JPWO2019230786A1 - How to grow ginger - Google Patents

How to grow ginger Download PDF

Info

Publication number
JPWO2019230786A1
JPWO2019230786A1 JP2020522244A JP2020522244A JPWO2019230786A1 JP WO2019230786 A1 JPWO2019230786 A1 JP WO2019230786A1 JP 2020522244 A JP2020522244 A JP 2020522244A JP 2020522244 A JP2020522244 A JP 2020522244A JP WO2019230786 A1 JPWO2019230786 A1 JP WO2019230786A1
Authority
JP
Japan
Prior art keywords
ginger
water
nanobubble
cultivation
nanobubble water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020522244A
Other languages
Japanese (ja)
Inventor
祐一 奥山
祐一 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquasolution Corp
Original Assignee
Aquasolution Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquasolution Corp filed Critical Aquasolution Corp
Publication of JPWO2019230786A1 publication Critical patent/JPWO2019230786A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/25Root crops, e.g. potatoes, yams, beet or wasabi
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/14Ethers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)
  • Catching Or Destruction (AREA)

Abstract

本発明は、栽培環境の影響を受け難く、且つ十分な収穫量を見込める生姜の栽培方法を提供すること課題とする。ナノバブル水を栽培中の生姜に施用する、生姜の栽培方法。An object of the present invention is to provide a method for cultivating ginger, which is not easily affected by the cultivation environment and can be expected to have a sufficient yield. A method of cultivating ginger by applying nanobubble water to cultivated ginger.

Description

本発明は、生姜の栽培方法に関する。 The present invention relates to a method for cultivating ginger.

生姜は、主に畑で栽培され、種(種生姜)を土壌中に植え付けた後に給水(灌水)、追肥、及び薬剤散布を実施することで、約3〜6ヶ月で収穫される。
生姜は、一般的に乾燥に弱く、栽培期間中はこまめに給水する必要がある。また、生姜は、根茎腐敗病等の病気、及びメイガ類等の害虫に侵される虞があり、病気及び害虫を防除しながら栽培する必要がある。
Ginger is mainly cultivated in the field, and is harvested in about 3 to 6 months by planting seeds (seed ginger) in the soil and then supplying water (irrigation), topdressing, and spraying chemicals.
Ginger is generally vulnerable to drying and needs to be watered diligently during the cultivation period. In addition, ginger may be affected by diseases such as rhizome rot and pests such as pyraloid moth, and it is necessary to cultivate ginger while controlling the diseases and pests.

一方、生姜の栽培では、根茎(塊茎)の肥大化を促進させて収穫量の増加を図ることが農業経営上、重要となる。そのため、これまでに、上述した生姜の特性を考慮しつつ、根茎を十分に肥大化させるための栽培技術が開発されてきた。その一例を挙げると、特許文献1には、生姜を含む植物の栽培方法として、「水100gに対する溶解度が25℃で0.1mg以下である窒素原子を含まない有機化合物を含有する植物活力剤を植物の茎部に処理する植物の栽培方法」が記載されている(特許文献1の[請求項1]を参照)。ここで、植物活力剤は、油脂成分であり、具体的には、例えば高級アルコール、脂肪酸類、エステル類、グリセリド類、炭化水素類及びシリコーン等が挙げられる。
上記の特許文献1に記載の栽培方法によれば、水100gに対する溶解度が25℃で0.1mg以下である窒素原子を含まない有機化合物が植物体の茎部に吸着されるため、これが適度な刺激となり植物の活力向上に寄与し、結果として、植物の根及び地上部の重量増加等の植物成長に対する改善が実現される。
On the other hand, in the cultivation of ginger, it is important for agricultural management to promote the enlargement of rhizomes (tubers) and increase the yield. Therefore, so far, cultivation techniques for sufficiently enlarging the rhizome have been developed while considering the above-mentioned characteristics of ginger. As an example, in Patent Document 1, as a method for cultivating a plant containing ginger, "a plant vitalizer containing an organic compound containing no nitrogen atom having a solubility in 100 g of water of 0.1 mg or less at 25 ° C. is used. A method for cultivating a plant to be treated on the stem of the plant ”is described (see [Claim 1] of Patent Document 1). Here, the plant vitalizer is an oil / fat component, and specific examples thereof include higher alcohols, fatty acids, esters, glycerides, hydrocarbons, and silicones.
According to the cultivation method described in Patent Document 1 above, an organic compound containing no nitrogen atom having a solubility in 100 g of water of 0.1 mg or less at 25 ° C. is adsorbed on the stem of the plant, which is appropriate. It stimulates and contributes to the improvement of plant vitality, and as a result, improvement in plant growth such as weight increase of plant roots and above-ground parts is realized.

