane P0 is parallel to the x-z plane. In the side-flow type heat exchanger unit 100, air is roughly supplied to the heat exchanger 20 with a wind speed distribution as shown in FIG. That is, the heat exchange unit 35 closer to the reference surface P0 is supplied with air at a faster wind speed, and the heat exchange unit 35 away from the reference surface P0 is supplied with air at a slower wind speed.

複数の熱交換部35のうち、熱交換部35H及び熱交換部35Fに注目する。図1に示す断面において、熱交換部35Hには風速v1で空気が供給され、熱交換部35Fには、風速v1よりも速い風速v2で空気が供給される(v1<v2)。また、同断面において、熱交換部35Hの長さL1は、熱交換部35Fの長さL2よりも長くなっている(L1>L2)。つまり、熱交換部35の長さは、当該熱交換部35に供給される空気の風速が速いほど短くなっており、当該熱交換部35に供給される空気の風速が遅いほど長くなっている。 Of the plurality of heat exchange units 35, attention is paid to the heat exchange unit 35H and the heat exchange unit 35F. In the cross section shown in FIG. 1, air is supplied to the heat exchange unit 35H at a wind speed v1 and air is supplied to the heat exchange unit 35F at a wind speed v2 faster than the wind speed v1 (v1 <v2). Further, in the same cross section, the length L1 of the heat exchange unit 35H is longer than the length L2 of the heat exchange unit 35F (L1> L2). That is, the length of the heat exchange unit 35 becomes shorter as the wind speed of the air supplied to the heat exchange unit 35 becomes faster, and becomes longer as the wind speed of the air supplied to the heat exchange unit 35 becomes slower. ..

次に、熱交換部35B及び熱交換部35Cに注目する。熱交換部35Bと基準面P0との距離D1は、熱交換部35Cと基準面P0との距離D2よりも遠くなっている(D1>D2)。また、図1に示す断面において、熱交換部35Bの長さL3は、熱交換部35Cの長さL4よりも長くなっている(L3>L4)。つまり、熱交換部35の長さは、当該熱交換部35と基準面P0との距離が近いほど短くなっており、当該熱交換部35と基準面P0との距離が遠いほど長くなっている。熱交換部35A〜35Iのうち基準面P0から最も離れた熱交換部35A及び35Iの長さは、最も長くなっている。 Next, pay attention to the heat exchange unit 35B and the heat exchange unit 35C. The distance D1 between the heat exchange unit 35B and the reference surface P0 is farther than the distance D2 between the heat exchange unit 35C and the reference surface P0 (D1> D2). Further, in the cross section shown in FIG. 1, the length L3 of the heat exchange unit 35B is longer than the length L4 of the heat exchange unit 35C (L3> L4). That is, the length of the heat exchange unit 35 becomes shorter as the distance between the heat exchange unit 35 and the reference surface P0 becomes shorter, and becomes longer as the distance between the heat exchange unit 35 and the reference surface P0 increases. .. Of the heat exchange units 35A to 35I, the heat exchange units 35A and 35I farthest from the reference surface P0 have the longest length.

本実施の形態では、伝熱管30の長径寸法及び風下側フィン32の長さは、各熱交換部35で一定になっている。このため、風上側フィン31の長さのみが熱交換部35毎に異なっている。熱交換部35H及び熱交換部35Fに注目すると、熱交換部35Hの風上側フィン31の長さは、熱交換部35Fの風上側フィン31の長さよりも長くなっている。つまり、熱交換部35の風上側フィン31の長さは、当該熱交換部35に供給される空気の風速が速いほど短くなっており、当該熱交換部35に供給される空気の風速が遅いほど長くなっている。また、熱交換部35B及び熱交換部35Cに注目すると、熱交換部35Hの風上側フィン31の長さは、熱交換部35Fの風上側フィン31の長さよりも長くなっている。つまり、熱交換部35の風上側フィン31の長さは、当該熱交換部35と基準面P0との距離が近いほど短くなっており、当該熱交換部35と基準面P0との距離が遠いほど長くなっている。本実施の形態では、全ての熱交換部35において、風上側フィン31の長さは、風下側フィン32の長さよりも長くなっている。 In the present embodiment, the major axis dimension of the heat transfer tube 30 and the length of the leeward fin 32 are constant in each heat exchange section 35. Therefore, only the length of the windward fin 31 is different for each heat exchange unit 35. Focusing on the heat exchange section 35H and the heat exchange section 35F, the length of the windward fin 31 of the heat exchange section 35H is longer than the length of the windward fin 31 of the heat exchange section 35F. That is, the length of the wind upper fin 31 of the heat exchange unit 35 becomes shorter as the wind speed of the air supplied to the heat exchange unit 35 becomes faster, and the wind speed of the air supplied to the heat exchange unit 35 becomes slower. It's getting longer. Focusing on the heat exchange section 35B and the heat exchange section 35C, the length of the windward fin 31 of the heat exchange section 35H is longer than the length of the windward fin 31 of the heat exchange section 35F. That is, the length of the windward fin 31 of the heat exchange unit 35 becomes shorter as the distance between the heat exchange unit 35 and the reference surface P0 becomes shorter, and the distance between the heat exchange unit 35 and the reference surface P0 becomes longer. It's getting longer. In the present embodiment, the length of the leeward fin 31 is longer than the length of the leeward fin 32 in all the heat exchange portions 35.

次に、本実施の形態に係る熱交換器ユニット100の動作について説明する。ここでは、熱交換器20が冷凍サイクル装置の室外熱交換器として用いられ、暖房運転が行われる場合を例に挙げて説明する。この場合、熱交換器20では、伝熱管30を流れる低圧の二相冷媒とファン50によって供給される室外空気との熱交換が、伝熱管30、風上側フィン31及び風下側フィン32を介して行われる。熱交換器20は、室外空気から吸熱して冷媒を蒸発させる蒸発器として機能する。 Next, the operation of the heat exchanger unit 100 according to the present embodiment will be described. Here, a case where the heat exchanger 20 is used as an outdoor heat exchanger of the refrigeration cycle apparatus and a heating operation is performed will be described as an example. In this case, in the heat exchanger 20, heat exchange between the low-pressure two-phase refrigerant flowing through the heat transfer tube 30 and the outdoor air supplied by the fan 50 is performed via the heat transfer tube 30, the windward fin 31 and the leeward fin 32. Will be done. The heat exchanger 20 functions as an evaporator that absorbs heat from the outdoor air and evaporates the refrigerant.

