JPWO2019235573A1 - Lithium manganese-based composite oxide and its manufacturing method - Google Patents

Lithium manganese-based composite oxide and its manufacturing method Download PDF

Info

Publication number
JPWO2019235573A1
JPWO2019235573A1 JP2020523178A JP2020523178A JPWO2019235573A1 JP WO2019235573 A1 JPWO2019235573 A1 JP WO2019235573A1 JP 2020523178 A JP2020523178 A JP 2020523178A JP 2020523178 A JP2020523178 A JP 2020523178A JP WO2019235573 A1 JPWO2019235573 A1 JP WO2019235573A1
Authority
JP
Japan
Prior art keywords
lithium
based composite
manganese
composite oxide
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020523178A
Other languages
Japanese (ja)
Other versions
JP7302826B2 (en
Inventor
田渕 光春
光春 田渕
亮太 弓削
亮太 弓削
英香 渋谷
英香 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tanaka Chemical Corp
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp, NEC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tanaka Chemical Corp
Publication of JPWO2019235573A1 publication Critical patent/JPWO2019235573A1/en
Application granted granted Critical
Publication of JP7302826B2 publication Critical patent/JP7302826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

放電容量及び充放電のサイクル特性に優れたリチウムイオン二次電池のための材料系を提供すること。一般式(1):Li1+x(Mn1−y−zFeyNiz)1−xO2(1)[式中、x、y及びzはそれぞれ、0.00<x<1/3、0.00≦y≦0.60、0.00≦z≦0.60、0.00<y+z≦0.80を示す。]で表わされ、単斜晶Li2MnO3型層状岩塩型構造を有する結晶相を含むリチウムマンガン系複合酸化物であって、前記単斜晶Li2MnO3型層状岩塩型構造の結晶相の遷移金属含有層内の六角網目規則構造において、六角網目規則度が0.36以上であることを特徴とする、リチウムマンガン系複合酸化物。To provide a material system for a lithium ion secondary battery having excellent discharge capacity and charge / discharge cycle characteristics. General formula (1): Li1 + x (Mn1-y-zFeyNiz) 1-xO2 (1) [In the formula, x, y and z are 0.00 <x <1/3, 0.00 ≦ y ≦ 0, respectively. 60, 0.00 ≦ z ≦ 0.60, 0.00 <y + z ≦ 0.80 are shown. ], It is a lithium manganese-based composite oxide containing a crystal phase having a monoclinic Li2MnO3 type layered rock salt type structure, and is in the transition metal-containing layer of the crystal phase of the monoclinic Li2MnO3 type layered rock salt type structure. A lithium manganese-based composite oxide characterized by having a hexagonal network regularity of 0.36 or more in the hexagonal network regularity structure of the above.

Description

本発明は、リチウムマンガン系複合酸化物及びその製造方法に関する。 The present invention relates to a lithium manganese-based composite oxide and a method for producing the same.

リチウムイオン二次電池は、従来用いられてきた携帯電話、スマートフォン、ノートPC自体のみならず、電気自動車やプラグインハイブリッド車、電力負荷平準化システム用、家庭用などへの応用が進みつつあり、大型セルの大量普及時代が目前となっている。 Lithium-ion secondary batteries are being applied not only to conventional mobile phones, smartphones, and notebook PCs, but also to electric vehicles, plug-in hybrid vehicles, power load leveling systems, and home use. The era of mass diffusion of large cells is imminent.

リチウムイオン二次電池の性能は、その構成部材の性能により大きく左右される。したがって、リチウムイオン二次電池の構成部材には、よりいっそうの高性能化、低コスト化、省資源化が求められている。構成部材の中でも電池容量および作動電圧を決定づけるのが正極材料であり、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムをはじめとするリチウム遷移金属複合酸化物が用いられている。 The performance of a lithium-ion secondary battery is greatly affected by the performance of its constituent members. Therefore, the constituent members of the lithium ion secondary battery are required to have higher performance, lower cost, and resource saving. Among the constituent members, the positive electrode material determines the battery capacity and the operating voltage, and lithium transition metal composite oxides such as lithium cobalt oxide, lithium nickel oxide, and lithium manganate are used.

リチウムイオン二次電池の構成部材の中でも、正極材料のコスト比率は最も高い。したがって、リチウムイオン二次電池の製造コストを下げるため、希少金属で資源価格の急変動リスクのあるコバルトを含まない正極材料を開発することは、極めて有効である。 Among the components of lithium-ion secondary batteries, the cost ratio of the positive electrode material is the highest. Therefore, in order to reduce the manufacturing cost of lithium-ion secondary batteries, it is extremely effective to develop a cobalt-free positive electrode material that is a rare metal and has a risk of sudden fluctuations in resource prices.

かかるコバルトフリー正極材料の中で最も有望な材料系のひとつとして、鉄及びニッケル置換リチウムマンガン複合酸化物(LFNM系)を挙げることができる。本材料系は今まで酸化物正極でほとんど活用されてこなかった鉄を酸化還元中心元素として活用できるだけでなく、高電圧化に有効なニッケルイオンを少量添加元素として、安価なリチウムマンガン酸化物(LiMnO)に固溶させることにより、コバルトフリーであるにも関わらず、既存のコバルト含有正極に近い充放電特性を有することが特徴である。As one of the most promising material systems among such cobalt-free positive electrode materials, iron and nickel-substituted lithium-manganese composite oxides (LFNM system) can be mentioned. This material system can not only utilize iron, which has hardly been used in oxide positive electrodes, as a redox center element, but also use a small amount of nickel ions, which are effective for increasing the voltage, as an inexpensive lithium manganese oxide (Li). 2 By being dissolved in MnO 3 ), it is characterized by having charge / discharge characteristics close to those of existing cobalt-containing positive electrodes, even though it is cobalt-free.

特許文献1には、LFNM系の材料系が開示され、かかる材料系のより好適な組成が非特許文献1に開示されている。また、非特許文献2では、電気化学的活性化法を併用することにより、さらなる材料系の組成最適化及び特性改善を行っている。 Patent Document 1 discloses an LFNM-based material system, and Non-Patent Document 1 discloses a more suitable composition of such a material system. Further, in Non-Patent Document 2, the composition of the material system is further optimized and the characteristics are improved by using the electrochemical activation method in combination.

しかしながら、上記文献に記載された材料系では、二次電池の高容量化には一定の成果があるが、充放電に際してのサイクル特性の面では、十分とは言えない。そこで、より二次電池を高容量化し、充放電のサイクル特性をも向上させることが可能な正極材料用の材料系として、特許文献2及び特許文献3では、鉄及びチタン置換リチウムマンガン複合酸化物において、充放電特性改善を目的とし、単斜晶層状岩塩型構造制御法を採用することが提案されている。 However, in the material system described in the above document, although there are some achievements in increasing the capacity of the secondary battery, it cannot be said that the cycle characteristics at the time of charging / discharging are sufficient. Therefore, in Patent Documents 2 and 3, as a material system for a positive electrode material capable of further increasing the capacity of a secondary battery and improving the charge / discharge cycle characteristics, iron and titanium-substituted lithium-manganese composite oxides are used. It has been proposed to adopt a monooblique layered rock salt type structure control method for the purpose of improving charge / discharge characteristics.

しかしながら、特許文献2及び特許文献3に開示される技術をもってしても、かかる材料系を使用して得られる二次電池における、放電容量及びサイクル特性といった性能は十分なものではなく、より優れた材料系が求められている。 However, even with the techniques disclosed in Patent Documents 2 and 3, the performance such as discharge capacity and cycle characteristics of the secondary battery obtained by using such a material system is not sufficient and is more excellent. Material systems are required.

特開2003−48718号公報Japanese Unexamined Patent Publication No. 2003-48718 特開2009−179501号公報JP-A-2009-179501 特開2009−274940号公報JP-A-2009-274940

M. Tabuchi et al., J. Power Sources, (2011) Vol. 196, 3611-3622.M. Tabuchi et al., J. Power Sources, (2011) Vol. 196, 3611-3622. M. Tabuchi et al., J. Power Sources, (2016) Vol. 313, 120-127.M. Tabuchi et al., J. Power Sources, (2016) Vol. 313, 120-127.

上記のような事情に鑑み、本発明の目的とするところは、放電容量及び充放電のサイクル特性に優れたリチウムイオン二次電池のための材料系を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a material system for a lithium ion secondary battery having excellent discharge capacity and charge / discharge cycle characteristics.

本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、単斜晶LiMnO型層状岩塩型構造の結晶相の遷移金属含有層内の六角網目規則構造において、六角網目規則度を所定以上の値とすることにより、放電容量及び充放電のサイクル特性に優れたリチウムイオン二次電池のための材料系を得ることができることを見出した。本発明者らは、かかる知見に基づきさらに研究を重ね、本発明を完成するに至った。As a result of intensive studies to achieve the above object, the present inventors have found that the hexagonal network regularity in the transition metal-containing layer of the crystal phase of the monoclinic Li 2 MnO 3 type layered rock salt structure has a hexagonal network regularity. It has been found that a material system for a lithium ion secondary battery having excellent discharge capacity and charge / discharge cycle characteristics can be obtained by setting the value to a predetermined value or more. The present inventors have further studied based on such findings, and have completed the present invention.