特開2007−195546号公報JP-A-2007-195546

ところで、生姜の収穫量は、栽培環境に依存する。特に、生姜は、前述したように乾燥に弱く、例えば日照りが続くと、その年の収穫量が減少することが懸念される。また、病気及び害虫が発生し易い状況では、当然ながら期待通りの収穫量が望めなくなる。
そのため、生姜の栽培方法に関して、栽培環境の影響を受け難い栽培方法の開発が求められている。一方、特許文献1に記載の植物活性剤は、厳しい栽培環境下においても生姜の活力を向上させ得るものであるかが不明である。
そこで、本発明は、栽培環境の影響を受け難く、且つ十分な収穫量を見込める生姜の栽培方法を提供することを課題とする。
By the way, the yield of ginger depends on the cultivation environment. In particular, ginger is vulnerable to dryness as described above, and there is a concern that the yield of the year will decrease if, for example, the sunshine continues. In addition, in situations where diseases and pests are likely to occur, it goes without saying that the expected yield cannot be expected.
Therefore, regarding the cultivation method of ginger, it is required to develop a cultivation method that is not easily affected by the cultivation environment. On the other hand, it is unclear whether the plant activator described in Patent Document 1 can improve the vitality of ginger even in a harsh cultivation environment.
Therefore, an object of the present invention is to provide a method for cultivating ginger, which is not easily affected by the cultivation environment and can be expected to have a sufficient yield.

本発明者は、上記課題を達成すべく鋭意検討した結果、生姜の栽培にナノバブル水を用いることにより、栽培環境の影響を受け難くなり、且つ十分な収穫量を見込めることを見出し、本発明を完成させた。
すなわち、本発明者は、以下の構成により上記課題を達成することができることを見出した。
As a result of diligent studies to achieve the above problems, the present inventor has found that by using nanobubble water for cultivating ginger, it is less likely to be affected by the cultivation environment and a sufficient yield can be expected. Completed.
That is, the present inventor has found that the above problems can be achieved by the following configuration.

[1] ナノバブル水を栽培中の生姜に施用する、生姜の栽培方法。
[2] 上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布のうち、少なくとも一方を実施する、請求項1に記載の生姜の栽培方法。
[3] 生姜の栽培期間中、雨季に該当する時期において、生姜の培地である土壌が乾燥して生姜の葉が枯れた場合に、上記ナノバブル水を用いた散水を実施する、[2]に記載の生姜の栽培方法。
[4] 露地栽培によって生姜を栽培する、[1]〜[3]のいずれかに記載の生姜の栽培方法。
[5] 上記ナノバブル水を用いて希釈した農薬を生姜の葉面に付着させる、[2]又は[3]に記載の生姜の栽培方法。
[6] 上記ナノバブル水に含まれる気泡の最頻粒子径が10〜500nmである、[1]〜[5]のいずれかに記載の生姜の栽培方法。
[7] 上記ナノバブル水に含まれる気泡が、酸素、窒素、オゾン及び二酸化炭素からなる群から選択される少なくとも1種の気体を含む、[1]〜[6]のいずれかに記載の生姜の栽培方法。
[8] 上記ナノバブル水が、1×10個/mL〜1×1010個/mLの気泡を有する、[1]〜[7]のいずれかに記載の生姜の栽培方法。
[1] A method for cultivating ginger, in which nanobubble water is applied to cultivated ginger.
[2] The method for cultivating ginger according to claim 1, wherein at least one of the watering using the nanobubble water and the spraying of the pesticide diluted using the nanobubble water is carried out.
[3] During the ginger cultivation period, when the soil that is the medium of ginger dries and the leaves of ginger die during the rainy season, watering using the above nanobubble water is carried out, in [2]. The described ginger cultivation method.
[4] The method for cultivating ginger according to any one of [1] to [3], wherein ginger is cultivated by open-field cultivation.
[5] The method for cultivating ginger according to [2] or [3], wherein the pesticide diluted with the nanobubble water is attached to the leaf surface of ginger.
[6] The method for cultivating ginger according to any one of [1] to [5], wherein the most frequent particle size of bubbles contained in the nanobubble water is 10 to 500 nm.
[7] The ginger according to any one of [1] to [6], wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone and carbon dioxide. Cultivation method.
[8] the nanobubbles water, 1 × 10 having bubbles 8 / mL~1 × 10 10 cells / mL, [1] ~ cultivation method of ginger according to any one of [7].

本発明によれば、栽培環境の影響を受け難く、且つ十分な収穫量を見込める生姜の栽培方法を提供することができる。 According to the present invention, it is possible to provide a method for cultivating ginger that is not easily affected by the cultivation environment and is expected to have a sufficient yield.

ナノバブル生成装置の一例を示す模式図である。It is a schematic diagram which shows an example of the nano bubble generation apparatus. 試験区Iで収穫された生姜の画像である。It is an image of ginger harvested in the test plot I. 試験区IIで収穫された生姜の画像である。It is an image of ginger harvested in Test Group II.

以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本願明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on a typical embodiment of the present invention, but the present invention is not limited to such an embodiment.
In the specification of the present application, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.

本発明の生姜の栽培方法は、ナノバブル水を栽培中の生姜に施用する、生姜の栽培方法である。 The ginger cultivation method of the present invention is a ginger cultivation method in which nanobubble water is applied to ginger being cultivated.