ファン50によって熱交換器20に供給される空気には、図1に示すように複数の伝熱管30の並列方向で不均一な風速分布が生じる。このため、空気の流れに沿う方向における各熱交換部35の長さが一定であると仮定した場合、遅い風速で空気が供給される熱交換部35では空気と冷媒との熱交換量が少なくなり、速い風速で空気が供給される熱交換部35では空気と冷媒との熱交換量が多くなる。したがって、各熱交換部35での熱交換量が不均一になるため、熱交換器20の熱交換器性能が低下してしまう。 As shown in FIG. 1, the air supplied to the heat exchanger 20 by the fan 50 has a non-uniform wind speed distribution in the parallel direction of the plurality of heat transfer tubes 30. Therefore, assuming that the length of each heat exchange unit 35 in the direction along the air flow is constant, the amount of heat exchange between the air and the refrigerant is small in the heat exchange unit 35 in which the air is supplied at a slow wind speed. Therefore, in the heat exchange unit 35 in which air is supplied at a high wind speed, the amount of heat exchange between air and the refrigerant increases. Therefore, the amount of heat exchanged in each heat exchanger 35 becomes non-uniform, and the heat exchanger performance of the heat exchanger 20 deteriorates.

特に、熱交換器20が蒸発器として機能する場合、各熱交換部35での熱交換量が不均一になると、各伝熱管30の出口での二相冷媒の乾き度が不均一になる。二相冷媒の配管内での圧力損失は、乾き度に応じて変化する。このため、各伝熱管30の出口での二相冷媒の乾き度が不均一になると、各伝熱管30での冷媒の圧力損失が不均一になることによって各伝熱管30の圧力バランスが崩れ、各伝熱管30への冷媒の分配量が不均一になってしまう。したがって、蒸発器として機能する熱交換器20では、熱交換器性能の低下が特に生じやすかった。 In particular, when the heat exchanger 20 functions as an evaporator, if the amount of heat exchanged at each heat exchange unit 35 becomes non-uniform, the dryness of the two-phase refrigerant at the outlet of each heat transfer tube 30 becomes non-uniform. The pressure loss in the piping of the two-phase refrigerant changes according to the degree of dryness. Therefore, if the dryness of the two-phase refrigerant at the outlet of each heat transfer tube 30 becomes non-uniform, the pressure loss of the refrigerant at each heat transfer tube 30 becomes non-uniform, and the pressure balance of each heat transfer tube 30 is lost. The amount of refrigerant distributed to each heat transfer tube 30 becomes non-uniform. Therefore, in the heat exchanger 20 that functions as an evaporator, the heat exchanger performance is particularly likely to deteriorate.

これに対し、本実施の形態では、相対的に遅い風速で空気が供給される熱交換部35の長さは長くなっており、相対的に速い風速で空気が供給される熱交換部35の長さは短くなっている。これにより、遅い風速で空気が供給される熱交換部35では、速い風速で空気が供給される熱交換部35と比較して、空気に対する伝熱面積が大きくなる。このため、遅い風速で空気が供給される熱交換部35での熱交換量を、速い風速で空気が供給される熱交換部35での熱交換量に近づけることができる。したがって、本実施の形態によれば、ファン50によって熱交換器20に供給される空気に不均一な風速分布が生じる場合であっても、各熱交換部35での熱交換量をより均一にすることができるため、熱交換器20の熱交換器性能を向上させることができる。 On the other hand, in the present embodiment, the length of the heat exchange unit 35 to which air is supplied at a relatively slow wind speed is long, and the heat exchange unit 35 to which air is supplied at a relatively high wind speed The length is getting shorter. As a result, the heat exchange unit 35, in which air is supplied at a slow wind speed, has a larger heat transfer area for air than the heat exchange unit 35, in which air is supplied at a high wind speed. Therefore, the amount of heat exchange in the heat exchange unit 35 in which air is supplied at a slow wind speed can be made close to the amount of heat exchange in the heat exchange unit 35 in which air is supplied at a high wind speed. Therefore, according to the present embodiment, even when the air supplied to the heat exchanger 20 by the fan 50 has a non-uniform wind velocity distribution, the heat exchange amount in each heat exchange unit 35 becomes more uniform. Therefore, the heat exchanger performance of the heat exchanger 20 can be improved.

ここでは、熱交換器20が暖房運転時の蒸発器として機能する場合について説明したが、熱交換器20が暖房運転時の凝縮器、冷房運転時の蒸発器又は冷房運転時の凝縮器として機能する場合であっても同様の効果が得られる。 Here, the case where the heat exchanger 20 functions as an evaporator during the heating operation has been described, but the heat exchanger 20 functions as a condenser during the heating operation, an evaporator during the cooling operation, or a condenser during the cooling operation. Even if this is done, the same effect can be obtained.

図2は、本実施の形態に係る熱交換器ユニット100の要部構成の変形例を示す断面図である。図2に示すように、本変形例では、風上側フィン31の長さだけでなく、風下側フィン32の長さも熱交換部35毎に異なっている。伝熱管30の長径寸法は、各熱交換部35で一定になっている。熱交換部35H及び熱交換部35Fに注目すると、図2に示す断面において、熱交換部35Hの風下側フィン32の長さは、熱交換部35Fの風下側フィン32の長さよりも長くなっている。つまり、熱交換部35の風下側フィン32の長さは、当該熱交換部35に供給される空気の風速が速いほど短くなっており、当該熱交換部35に供給される空気の風速が遅いほど長くなっている。また、熱交換部35B及び熱交換部35Cに注目すると、図2に示す断面において、熱交換部35Bの風下側フィン32の長さは、熱交換部35Cの風下側フィン32の長さよりも長くなっている。つまり、熱交換部35の風下側フィン32の長さは、当該熱交換部35と基準面P0との距離が近いほど短くなっており、当該熱交換部35と基準面P0との距離が遠いほど長くなっている。本変形例では、全ての熱交換部35において、風上側フィン31の長さと風下側フィン32の長さとが等しい。 FIG. 2 is a cross-sectional view showing a modified example of the configuration of the main part of the heat exchanger unit 100 according to the present embodiment. As shown in FIG. 2, in this modification, not only the length of the leeward fin 31 but also the length of the leeward fin 32 is different for each heat exchange unit 35. The major axis dimension of the heat transfer tube 30 is constant in each heat exchange section 35. Focusing on the heat exchange section 35H and the heat exchange section 35F, in the cross section shown in FIG. 2, the length of the leeward fin 32 of the heat exchange section 35H is longer than the length of the leeward fin 32 of the heat exchange section 35F. There is. That is, the length of the leeward fin 32 of the heat exchange unit 35 becomes shorter as the wind speed of the air supplied to the heat exchange unit 35 becomes faster, and the wind speed of the air supplied to the heat exchange unit 35 becomes slower. It's getting longer. Focusing on the heat exchange section 35B and the heat exchange section 35C, in the cross section shown in FIG. 2, the length of the leeward fin 32 of the heat exchange section 35B is longer than the length of the leeward fin 32 of the heat exchange section 35C. It has become. That is, the length of the leeward fin 32 of the heat exchange unit 35 becomes shorter as the distance between the heat exchange unit 35 and the reference surface P0 becomes shorter, and the distance between the heat exchange unit 35 and the reference surface P0 becomes longer. It's getting longer. In this modification, the length of the leeward fin 31 and the length of the leeward fin 32 are equal in all the heat exchange portions 35.