即ち、本発明は、以下のリチウムマンガン系複合酸化物を提供する。
項1.
一般式(1):
Li1+x(Mn1−y−zFeNi1−x (1)
[式中、x、y及びzはそれぞれ、0.00<x<1/3、0.00≦y≦0.60、0≦z≦0.60、0.00<y+z≦0.80を示す。]
で表わされ、単斜晶LiMnO型層状岩塩型構造を有する結晶相を含むリチウムマンガン系複合酸化物であって、
前記単斜晶LiMnO型層状岩塩型構造の結晶相の遷移金属含有層内の六角網目規則構造において、六角網目規則度が0.36以上であることを特徴とする、リチウムマンガン系複合酸化物。
項2.
鉄イオン100%に対し、4価鉄を、面積率で2%以上含む、項1に記載のリチウムマンガン系複合酸化物。
項3.
リチウム/遷移金属のモル比が、
(I) 0.00≦y<0.13、0.00≦z<0.13の時、1.75以上2.00未満、
(II) 0.13≦y<0.18、0.13≦z<0.18の時、1.57以上2.00未満、
(III)0.18≦y≦0.60、0.18≦z≦0.60の時、1.45以上2.00未満、
である、項1又は2に記載のリチウムマンガン系複合酸化物。
項4.
遷移金属量が、
(i) 0.00≦y<0.13、0.00≦z<0.13の時、0.670以上0.750以下、
(ii) 0.13≦y<0.18、0.13≦z<0.18の時、0.670以上0.777以下、
(iii)0.18≦y≦0.60、0.18≦z≦0.60の時、0.670以上0.850以下、
である、項1〜3の何れかに記載のリチウムマンガン系複合酸化物。
項5.
単斜晶LiMnO型層状岩塩型構造内のリチウム層隣接四面***置(4i及び8j位置)において8j位置遷移金属占有率が4%以下である、項1〜4の何れかに記載のリチウムマンガン系複合酸化物。
項6.
項1〜5の何れかに記載のリチウムマンガン系複合酸化物を含むリチウムイオン二次電池正極材料。
項7.
項6に記載のリチウムイオン二次電池正極材料を有する、リチウムイオン二次電池。
項8.
鉄化合物及び/又はニッケル化合物、並びに、マンガンイオン総量100mol%に対し3価以上のマンガン化合物を10mol%以上含む水溶液をアルカリ性化して沈殿を形成する共沈工程、
前記共沈工程で形成された沈殿物を湿式酸化プロセスで熟成後、リチウム塩を添加して乾燥させて乾燥物を得る焼成前工程、及び、
前記乾燥物を焼成する、一次焼成工程及び二次焼成工程を有する焼成工程を有し、
前記二次焼成工程は、酸素を含む雰囲気下で焼成をおこなうことを特徴とする、リチウムマンガン系複合酸化物の製造方法。
That is, the present invention provides the following lithium manganese-based composite oxides.
Item 1.
General formula (1):
Li 1 + x (Mn 1-y-z F y Ni z ) 1-x O 2 (1)
[In the formula, x, y and z are 0.00 <x <1/3, 0.00≤y≤0.60, 0≤z≤0.60, 0.00 <y + z≤0.80, respectively. Shown. ]
It is a lithium manganese-based composite oxide containing a crystal phase having a monoclinic Li 2 MnO 3 type layered rock salt type structure represented by.
A lithium manganese-based composite characterized in that the hexagonal network regularity is 0.36 or more in the hexagonal network regularity in the transition metal-containing layer of the crystal phase of the monoclinic Li 2 MnO 3 type layered rock salt type structure. Oxide.
Item 2.
Item 2. The lithium manganese-based composite oxide according to Item 1, which contains 2% or more of tetravalent iron with respect to 100% iron ions.
Item 3.
Lithium / transition metal molar ratio
(I) When 0.00≤y <0.13 and 0.00≤z <0.13, 1.75 or more and less than 2.00.
(II) When 0.13 ≦ y <0.18 and 0.13 ≦ z <0.18, 1.57 or more and less than 2.00,
(III) When 0.18 ≦ y ≦ 0.60 and 0.18 ≦ z ≦ 0.60, 1.45 or more and less than 2.00,
Item 3. The lithium manganese-based composite oxide according to Item 1 or 2.
Item 4.
The amount of transition metal is
(I) When 0.00≤y <0.13, 0.00≤z <0.13, 0.670 or more and 0.750 or less,
(Ii) When 0.13 ≦ y <0.18 and 0.13 ≦ z <0.18, 0.670 or more and 0.777 or less,
(Iii) When 0.18 ≦ y ≦ 0.60 and 0.18 ≦ z ≦ 0.60, 0.670 or more and 0.850 or less,
Item 3. The lithium manganese-based composite oxide according to any one of Items 1 to 3.
Item 5.
Item 2. The item according to any one of Items 1 to 4, wherein the 8j position transition metal occupancy is 4% or less at the lithium layer adjacent tetrahedral positions (4i and 8j positions) in the monoclinic Li 2 MnO 3 type layered rock salt type structure. Lithium manganese-based composite oxide.
Item 6.
Item 5. A positive electrode material for a lithium ion secondary battery containing the lithium manganese-based composite oxide according to any one of Items 1 to 5.
Item 7.
Item 6. A lithium ion secondary battery having the positive electrode material of the lithium ion secondary battery according to Item 6.
Item 8.
A coprecipitation step of alkalizing an aqueous solution containing 10 mol% or more of an iron compound and / or a nickel compound and a manganese compound having a valence of 3 or more with respect to 100 mol% of the total amount of manganese ions to form a precipitate.
After aging the precipitate formed in the co-precipitation step in a wet oxidation process, a lithium salt is added and dried to obtain a dried product, and a pre-baking step.
It has a firing step having a primary firing step and a secondary firing step of firing the dried product.
The secondary firing step is a method for producing a lithium manganese-based composite oxide, which comprises firing in an atmosphere containing oxygen.

本発明に係るリチウムマンガン系複合酸化物によれば、放電容量及び充放電のサイクル特性に優れたリチウムイオン二次電池を提供することができる。 According to the lithium manganese-based composite oxide according to the present invention, it is possible to provide a lithium ion secondary battery having excellent discharge capacity and charge / discharge cycle characteristics.

本発明のリチウムマンガン系複合酸化物の結晶構造。Crystal structure of the lithium manganese-based composite oxide of the present invention. 実施例1及び比較例1のX線回折図。X-ray diffraction pattern of Example 1 and Comparative Example 1. 実施例1及び比較例1の57Feメスバウワ分光データ。 57 Fe Mesbauwa spectroscopic data of Example 1 and Comparative Example 1. 実施例1及び比較例1試料を正極としたリチウム二次電池(半電池)の30℃における充放電特性。Example 1 and Comparative Example 1 Charge / discharge characteristics of a lithium secondary battery (half-cell) using a sample as a positive electrode at 30 ° C. 実施例2及び比較例2のX線回折図。X-ray diffraction pattern of Example 2 and Comparative Example 2. 実施例2及び比較例2の57Feメスバウワ分光データ。 57 Fe Mesbauwa spectroscopic data of Example 2 and Comparative Example 2. 実施例2及び比較例2試料を正極としたリチウム二次電池(半電池)の30℃における充放電特性。Example 2 and Comparative Example 2 Charge / discharge characteristics of a lithium secondary battery (half-cell) using a sample as a positive electrode at 30 ° C. 実施例3及び比較例3のX線回折図。X-ray diffraction pattern of Example 3 and Comparative Example 3. 実施例3及び比較例3の57Feメスバウワ分光データ。 57 Fe Mesbauwa spectroscopic data of Example 3 and Comparative Example 3. 実施例3及び比較例3試料を正極としたリチウム二次電池(半電池)の30℃における充放電特性。Example 3 and Comparative Example 3 Charge / discharge characteristics of a lithium secondary battery (half-cell) using a sample as a positive electrode at 30 ° C.

リチウムマンガン系複合酸化物
本発明のリチウムマンガン系複合酸化物は、
一般式(1):
Li1+x(Mn1−y−zFeNi1−x (1)
[式中、x、y及びzはそれぞれ、0.00<x<1/3 、0.00≦y≦0.60、0.00≦z≦0.60、0.00<y+z≦0.80を示す。]
で表わされ、単斜晶LiMnO型層状岩塩型構造を有する結晶相を含むリチウムマンガン系複合酸化物であって、
前記単斜晶LiMnO型層状岩塩型構造の結晶相の遷移金属含有層内の六角網目規則構造において、六角網目規則度が0.36以上であることを特徴とする。
Lithium manganese-based composite oxide The lithium manganese-based composite oxide of the present invention is
General formula (1):
Li 1 + x (Mn 1-y-z F y Ni z ) 1-x O 2 (1)
[In the formula, x, y and z are 0.00 <x <1/3, 0.00 ≦ y ≦ 0.60, 0.00 ≦ z ≦ 0.60, 0.00 <y + z ≦ 0, respectively. 80 is shown. ]
It is a lithium manganese-based composite oxide containing a crystal phase having a monoclinic Li 2 MnO 3 type layered rock salt type structure represented by.
The hexagonal network regularity in the transition metal-containing layer of the crystal phase of the monoclinic Li 2 MnO 3 type layered rock salt type structure is characterized in that the hexagonal network regularity is 0.36 or more.

単斜晶LiMnO型層状岩塩型構造は、P. Strobel et al., J. Solid State Chem., 75, 90-98, (1988).にも記載されている下記(a)の空間式で表わされる空間群の結晶構造を有する。The monoclinic Li 2 MnO type 3 layered rock salt structure is also described in P. Strobel et al., J. Solid State Chem., 75, 90-98, (1988). It has a crystal structure of a space group represented by the formula.

Figure 2019235573
Figure 2019235573

単斜晶LiMnO型層状岩塩型構造の結晶相の遷移金属含有層内の六角網目規則構造において、六角網目規則度は、0.36以上である。図1に示される結晶格子において、六角網目規則度は、六角網目構成位置である4g位置占有率g4gと六角網目中心位置である2b位置占有率g2bの差(g4g−g2b)で定義される。六角網目規則度が0.36未満のリチウムマンガン系複合酸化物を正極材料に使用しても、充放電サイクル特性に優れるリチウムイオン二次電池を得ることができない。この六角網目規則度は最終焼成時の焼成雰囲気を酸化性にすることにより大きくすることができる。In the hexagonal network regularity structure in the transition metal-containing layer of the crystal phase of the monoclinic Li 2 MnO 3 type layered rock salt type structure, the hexagonal network regularity is 0.36 or more. In the crystal lattice shown in FIG. 1, the hexagonal network regularity is the difference (g 4g −g 2b ) between the hexagonal network constituent position 4g position occupancy rate g 4g and the hexagonal network center position 2b position occupancy rate g 2b. Defined. Even if a lithium manganese-based composite oxide having a hexagonal mesh regularity of less than 0.36 is used as the positive electrode material, a lithium ion secondary battery having excellent charge / discharge cycle characteristics cannot be obtained. This hexagonal mesh regularity can be increased by making the firing atmosphere at the time of final firing oxidative.

遷移金属イオン分布の観点からは、通常遷移金属イオンが占有していない、図1に示される酸素4配位の8j位置という格子位置(M. Tabuchi et al., J. Power Sources, 318, 18-25 (2016).参照)にも遷移金属イオンが占有する特異な陽イオン分布を有することが、好ましい。 From the viewpoint of transition metal ion distribution, the lattice position (M. Tabuchi et al., J. Power Sources, 318, 18), which is normally not occupied by transition metal ions, is the 8j position of the oxygen 4-coordination shown in FIG. -25 (2016).) Also preferably has a peculiar cation distribution occupied by transition metal ions.

通常のLiMnOでは、上記8j位置においてマンガンイオンの占有は報告されていないが、M. Tabuchi et al., J. Power Sources, 318, 18-25 (2016).に記載されているような、鉄を一部置換したLiMnOでは、化学酸化及び/又は電気化学充電などにより一部のLiを格子から脱離させた際に、LiMnOの構造内での遷移金属層に相当する4gおよび2b位置から8j位置に鉄イオンが移動することが確認されている。本発明のリチウムマンガン系複合酸化物では、充電や化学酸化を行う前からこの位置に遷移金属イオンが存在していることが好ましい。In normal Li 2 MnO 3 , the occupation of manganese ions at the above 8j position has not been reported, but as described in M. Tabuchi et al., J. Power Sources, 318, 18-25 (2016). In addition, in Li 2 MnO 3 in which iron is partially replaced, a transition metal layer in the structure of Li 2 MnO 3 when a part of Li is desorbed from the lattice by chemical oxidation and / or electrochemical charging or the like. It has been confirmed that iron ions move from the 4g and 2b positions corresponding to the 8j position. In the lithium manganese-based composite oxide of the present invention, it is preferable that the transition metal ion is present at this position even before charging or chemical oxidation.