ここで、「ナノバブル水」とは、直径が1μm未満の気泡を含む水であって、より正確には、ナノバブルを混入させた水である。なお、「ナノバブルを混入させた水」に関して付言すると、ナノバブル水の生成に使用する水(ナノバブル水の原水であり、例えば、不純物を含む井水)であって、その性質等に起因して不可避的にナノバブルを含んでいる水は、上記の「ナノバブルを混入させた水」から除外される。
ナノバブル水に含まれる気泡の直径(粒子径)、並びに、後述する気泡の最頻粒子径及び気泡の個数は、水中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法を用いて測定した値であり、本明細書においては、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した数値を採用する。
なお、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)では、直径(粒子径)は、粒子のブラウン運動の速度を計測し、その速度から算出することができ、最頻粒子径は、存在するナノ粒子の粒子径分布から、モード径として確認することができる。
Here, the "nano bubble water" is water containing bubbles having a diameter of less than 1 μm, and more accurately, water mixed with nano bubbles. As for "water mixed with nanobubbles", it is water used to generate nanobubble water (raw water of nanobubble water, for example, well water containing impurities), which is unavoidable due to its properties and the like. Water containing nanobubbles is excluded from the above-mentioned "water mixed with nanobubbles".
The diameter of bubbles (particle size) contained in nanobubble water, the most frequent particle size of bubbles and the number of bubbles, which will be described later, are values obtained by measuring the Brownian motion movement rate of bubbles in water using the nanoparticle tracking analysis method. Therefore, in this specification, the numerical values measured by the nanoparticle analysis system Nanosite Series (manufactured by NanoSight) are adopted.
In the nanoparticle analysis system Nanosite series (manufactured by NanoSight), the diameter (particle size) can be calculated from the rate of Brownian motion of particles, and the most frequent particle size exists. It can be confirmed as a mode diameter from the particle size distribution of nanoparticles.

本発明の生姜の栽培方法では、以上のように、ナノバブル水を栽培中の生姜に施用する。これにより、生姜の栽培が栽培環境の影響を受け難くなり、且つ収穫時には十分な収穫量を見込める。具体的には、渇水が続く環境下であっても収穫時には十分な収穫量を確保することが可能となる。こうした効果が得られる理由については、詳細には明らかではないが、本発明者は以下のように推測している。
すなわち、本発明によって渇水が続く環境下であっても十分な収穫量を確保することができる一つの理由は、ナノバブル水は、ナノバブルを含まない通常の水よりも培地中(特に、土壌中)に浸透し易く、降雨量が少なく乾燥した環境であっても、ナノバブル水を散水することで、生姜が良好に水分を吸収できるようになるためであると考えられる。
また、本発明によって渇水が続く環境下であっても十分な収穫量を確保することができる他の理由は、農薬が上述したナノバブル水との併用によって展着され易くなり、植物体の表皮等に付着した農薬が比較的長い期間付着し続けるので、農薬の薬効が長期に亘って持続されるためであると考えられる。つまり、通常であれば病気及び害虫が発生し易い状況であっても、ナノバブル水を併用して農薬を散布することで、生姜に発生し得る病気及び害虫を効果的に防除することが可能であると考えられる。
In the ginger cultivation method of the present invention, nanobubble water is applied to the cultivated ginger as described above. As a result, the cultivation of ginger is less likely to be affected by the cultivation environment, and a sufficient yield can be expected at the time of harvesting. Specifically, it is possible to secure a sufficient yield at the time of harvest even in an environment where drought continues. The reason why such an effect is obtained is not clear in detail, but the present inventor speculates as follows.
That is, one reason that the present invention can secure a sufficient yield even in an environment where drought continues is that nanobubble water is more in a medium (particularly in soil) than normal water containing no nanobubbles. It is considered that this is because the ginger can absorb water well by sprinkling nanobubble water even in a dry environment where it easily penetrates into the soil and the amount of rainfall is small.
Another reason that the present invention can secure a sufficient yield even in an environment where drought continues is that pesticides are easily spread by the combined use with the above-mentioned nanobubble water, and the epidermis of a plant or the like. It is considered that this is because the pesticides adhering to the pesticides continue to adhere to the pesticides for a relatively long period of time, so that the medicinal effects of the pesticides are maintained for a long period of time. In other words, even in situations where diseases and pests are normally likely to occur, it is possible to effectively control diseases and pests that may occur in ginger by spraying pesticides in combination with nanobubble water. It is believed that there is.