以上説明したように、本実施の形態に係る熱交換器ユニット100は、互いに並列して配置された複数の熱交換部35を有する熱交換器20と、熱交換器20に空気を供給するファン50と、備えている。複数の熱交換部35のそれぞれは、伝熱管30と、伝熱管30の風上側端部30aから風上側に延びた風上側フィン31及び伝熱管30の風下側端部30bから風下側に延びた風下側フィン32の少なくとも一方と、を有している。複数の熱交換部35は、熱交換部35Hと、熱交換部35Fと、を有している。伝熱管30の延伸方向と交差する熱交換器20の断面において、熱交換部35Hには風速v1で空気が供給され、熱交換部35Fには風速v1よりも速い風速v2で空気が供給される。上記断面において、空気の流れに沿う方向での熱交換部35Hの長さL1は、空気の流れに沿う方向での熱交換部35Fの長さL2よりも長い。ここで、風速v1は第1風速の一例である。風速v2は第2風速の一例である。熱交換部35Hは第1熱交換部の一例である。熱交換部35Fは第2熱交換部の一例である。 As described above, the heat exchanger unit 100 according to the present embodiment includes a heat exchanger 20 having a plurality of heat exchangers 35 arranged in parallel with each other, and a fan for supplying air to the heat exchanger 20. I have 50. Each of the plurality of heat exchange portions 35 extends from the heat transfer tube 30, the windward fin 31 extending upward from the windward end 30a of the heat transfer tube 30, and the leeward end 30b of the heat transfer tube 30 to the leeward side. It has at least one of the leeward fins 32. The plurality of heat exchange units 35 include a heat exchange unit 35H and a heat exchange unit 35F. In the cross section of the heat exchanger 20 that intersects the extending direction of the heat transfer tube 30, air is supplied to the heat exchange section 35H at a wind speed v1 and air is supplied to the heat exchange section 35F at a wind speed v2 faster than the wind speed v1. .. In the above cross section, the length L1 of the heat exchange section 35H in the direction along the air flow is longer than the length L2 of the heat exchange section 35F in the direction along the air flow. Here, the wind speed v1 is an example of the first wind speed. The wind speed v2 is an example of the second wind speed. The heat exchange unit 35H is an example of the first heat exchange unit. The heat exchange unit 35F is an example of the second heat exchange unit.

この構成によれば、風速v1で空気が供給される熱交換部35Hでは、風速v1よりも速い風速v2で空気が供給される熱交換部35Fと比較して、空気に対する伝熱面積が大きくなる。このため、風速v1で空気が供給される熱交換部35Hでの熱交換量を、風速v2で空気が供給される熱交換部35Fでの熱交換量に近づけることができる。したがって、本実施の形態によれば、ファン50によって熱交換器20に供給される空気に不均一な風速分布が生じる場合であっても、各熱交換部35での熱交換量をより均一にすることができるため、熱交換器20の熱交換器性能を向上させることができる。 According to this configuration, the heat exchange unit 35H in which air is supplied at a wind speed v1 has a larger heat transfer area for air than the heat exchange unit 35F in which air is supplied at a wind speed v2 faster than the wind speed v1. .. Therefore, the amount of heat exchange at the heat exchange unit 35H to which air is supplied at the wind speed v1 can be made close to the amount of heat exchange at the heat exchange unit 35F to which air is supplied at the wind speed v2. Therefore, according to the present embodiment, even when the air supplied to the heat exchanger 20 by the fan 50 has a non-uniform wind velocity distribution, the heat exchange amount in each heat exchange unit 35 becomes more uniform. Therefore, the heat exchanger performance of the heat exchanger 20 can be improved.

また、本実施の形態に係る熱交換器ユニット100において、ファン50は、熱交換器20と対面して配置されたプロペラファンである。複数の熱交換部35は、熱交換部35Bと、熱交換部35Cと、を有している。プロペラファンの回転軸Oを含み伝熱管30の延伸方向と平行な基準面P0と、熱交換部35Bと、の間の距離D1は、基準面P0と熱交換部35Cとの間の距離D2よりも遠くなっている。上記断面において、空気の流れに沿う方向での熱交換部35Bの長さL3は、空気の流れに沿う方向での熱交換部35Cの長さL4よりも長い。ここで、熱交換部35Bは第3熱交換部の一例である。熱交換部35Cは第4熱交換部の一例である。 Further, in the heat exchanger unit 100 according to the present embodiment, the fan 50 is a propeller fan arranged facing the heat exchanger 20. The plurality of heat exchange units 35 include a heat exchange unit 35B and a heat exchange unit 35C. The distance D1 between the reference surface P0 including the rotation axis O of the propeller fan and parallel to the extending direction of the heat transfer tube 30 and the heat exchange section 35B is from the distance D2 between the reference surface P0 and the heat exchange section 35C. Is also far away. In the above cross section, the length L3 of the heat exchange section 35B in the direction along the air flow is longer than the length L4 of the heat exchange section 35C in the direction along the air flow. Here, the heat exchange unit 35B is an example of the third heat exchange unit. The heat exchange unit 35C is an example of the fourth heat exchange unit.

熱交換器20とプロペラファンであるファン50とが対面して配置されたサイドフロー型の熱交換器ユニット100では、通常、基準面P0に近いほど風速が速く、基準面P0から離れるほど風速が遅くなるような風速分布で、熱交換器20に空気が供給される。このため、熱交換部35Bに供給される空気の風速は、熱交換部35Cに供給される空気の風速よりも遅くなる。上記構成によれば、熱交換部35Bでは、熱交換部35Cと比較して、空気に対する伝熱面積が大きくなる。このため、熱交換部35Bでの熱交換量を、熱交換部35Cでの熱交換量に近づけることができる。したがって、本実施の形態によれば、各熱交換部35での熱交換量をより均一にすることができるため、熱交換器20の熱交換器性能を向上させることができる。 In the side-flow type heat exchanger unit 100 in which the heat exchanger 20 and the fan 50, which is a propeller fan, are arranged to face each other, the wind speed is usually higher as the distance from the reference surface P0 is higher, and the wind speed is higher as the distance from the reference surface P0. Air is supplied to the heat exchanger 20 with a slow wind speed distribution. Therefore, the wind speed of the air supplied to the heat exchange unit 35B is slower than the wind speed of the air supplied to the heat exchange unit 35C. According to the above configuration, the heat exchange unit 35B has a larger heat transfer area with respect to air than the heat exchange unit 35C. Therefore, the amount of heat exchanged by the heat exchange unit 35B can be made close to the amount of heat exchanged by the heat exchange unit 35C. Therefore, according to the present embodiment, the amount of heat exchange in each heat exchange unit 35 can be made more uniform, so that the heat exchanger performance of the heat exchanger 20 can be improved.