当該8j位置はLi層内の格子位置である2cおよび4h位置のLiイオンの拡散経路に位置するため、高速なLiイオン拡散の維持の観点からその占有率は可能な限り低いこと(4%以下)が望ましい。 Since the 8j position is located in the diffusion path of Li ions at the 2c and 4h positions, which are the lattice positions in the Li layer, the occupancy rate is as low as possible (4% or less) from the viewpoint of maintaining high-speed Li ion diffusion. ) Is desirable.

また、一般式(1)において、xは過剰リチウム量を示し、具体的には、0.00<x<1/3である。xの値を1/3未満とすることにより、過剰なリチウムの使用を抑制することができ、コスト面で有利である。 Further, in the general formula (1), x indicates an excess lithium amount, and specifically, 0.00 <x <1/3. By setting the value of x to less than 1/3, it is possible to suppress the use of excess lithium, which is advantageous in terms of cost.

一般式(1)において、yは、0.00≦y≦0.60である。yを0.60以下とすることにより、複合酸化物中の十分なMn量を確保し、リチウム二次電池の高容量化に寄与する。また、一般式(1)において、zは、0.00≦z≦0.60である。zを0.60以下とすることにより、複合酸化物中の十分なMn量を確保し、リチウム二次電池の高容量化に寄与する。 In the general formula (1), y is 0.00 ≦ y ≦ 0.60. By setting y to 0.60 or less, a sufficient amount of Mn in the composite oxide is secured, which contributes to increasing the capacity of the lithium secondary battery. Further, in the general formula (1), z is 0.00 ≦ z ≦ 0.60. By setting z to 0.60 or less, a sufficient amount of Mn in the composite oxide is secured, which contributes to increasing the capacity of the lithium secondary battery.

一般式(1)において、y+zは、0.00<y+z≦0.80であり、好ましくは、0.10≦y+z≦0.50である。y+zが0.80以下とすることにより、Liイオンを保持するために十分なMnイオン量を確保することが可能であり、その結果、かかるリチウムマンガン系複合酸化物を使用してリチウムイオン二次電池を製造した際に、十分な充放電容量を得ることが可能である。 In the general formula (1), y + z is 0.00 <y + z ≦ 0.80, preferably 0.10 ≦ y + z ≦ 0.50. By setting y + z to 0.80 or less, it is possible to secure a sufficient amount of Mn ions to retain Li ions, and as a result, lithium ion secondary using such a lithium manganese-based composite oxide. When a battery is manufactured, it is possible to obtain a sufficient charge / discharge capacity.

また、下記一般式(2)により定義される、上記各遷移金属占有率の和に相当する組成式あたりの遷移金属量が、一定値以下となっていることが好ましい。具体的には、0.00≦y<0.13、0.00≦z<0.13の時、組成式あたりの遷移金属量は0.670以上0.750以下であることが好ましい。また、0.13≦y<0.18、0.13≦z<0.18の時、組成式あたりの遷移金属量は0.670以上0.777以下であることが好ましい。また、0.18≦y≦0.60、0.18≦z≦0.60の時、組成式あたりの遷移金属量は0.670以上0.850以下であることが好ましい。
一般式(2):
(組成式あたりの遷移金属量)
=(g2c+2g4h)/3+(g2b+2g4g)/3+4×g8j/3 (2)
Further, it is preferable that the amount of transition metals per composition formula, which corresponds to the sum of the occupancy rates of the transition metals defined by the following general formula (2), is a certain value or less. Specifically, when 0.00≤y <0.13 and 0.00≤z <0.13, the amount of transition metal per composition formula is preferably 0.670 or more and 0.750 or less. Further, when 0.13 ≦ y <0.18 and 0.13 ≦ z <0.18, the amount of transition metal per composition formula is preferably 0.670 or more and 0.777 or less. Further, when 0.18 ≦ y ≦ 0.60 and 0.18 ≦ z ≦ 0.60, the amount of transition metal per composition formula is preferably 0.670 or more and 0.850 or less.
General formula (2):
(Amount of transition metal per composition formula)
= (G 2c + 2g 4h ) / 3 + (g 2b + 2g 4g ) / 3 + 4 × g 8j / 3 (2)

y及びzの値によって、組成式あたりの遷移金属量の最適値が異なるのは、通常3価の鉄、通常2価のニッケル、通常4価のマンガンの平均価数が互いに異なるためであり、組成式あたりの遷移金属量が低いというのは構成遷移金属の平均価数が高いことに対応する。 The optimum value of the amount of transition metal per composition formula differs depending on the values of y and z because the average valences of usually trivalent iron, usually divalent nickel, and usually tetravalent manganese are different from each other. A low transition metal amount per composition formula corresponds to a high average valence of the constituent transition metals.

また、本発明のリチウムマンガン系複合酸化物は、高いリチウム/遷移金属のモル比を有することが好ましい。具体的には、0.00≦y<0.13、0.00≦z<0.13の時、リチウム/遷移金属のモル比は1.75以上2.00未満であることが好ましい。また、0.13≦y<0.18、0.13≦z<0.18の時、リチウム/遷移金属のモル比は1.57以上2.00未満であることが好ましい。また、0.18≦y≦0.60、0.18≦z≦0.60の時、リチウム/遷移金属のモル比は1.45以上2.00未満であることが好ましい。かかる構成を有するリチウムマンガン系複合酸化物を使用することにより、充放電特性に優れたリチウムイオン二次電池を得ることができる。 Further, the lithium manganese-based composite oxide of the present invention preferably has a high lithium / transition metal molar ratio. Specifically, when 0.00≤y <0.13 and 0.00≤z <0.13, the molar ratio of lithium / transition metal is preferably 1.75 or more and less than 2.00. Further, when 0.13 ≦ y <0.18 and 0.13 ≦ z <0.18, the molar ratio of lithium / transition metal is preferably 1.57 or more and less than 2.00. Further, when 0.18 ≦ y ≦ 0.60 and 0.18 ≦ z ≦ 0.60, the molar ratio of lithium / transition metal is preferably 1.45 or more and less than 2.00. By using a lithium manganese-based composite oxide having such a structure, a lithium ion secondary battery having excellent charge / discharge characteristics can be obtained.

また、zについては、0.00≦z≦0.60と定義される。zが0.60以下とすることにより、高価なニッケルの使用を抑制することができ、コスト面でメリットがある。また、充電末において化学安定性の低い4価ニッケルイオンの発生を抑制することにより、安全面にも優れる。 Further, z is defined as 0.00 ≦ z ≦ 0.60. By setting z to 0.60 or less, the use of expensive nickel can be suppressed, which is advantageous in terms of cost. In addition, it is also excellent in safety by suppressing the generation of tetravalent nickel ions having low chemical stability at the end of charging.

また、本発明のリチウムマンガン系複合酸化物は、鉄イオン総量に対し、4価鉄を面積率で2%以上含むことが好ましく、2.4%以上であることがより好ましく、2.8%以上であることがさらに好ましい。本明細書において、リチウムマンガン系複合酸化物の面積率とは、57Feメスバウワ分光データにおける4価鉄成分由来の異性体シフト値を有するダブレット成分の、面積比であると定義する。面積率100%とは、本材料中の鉄イオンがすべて4価になることに相当する。鉄イオンは通常2価または3価を取りやすく、4価を含むことは珍しい。鉄イオン価数が3価及び/又は4価の混合原子価状態を取ることにより、リチウムマンガン系複合酸化物の電子伝導性やリチウム/遷移金属のモル比も高めることができ、その結果、充放電特性改善につながる。鉄イオン価数は、室温での57Feメスバウワ分光測定によって得られたスペクトルを対称性ダブレットでフィットし、その重心位置のドップラー速度値に相当する異性体シフト値(α-Fe基準)から評価できる。すなわちドップラー速度標準物質α-Feの異性体シフト値を0mm/s値として得られた異性体シフト値と、M. Tabuchi et al., J. Appl. Phys., 104, 043909-1〜043909-9 (2008).に記載されている鉄3価あるいは4価の既存物質での異性体シフト値との比較によって各スペクトルを帰属し、その面積比を各価数のイオン存在比とすればよい。Further, the lithium manganese-based composite oxide of the present invention preferably contains tetravalent iron in an area ratio of 2% or more, more preferably 2.4% or more, and 2.8% with respect to the total amount of iron ions. The above is more preferable. In the present specification, the area ratio of the lithium manganese-based composite oxide is defined as the area ratio of the doublet component having the isomer shift value derived from the tetravalent iron component in the 57 Fe Mesbauwa spectroscopic data. An area ratio of 100% corresponds to the fact that all iron ions in this material become tetravalent. Iron ions are usually divalent or trivalent and rarely contain tetravalent. By taking a mixed valence state in which the iron ion valence is trivalent and / or tetravalent, the electron conductivity of the lithium manganese-based composite oxide and the molar ratio of the lithium / transition metal can be increased, and as a result, the charge is satisfied. This leads to improved discharge characteristics. The iron ion valence can be evaluated from the isomer shift value (α-Fe standard) corresponding to the Doppler velocity value at the center of gravity of the spectrum obtained by 57 Fe Mesbauwa spectroscopic measurement at room temperature, which is fitted with a symmetric doublet. .. That is, the isomer shift value obtained by setting the isomer shift value of the Doppler velocity standard substance α-Fe as 0 mm / s value, and M. Tabuchi et al., J. Appl. Phys., 104, 043909-1 to 043909- Each spectrum may be assigned by comparison with the isomer shift value of the existing iron trivalent or tetravalent substance described in 9 (2008)., And the area ratio may be used as the ion abundance ratio of each valence. ..

本発明のリチウムマンガン系複合酸化物には、その充放電特性に影響を及ぼさない範囲内で、立方晶岩塩型結晶相などの不純物相を含んでもよい。不純物相の含有量は、リチウムマンガン系複合酸化物100質量%中に10質量%以内とすることが好ましい。含有量の下限値としては特に限定はなく、例えば0.01質量%が好ましい。 The lithium manganese-based composite oxide of the present invention may contain an impurity phase such as a cubic rock salt type crystal phase as long as it does not affect the charge / discharge characteristics. The content of the impurity phase is preferably 10% by mass or less in 100% by mass of the lithium manganese-based composite oxide. The lower limit of the content is not particularly limited, and is preferably 0.01% by mass, for example.

リチウムイオン二次電池正極及びリチウムイオン二次電池
本発明のリチウムマンガン系複合酸化物は、リチウムイオン二次電池正極として好適に使用することができる。また、当該リチウム二次電池用正極を使用し、常法によりリチウムイオン二次電池を製造することもできる。
Lithium Ion Secondary Battery Positive Electrode and Lithium Ion Secondary Battery The lithium manganese-based composite oxide of the present invention can be suitably used as a lithium ion secondary battery positive electrode. Further, the lithium ion secondary battery can also be manufactured by a conventional method using the positive electrode for the lithium secondary battery.