本発明において、上記ナノバブル水の施用態様については、特に限定されないが、例えば、土耕栽培における散水に用いてもよく、土耕栽培における農薬の散布(厳密には、ナノバブル水を用いて希釈した農薬の散布)に用いてもよく、養液栽培(水耕、噴霧耕、若しくは固形培地耕)において供給する培養液の生成に用いてもよく、若しくは、養液土耕栽培において灌水同時施肥に用いてもよい。また、農薬散布に関して言えば、上記ナノバブル水を用いて希釈した農薬を散布してもよく、上記ナノバブル水及び農薬を別々に(互いに分離した状態で)散布してもよい。
以上の施用態様は、あくまでも一例に過ぎず、生姜の栽培過程で上記ナノバブル水を好適に施用できる態様であればよい。なお、操作が簡便であり、生姜を食害するヨトウムシを効果的に防除できる理由から、上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布のうち、少なくとも一方を実施するのが好ましく、上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布の双方を実施するのがより好ましい。
また、土耕栽培、特に露地栽培であれば、上記ナノバブル水の施用によるヨトウムシの防除効果が際立って発揮されるようになる。
In the present invention, the application mode of the nanobubble water is not particularly limited, but may be used for watering in soil cultivation, for example, and spraying of pesticides in soil cultivation (strictly speaking, diluted with nanobubble water). It may be used for spraying pesticides), it may be used to generate a culture solution to be supplied in hydroponic cultivation (hydroponics, spray cultivation, or solid medium cultivation), or it may be used for simultaneous irrigation and fertilization in hydroponic soil cultivation. You may use it. Regarding the spraying of pesticides, the pesticides diluted with the nanobubble water may be sprayed, or the nanobubble water and the pesticides may be sprayed separately (in a state of being separated from each other).
The above application mode is merely an example, and any mode may be used as long as the nanobubble water can be suitably applied in the process of cultivating ginger. For the reason that the operation is simple and the yotoumushi that eats ginger can be effectively controlled, at least one of the above-mentioned watering using nanobubble water and the above-mentioned spraying of pesticides diluted with nanobubble water is carried out. It is more preferable to carry out both watering using the nanobubble water and spraying the pesticide diluted with the nanobubble water.
Further, in the case of soil cultivation, particularly open field cultivation, the effect of controlling Spodoptera frugiperda by applying the nanobubble water will be remarkably exhibited.

本発明において、上記ナノバブル水を用いた散水は、栽培中の生姜に対して水分を補給する目的で実施される。その実施態様については、特に限定されるものではないが、一例としては、具体的には、生姜が植えられた土壌に上記ナノバブル水を噴霧又は放水する態様、土壌に上記ナノバブル水を滴下する態様、及び、土壌中に埋設された点滴チューブから土壌中に上記ナノバブル水を散水(灌水)する態様等が挙げられる。また、それぞれの態様では、上記ナノバブル水を単独で用いてもよく、あるいは、上記ナノバブル水と養液(液状肥料)とを混合させた状態で用いてもよい。 In the present invention, watering using the nanobubble water is carried out for the purpose of replenishing the ginger being cultivated with water. The embodiment is not particularly limited, but as an example, specifically, a mode in which the nanobubble water is sprayed or discharged onto the soil in which ginger is planted, and a mode in which the nanobubble water is dropped onto the soil. , And an embodiment in which the nanobubble water is sprinkled (irrigated) into the soil from a drip tube embedded in the soil. Further, in each aspect, the nanobubble water may be used alone, or the nanobubble water and a nutrient solution (liquid fertilizer) may be mixed and used.

また、散水工程の実施時期及び回数については、栽培地域及び天候等に応じて異なるため特に限定されないが、少なくとも、種(種生姜)の植え付け直後、及び、発芽して子葉が地上に出始める時期に実施するのが望ましい。
また、渇水が続く環境下でも十分な収穫量を確保できるという理由から、生姜の栽培過程中、雨季に該当する時期において雨天日以外が続いた場合に、上記ナノバブル水を用いて散水工程を実施すると、より望ましい。ここで、「雨季に該当する時期」とは、例年であれば一定量以上の降水量が見込まれる時期であり、日本であれば6月〜8月の時期である。この時期において雨天日以外の日、具体的には、晴天、晴れ及び曇りの日数が所定日数(例えば、2週間程度)以上連続した場合に、上記ナノバブル水を用いて散水工程を実施すると、より一層望ましい。
より一層好ましい散水の態様を述べると、生姜の栽培期間中、雨季に該当する時期において、生姜の培地である土壌が乾燥して生姜の葉が枯れた場合に、上記ナノバブル水を用いた散水を実施するのがよい。ここで、「生姜の葉が枯れる」とは、水分不足によって生姜の葉(特に、先端部)が褐色化して萎れた状態となることである。
さらに、渇水が続く環境下でも十分な収穫量を確保できるという効果をより有効に発揮させる点では、生姜の生育段階において地上に出た葉の枚数が4〜6枚以上となる時期が梅雨時期にあたるので、その期間中において雨天日以外の日が所定日数以上連続した場合に上記ナノバブル水を用いて散水工程を実施すると、より一層望ましい。
The timing and frequency of the watering process are not particularly limited because they differ depending on the cultivation area and the weather, but at least immediately after planting the seed (seed ginger) and when the cotyledons start to germinate and appear on the ground. It is desirable to carry out.
In addition, because it is possible to secure a sufficient yield even in an environment where drought continues, a watering process is carried out using the above nanobubble water when the ginger is cultivated during the rainy season and other than rainy days continue. Then, it is more desirable. Here, the "time corresponding to the rainy season" is a time when a certain amount of precipitation is expected in an average year, and in Japan, it is a time from June to August. In this period, when the number of days other than rainy days, specifically, sunny, sunny and cloudy days continues for a predetermined number of days (for example, about 2 weeks) or more, the watering process using the above nanobubble water is more effective. More desirable.
To describe a more preferable mode of watering, when the soil which is the medium of ginger dries and the leaves of ginger die during the rainy season during the cultivation period of ginger, watering using the above-mentioned nanobubble water is performed. It is better to carry out. Here, "the leaves of ginger wither" means that the leaves of ginger (particularly, the tip portion) are browned and withered due to lack of water.
Furthermore, in terms of more effectively exerting the effect of ensuring a sufficient yield even in an environment where drought continues, the rainy season is the time when the number of leaves on the ground is 4 to 6 or more during the growing stage of ginger. Therefore, it is even more desirable to carry out the watering step using the nanobubble water when the days other than the rainy season continue for a predetermined number of days or more during that period.