また、本実施の形態に係る熱交換器ユニット100において、複数の熱交換部35のうち互いに隣り合う2つの熱交換部35の間には、当該2つの熱交換部35を接続する伝熱フィンが設けられていない。この構成によれば、熱交換部35の表面に生じた結露水、又は除霜運転によって熱交換部35の霜が融解した融解水は、伝熱フィンに妨げられることなく排水される。したがって、本実施の形態によれば、熱交換器20の排水性を向上させることができる。また、この構成によれば、伝熱フィンによる制約を受けずに熱交換部35の配置ピッチを決めることができるため、熱交換部35の配置ピッチの自由度を高めることができる。 Further, in the heat exchanger unit 100 according to the present embodiment, the heat transfer fins connecting the two heat exchange units 35 between the two heat exchange units 35 adjacent to each other among the plurality of heat exchange units 35. Is not provided. According to this configuration, the dew condensation water generated on the surface of the heat exchange unit 35 or the melted water in which the frost of the heat exchange unit 35 is melted by the defrosting operation is drained without being hindered by the heat transfer fins. Therefore, according to the present embodiment, the drainage property of the heat exchanger 20 can be improved. Further, according to this configuration, the arrangement pitch of the heat exchange unit 35 can be determined without being restricted by the heat transfer fins, so that the degree of freedom of the arrangement pitch of the heat exchange unit 35 can be increased.

実施の形態2.
本発明の実施の形態2に係る熱交換器ユニットについて説明する。図3は、本実施の形態に係る熱交換器ユニット100の要部構成を示す断面図である。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 2.
The heat exchanger unit according to the second embodiment of the present invention will be described. FIG. 3 is a cross-sectional view showing a main configuration of the heat exchanger unit 100 according to the present embodiment. The components having the same functions and functions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

ファン50のボス51には、空気の搬送機能がない。このため、実際の風速分布では、図3に示すように、回転軸Oと平行に見たときボス51と重なる熱交換部35Eに供給される空気の風速v3は、ボス51と重ならない熱交換部35Dに供給される空気の風速v4よりも遅くなる場合がある。本実施の形態では、図3に示す断面において空気の流れに沿う方向での熱交換部35Eの長さL5は、同断面において空気の流れに沿う方向での熱交換部35Dの長さL6よりも長くなっている(L5>L6)。ここで、熱交換部35Eは、回転軸Oと平行に見たとき少なくとも一部でボス51と重なる熱交換部35であり、熱交換部35Dは、回転軸Oと平行に見たときボス51とは重ならずに翼52の回転軌跡と重なる熱交換部35である。 The boss 51 of the fan 50 does not have an air transport function. Therefore, in the actual wind speed distribution, as shown in FIG. 3, the wind speed v3 of the air supplied to the heat exchange unit 35E that overlaps with the boss 51 when viewed in parallel with the rotation axis O is the heat exchange that does not overlap with the boss 51. It may be slower than the wind speed v4 of the air supplied to the unit 35D. In the present embodiment, the length L5 of the heat exchange section 35E in the cross section shown in FIG. 3 in the direction along the air flow is larger than the length L6 of the heat exchange section 35D in the direction along the air flow in the same cross section. Is also longer (L5> L6). Here, the heat exchange unit 35E is a heat exchange unit 35 that overlaps with the boss 51 at least in part when viewed in parallel with the rotating shaft O, and the heat exchange unit 35D is a boss 51 when viewed in parallel with the rotating shaft O. Is a heat exchange unit 35 that overlaps with the rotation locus of the blade 52 without overlapping.

本実施の形態では、伝熱管30の長径寸法及び風下側フィン32の長さは、各熱交換部35で一定になっており、風上側フィン31の長さのみが熱交換部35毎に異なっている。すなわち、熱交換部35Eの風上側フィン31の長さは、熱交換部35Dの風上側フィン31の長さよりも長くなっている。また、本実施の形態では、全ての熱交換部35において、風上側フィン31の長さは、風下側フィン32の長さよりも長くなっている。 In the present embodiment, the major axis dimension of the heat transfer tube 30 and the length of the leeward fin 32 are constant in each heat exchange section 35, and only the length of the leeward fin 31 differs for each heat exchange section 35. ing. That is, the length of the windward fin 31 of the heat exchange unit 35E is longer than the length of the windward fin 31 of the heat exchange unit 35D. Further, in the present embodiment, the length of the leeward fin 31 is longer than the length of the leeward fin 32 in all the heat exchange portions 35.

図4は、本実施の形態に係る熱交換器ユニット100の要部構成の変形例を示す断面図である。図4に示すように、本変形例では、風上側フィン31の長さだけでなく、風下側フィン32の長さも熱交換部35毎に異なっている。伝熱管30の長径寸法は、各熱交換部35で一定になっている。熱交換部35E及び熱交換部35Dに注目すると、熱交換部35Eの風下側フィン32の長さは、熱交換部35Dの風下側フィン32の長さよりも長くなっている。本変形例では、全ての熱交換部35において、風上側フィン31の長さと風下側フィン32の長さとが等しい。 FIG. 4 is a cross-sectional view showing a modified example of the configuration of the main part of the heat exchanger unit 100 according to the present embodiment. As shown in FIG. 4, in this modification, not only the length of the leeward fin 31 but also the length of the leeward fin 32 is different for each heat exchange unit 35. The major axis dimension of the heat transfer tube 30 is constant in each heat exchange section 35. Focusing on the heat exchange section 35E and the heat exchange section 35D, the length of the leeward fin 32 of the heat exchange section 35E is longer than the length of the leeward fin 32 of the heat exchange section 35D. In this modification, the length of the leeward fin 31 and the length of the leeward fin 32 are equal in all the heat exchange portions 35.

以上説明したように、本実施の形態に係る熱交換器ユニット100において、プロペラファンであるファン50は、回転軸O上に設けられたボス51を有している。複数の熱交換部35は、回転軸Oと平行に見たときボス51と重なる熱交換部35Eと、回転軸Oと平行に見たときボス51と重ならない熱交換部35Dと、を有している。上記断面において、空気の流れに沿う方向での熱交換部35Eの長さL5は、空気の流れに沿う方向での熱交換部35Dの長さL6よりも長い。ここで、熱交換部35Eは第5熱交換部の一例である。熱交換部35Dは第6熱交換部の一例である。 As described above, in the heat exchanger unit 100 according to the present embodiment, the fan 50, which is a propeller fan, has a boss 51 provided on the rotation shaft O. The plurality of heat exchange units 35 include a heat exchange unit 35E that overlaps with the boss 51 when viewed in parallel with the rotating shaft O, and a heat exchange unit 35D that does not overlap with the boss 51 when viewed in parallel with the rotating shaft O. ing. In the above cross section, the length L5 of the heat exchange section 35E in the direction along the air flow is longer than the length L6 of the heat exchange section 35D in the direction along the air flow. Here, the heat exchange unit 35E is an example of the fifth heat exchange unit. The heat exchange unit 35D is an example of the sixth heat exchange unit.