リチウムマンガン系複合酸化物の製造方法
本発明のリチウムマンガン系複合酸化物の製造方法は、
鉄化合物及び/又はニッケル化合物、並びに3価以上のマンガン化合物を10mol%以上含む水溶液をアルカリ性化して沈殿を形成する共沈工程、
前記共沈工程で形成された沈殿物を湿式酸化プロセスで熟成後、リチウム塩を添加して乾燥させて乾燥物を得る焼成前工程、及び、
前記乾燥物を焼成する、一次焼成工程及び二次焼成工程を有する焼成工程を有し、
前記二次焼成工程は、酸素を含む雰囲気下で焼成をおこなうことを特徴とする。
Method for Producing Lithium Manganese-based Composite Oxide The method for producing a lithium manganese-based composite oxide of the present invention is
A coprecipitation step of alkalizing an aqueous solution containing 10 mol% or more of an iron compound and / or a nickel compound and a trivalent or higher-valent manganese compound to form a precipitate.
After aging the precipitate formed in the co-precipitation step in a wet oxidation process, a lithium salt is added and dried to obtain a dried product, and a pre-baking step.
It has a firing step having a primary firing step and a secondary firing step of firing the dried product.
The secondary firing step is characterized in that firing is performed in an atmosphere containing oxygen.

共沈工程
共沈工程では、鉄化合物及び/又はニッケル化合物、並びに3価以上のマンガン化合物を10mol%以上含む水溶液をアルカリ性化して沈殿を形成する。
Coprecipitation step In the coprecipitation step, an aqueous solution containing 10 mol% or more of an iron compound and / or a nickel compound and a trivalent or higher-valent manganese compound is alkalized to form a precipitate.

鉄化合物としては、特に価数や種類にこだわらず、公知の鉄化合物を広く使用することが可能である。3価塩でも2価塩でも、特に限定なく使用することが可能である。また、硝酸塩、硫酸塩、酢酸塩、及びシュウ酸塩等からなる群より選択される1種以上を使用することも好ましい。ニッケル化合物についても、鉄化合物と同様である。 As the iron compound, known iron compounds can be widely used regardless of the valence and type. Either a trivalent salt or a divalent salt can be used without particular limitation. It is also preferable to use one or more selected from the group consisting of nitrates, sulfates, acetates, oxalates and the like. The same applies to the nickel compound as well as the iron compound.

鉄化合物及びニッケル化合物の、鉄化合物及び/又はニッケル化合物、並びに3価以上のマンガン化合物からなる金属塩水溶液の濃度は特に限定はない。但し、過度に高濃度となると、後述するアルカリとの混合時に発生する中和熱のために不純物であるスピネルフェライトが多量に発生してしまうため、スピネルフェライトの発生をある程度抑制するために、0.1〜10Mとすることが好ましい。 The concentration of the iron compound and / or the nickel compound of the iron compound and the nickel compound, and the aqueous metal salt solution composed of the trivalent or higher valent manganese compound is not particularly limited. However, if the concentration is excessively high, a large amount of spinel ferrite, which is an impurity, is generated due to the heat of neutralization generated when mixing with an alkali, which will be described later. Therefore, in order to suppress the generation of spinel ferrite to some extent, 0 .1 to 10M is preferable.

マンガン化合物としては、3価以上の高価数マンガン塩を使用する。かかるマンガン塩は、3価以上のものであれば特に限定はなく、公知のものを広く使用することが可能である。具体的には、過マンガン酸カリウム(7価マンガン源)、酢酸マンガン(III)、アセチル酢酸マンガン塩(III)、過マンガン酸ナトリウム等を例示することが可能である。これらの原料は、無水物であっても、水和物であっても、これらの混合物であってもよい。 As the manganese compound, an expensive manganese salt having a valence of 3 or more is used. The manganese salt is not particularly limited as long as it has a trivalent value or higher, and known manganese salts can be widely used. Specifically, potassium permanganate (7-valent manganese source), manganese acetate (III), acetyl manganese acetate salt (III), sodium permanganate and the like can be exemplified. These raw materials may be anhydrous, hydrated, or a mixture thereof.

3価以上の高価数マンガン塩は、鉄化合物及び/又はニッケル化合物、並びに3価以上のマンガン化合物を含む水溶液中に、10mol%以上含まれ、より好ましくは、20mol%含まれる。10mol%に満たない場合、充放電特性に優れない試料となってしまう。上限値としては、特に限定はなく、例えば、100mol%であってもよい。 The trivalent or higher expensive manganese salt is contained in an aqueous solution containing an iron compound and / or a nickel compound and a trivalent or higher manganese compound in an amount of 10 mol% or more, more preferably 20 mol%. If it is less than 10 mol%, the sample will have poor charge / discharge characteristics. The upper limit value is not particularly limited and may be, for example, 100 mol%.

その他にも、さらに、2価の水溶性マンガン塩を加えることも好ましい。かかる2価の水溶性マンガン塩としても特に限定はなく、塩化マンガン、酢酸マンガン、硝酸マンガン、硫酸マンガン、アセチル酢酸マンガンなど、水和物、無水物それらの混合物も用いることができる。また、金属も酸化物も、無機酸などで溶解させ、水溶性塩として利用できる。2価の水溶性マンガン塩の添加量としては、その目的等に応じて適宜設定すればよい。 In addition, it is also preferable to add a divalent water-soluble manganese salt. The divalent water-soluble manganese salt is not particularly limited, and a mixture of hydrates and anhydrides such as manganese chloride, manganese acetate, manganese nitrate, manganese sulfate, and acetyl manganese acetate can also be used. Further, both the metal and the oxide can be used as a water-soluble salt by dissolving them with an inorganic acid or the like. The amount of the divalent water-soluble manganese salt added may be appropriately set according to the purpose and the like.

上記、鉄化合物、ニッケル化合物、及び3価以上のマンガン化合物の配合比(原子比)は、例えば1:1:3〜1:1:8とすることが好ましい。 The compounding ratio (atomic ratio) of the iron compound, the nickel compound, and the manganese compound having a valence of 3 or more is preferably 1: 1: 3 to 1: 1: 8, for example.

アルカリ性化の方法としては、特に限定はなく、例えばアルカリ性溶液を、上記鉄化合物及び/又はニッケル化合物、並びに3価以上のマンガン化合物を含む水溶液に、添加する方法を挙げることができる。 The method of alkalinization is not particularly limited, and examples thereof include a method of adding an alkaline solution to an aqueous solution containing the above iron compound and / or nickel compound and a manganese compound having a valence of 3 or more.

使用するアルカリ性溶液としては、公知のアルカリ性溶液を広く使用することが可能であり、特に限定はない。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなど、水和物も含めて用いることができる。アルカリ濃度としては、滴下後もアルカリ性(pH11以上)を維持可能な濃度であれば、特に限定はない。 As the alkaline solution to be used, a known alkaline solution can be widely used, and there is no particular limitation. Specifically, hydrates such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and ammonia can also be used. The alkali concentration is not particularly limited as long as it can maintain alkalinity (pH 11 or higher) even after dropping.

焼成前工程
焼成前工程では、前記共沈工程で形成された沈殿物を湿式酸化プロセスで熟成後、リチウム塩を添加して乾燥させて乾燥物を得る。
Pre-Caking Step In the pre- baking step, the precipitate formed in the co-precipitation step is aged by a wet oxidation process, and then a lithium salt is added and dried to obtain a dried product.

湿式酸化プロセスにおいて採用する方法としては、沈殿に対して酸化性気体を吹き込む方法であれば特に限定はない。具体的には、上記共沈工程で生成した共沈物を撹拌しつつ、バブリング処理する方法を挙げることができる。バブリングに使用する気体は、空気でよく、好ましくは酸素である。湿式酸化プロセスを実施する時間は、湿式酸化反応が十分に進行するために要する時間を考慮し、2時間以上が好ましく、3時間以上がより好ましい。また、当該時間の上限としては特に限定はないが、例えば4日間が好ましく、3日間がより好ましい。通常は、2日程度で行う。 The method adopted in the wet oxidation process is not particularly limited as long as it is a method of blowing an oxidizing gas into the precipitate. Specifically, a method of bubbling treatment while stirring the coprecipitate produced in the coprecipitation step can be mentioned. The gas used for bubbling may be air, preferably oxygen. The time for carrying out the wet oxidation process is preferably 2 hours or more, more preferably 3 hours or more, in consideration of the time required for the wet oxidation reaction to proceed sufficiently. The upper limit of the time is not particularly limited, but for example, 4 days is preferable, and 3 days is more preferable. Usually, it takes about 2 days.

湿式酸化プロセスを実施した後、残留しているアルカリ塩などの不純物を除去することも好ましい。除去する方法としては特に限定はなく、例えば水洗等を挙げることができる。 It is also preferable to remove residual impurities such as alkali salts after performing the wet oxidation process. The method for removing is not particularly limited, and examples thereof include washing with water.

上記の通り、湿式酸化プロセスを実施し、さらに必要に応じてアルカリ塩の除去を行って熟成物を得る。得られた熟成物にリチウム塩を添加する。添加するリチウム塩としては、公知のリチウム塩を広く使用することが可能であり、特に限定はない。具体的には、炭酸リチウム、水酸化リチウム、塩化リチウム、硝酸リチウム、及びこれらの水和物からなる群より選択される1種以上を使用することができる。 As described above, a wet oxidation process is carried out, and if necessary, alkali salts are removed to obtain an aged product. Lithium salt is added to the obtained aged product. As the lithium salt to be added, a known lithium salt can be widely used, and there is no particular limitation. Specifically, one or more selected from the group consisting of lithium carbonate, lithium hydroxide, lithium chloride, lithium nitrate, and hydrates thereof can be used.

添加するリチウム塩量としては、熟成物に対して、モル比で1.5〜2.5倍が好ましく、1.8〜2.3倍がより好ましい。モル比で1.5倍以上とすることにより、スピネル相等の不純物相の発生を抑制することができる。一方、高価なリチウム塩のコスト面を考慮し、モル比で2.5倍以下とすることが好ましい。 The amount of lithium salt to be added is preferably 1.5 to 2.5 times, more preferably 1.8 to 2.3 times, the molar ratio of the aged product. By setting the molar ratio to 1.5 times or more, the generation of an impurity phase such as a spinel phase can be suppressed. On the other hand, in consideration of the cost of the expensive lithium salt, the molar ratio is preferably 2.5 times or less.

熟成物にリチウム塩を添加した後は、ミキサー等を使用して撹拌混合することが好ましい。その後、得られた混合物を乾燥させて、乾燥物を得る。乾燥条件としては、40〜60℃で1〜5日間が好ましい。このように、比較的低温条件で長時間乾燥させることにより、混合したリチウム塩が共沈物との比重差により遍析することを防止することができる。 After adding the lithium salt to the aged product, it is preferable to stir and mix using a mixer or the like. The resulting mixture is then dried to give a dried product. The drying conditions are preferably 40 to 60 ° C. for 1 to 5 days. As described above, by drying for a long time under relatively low temperature conditions, it is possible to prevent the mixed lithium salt from being deposited due to the difference in specific gravity with the coprecipitate.

焼成工程
焼成工程は、焼成前工程により得られた乾燥物を焼成する工程である。当該焼成工程は、一次焼成工程及び二次焼成工程を有し、該二次焼成工程は、酸化を含む雰囲気下で行われる。
Baking step The firing step is a step of firing the dried product obtained in the pre-baking step. The firing step includes a primary firing step and a secondary firing step, and the secondary firing step is performed in an atmosphere including oxidation.