本発明において、生姜の栽培方式については、特に限定されないが、例えば、具体的には、露地栽培で生姜を栽培する態様、並びに、温室及び温床などを用いた施設栽培で生姜を栽培する態様が挙げられる。これらの態様のうち、渇水が続く環境下でも十分な収穫量を確保できるという効果を一際有効に発揮させる点では、露地栽培で生姜を栽培する態様の方が、より望ましい。 In the present invention, the method for cultivating ginger is not particularly limited. Can be mentioned. Of these modes, the mode in which ginger is cultivated in the open field is more preferable in terms of exerting the effect of ensuring a sufficient yield even in an environment where drought continues.

本発明において、上記ナノバブル水を用いて希釈した農薬の散布は、生姜の栽培期間中に発病し得る病気、及び、生姜の生育を阻害する害虫を防除する目的で実施される。ここで、生姜の栽培に用いられる農薬のうち、生姜に発症し得る病気に有効な農薬としては、例えば、いもち病に有効なベンレート水和剤、白星病及び紋枯病に有効なダコニール1000、根茎腐敗病に有効なランマンフロアブル、並びに紋枯病に有効なモンカットフロアブル40等が挙げられる。
また、生姜に被害を及ぼし得る害虫に有効な農薬としては、例えば、
アオムシ、オオタバコガ、及びコナガ等に有効な、サブリナフロアブル;
アオムシ、オオタバコガ及びコナガ等に有効な、トアロー水和剤CT;
アワノメイガ等に有効な、オルトラン水和剤;
ハスモンヨトウ及びヨトウムシ等に有効な、サブリナフロアブル、ゼンターリ粒状水和剤、プレバソンフロアブル、オルトラン水和剤、マラソン乳剤、スミチオン乳剤、ベニカベジフル乳剤、ベニカR乳剤、ベニカS乳剤、エルサン乳剤、エンセダン乳剤、フェニックス顆粒水和剤、プレオフロアブル、マッチ乳剤、及びサブリナフロアブル等が挙げられる。
In the present invention, the spraying of the pesticide diluted with the nanobubble water is carried out for the purpose of controlling diseases that may develop during the cultivation period of ginger and pests that inhibit the growth of ginger. Here, among the pesticides used for cultivating ginger, pesticides effective for diseases that may occur in ginger include, for example, Benlate wettable powder effective for blast, Daconil 1000 effective for white spot disease and blight. Examples thereof include Lanman flowable, which is effective against rhizome rot, and Moncat flowable 40, which is effective against blight.
In addition, as an effective pesticide against pests that can damage ginger, for example,
Sabrina flowable, effective against Helicoverpa armigera, Helicoverpa armigera, and diamondback moth;
Toarrow wettable powder CT, which is effective against Helicoverpa armigera, Helicoverpa armigera and Diamondback moth;
Ortran wettable powder effective for Awanomeiga, etc.;
Sabrina flowable, Zentari granular wettable powder, Prevason flowable, Ortran wettable powder, Marathon emulsion, Sumithion emulsion, Benica vegefuru emulsion, Benica R emulsion, Benica S emulsion, Elsan emulsion, Ensedan emulsion, etc. Phoenix granule wettable powder, preoflowable, match emulsion, Sabrina flowable and the like can be mentioned.

また、本発明において、農薬は、上記ナノバブル水によって希釈されて液状態で散布されることになっている。農薬を散布する方式については、特に限定されるものではないが、一例を挙げると、生姜が植えられた土壌又は生姜に向けて、上記ナノバブル水及び農薬を噴霧又は滴下する態様、生姜の栽培エリアの上空を飛行する飛行体から、上記ナノバブル水及び農薬を飛散させる態様、スプリンクラーのノズルから圧力を掛けて、上記ナノバブル水及び農薬を吐出する態様、及び、土壌中に埋設された点滴チューブから、上記ナノバブル水及び農薬を土壌中に流出させる態様等が挙げられる。 Further, in the present invention, the pesticide is to be diluted with the nanobubble water and sprayed in a liquid state. The method of spraying the pesticide is not particularly limited, but for example, the nanobubble water and the pesticide are sprayed or dropped onto the soil or the ginger in which the ginger is planted, and the ginger cultivation area. From a mode in which the nanobubble water and pesticides are scattered from an air vehicle flying over the sky, a mode in which pressure is applied from a nozzle of a sprinkler to discharge the nanobubble water and pesticides, and a drip tube embedded in soil. Examples thereof include a mode in which the nanobubble water and pesticides are discharged into the soil.