この構成によれば、回転軸Oと平行に見たときボス51と重なる熱交換部35Eでは、回転軸Oと平行に見たときボス51と重ならない熱交換部35Dと比較して、空気に対する伝熱面積が大きくなる。このため、熱交換部35Eに供給される空気の風速が熱交換部35Dに供給される風速よりも遅い場合であっても、熱交換部35Eでの熱交換量を熱交換部35Dでの熱交換量に近づけることができる。したがって、本実施の形態によれば、実際の風速分布に対応して各熱交換部35での熱交換量をより均一にすることができるため、熱交換器20の熱交換器性能を向上させることができる。 According to this configuration, the heat exchange unit 35E that overlaps with the boss 51 when viewed in parallel with the rotating shaft O is relative to the air as compared with the heat exchange unit 35D that does not overlap with the boss 51 when viewed in parallel with the rotating shaft O. The heat transfer area becomes large. Therefore, even if the wind speed of the air supplied to the heat exchange unit 35E is slower than the air speed supplied to the heat exchange unit 35D, the amount of heat exchanged by the heat exchange unit 35E is the heat of the heat exchange unit 35D. It can approach the exchange amount. Therefore, according to the present embodiment, the amount of heat exchange in each heat exchange unit 35 can be made more uniform according to the actual wind speed distribution, so that the heat exchanger performance of the heat exchanger 20 is improved. be able to.

実施の形態3.
本発明の実施の形態3に係る熱交換器ユニットについて説明する。図5は、本実施の形態に係る熱交換器ユニット100の要部構成を示す断面図である。図5に示すように、本実施の形態では、伝熱管30の延伸方向すなわちz軸方向が重力方向と平行になるように熱交換器20が設置されている。すなわち、各熱交換部35の伝熱管30は、重力方向と平行に延伸している。伝熱管30が重力方向と平行に延伸していることにより、風上側フィン31及び風下側フィン32も重力方向と平行に延伸している。本実施の形態のそれ以外の構成は、図1に示した熱交換器ユニット100の構成と同様である。本実施の形態は、図2〜図4に示した熱交換器ユニット100にも適用できる。
Embodiment 3.
The heat exchanger unit according to the third embodiment of the present invention will be described. FIG. 5 is a cross-sectional view showing a main configuration of the heat exchanger unit 100 according to the present embodiment. As shown in FIG. 5, in the present embodiment, the heat exchanger 20 is installed so that the extension direction of the heat transfer tube 30, that is, the z-axis direction is parallel to the gravity direction. That is, the heat transfer tube 30 of each heat exchange unit 35 extends in parallel with the direction of gravity. Since the heat transfer tube 30 extends parallel to the direction of gravity, the windward fin 31 and the leeward fin 32 also extend parallel to the direction of gravity. Other configurations of this embodiment are the same as the configurations of the heat exchanger unit 100 shown in FIG. This embodiment can also be applied to the heat exchanger unit 100 shown in FIGS. 2 to 4.

以上説明したように、本実施の形態に係る熱交換器ユニット100では、熱交換器20は、伝熱管30の延伸方向が重力方向と平行になるように設置されている。この構成によれば、熱交換部35の表面に生じた結露水、又は除霜運転によって熱交換部35の霜が融解した融解水は、自重により熱交換部35を伝って下方に流れ落ちる。したがって、本実施の形態によれば、熱交換器20の排水性を向上させることができる。 As described above, in the heat exchanger unit 100 according to the present embodiment, the heat exchanger 20 is installed so that the extending direction of the heat transfer tube 30 is parallel to the direction of gravity. According to this configuration, the dew condensation water generated on the surface of the heat exchange unit 35 or the melted water in which the frost of the heat exchange unit 35 is melted by the defrosting operation flows down through the heat exchange unit 35 due to its own weight. Therefore, according to the present embodiment, the drainage property of the heat exchanger 20 can be improved.

また、本実施の形態では、熱交換部35の伝熱管30、風上側フィン31及び風下側フィン32が重力方向と平行に延伸している。さらに、複数の熱交換部35のうち互いに隣り合う2つの熱交換部35の間には、当該2つの熱交換部35を接続する伝熱フィンが設けられていない。このため、熱交換部35を伝って下方に流れ落ちる結露水又は融解水は、伝熱フィンに妨げられることなく排水される。したがって、本実施の形態によれば、熱交換器20の排水性をさらに向上させることができる。 Further, in the present embodiment, the heat transfer tube 30, the leeward fin 31 and the leeward fin 32 of the heat exchange unit 35 extend in parallel with the direction of gravity. Further, there is no heat transfer fin for connecting the two heat exchange units 35 between the two heat exchange units 35 adjacent to each other among the plurality of heat exchange units 35. Therefore, the condensed water or the melted water flowing downward through the heat exchange section 35 is drained without being hindered by the heat transfer fins. Therefore, according to the present embodiment, the drainage property of the heat exchanger 20 can be further improved.

実施の形態4.
本発明の実施の形態4に係る冷凍サイクル装置について説明する。図6は、本実施の形態に係る冷凍サイクル装置200の構成を示す回路図である。本実施の形態では、冷凍サイクル装置200として、空気調和機を例示している。図6に示すように、冷凍サイクル装置200は、冷媒を循環させる冷凍サイクル回路10を有している。冷凍サイクル回路10は、圧縮機11、四方弁12、室外熱交換器13、膨張弁14及び室内熱交換器15が冷媒配管を介して環状に接続された構成を有している。また、冷凍サイクル装置200は、室外熱交換器13に空気を供給する室外ファン16と、室内熱交換器15に空気を供給する室内ファン17と、を有している。冷凍サイクル装置200では、圧縮機11が駆動されることにより、冷媒が相変化しながら冷凍サイクル回路10を循環する冷凍サイクルが実行される。室外熱交換器13では、室外ファン16により供給される空気と、内部流体である冷媒との熱交換が行われる。室内熱交換器15では、室内ファン17により供給される空気と、内部流体である冷媒との熱交換が行われる。
Embodiment 4.
The refrigeration cycle apparatus according to the fourth embodiment of the present invention will be described. FIG. 6 is a circuit diagram showing the configuration of the refrigeration cycle device 200 according to the present embodiment. In the present embodiment, an air conditioner is exemplified as the refrigeration cycle device 200. As shown in FIG. 6, the refrigeration cycle device 200 has a refrigeration cycle circuit 10 for circulating a refrigerant. The refrigeration cycle circuit 10 has a configuration in which a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an indoor heat exchanger 15 are connected in an annular shape via a refrigerant pipe. Further, the refrigeration cycle device 200 has an outdoor fan 16 that supplies air to the outdoor heat exchanger 13 and an indoor fan 17 that supplies air to the indoor heat exchanger 15. In the refrigeration cycle apparatus 200, the compressor 11 is driven to execute a refrigeration cycle in which the refrigerant circulates in the refrigeration cycle circuit 10 while changing the phase. In the outdoor heat exchanger 13, heat exchange is performed between the air supplied by the outdoor fan 16 and the refrigerant which is an internal fluid. In the indoor heat exchanger 15, heat exchange is performed between the air supplied by the indoor fan 17 and the refrigerant which is an internal fluid.