一次焼成工程において、焼成する態様としては、公知の方法を広く採用することが可能であり、特に限定はない。例えば、電気炉を使用して焼成することができる。焼成雰囲気に関しては、特に限定はないが、大気中や酸素気流中が好ましい。 In the primary firing step, as a mode of firing, a known method can be widely adopted, and there is no particular limitation. For example, it can be fired using an electric furnace. The firing atmosphere is not particularly limited, but is preferably in the atmosphere or in an oxygen stream.

二次焼成工程における焼成雰囲気としては、酸化性雰囲気を採用する。二次焼成雰囲気として、上記雰囲気以外の雰囲気、たとえば、還元性雰囲気を採用すると、試料が分解してしまう。 An oxidizing atmosphere is adopted as the firing atmosphere in the secondary firing step. If an atmosphere other than the above atmosphere, for example, a reducing atmosphere is adopted as the secondary firing atmosphere, the sample will be decomposed.

焼成温度は、一次焼成工程及び二次焼成工程共に、焼成時間等にも応じて適宜設定することが可能であるが、一次焼成温度は二次焼成温度より低いことが望ましい。 The firing temperature can be appropriately set according to the firing time and the like in both the primary firing step and the secondary firing step, but it is desirable that the primary firing temperature is lower than the secondary firing temperature.

具体的には、一次焼成工程は、焼成温度300〜750℃で焼成することが好ましく、焼成温度450〜650℃で焼成することがより好ましい。一次焼成温度を300℃以上に設定することにより、酸化による構造中へのリチウム取り込みという効果を得ることができる。一方、一次焼成温度を750℃以下に設定することにより、試料の熱分解抑制という効果を得ることができる。一次焼成時間に関しては、リチウムとの十分な反応性確保という理由から、3〜50時間に設定することが好ましく、5〜30時間に設定することがより好ましい。 Specifically, in the primary firing step, firing is preferably performed at a firing temperature of 300 to 750 ° C., and more preferably at a firing temperature of 450 to 650 ° C. By setting the primary firing temperature to 300 ° C. or higher, the effect of incorporating lithium into the structure by oxidation can be obtained. On the other hand, by setting the primary firing temperature to 750 ° C. or lower, the effect of suppressing thermal decomposition of the sample can be obtained. The primary firing time is preferably set to 3 to 50 hours, more preferably 5 to 30 hours, for the purpose of ensuring sufficient reactivity with lithium.

具体的には、二次焼成工程は、焼成温度800〜950℃で焼成することが好ましく、焼成温度840〜910℃で焼成することがより好ましい。二次焼成温度を800℃以上に設定することにより、得られるリチウムマンガン系複合酸化物の一次粒子径が小さくなり過ぎることがなく、その結果、かかるリチウムマンガン系複合酸化物を使用してリチウム二次電池を製造した際に、優れた充放電サイクル特性を得ることができる。一方、二次焼成温度を950℃以下に設定することにより、得られるリチウムマンガン系複合酸化物の一次粒子径が過大なものとならず、かかるリチウムマンガン系複合酸化物を使用してリチウム二次電池を製造した際に、十分な初期充放電容量を得ることができる。二次焼成時間に関しては、高温でのリチウム揮発抑制及び粒成長促進という理由から、1〜20時間に設定することが好ましく、3〜15時間に設定することがより好ましい。 Specifically, in the secondary firing step, it is preferable to fire at a firing temperature of 800 to 950 ° C., and more preferably at a firing temperature of 840 to 910 ° C. By setting the secondary firing temperature to 800 ° C. or higher, the primary particle size of the obtained lithium manganese-based composite oxide does not become too small, and as a result, lithium secondary using such a lithium manganese-based composite oxide is used. Excellent charge / discharge cycle characteristics can be obtained when the next battery is manufactured. On the other hand, by setting the secondary firing temperature to 950 ° C. or lower, the primary particle size of the obtained lithium manganese-based composite oxide does not become excessive, and the lithium-secondary composite oxide is used. When a battery is manufactured, a sufficient initial charge / discharge capacity can be obtained. The secondary firing time is preferably set to 1 to 20 hours, more preferably 3 to 15 hours, for the reason of suppressing lithium volatilization at high temperature and promoting grain growth.

焼成工程を実施した後、必要に応じて得られたリチウムマンガン系複合酸化物を粉砕し、過剰のリチウム塩の除去を目的として水洗処理、濾過、乾燥をおこなってもよい。 After carrying out the calcination step, if necessary, the obtained lithium manganese-based composite oxide may be pulverized, and washed with water, filtered, and dried for the purpose of removing excess lithium salt.

以上、本発明の実施形態について説明したが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these examples, and it goes without saying that the present invention can be implemented in various forms without departing from the gist of the present invention.

以下、実施例に基づき、本発明の実施形態をより具体的に説明するが、本発明がこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.

(実施例1)
合計0.25molとなるように、硝酸鉄(III)9水和物20.20g、硝酸ニッケル(II)6水和物14.54g、酢酸マンガン(III)2水和物20.11g、塩化マンガン(II)4水和物14.84gを秤量し、ビーカー中で蒸留水500mlを加え攪拌し完全に溶解させた。得られた溶解液において、3価以上のマンガン化合物濃度は、30mol%であった。この配合比はFe:Ni:Mnモル比2:2:6で二種のマンガン源配合モル比は1:1に相当する。別のビーカーに水酸化ナトリウム50gを蒸留水500mlに溶解させ、攪拌しつつ、+5℃に温度制御された恒温槽内に静置し、その温度になるまで放置した。金属塩水溶液の入ったビーカーに、樹脂製ホースを入れ、送液ポンプを用いて3時間かけて徐々に金属塩溶液を水酸化ナトリウム水溶液に滴下した。滴下後も強アルカリ状態(pH11以上)を保持していることを確認後、共沈物の生成したビーカーを恒温槽より取り出し、酸素ガス発生器に接続されたバブル生成部分を入れて共沈物を室温で二日間湿式酸化(熟成)させた。熟成後、沈殿を濾過しつつ蒸留水を加えて水洗し、残留アルカリやその塩を沈殿より除去した。炭酸リチウム0.25mol(18.47g)を蒸留水200ml中に分散後、ミキサーにて熟成共沈物とともに入れて攪拌混合した。得られた混合物を50℃で2日間乾燥した。乾燥物を粉砕後、アルミナるつぼふた上に薄く広げ、電気炉にて大気中650℃5時間一次焼成した。生成物を粉砕後、二次焼成として大気中850℃で5時間熱処理を行った。焼成物を再粉砕後、蒸留水にて洗浄し、濾過、100℃乾燥後評価用試料とした。
(Example 1)
20.20 g of iron (III) nitrate 9 hydrate, 14.54 g of nickel (II) nitrate hexahydrate, 20.11 g of manganese (III) acetate dihydrate, manganese (II) chloride 4 so that the total amount is 0.25 mol. 14.84 g of hydrate was weighed, 500 ml of distilled water was added in a beaker, and the mixture was stirred to completely dissolve it. In the obtained solution, the concentration of the trivalent or higher manganese compound was 30 mol%. This compounding ratio is Fe: Ni: Mn molar ratio 2: 2: 6, and the molar ratio of the two manganese sources is 1: 1. In another beaker, 50 g of sodium hydroxide was dissolved in 500 ml of distilled water, and the mixture was allowed to stand in a constant temperature bath whose temperature was controlled to + 5 ° C. while stirring, and left until that temperature was reached. A resin hose was placed in a beaker containing an aqueous metal salt solution, and the metal salt solution was gradually added dropwise to the aqueous sodium hydroxide solution using a liquid feed pump over 3 hours. After confirming that the beaker in which the coprecipitate is generated is maintained even after the dropping, the beaker in which the coprecipitate is generated is taken out from the constant temperature bath, and the bubble generation part connected to the oxygen gas generator is put in the coprecipitation. Was wet-oxidized (aged) for 2 days at room temperature. After aging, the precipitate was filtered and distilled water was added and washed with water to remove residual alkali and its salts from the precipitate. After dispersing 0.25 mol (18.47 g) of lithium carbonate in 200 ml of distilled water, the mixture was added with an aged coprecipitate in a mixer and mixed by stirring. The resulting mixture was dried at 50 ° C. for 2 days. After crushing the dried product, it was spread thinly on an alumina crucible lid and first fired in an electric furnace at 650 ° C. for 5 hours. After crushing the product, it was heat-treated in the air at 850 ° C. for 5 hours as a secondary firing. The fired product was re-crushed, washed with distilled water, filtered, dried at 100 ° C., and used as an evaluation sample.

(比較例1)
二次焼成雰囲気として大気中の代わりに窒素気流中を用いた以外は実施例1と同様に材料作製を行った。
(Comparative Example 1)
The material was prepared in the same manner as in Example 1 except that a nitrogen stream was used instead of the atmosphere as the secondary firing atmosphere.

XRD評価
得られた試料のX線回折図を図2に示した。RIETAN-FP(F. Izumi and K. Momma, Solid State Phenom., 130, 15-20 (2007).)によるリートベルト解析から、両試料ともすべてのピークは単斜晶層状岩塩型Li2MnO3の単位胞(上記(a)の空間式)100%で指数付けでき、得られた各格子位置での遷移金属占有率g値を表1に示した。それらの値から実施例1試料は比較例1試料と比べて高い六角編目規則度(g4g-g2b:0.40)と低い組成式あたりの全遷移金属量(gtotal:0.80)、低い8j位置遷移金属占有率(g8j:1.9%)を有しており、本発明物質に適合することが明らかである。
XRD evaluation The X-ray diffraction pattern of the obtained sample is shown in FIG. From Rietveld analysis by RIETAN-FP (F. Izumi and K. Momma, Solid State Phenom., 130, 15-20 (2007).), All peaks of both samples are monoclinic layered rock salt type Li 2 MnO 3 Table 1 shows the transition metal occupancy g value at each lattice position obtained, which can be indexed with 100% of the unit cells (spatial formula of (a) above). From these values, the Example 1 sample had a higher hexagonal stitch regularity (g 4g -g 2b : 0.40), a lower total transition metal amount per composition formula (g total : 0.80), and a lower 8j position than the Comparative Example 1 sample. It has a transition metal occupancy (g 8j : 1.9%), and it is clear that it is compatible with the substance of the present invention.

Figure 2019235573
Figure 2019235573

化学分析
ICP発光分析によるLi及び遷移金属量分析を行い、各試料の化学組成を表2のごとく算出した。両試料とも遷移金属比はいずれも仕込み組成(Fe:Ni:Mn=2:2:6)を維持していた。得られた分析値が本発明組成式におけるx, y及びz値の範囲内であることを確認できた。一方Li/遷移金属比は、実施例1及び比較例1の中で、実施例1試料のみが本発明物質(Li/遷移金属比1.45以上)の条件を満たすことが明らかである。
Chemical analysis
Li and transition metal amounts were analyzed by ICP emission spectrometry, and the chemical composition of each sample was calculated as shown in Table 2. In both samples, the transition metal ratio maintained the charged composition (Fe: Ni: Mn = 2: 2: 6). It was confirmed that the obtained analytical values were within the range of x, y and z values in the composition formula of the present invention. On the other hand, regarding the Li / transition metal ratio, it is clear that in Example 1 and Comparative Example 1, only the sample of Example 1 satisfies the condition of the substance of the present invention (Li / transition metal ratio of 1.45 or more).