なお、農薬の薬効を効果的に発現させる理由から、ナノバブル水を用いて希釈した農薬を散布する態様としては、希釈後の農薬を生姜の葉面に付着させるように散布する態様(例えば、噴霧散布、及び上空からの飛散等)が望ましい。ここで、希釈後の農薬の濃度については、特に限定されないが、上記ナノバブル水100質量部に対して、0.00001〜10質量部であることが好ましく、0.00005〜5質量部であることがより好ましい。 For the reason that the medicinal effect of the pesticide is effectively exhibited, as a mode of spraying the pesticide diluted with nanobubble water, a mode of spraying the diluted pesticide so as to adhere to the leaf surface of ginger (for example, spraying). (Spraying, scattering from the sky, etc.) is desirable. Here, the concentration of the pesticide after dilution is not particularly limited, but is preferably 0.00001 to 10 parts by mass and 0.00005 to 5 parts by mass with respect to 100 parts by mass of the nanobubble water. Is more preferable.

また、農薬散布の実施時期については、栽培地域、天候、病気が発生し易い時期、及び害虫が繁殖し易い時期等に応じて異なるため特に限定されるものではないが、病気及び害虫を効果的に防除する点では、雨季が明ける時期(例えば、梅雨明けの時期)の時期に実施するのが望ましい。上述した害虫のうち、ヨトウムシは、渇水が続くと繁殖し易くなる。したがって、生姜の栽培過程中、雨季に該当する時期(例えば、梅雨時期)に雨天日以外の日が所定日数以上連続した場合には、ヨトウムシに有効な農薬を上記ナノバブル水で希釈し、希釈後の農薬を散布するとよい。 In addition, the timing of pesticide spraying varies depending on the cultivation area, the weather, the time when diseases are likely to occur, and the time when pests are likely to propagate, so it is not particularly limited, but it is effective for diseases and pests. In terms of control, it is desirable to carry out at the time when the rainy season is over (for example, the time after the rainy season). Among the above-mentioned pests, Spodoptera frugiperda becomes easier to reproduce if drought continues. Therefore, during the ginger cultivation process, if days other than rainy days continue for a predetermined number of days or more during the rainy season (for example, the rainy season), the pesticide effective for Spodoptera frugiperda is diluted with the above nanobubble water, and after dilution. It is advisable to spray the pesticides of.

また、農薬散布の実施回数についても、農薬の種類等に応じて異なるために特に限定されるものではなく、1回以上実施すればよいが、好ましくは、生姜の栽培過程では、上記ナノバブル水を用いて希釈した農薬の散布を複数回(具体的には、2〜3回)実施するのがよい。また、上述したように、農薬の薬効を効果的に発現させる理由から、各回の散布では、ナノバブル水を用いて希釈した農薬を生姜の葉面に付着させるのが好ましい。 Further, the number of times the pesticide is sprayed is not particularly limited because it differs depending on the type of pesticide and the like, and it may be carried out once or more. It is advisable to spray the pesticide diluted with the drug a plurality of times (specifically, 2 to 3 times). Further, as described above, for the reason that the medicinal effect of the pesticide is effectively exhibited, it is preferable to attach the pesticide diluted with nanobubble water to the leaf surface of ginger in each spraying.

本発明の生姜の栽培方法にて施用される上記ナノバブル水の生成方法としては、例えば、スタティックミキサー法、ベンチュリ法、キャビテーション法、蒸気凝集法、超音波法、旋回流法、加圧溶解法、及び微細孔法等が挙げられる。
また、上記ナノバブル水の生成装置としては、意図的にラジカルを発生させることがない装置を用いた生成方法が好ましく、具体的には、例えば、特開2018−15715号公報の[0080]〜[0100]段落に記載されたナノバブル生成装置を用いて生成する方法が挙げられる。なお、上記の内容は本明細書に組み込まれる。
Examples of the method for producing nanobubble water applied in the ginger cultivation method of the present invention include a static mixer method, a Venturi method, a cavitation method, a steam agglomeration method, an ultrasonic method, a swirling flow method, and a pressure melting method. And the micropore method and the like.
Further, as the nanobubble water generation device, a production method using a device that does not intentionally generate radicals is preferable. Specifically, for example, [0080] to [0080] to [0080] to [0080] to [0080] to [0080] 0100] A method of generating using the nanobubble generating apparatus described in the paragraph can be mentioned. The above contents are incorporated in the present specification.