冷凍サイクル回路10に充填される冷媒としては、R410A、R32又はHFO−1234yf等の冷媒を用いることができる。圧縮機11に使用される冷凍機油としては、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系又はフッ素油系など、冷媒との相溶性の有無に関わらず種々の冷凍機油を用いることができる。 As the refrigerant filled in the refrigeration cycle circuit 10, a refrigerant such as R410A, R32 or HFO-1234yf can be used. As the refrigerating machine oil used in the compressor 11, various refrigerating machine oils such as mineral oil type, alkylbenzene oil type, ester oil type, ether oil type and fluorine oil type may be used regardless of the compatibility with the refrigerant. it can.

冷凍サイクル装置200は、室外機110及び室内機120を有している。室外機110には、圧縮機11、四方弁12、室外熱交換器13、膨張弁14及び室外ファン16が収容されている。室内機120には、室内熱交換器15及び室内ファン17が収容されている。室外機110及び室内機120の少なくとも一方には、実施の形態1〜3のいずれかの熱交換器ユニット100が用いられている。すなわち、室外熱交換器13及び室内熱交換器15の少なくとも一方は、実施の形態1〜3のいずれかの熱交換器20であり、室外ファン16及び室内ファン17の少なくとも一方は、実施の形態1〜3のいずれかのファン50である。 The refrigeration cycle device 200 has an outdoor unit 110 and an indoor unit 120. The outdoor unit 110 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an outdoor fan 16. The indoor unit 120 includes an indoor heat exchanger 15 and an indoor fan 17. The heat exchanger unit 100 according to any one of the first to third embodiments is used for at least one of the outdoor unit 110 and the indoor unit 120. That is, at least one of the outdoor heat exchanger 13 and the indoor heat exchanger 15 is the heat exchanger 20 according to any one of the first to third embodiments, and at least one of the outdoor fan 16 and the indoor fan 17 is the embodiment. It is a fan 50 of any one of 1 to 3.

冷凍サイクル装置200の動作について、暖房運転を例に挙げて説明する。暖房運転時には、圧縮機11から吐出された冷媒が室内熱交換器15に流入するように、四方弁12が切り替えられる。圧縮機11から吐出された高圧のガス冷媒は、四方弁12を経由し、室内熱交換器15に流入する。暖房運転時には、室内熱交換器15は凝縮器として機能する。すなわち、室内熱交換器15では、内部を流通する冷媒と、室内ファン17により供給される室内空気との熱交換が行われ、冷媒は室内空気に凝縮熱を放熱する。これにより、室内熱交換器15に流入したガス冷媒は、凝縮して高圧の液冷媒となる。室内熱交換器15を通過する室内空気は、冷媒からの放熱によって加熱される。 The operation of the refrigeration cycle device 200 will be described by taking a heating operation as an example. During the heating operation, the four-way valve 12 is switched so that the refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 15. The high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 15 via the four-way valve 12. During the heating operation, the indoor heat exchanger 15 functions as a condenser. That is, in the indoor heat exchanger 15, heat exchange is performed between the refrigerant circulating inside and the indoor air supplied by the indoor fan 17, and the refrigerant dissipates the condensed heat to the indoor air. As a result, the gas refrigerant flowing into the indoor heat exchanger 15 is condensed into a high-pressure liquid refrigerant. The indoor air passing through the indoor heat exchanger 15 is heated by heat dissipation from the refrigerant.

室内熱交換器15から流出した液冷媒は、膨張弁14で減圧されて低圧の二相冷媒となる。膨張弁14から流出した二相冷媒は、室外熱交換器13に流入する。暖房運転時には、室外熱交換器13は蒸発器として機能する。すなわち、室外熱交換器13では、内部を流通する冷媒と、室外ファン16により供給される室外空気との熱交換が行われ、冷媒は室外空気から蒸発熱を吸熱する。これにより、室外熱交換器13に流入した二相冷媒は、蒸発して低圧のガス冷媒となる。室外熱交換器13から流出したガス冷媒は、四方弁12を経由して圧縮機11に吸入される。圧縮機11に吸入されたガス冷媒は、圧縮されて高圧のガス冷媒となる。暖房運転時には、以上の冷凍サイクルが連続的に繰り返し実行される。説明を省略するが、冷房運転時には、四方弁12によって冷媒の流れ方向が切り替えられ、室外熱交換器13が凝縮器として機能し、室内熱交換器15が蒸発器として機能する。 The liquid refrigerant flowing out of the indoor heat exchanger 15 is depressurized by the expansion valve 14 to become a low-pressure two-phase refrigerant. The two-phase refrigerant flowing out of the expansion valve 14 flows into the outdoor heat exchanger 13. During the heating operation, the outdoor heat exchanger 13 functions as an evaporator. That is, in the outdoor heat exchanger 13, heat exchange is performed between the refrigerant flowing inside and the outdoor air supplied by the outdoor fan 16, and the refrigerant absorbs heat of vaporization from the outdoor air. As a result, the two-phase refrigerant that has flowed into the outdoor heat exchanger 13 evaporates to become a low-pressure gas refrigerant. The gas refrigerant flowing out of the outdoor heat exchanger 13 is sucked into the compressor 11 via the four-way valve 12. The gas refrigerant sucked into the compressor 11 is compressed to become a high-pressure gas refrigerant. During the heating operation, the above refrigeration cycle is continuously and repeatedly executed. Although the description is omitted, during the cooling operation, the flow direction of the refrigerant is switched by the four-way valve 12, the outdoor heat exchanger 13 functions as a condenser, and the indoor heat exchanger 15 functions as an evaporator.

以上説明したように、本実施の形態に係る冷凍サイクル装置200は、実施の形態1〜3のいずれかの熱交換器ユニット100を備えている。この構成によれば、冷凍サイクル装置200に用いられる熱交換器20の熱交換器性能を向上させることができる。 As described above, the refrigeration cycle apparatus 200 according to the present embodiment includes the heat exchanger unit 100 according to any one of the first to third embodiments. According to this configuration, the heat exchanger performance of the heat exchanger 20 used in the refrigeration cycle apparatus 200 can be improved.

上記実施の形態1〜4では、熱交換器20の伝熱管30を流通する内部流体として冷媒を例に挙げたが、本発明はこれに限られない。熱交換器20の伝熱管30を流通する内部流体としては、水又はブラインなどの液体を含む他の流体を用いることもできる。 In the first to fourth embodiments, the refrigerant is used as an example as the internal fluid flowing through the heat transfer tube 30 of the heat exchanger 20, but the present invention is not limited to this. As the internal fluid flowing through the heat transfer tube 30 of the heat exchanger 20, another fluid containing a liquid such as water or brine can also be used.