Figure 2019235573
Figure 2019235573

57 Feメスバウワ分光
鉄の価数分析のために57Feメスバウワ分光による評価を行った。図3と表3にその結果を示した。尚、図3において、黒実線はA及びB成分の和で表される計算曲線を、灰色の線は各成分の対称性ダブレット成分に対応する。実施例1試料は比較例1試料には見られない異性体シフト値が0mm/sに近いダブレット成分Bが面積比で3.9%見られる。このB成分は以前の報告(G Prado, A. Rougier, L. Fournes, and C. Delmas, J. Electrochem. Soc., 147, 2880-2887 (2000).)より、4価の鉄成分(報告値=-0.11mm/s)と帰属できた。一方両試料とも、主成分であるA成分は異性体シフト値が+0.33mm/sであり、上記文献より(報告値=+0.33mm/s)、3価の鉄成分と帰属できる。この結果より、実施例1及び比較例1の中で、実施例1試料のみが本発明物質の条件に適合することが明らかである。
57 Fe Mesbauwa spectroscopic evaluation was performed by 57 Fe Mesbauwa spectroscopy for valence analysis of iron. The results are shown in FIG. 3 and Table 3. In FIG. 3, the solid black line corresponds to the calculation curve represented by the sum of the A and B components, and the gray line corresponds to the symmetric doublet component of each component. In the Example 1 sample, a doublet component B having an isomer shift value close to 0 mm / s, which is not found in the Comparative Example 1 sample, is observed in an area ratio of 3.9%. This B component is a tetravalent iron component (reported) from a previous report (G Prado, A. Rougier, L. Fournes, and C. Delmas, J. Electrochem. Soc., 147, 2880-2887 (2000).) The value = -0.11 mm / s) could be attributed. On the other hand, in both samples, the isomer shift value of the A component, which is the main component, is + 0.33 mm / s, which can be attributed to the trivalent iron component from the above literature (reported value = + 0.33 mm / s). From this result, it is clear that among Example 1 and Comparative Example 1, only the sample of Example 1 meets the conditions of the substance of the present invention.

Figure 2019235573
Figure 2019235573

充放電特性評価
以下の手順で実施例及び比較例各試料に対し、正極合材を作製して、30℃におけるコイン型リチウム電池を用いた半電池評価を実施した。正極合材は各試料20mgに対してアセチレンブラック5mgを加えて乳鉢上でよく混合後、ポリテトラフルオロエチレン粉末約0.5mgを加えて互いを結着させ、プレス機にてアルミニウムメッシュ上に圧着させて正極を作製した。真空乾燥機にて120℃で一晩乾燥後、グローブボックス内へ導入し、一晩おいてから、金属リチウム箔を負極に、LiPF6を支持塩とし、炭酸エチレンと炭酸ジメチルの体積比3:7の混合溶媒に1Mで溶解させた有機電解液を電解質としたコイン型リチウム半電池作製を行った。
得られた電池を30℃で保持された恒温槽内に静置後、充放電装置に接続し充電開始にて40mA/gの定電流密度で充放電試験を行った。なお4サイクル目までは、電気化学的活性化工程であり、初回は充電容量を80mAh/gに規制して充電後、2.0Vまで放電し、2サイクル目は120mAh/gと40mAh/g刻みで200mAh/gまで容量規制充電および2.0までの放電を繰り返し、5サイクル目に4.8Vまで充電後、2.0Vまで放電して活性化を完了させた。その後6サイクル目からは上限電圧を4.6Vに下げ、2.0Vから4.6Vの電位範囲で19サイクル充放電試験を行った。結果を図4と表4に示した。図4において、右上がりの曲線が充電に、右下がりの曲線が放電曲線に対応する。図内の数字はサイクル数、c及びdはそれぞれ充電と放電を意味する。図表から実施例1試料は比較例1試料に比べて初期充放電容量(Q5c及びQ5d)は低いものの活性化後19サイクル目の放電容量(Q24d)はほぼ同等であり、結果としてサイクル後の放電容量維持率(Q24d/Q5d)に優れたサイクル特性の良好な試料であることが明らかである。
Charge / Discharge Characteristic Evaluation A positive electrode mixture was prepared for each sample of Examples and Comparative Examples according to the following procedure, and a half-cell evaluation using a coin-type lithium battery at 30 ° C. was performed. For the positive electrode mixture, add 5 mg of acetylene black to 20 mg of each sample and mix well on a mortar, then add about 0.5 mg of polytetrafluoroethylene powder to bond them together, and press them together on an aluminum mesh with a press machine. To prepare a positive electrode. After drying overnight at 120 ° C in a vacuum dryer, it is introduced into a glove box, and after leaving it overnight, the metal lithium foil is used as the negative electrode, LiPF 6 is used as the supporting salt, and the volume ratio of ethylene carbonate to dimethyl carbonate is 3: A coin-type lithium half-cell was prepared using an organic electrolyte solution dissolved in a mixed solvent of 7 at 1 M as an electrolyte.
The obtained battery was allowed to stand in a constant temperature bath held at 30 ° C., connected to a charging / discharging device, and a charge / discharge test was conducted at a constant current density of 40 mA / g at the start of charging. Up to the 4th cycle, it is an electrochemical activation process. The first time, the charging capacity is regulated to 80mAh / g, and after charging, it is discharged to 2.0V, and the 2nd cycle is 120mAh / g and in 40mAh / g increments. Capacity regulation charging up to 200mAh / g and discharging up to 2.0 were repeated, and after charging to 4.8V in the 5th cycle, it was discharged to 2.0V to complete the activation. After that, from the 6th cycle, the upper limit voltage was lowered to 4.6V, and a 19-cycle charge / discharge test was performed in the potential range of 2.0V to 4.6V. The results are shown in FIG. 4 and Table 4. In FIG. 4, the upward-sloping curve corresponds to the charge and the downward-sloping curve corresponds to the discharge curve. The numbers in the figure mean the number of cycles, and c and d mean charging and discharging, respectively. From the chart, the initial charge / discharge capacity (Q 5c and Q 5d ) of the Example 1 sample is lower than that of the Comparative Example 1 sample, but the discharge capacity (Q 24d ) in the 19th cycle after activation is almost the same, resulting in a cycle. It is clear that the sample has excellent cycle characteristics and excellent discharge capacity retention rate (Q 24d / Q 5d).

Figure 2019235573
Figure 2019235573

(実施例2)
合計0.25molとなるように、硝酸鉄(III)9水和物15.15g、硝酸ニッケル(II)6水和物10.90g、過マンガン(VII)酸カリウム13.83g、塩化マンガン(II)4水和物17.32gを秤量し、ビーカー中で蒸留水500ml及びエタノール200mlを加え攪拌し完全に溶解させた。得られた溶解液において、3価以上のマンガン化合物濃度は、35mol%であった。この配合比はFe:Ni:Mnモル比15:15:70で二種のマンガン源配合モル比は1:1に相当する。以後は実施例1と同様に試料作製を行った。
(Example 2)
15.15 g of iron (III) nitrate 9 hydrate, 10.90 g of nickel (II) nitrate hexahydrate, 13.83 g of potassium permanganate (VII), and tetrahydrate of manganese (II) chloride so that the total amount is 0.25 mol. 17.32 g of the product was weighed, 500 ml of distilled water and 200 ml of ethanol were added in a beaker, and the mixture was stirred to completely dissolve it. In the obtained solution, the concentration of the trivalent or higher manganese compound was 35 mol%. This compounding ratio is Fe: Ni: Mn molar ratio of 15:15:70, and the molar ratio of the two manganese sources is equivalent to 1: 1. After that, a sample was prepared in the same manner as in Example 1.

(比較例2)
二次焼成雰囲気として大気中の代わりに窒素気流中を用いた以外は実施例2と同様に材料作製を行った。
(Comparative Example 2)
The material was prepared in the same manner as in Example 2 except that a nitrogen stream was used instead of the atmosphere as the secondary firing atmosphere.

XRD評価
得られた試料のX線回折図を図5に示した。RIETAN-FPによるリートベルト解析から、両試料ともすべてのピークは単斜晶層状岩塩型Li2MnO3の単位胞(上記(a)の空間式)100%で指数付けでき、得られた各格子位置での遷移金属占有率g値を表5に示した。それらの値から実施例2試料は比較例2試料と比べて高い六角編目規則度(g4g-g2b:0.40)と低い組成式あたりの全遷移金属量(gtotal:0.77)、低い8j位置遷移金属占有率(g8j:3.9%)を有しており、本発明物質に適合することが明らかである。
XRD evaluation The X-ray diffraction pattern of the obtained sample is shown in FIG. From the Rietveld analysis by RIETAN-FP, all peaks of both samples can be indexed with 100% of the unit cells of monoclinic layered rock salt type Li 2 MnO 3 (spatial formula of (a) above), and each lattice obtained. The transition metal occupancy g value at the position is shown in Table 5. From these values, the Example 2 sample had a higher hexagonal stitch regularity (g 4g -g 2b : 0.40), a lower total transition metal amount per composition formula (g total : 0.77), and a lower 8j position than the Comparative Example 2 sample. It has a transition metal occupancy (g 8j : 3.9%), and it is clear that it is compatible with the substance of the present invention.

Figure 2019235573
Figure 2019235573

化学分析
ICP発光分析によるLi及び遷移金属量分析を行い、各試料の化学組成を表6のごとく算出した。両試料とも遷移金属比はいずれも仕込み組成(Fe:Ni:Mn=15:15:70)を維持していた。得られた分析値が本発明組成式におけるx, y及びz値の範囲内であることを確認できた。一方Li/遷移金属比は、実施例2及び比較例2の中で、実施例2試料のみが本発明物質(Li/遷移金属比1.57以上)の条件を満たすことが明らかである。
Chemical analysis
Li and transition metal amounts were analyzed by ICP emission spectrometry, and the chemical composition of each sample was calculated as shown in Table 6. In both samples, the transition metal ratio maintained the charged composition (Fe: Ni: Mn = 15: 15: 70). It was confirmed that the obtained analytical values were within the range of x, y and z values in the composition formula of the present invention. On the other hand, regarding the Li / transition metal ratio, it is clear that in Example 2 and Comparative Example 2, only the sample of Example 2 satisfies the condition of the substance of the present invention (Li / transition metal ratio of 1.57 or more).