意図的にラジカルを発生させることがない他のナノバブル生成装置としては、例えば、水を吐出する液体吐出機と、液体吐出機から吐出された水に気体を加圧して混入させる気体混入機と、気体を混入させた水を内部に通すことにより水中に微細気泡を生成する微細気泡生成器と、を有する微細気泡生成装置であって、上記気体混入機が、上記液体吐出機と上記微細気泡生成器の間において、加圧された状態で上記微細気泡生成器に向かって流れる液体に、気体を加圧して混入させる微細気泡生成装置が挙げられる。具体的には、図1に示すナノバブル生成装置が挙げられる。
図1に示すナノバブル生成装置10は、その内部に液体吐出機30、気体混入機40及びナノバブル生成ノズル50を備える。
液体吐出機30は、ポンプによって構成され、ナノバブル水の原水(例えば、井戸水)を取り込んで吐出する。気体混入機40は、圧縮ガスが封入された容器41と、略筒状の気体混入機本体42とを有し、液体吐出機30から吐出された水を気体混入機本体42内に流しつつ、気体混入機本体42内に容器41内の圧縮ガスを導入する。これにより、気体混入機本体42内で気体混入水が生成されることになる。
ナノバブル生成ノズル50は、その内部に気体混入水が通過することにより、加圧溶解の原理に従って気体混入水中にナノバブルを発生させるものであり、その構造としては、特開2018−15715号公報に記載されたナノバブル生成ノズルと同じ構造が採用できる。ナノバブル生成ノズル50内に生成されたナノバブル水は、ナノバブル生成ノズル50の先端から噴出した後、ナノバブル生成装置10から流出し、不図示の流路内を通じて所定の利用先に向けて送水される。
以上のようにナノバブル生成装置10では、気体混入機40が、液体吐出機30とナノバブル生成ノズル50の間において、加圧された状態でナノバブル生成ノズル50に向かって流れる水(原水)に、圧縮ガスを混入させる。これにより、液体吐出機30の吸込み側(サクション側)で気体を水に混入させるときに生じるキャビテーション等の不具合を回避することができる。また、ガスが加圧(圧縮)された状態で水に混入されるので、ガス混入箇所での水の圧力に抗してガスを混入させることができる。このため、ガス混入箇所において特に負圧を発生させなくとも、ガスを適切に水に混入させることが可能となる。
さらに、液体吐出機30のサクション側に、井戸又は水道等の水源から供給される水の流路が繋ぎ込まれており、その流路において液体吐出機30の上流側から液体吐出機30に流れ込む水の圧力(すなわち、サクション側の水圧)が正圧であるとよい。この場合には、上記の構成がより有意義なものとなる。すなわち、液体吐出機30の上流側の水圧(サクション圧)が正圧となる場合には、液体吐出機30の下流側でガスを水に混入させることになるため、液体吐出機30の下流側でもガスを適切に水に混入させることができるナノバブル生成装置10の構成がより際立つことになる。
Other nanobubble generators that do not intentionally generate radicals include, for example, a liquid discharger that discharges water, and a gas mixer that pressurizes and mixes gas into the water discharged from the liquid discharger. It is a fine bubble generator having a fine bubble generator that generates fine bubbles in water by passing water mixed with gas inside, and the gas mixer is the liquid discharger and the fine bubble generation. Examples thereof include a fine bubble generator that pressurizes and mixes a gas into a liquid that flows toward the fine bubble generator in a pressurized state between the vessels. Specifically, the nanobubble generator shown in FIG. 1 can be mentioned.
The nanobubble generation device 10 shown in FIG. 1 includes a liquid discharger 30, a gas mixer 40, and a nanobubble generation nozzle 50 inside.
The liquid discharger 30 is composed of a pump, and takes in and discharges raw water (for example, well water) of nanobubble water. The gas mixer 40 has a container 41 filled with compressed gas and a substantially tubular gas mixer main body 42, and while flowing water discharged from the liquid discharger 30 into the gas mixer main body 42, The compressed gas in the container 41 is introduced into the gas mixer main body 42. As a result, gas-mixed water is generated in the gas-mixing machine main body 42.
The nanobubble generation nozzle 50 generates nanobubbles in gas-mixed water according to the principle of pressure dissolution by passing gas-mixed water through the nozzle 50, and its structure is described in JP-A-2018-15715. The same structure as that of the nano bubble generation nozzle can be adopted. The nanobubble water generated in the nanobubble generation nozzle 50 is ejected from the tip of the nanobubble generation nozzle 50, then flows out from the nanobubble generation device 10, and is sent to a predetermined destination through a flow path (not shown).
As described above, in the nanobubble generation device 10, the gas mixing machine 40 is compressed into water (raw water) flowing toward the nanobubble generation nozzle 50 in a pressurized state between the liquid discharger 30 and the nanobubble generation nozzle 50. Mix gas. This makes it possible to avoid problems such as cavitation that occur when gas is mixed with water on the suction side (suction side) of the liquid discharger 30. Further, since the gas is mixed with water in a pressurized (compressed) state, the gas can be mixed against the pressure of the water at the gas mixing location. Therefore, it is possible to appropriately mix the gas into the water without generating a negative pressure at the gas mixing location.
Further, a flow path of water supplied from a water source such as a well or a water supply is connected to the suction side of the liquid discharger 30, and flows into the liquid discharger 30 from the upstream side of the liquid discharger 30 in the flow path. The water pressure (that is, the water pressure on the suction side) should be positive. In this case, the above configuration becomes more meaningful. That is, when the water pressure (suction pressure) on the upstream side of the liquid discharger 30 becomes a positive pressure, gas is mixed into the water on the downstream side of the liquid discharger 30, so that the downstream side of the liquid discharger 30 However, the configuration of the nanobubble generator 10 capable of appropriately mixing the gas with water becomes more conspicuous.