また、上記実施の形態1〜4では、互いに隣り合う2つの熱交換部35の間に伝熱フィンが設けられていないフィンレス型の熱交換器20を例に挙げたが、本発明はこれに限られない。本発明は、互いに隣り合う2つの熱交換部35の間に当該2つの熱交換部35を接続する伝熱フィンが設けられた熱交換器にも適用できる。 Further, in the first to fourth embodiments, the finless heat exchanger 20 in which the heat transfer fins are not provided between the two heat exchange portions 35 adjacent to each other is given as an example. Not limited. The present invention can also be applied to a heat exchanger provided with heat transfer fins for connecting the two heat exchange units 35 between two heat exchange units 35 adjacent to each other.

また、上記実施の形態1〜4では、熱交換器20とファン50とが対面して配置されたサイドフロー型の熱交換器ユニット100を例に挙げたが、本発明はこれに限られない。本発明は、トップフロー型などの他の構成を有する熱交換器ユニットにも適用できる。 Further, in the first to fourth embodiments, the side flow type heat exchanger unit 100 in which the heat exchanger 20 and the fan 50 are arranged facing each other is given as an example, but the present invention is not limited to this. .. The present invention can also be applied to a heat exchanger unit having another configuration such as a top flow type.

また、上記実施の形態3では、伝熱管30の延伸方向が重力方向に平行となる縦流れ式の熱交換器20を例に挙げたが、本発明はこれに限られない。本発明は、伝熱管30の延伸方向が水平方向となる横流れ式の熱交換器、又は伝熱管30の延伸方向が重力方向及び水平方向のいずれに対しても傾いた熱交換器にも適用できる。 Further, in the third embodiment, the vertical flow type heat exchanger 20 in which the extending direction of the heat transfer tube 30 is parallel to the gravitational direction is given as an example, but the present invention is not limited to this. The present invention can be applied to a cross-flow heat exchanger in which the extension direction of the heat transfer tube 30 is horizontal, or a heat exchanger in which the extension direction of the heat transfer tube 30 is tilted with respect to both the gravity direction and the horizontal direction. ..

上記実施の形態1〜4や変形例は、互いに組み合わせて実施することが可能である。 The above-described embodiments 1 to 4 and modifications can be carried out in combination with each other.

10 冷凍サイクル回路、11 圧縮機、12 四方弁、13 室外熱交換器、14 膨張弁、15 室内熱交換器、16 室外ファン、17 室内ファン、20 熱交換器、30 伝熱管、30a 風上側端部、30b 風下側端部、31 風上側フィン、31a 風上側端部、32 風下側フィン、32a 風下側端部、33 間隙、35、35A、35B、35C、35D、35E、35F、35G、35H、35I 熱交換部、40 流体通路、50 ファン、51 ボス、52 翼、100 熱交換器ユニット、110 室外機、120 室内機、200 冷凍サイクル装置、D1、D2 距離、O 回転軸、P0 基準面、v1、v2、v3、v4 風速。 10 Refrigeration cycle circuit, 11 Compressor, 12 Four-way valve, 13 Outdoor heat exchanger, 14 Expansion valve, 15 Indoor heat exchanger, 16 Outdoor fan, 17 Indoor fan, 20 Heat exchanger, 30 Heat transfer tube, 30a Wind upper end Part, 30b Downwind end, 31 Windup fin, 31a Windup end, 32 Downwind fin, 32a Downwind end, 33 Gap, 35, 35A, 35B, 35C, 35D, 35E, 35F, 35G, 35H , 35I heat exchanger, 40 fluid passage, 50 fan, 51 boss, 52 blades, 100 heat exchanger unit, 110 outdoor unit, 120 indoor unit, 200 refrigeration cycle device, D1, D2 distance, O rotation axis, P0 reference plane , V1, v2, v3, v4 Wind speed.

本発明に係る熱交換器ユニットは、互いに並列して配置された複数の熱交換部を有する熱交換器と、前記熱交換器に空気を供給するファンと、を備え、前記複数の熱交換部のそれぞれは、伝熱管と、前記伝熱管の風上側端部から風上側に延び、かつ前記伝熱管の延伸方向に沿って延びた風上側フィン及び前記伝熱管の風下側端部から風下側に延び、かつ前記伝熱管の延伸方向に沿って延びた風下側フィンの少なくとも一方と、を有しており、前記複数の熱交換部は、第1熱交換部と、第2熱交換部と、を有しており、前記伝熱管の延伸方向と交差する前記熱交換器の断面において、前記第1熱交換部には第1風速で空気が供給され、前記第2熱交換部には前記第1風速よりも速い第2風速で空気が供給され、前記断面において、空気の流れに沿う方向での前記第1熱交換部の長さは、空気の流れに沿う方向での前記第2熱交換部の長さよりも長いものである。
本発明に係る冷凍サイクル装置は、本発明に係る熱交換器ユニットを備えるものである。
The heat exchanger unit according to the present invention includes a heat exchanger having a plurality of heat exchangers arranged in parallel with each other and a fan for supplying air to the heat exchanger, and the plurality of heat exchangers. each leeward side and the heat transfer tube extending upwind from the windward side end portion of the heat transfer tubes, and the upwind-side fins extending along the extending direction of the heat transfer tube, and the downwind-side ends of the heat transfer tube It has at least one of the leeward fins extending along the extending direction of the heat transfer tube, and the plurality of heat exchange units include a first heat exchange unit and a second heat exchange unit. In the cross section of the heat exchanger that intersects the extension direction of the heat transfer tube, air is supplied to the first heat exchange section at the first wind velocity, and the second heat exchange section is described. Air is supplied at a second wind speed faster than the first wind speed, and in the cross section, the length of the first heat exchange portion in the direction along the air flow is the second heat in the direction along the air flow. It is longer than the length of the exchange part.
The refrigeration cycle apparatus according to the present invention includes a heat exchanger unit according to the present invention.