Figure 2019235573
Figure 2019235573

57 Feメスバウワ分光
鉄の価数分析のために57Feメスバウワ分光による評価を行った。図6と表7にその結果を示した。図6において、黒実線はA及びB成分の和で表される計算曲線を、灰色の線は各成分の対称性ダブレット成分に対応する。実施例2試料は比較例2試料には見られない異性体シフト値が0mm/sに近いダブレット成分Bが面積比で2.8%見られた。このB成分は以前の報告(G Prado, A. Rougier, L. Fournes, and C. Delmas, J. Electrochem. Soc., 147, 2880-2887 (2000).)より4価の鉄成分と帰属できた。一方両試料とも、主成分であるA成分は異性体シフト値が+0.33mm/sであり、上記文献より、3価の鉄成分と帰属できる。この結果より、実施例2及び比較例2の中で、実施例2試料のみが本発明物質の条件に適合することが明らかである。
57 Fe Mesbauwa spectroscopic evaluation was performed by 57 Fe Mesbauwa spectroscopy for valence analysis of iron. The results are shown in FIGS. 6 and 7. In FIG. 6, the solid black line corresponds to the calculation curve represented by the sum of the A and B components, and the gray line corresponds to the symmetric doublet component of each component. In the Example 2 sample, a doublet component B having an isomer shift value close to 0 mm / s, which was not found in the Comparative Example 2 sample, was observed in an area ratio of 2.8%. This B component can be attributed to the tetravalent iron component from previous reports (G Prado, A. Rougier, L. Fournes, and C. Delmas, J. Electrochem. Soc., 147, 2880-2887 (2000).) It was. On the other hand, in both samples, the component A, which is the main component, has an isomer shift value of +0.33 mm / s, and can be attributed to the trivalent iron component from the above literature. From this result, it is clear that among Example 2 and Comparative Example 2, only the sample of Example 2 meets the conditions of the substance of the present invention.

Figure 2019235573
Figure 2019235573

充放電特性評価
前述の手順で実施例2及び比較例2各試料に対し、正極合材を作製して、30℃におけるコイン型リチウム電池を用いた半電池評価を実施した。
得られた電池を30℃で保持された恒温槽内に静置後、充放電装置に接続し充電開始にて40mA/gの定電流密度で充放電試験を行った。なお5サイクル目までの電気化学的活性化工程は前述のとおりである。その後6サイクル目からは2.0Vから4.8Vの電位範囲で29サイクル充放電試験を行った。結果を図7と表8に示した。尚、図7において、右上がりの曲線が充電に、右下がりの曲線が放電曲線に対応。図内の数字はサイクル数、c及びdはそれぞれ充電と放電を意味する。図表から実施例2試料は比較例2試料に比べて初期充放電容量(Q5c及びQ5d)は低いものの活性化後29サイクル目の放電容量(Q34d)は大きくなり、結果としてサイクル後の放電容量維持率(Q34d/Q5d)に優れたサイクル特性の良好な試料であることが明らかである。
Evaluation of Charge / Discharge Characteristics For each sample of Example 2 and Comparative Example 2 in the above procedure, a positive electrode mixture was prepared, and a half-cell evaluation using a coin-type lithium battery at 30 ° C. was carried out.
The obtained battery was allowed to stand in a constant temperature bath held at 30 ° C., connected to a charging / discharging device, and a charge / discharge test was conducted at a constant current density of 40 mA / g at the start of charging. The electrochemical activation step up to the 5th cycle is as described above. After that, from the 6th cycle, a 29-cycle charge / discharge test was performed in the potential range of 2.0V to 4.8V. The results are shown in FIGS. 7 and 8. In FIG. 7, the upward-sloping curve corresponds to the charge, and the downward-sloping curve corresponds to the discharge curve. The numbers in the figure mean the number of cycles, and c and d mean charging and discharging, respectively. From the chart, the initial charge / discharge capacity (Q 5c and Q 5d ) of the Example 2 sample is lower than that of the Comparative Example 2 sample, but the discharge capacity (Q 34d ) at the 29th cycle after activation is larger, and as a result, after the cycle. It is clear that the sample has excellent discharge capacity retention rate (Q 34d / Q 5d) and good cycle characteristics.

Figure 2019235573
Figure 2019235573

(実施例3)
合計0.25molとなるように、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、過マンガン(VII)酸カリウム15.80g、塩化マンガン(II)4水和物19.79gを秤量し、ビーカー中で蒸留水500ml及びエタノール200mlを加え攪拌し完全に溶解させた。得られた溶解液において、3価以上のマンガン化合物濃度は、40mol%であった。この配合比はFe:Ni:Mnモル比1:1:8で二種のマンガン源配合モル比は1:1に相当する。上記以外の条件に関しては、二次焼成温度を850℃から900℃に変更した以外は、実施例1と同様に試料作製を行った。
(Example 3)
10.10 g of iron (III) nitrate 9 hydrate, 7.27 g of nickel (II) nitrate hexahydrate, 15.80 g of potassium permanganate (VII), and tetrahydrate of manganese (II) chloride so that the total amount is 0.25 mol. 19.79 g of the product was weighed, 500 ml of distilled water and 200 ml of ethanol were added in a beaker, and the mixture was stirred to completely dissolve it. In the obtained solution, the concentration of the trivalent or higher manganese compound was 40 mol%. This compounding ratio is a Fe: Ni: Mn molar ratio of 1: 1: 8, and the molar ratio of the two manganese sources is 1: 1. Regarding the conditions other than the above, a sample was prepared in the same manner as in Example 1 except that the secondary firing temperature was changed from 850 ° C. to 900 ° C.

(比較例3)
二次焼成雰囲気として大気中の代わりに窒素気流中を用いた以外は実施例3と同様に材料作製を行った。
(Comparative Example 3)
The material was prepared in the same manner as in Example 3 except that a nitrogen stream was used instead of the atmosphere as the secondary firing atmosphere.

XRD評価
得られた試料のX線回折図を図8にした。RIETAN-FPによるリートベルト解析から、両試料ともすべてのピークは単斜晶層状岩塩型Li2MnO3の単位胞(上記(a)の空間式)100%で指数付けでき、得られた各格子位置での遷移金属占有率g値を表9に示した。それらの値から実施例3試料は比較例3試料と比べて高い六角編目規則度(g4g-g2b:0.44)と低い組成式あたりの全遷移金属量(gtotal:0.75)、低い8j位置遷移金属占有率(g8j:3.8%)を有しており、本発明物質に適合することが明らかである。
XRD evaluation The X-ray diffraction pattern of the obtained sample is shown in FIG. From the Rietveld analysis by RIETAN-FP, all peaks of both samples can be indexed with 100% of the unit cells of monoclinic layered rock salt type Li 2 MnO 3 (spatial formula of (a) above), and each lattice obtained. The transition metal occupancy g value at the position is shown in Table 9. From these values, the Example 3 sample had a higher hexagonal stitch regularity (g 4g -g 2b : 0.44), a lower total transition metal amount per composition formula (g total : 0.75), and a lower 8j position than the Comparative Example 3 sample. It has a transition metal occupancy (g 8j : 3.8%) and is clearly compatible with the substance of the present invention.

Figure 2019235573
Figure 2019235573

化学分析
ICP発光分析によるLi及び遷移金属量分析を行い、各試料の化学組成を表10のごとく算出した。両試料とも遷移金属比はいずれも仕込み組成(Fe:Ni:Mn=1:1:8)を維持していた。得られた分析値が本発明組成式におけるx, y及びz値の範囲内であることを確認できた。一方Li/遷移金属比は、実施例3及び比較例3の中で、実施例3試料のみが本発明物質(Li/遷移金属比1.75以上)の条件を満たすことが明らかである。
Chemical analysis
The amount of Li and transition metal was analyzed by ICP emission spectrometry, and the chemical composition of each sample was calculated as shown in Table 10. In both samples, the transition metal ratio maintained the charged composition (Fe: Ni: Mn = 1: 1: 8). It was confirmed that the obtained analytical values were within the range of x, y and z values in the composition formula of the present invention. On the other hand, regarding the Li / transition metal ratio, it is clear that in Example 3 and Comparative Example 3, only the sample of Example 3 satisfies the condition of the substance of the present invention (Li / transition metal ratio of 1.75 or more).

Figure 2019235573
Figure 2019235573

57 Feメスバウワ分光
鉄の価数分析のために57Feメスバウワ分光による評価を行った。図9と表11にその結果を示した。尚、図9において、黒実線はA及びB成分の和で表される計算曲線を、灰色の線は各成分の対称性ダブレット成分に対応する。実施例3試料は比較例3試料には見られない異性体シフト値が0mm/sに近いダブレット成分Bが面積比で6.0%見られる。このB成分は、以前の報告(G Prado, A. Rougier, L. Fournes, and C. Delmas, J. Electrochem. Soc., 147, 2880-2887 (2000).)より、4価の鉄成分と帰属できた。一方両試料とも、主成分であるA成分は異性体シフト値が+0.34mm/sであり、上記文献より、3価の鉄成分と帰属できる。この結果より、実施例3及び比較例3の中で、実施例3試料のみが本発明物質の条件に適合することが明らかである。
57 Fe Mesbauwa spectroscopic evaluation was performed by 57 Fe Mesbauwa spectroscopy for valence analysis of iron. The results are shown in FIGS. 9 and 11. In FIG. 9, the black solid line corresponds to the calculation curve represented by the sum of the A and B components, and the gray line corresponds to the symmetric doublet component of each component. In the Example 3 sample, a doublet component B having an isomer shift value close to 0 mm / s, which is not found in the Comparative Example 3 sample, is observed in an area ratio of 6.0%. This B component is a tetravalent iron component from a previous report (G Prado, A. Rougier, L. Fournes, and C. Delmas, J. Electrochem. Soc., 147, 2880-2887 (2000).) I was able to belong. On the other hand, in both samples, the A component, which is the main component, has an isomer shift value of +0.34 mm / s, and can be attributed to the trivalent iron component from the above literature. From this result, it is clear that among Example 3 and Comparative Example 3, only the sample of Example 3 meets the conditions of the substance of the present invention.

Figure 2019235573
Figure 2019235573

充放電特性評価
前述の手順で実施例3及び比較例3各試料に対し、正極合材を作製して、30℃におけるコイン型リチウム電池を用いた半電池評価を実施した。
得られた電池を30℃で保持された恒温槽内に静置後、充放電装置に接続し充電開始にて40mA/gの定電流密度で充放電試験を行った。なお5サイクル目までの電気化学的活性化工程は前述のとおりである。その後6サイクル目からは2.0Vから4.6Vの電位範囲で29サイクル充放電試験を行った。結果を図10と表12に示した。尚、図10において、右上がりの曲線が充電に、右下がりの曲線が放電曲線に対応。図内の数字はサイクル数、c及びdはそれぞれ充電と放電を意味する。図表から実施例3試料は比較例3試料に比べて初期放電容量(Q5d)は低いものの活性化後29サイクル目の放電容量(Q34d)は大きくなり、結果としてサイクル後の放電容量維持率(Q34d/Q5d)に優れたサイクル特性の良好な試料であることが明らかである。
Evaluation of Charge / Discharge Characteristics For each sample of Example 3 and Comparative Example 3 in the above procedure, a positive electrode mixture was prepared and a half-cell evaluation using a coin-type lithium battery at 30 ° C. was performed.
The obtained battery was allowed to stand in a constant temperature bath held at 30 ° C., connected to a charging / discharging device, and a charge / discharge test was conducted at a constant current density of 40 mA / g at the start of charging. The electrochemical activation step up to the 5th cycle is as described above. After that, from the 6th cycle, a 29-cycle charge / discharge test was performed in the potential range of 2.0 V to 4.6 V. The results are shown in FIGS. 10 and 12. In FIG. 10, the upward-sloping curve corresponds to the charge and the downward-sloping curve corresponds to the discharge curve. The numbers in the figure mean the number of cycles, and c and d mean charging and discharging, respectively. From the chart, the initial discharge capacity (Q 5d ) of the Example 3 sample is lower than that of the Comparative Example 3 sample, but the discharge capacity (Q 34d ) in the 29th cycle after activation is larger, and as a result, the discharge capacity retention rate after the cycle is increased. It is clear that the sample has excellent cycle characteristics (Q 34d / Q 5d).