Claims (6)

互いに並列して配置された複数の熱交換部を有する熱交換器と、
前記熱交換器に空気を供給するファンと、
を備え、
前記複数の熱交換部のそれぞれは、伝熱管と、前記伝熱管の風上側端部から風上側に延びた風上側フィン及び前記伝熱管の風下側端部から風下側に延びた風下側フィンの少なくとも一方と、を有しており、
前記複数の熱交換部は、第1熱交換部と、第2熱交換部と、を有しており、
前記伝熱管の延伸方向と交差する前記熱交換器の断面において、前記第1熱交換部には第1風速で空気が供給され、前記第2熱交換部には前記第1風速よりも速い第2風速で空気が供給され、
前記断面において、空気の流れに沿う方向での前記第1熱交換部の長さは、空気の流れに沿う方向での前記第2熱交換部の長さよりも長い熱交換器ユニット。
A heat exchanger having multiple heat exchangers arranged in parallel with each other,
A fan that supplies air to the heat exchanger and
With
Each of the plurality of heat exchange portions includes a heat transfer tube, a windward fin extending leeward from the leeward end of the heat transfer tube, and a leeward fin extending leeward from the leeward end of the heat transfer tube. Have at least one and
The plurality of heat exchange units include a first heat exchange unit and a second heat exchange unit.
In the cross section of the heat exchanger that intersects the extending direction of the heat transfer tube, air is supplied to the first heat exchange section at the first wind speed, and the second heat exchange section is faster than the first wind speed. Air is supplied at 2 wind speeds,
In the cross section, the length of the first heat exchange section in the direction along the air flow is longer than the length of the second heat exchange section in the direction along the air flow.
前記ファンは、前記熱交換器と対面して配置されたプロペラファンであり、
前記複数の熱交換部は、第3熱交換部と、第4熱交換部と、を有しており、
前記プロペラファンの回転軸を含み前記伝熱管の延伸方向と平行な基準面と、前記第3熱交換部と、の間の距離は、前記基準面と前記第4熱交換部との間の距離よりも遠くなっており、
前記断面において、空気の流れに沿う方向での前記第3熱交換部の長さは、空気の流れに沿う方向での前記第4熱交換部の長さよりも長い請求項1に記載の熱交換器ユニット。
The fan is a propeller fan arranged facing the heat exchanger.
The plurality of heat exchange units include a third heat exchange unit and a fourth heat exchange unit.
The distance between the reference surface including the rotation axis of the propeller fan and parallel to the extending direction of the heat transfer tube and the third heat exchange section is the distance between the reference surface and the fourth heat exchange section. Farther than
The heat exchange according to claim 1, wherein in the cross section, the length of the third heat exchange section in the direction along the air flow is longer than the length of the fourth heat exchange section in the direction along the air flow. Vessel unit.
前記プロペラファンは、前記回転軸上に設けられたボスを有しており、
前記複数の熱交換部は、前記回転軸と平行に見たとき前記ボスと重なる第5熱交換部と、前記回転軸と平行に見たとき前記ボスと重ならない第6熱交換部と、を有しており、
前記断面において、空気の流れに沿う方向での前記第5熱交換部の長さは、空気の流れに沿う方向での前記第6熱交換部の長さよりも長い請求項2に記載の熱交換器ユニット。
The propeller fan has a boss provided on the rotation shaft.
The plurality of heat exchange units include a fifth heat exchange unit that overlaps with the boss when viewed in parallel with the rotation axis, and a sixth heat exchange unit that does not overlap with the boss when viewed in parallel with the rotation axis. Have and
The heat exchange according to claim 2, wherein in the cross section, the length of the fifth heat exchange section in the direction along the air flow is longer than the length of the sixth heat exchange section in the direction along the air flow. Vessel unit.
前記熱交換器は、前記伝熱管の延伸方向が重力方向と平行になるように設置されている請求項1〜請求項3のいずれか一項に記載の熱交換器ユニット。 The heat exchanger unit according to any one of claims 1 to 3, wherein the heat exchanger is installed so that the extending direction of the heat transfer tube is parallel to the direction of gravity. 前記複数の熱交換部のうち互いに隣り合う2つの熱交換部の間には、前記2つの熱交換部を接続する伝熱フィンが設けられていない請求項1〜請求項4のいずれか一項に記載の熱交換器ユニット。 One of claims 1 to 4, wherein a heat transfer fin for connecting the two heat exchange units is not provided between two heat exchange units adjacent to each other among the plurality of heat exchange units. The heat exchanger unit described in. 請求項1〜請求項5のいずれか一項に記載の熱交換器ユニットを備える冷凍サイクル装置。 A refrigeration cycle apparatus comprising the heat exchanger unit according to any one of claims 1 to 5.
JP2020529850A 2018-07-09 2018-07-09 Heat exchanger unit and refrigeration cycle device Active JP6972346B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025850 WO2020012524A1 (en) 2018-07-09 2018-07-09 Heat exchanger unit and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2020012524A1 true JPWO2020012524A1 (en) 2021-04-30
JP6972346B2 JP6972346B2 (en) 2021-11-24

Family

ID=69142945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529850A Active JP6972346B2 (en) 2018-07-09 2018-07-09 Heat exchanger unit and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6972346B2 (en)
WO (1) WO2020012524A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336786A (en) * 2000-05-26 2001-12-07 Hitachi Ltd Outdoor machine for air conditioner
JP2005049043A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Heat exchanger and air conditioner
JP2006112732A (en) * 2004-10-15 2006-04-27 Daikin Ind Ltd Small-diameter heat transfer tube unit of small-diameter multitubular heat exchanger
JP2008202896A (en) * 2007-02-21 2008-09-04 Sharp Corp Heat exchanger
US20130206376A1 (en) * 2012-02-14 2013-08-15 The University Of Tokyo Heat exchanger, refrigeration cycle device equipped with heat exchanger, or heat energy recovery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336786A (en) * 2000-05-26 2001-12-07 Hitachi Ltd Outdoor machine for air conditioner
JP2005049043A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Heat exchanger and air conditioner
JP2006112732A (en) * 2004-10-15 2006-04-27 Daikin Ind Ltd Small-diameter heat transfer tube unit of small-diameter multitubular heat exchanger
JP2008202896A (en) * 2007-02-21 2008-09-04 Sharp Corp Heat exchanger
US20130206376A1 (en) * 2012-02-14 2013-08-15 The University Of Tokyo Heat exchanger, refrigeration cycle device equipped with heat exchanger, or heat energy recovery device

Also Published As

Publication number Publication date
JP6972346B2 (en) 2021-11-24
WO2020012524A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
CN112204312B (en) Outdoor unit of air conditioner and air conditioner
JP6615316B2 (en) Finless type heat exchanger, outdoor unit of air conditioner equipped with the finless type heat exchanger, and indoor unit of air conditioner equipped with the finless type heat exchanger
JP6223596B2 (en) Air conditioner indoor unit
JP6890509B2 (en) Air conditioner
WO2021065913A1 (en) Evaporator and refrigeration cycle device equipped with same
JPWO2019077744A1 (en) Air conditioner
US10480869B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
JPWO2018235215A1 (en) Heat exchangers, refrigeration cycle devices and air conditioners
JP6318371B2 (en) Outdoor unit and refrigeration cycle apparatus using the same
JPWO2017068723A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
JP6972346B2 (en) Heat exchanger unit and refrigeration cycle device
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JPWO2018207321A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6471345B2 (en) Heat exchanger
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
JP6621928B2 (en) Heat exchanger and air conditioner
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP6937915B2 (en) Heat exchanger, heat exchanger unit and refrigeration cycle equipment
JPWO2019155571A1 (en) Heat exchanger and refrigeration cycle equipment
JP2015169358A (en) heat exchanger
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
JP2012167912A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R150 Certificate of patent or registration of utility model

Ref document number: 6972346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150