Figure 2019235573
Figure 2019235573

本発明のリチウムマンガン系複合酸化物は、資源的に豊富で安価な元素FeやMnを主に含むのみならず、これを使用した電池は優れた充放電特性を示すことから、電気自動車や電力負荷平準化システムなど大型リチウムイオン二次電池正極材料として利用できる可能性が高い。 The lithium-manganese-based composite oxide of the present invention mainly contains the elements Fe and Mn, which are abundant and inexpensive in terms of resources, and the battery using these elements exhibits excellent charge / discharge characteristics. It is highly possible that it can be used as a positive electrode material for large lithium-ion secondary batteries such as load leveling systems.

Claims (8)

一般式(1):
Li1+x(Mn1−y−zFeNi1−x (1)
[式中、x、y及びzはそれぞれ、0.00<x<1/3、0.00≦y≦0.60、0.00≦z≦0.60、0.00<y+z≦0.80を示す。]
で表わされ、単斜晶LiMnO型層状岩塩型構造を有する結晶相を含むリチウムマンガン系複合酸化物であって、
前記単斜晶LiMnO型層状岩塩型構造の結晶相の遷移金属含有層内の六角網目規則構造において、六角網目規則度が0.36以上であることを特徴とする、リチウムマンガン系複合酸化物。
General formula (1):
Li 1 + x (Mn 1-y-z F y Ni z ) 1-x O 2 (1)
[In the formula, x, y and z are 0.00 <x <1/3, 0.00 ≦ y ≦ 0.60, 0.00 ≦ z ≦ 0.60, 0.00 <y + z ≦ 0, respectively. 80 is shown. ]
It is a lithium manganese-based composite oxide containing a crystal phase having a monoclinic Li 2 MnO 3 type layered rock salt type structure represented by.
A lithium manganese-based composite characterized in that the hexagonal network regularity is 0.36 or more in the hexagonal network regularity in the transition metal-containing layer of the crystal phase of the monoclinic Li 2 MnO 3 type layered rock salt type structure. Oxide.
鉄イオン総量100%に対し、4価鉄を面積率で2%以上含む、請求項1に記載のリチウムマンガン系複合酸化物。 The lithium manganese-based composite oxide according to claim 1, which contains 2% or more of tetravalent iron in an area ratio with respect to 100% of the total amount of iron ions. リチウム/遷移金属のモル比が、
(I) 0.00≦y<0.13、0.00≦z<0.13の時、1.75以上2.00未満、
(II) 0.13≦y<0.18、0.13≦z<0.18の時、1.57以上2.00未満、
(III)0.18≦y≦0.60、0.18≦z≦0.60の時、1.45以上2.00未満、
である、請求項1又は2に記載のリチウムマンガン系複合酸化物。
Lithium / transition metal molar ratio
(I) When 0.00≤y <0.13 and 0.00≤z <0.13, 1.75 or more and less than 2.00.
(II) When 0.13 ≦ y <0.18 and 0.13 ≦ z <0.18, 1.57 or more and less than 2.00,
(III) When 0.18 ≦ y ≦ 0.60 and 0.18 ≦ z ≦ 0.60, 1.45 or more and less than 2.00,
The lithium manganese-based composite oxide according to claim 1 or 2.
遷移金属量が、
(i) 0.00≦y<0.13、0.00≦z<0.13の時、0.670以上0.750以下、
(ii) 0.13≦y<0.18、0.13≦z<0.18の時、0.670以上0.777以下、
(iii)0.18≦y≦0.60、0.18≦z≦0.60の時、0.670以上0.850以下、
である、請求項1〜3の何れか1項に記載のリチウムマンガン系複合酸化物。
The amount of transition metal is
(I) When 0.00≤y <0.13, 0.00≤z <0.13, 0.670 or more and 0.750 or less,
(Ii) When 0.13 ≦ y <0.18 and 0.13 ≦ z <0.18, 0.670 or more and 0.777 or less,
(Iii) When 0.18 ≦ y ≦ 0.60 and 0.18 ≦ z ≦ 0.60, 0.670 or more and 0.850 or less,
The lithium manganese-based composite oxide according to any one of claims 1 to 3.
単斜晶LiMnO型層状岩塩型構造内のリチウム層隣接四面***置(4i及び8j位置)において8j位置遷移金属占有率が4%以下である、請求項1〜4の何れか1項に記載のリチウムマンガン系複合酸化物。Any one of claims 1 to 4, wherein the 8j position transition metal occupancy is 4% or less at the lithium layer adjacent tetrahedral positions (4i and 8j positions) in the monoclinic Li 2 MnO 3 type layered rock salt type structure. The lithium manganese-based composite oxide described in 1. 請求項1〜5の何れか1項に記載のリチウムマンガン系複合酸化物を含むリチウムイオン二次電池正極材料。 A lithium ion secondary battery positive electrode material containing the lithium manganese-based composite oxide according to any one of claims 1 to 5. 請求項6に記載のリチウムイオン二次電池正極材料を有する、リチウムイオン二次電池。 The lithium ion secondary battery according to claim 6, wherein the lithium ion secondary battery has a positive electrode material. 鉄化合物及び/又はニッケル化合物、並びに、マンガンイオン総量100mol%に対し3価以上のマンガン化合物を10mol%以上含む水溶液をアルカリ性化して沈殿を形成する共沈工程、
前記共沈工程で形成された沈殿物を湿式酸化プロセスで熟成後、リチウム塩を添加して乾燥させて乾燥物を得る焼成前工程、
前記乾燥物を焼成する、一次焼成工程及び二次焼成工程を有する焼成工程を有し、
前記二次焼成工程は、酸素を含む雰囲気下で焼成をおこなうことを特徴とする、リチウムマンガン系複合酸化物の製造方法。
A coprecipitation step of alkalizing an aqueous solution containing 10 mol% or more of an iron compound and / or a nickel compound and a manganese compound having a valence of 3 or more with respect to 100 mol% of the total amount of manganese ions to form a precipitate.
A pre-calcination step of aging the precipitate formed in the co-precipitation step by a wet oxidation process and then adding a lithium salt to dry the precipitate to obtain a dried product.
It has a firing step having a primary firing step and a secondary firing step of firing the dried product.
The secondary firing step is a method for producing a lithium manganese-based composite oxide, which comprises firing in an atmosphere containing oxygen.
JP2020523178A 2018-06-06 2019-06-06 Lithium-manganese composite oxide and method for producing the same Active JP7302826B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018108724 2018-06-06
JP2018108724 2018-06-06
PCT/JP2019/022541 WO2019235573A1 (en) 2018-06-06 2019-06-06 Lithium-manganese-based composite oxide and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019235573A1 true JPWO2019235573A1 (en) 2021-07-08
JP7302826B2 JP7302826B2 (en) 2023-07-04

Family

ID=68769803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020523178A Active JP7302826B2 (en) 2018-06-06 2019-06-06 Lithium-manganese composite oxide and method for producing the same

Country Status (2)

Country Link
JP (1) JP7302826B2 (en)
WO (1) WO2019235573A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912137A (en) * 2021-10-09 2022-01-11 宁波容百新能源科技股份有限公司 Polyhedral-rich composite phase precursor, preparation method thereof and lithium-rich cathode material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007358A1 (en) * 2002-07-15 2004-01-22 Research Triangle Institute Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases
JP2005097087A (en) * 2003-07-18 2005-04-14 Tosoh Corp New lithium-nickel-manganese multiple oxide and its manufacturing method
WO2008023622A1 (en) * 2006-08-21 2008-02-28 National Institute Of Advanced Industrial Science And Technology Process for producing lithium/manganese composite oxide
JP2009179501A (en) * 2008-01-30 2009-08-13 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese complex oxide having regular structure and method for producing the same
WO2018066633A1 (en) * 2016-10-07 2018-04-12 国立研究開発法人産業技術総合研究所 Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same
WO2018096972A1 (en) * 2016-11-22 2018-05-31 国立研究開発法人産業技術総合研究所 Lithium-manganese complex oxide and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007358A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007358A1 (en) * 2002-07-15 2004-01-22 Research Triangle Institute Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases
JP2005097087A (en) * 2003-07-18 2005-04-14 Tosoh Corp New lithium-nickel-manganese multiple oxide and its manufacturing method
WO2008023622A1 (en) * 2006-08-21 2008-02-28 National Institute Of Advanced Industrial Science And Technology Process for producing lithium/manganese composite oxide
JP2009179501A (en) * 2008-01-30 2009-08-13 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese complex oxide having regular structure and method for producing the same
WO2018066633A1 (en) * 2016-10-07 2018-04-12 国立研究開発法人産業技術総合研究所 Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same
WO2018096972A1 (en) * 2016-11-22 2018-05-31 国立研究開発法人産業技術総合研究所 Lithium-manganese complex oxide and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUGE, R. ET AL., ELECTROCHIMICA ACTA, vol. 189, JPN6019028629, 2016, pages 166 - 174, ISSN: 0004959440 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912137A (en) * 2021-10-09 2022-01-11 宁波容百新能源科技股份有限公司 Polyhedral-rich composite phase precursor, preparation method thereof and lithium-rich cathode material
CN113912137B (en) * 2021-10-09 2024-01-19 宁波容百新能源科技股份有限公司 Polyhedral-rich composite phase precursor, preparation method thereof and lithium-rich positive electrode material

Also Published As

Publication number Publication date
JP7302826B2 (en) 2023-07-04
WO2019235573A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
KR101989760B1 (en) Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
JP4963059B2 (en) Lithium manganese composite oxide containing titanium and nickel
KR101989632B1 (en) Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery
JP4691711B2 (en) Lithium manganese composite oxide and method for producing the same
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
TWI423508B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP3940788B2 (en) Lithium ferrite composite oxide and method for producing the same
JP2015144131A (en) Lithium manganese-based complex oxide and method for manufacturing the same
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5686459B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JP4457213B2 (en) Method for producing lithium ferrite composite oxide
JP7302826B2 (en) Lithium-manganese composite oxide and method for producing the same
JP7128475B2 (en) Lithium-manganese composite oxide and method for producing the same
JP4543156B2 (en) Lithium ferrite composite oxide and method for producing the same
JP4423391B2 (en) Lithium ferrite composite oxide and method for producing the same
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same
JPWO2018043436A1 (en) Heterogeneous metal-containing lithium nickel composite oxide and method for producing the same
JP3968420B2 (en) Cubic rock salt type lithium ferrite complex oxide and method for producing the same
JP2016064967A (en) Lithium composite oxide, manufacturing method of lithium composite oxide, cathode active material for lithium secondary battery and lithium secondary battery
JP2020121905A (en) Lithium composite oxide and application thereof
JP2020083677A (en) Nickel-manganese-based composite oxide and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230614

R150 Certificate of patent or registration of utility model

Ref document number: 7302826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150