また、本発明の生姜の栽培方法は、上述した散水及び農薬散布の実施前に、上記ナノバブル水を生成させる生成工程を有してもよい。すなわち、本発明の生姜の栽培方法は、例えば、貯水タンク、井戸若しくは水道等の水源から水(原水)をナノバブル生成装置に取り込んでナノバブル水を生成させる生成工程を更に有する生姜の栽培方法であってもよい。
なお、水源からの水をナノバブル生成装置に取り込む手法としては、例えば、桶又はポンプ等を用いて水源から汲み上げた水をナノバブル生成装置に供給する手法、並びに、水源とナノバブル生成装置との間に敷設された流路をナノバブル生成装置に繋いで流路からナノバブル生成装置へ水を直接送り込む手法等が挙げられる。
In addition, the ginger cultivation method of the present invention may have a production step of generating the nanobubble water before the above-mentioned watering and pesticide spraying. That is, the ginger cultivation method of the present invention is, for example, a ginger cultivation method further comprising a production step of taking water (raw water) from a water source such as a water storage tank, a well, or a water supply into a nanobubble generator to generate nanobubble water. You may.
As a method of taking the water from the water source into the nanobubble generator, for example, a method of supplying the water pumped from the water source to the nanobubble generator using a tub or a pump, and between the water source and the nanobubble generator. Examples thereof include a method in which the laid channel is connected to the nanobubble generator and water is directly sent from the channel to the nanobubble generator.

また、上記ナノバブル水の生成に使用する水(原水)については、特に限定されず、例えば、雨水、水道水、井水、地表水、農業用水、及び蒸留水等を使用することができる。このような水は、ナノバブル水の発生に供される前に他の処理を施されたものであってもよい。他の処理としては、例えば、pH調整、沈殿、ろ過、及び滅菌(殺菌)等が挙げられる。具体的には、例えば、農業用水を使用する場合、典型的には、沈殿及びろ過のうちの少なくとも一方の処理が施された後の農業用水を使用してもよい。 The water (raw water) used to generate the nanobubble water is not particularly limited, and for example, rainwater, tap water, well water, surface water, agricultural water, distilled water and the like can be used. Such water may have been subjected to other treatments before being subjected to the generation of nanobubble water. Other treatments include, for example, pH adjustment, precipitation, filtration, sterilization (sterilization) and the like. Specifically, for example, when agricultural water is used, typically, agricultural water after at least one of precipitation and filtration treatments may be used.

本発明においては、生姜の栽培が栽培環境の影響をより受け難くなる理由から、上記ナノバブル水に含まれる気泡の最頻粒子径が10〜500nmであることが好ましく、30〜300nmであることがより好ましく、特に、70〜130nmであることが更に好ましい。 In the present invention, the mode of the most frequent particle size of bubbles contained in the nanobubble water is preferably 10 to 500 nm, preferably 30 to 300 nm, because the cultivation of ginger is less affected by the cultivation environment. More preferably, it is more preferably 70 to 130 nm.

また、上記ナノバブル水に含まれる気泡を構成する気体は特に限定されないが、水中に長時間残存させる観点から、水素以外の気体が好ましく、具体的には、例えば、空気、酸素、窒素、フッ素、二酸化炭素、及びオゾンなどが挙げられる。
これらのうち、生姜の栽培が栽培環境の影響をより一層受け難くなる理由から、酸素、窒素、オゾン及び二酸化炭素からなる群から選択される少なくとも1種の気体を含むことが好ましく、特に、生姜の生育が良好となり、また、気泡がより長時間残存することができる理由から、酸素を含むことがより好ましい。
ここで、酸素を含むこととは、空気中の酸素濃度よりも高い濃度で含むことをいう。窒素、および、二酸化炭素も同様である。なお、酸素の濃度については、気泡中の30体積%以上であることが好ましく、50体積%超100体積%以下であることが好ましい。
The gas constituting the bubbles contained in the nanobubble water is not particularly limited, but a gas other than hydrogen is preferable from the viewpoint of remaining in the water for a long time, and specifically, for example, air, oxygen, nitrogen, fluorine, and the like. Examples include carbon dioxide and ozone.
Of these, it is preferable to contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone and carbon dioxide, and in particular, ginger, because the cultivation of ginger is less affected by the cultivation environment. It is more preferable to contain oxygen because the growth of the ginger is good and the bubbles can remain for a longer period of time.
Here, the inclusion of oxygen means that the concentration is higher than the oxygen concentration in the air. The same applies to nitrogen and carbon dioxide. The oxygen concentration is preferably 30% by volume or more, preferably more than 50% by volume and 100% by volume or less in the bubbles.

また、上記ナノバブル水は、生姜の栽培が栽培環境の影響を一段と受け難くなる理由から、1×10個/mL〜1×1010個/mLの気泡を有していることが好ましく、特に、気泡の生成時間と気泡の残存性のバランスが良好となる理由から、1×10個/mLより多く、1×1010個/mLより少ない気泡を有していることがより好ましく、5×10個/mL〜5×10個/mLの気泡を有していることが更に好ましい。In addition, the nanobubble water preferably has bubbles of 1 × 10 8 cells / mL to 1 × 10 10 cells / mL, because the cultivation of ginger is less affected by the cultivation environment. It is more preferable to have more than 1 × 10 8 bubbles / mL and less than 1 × 10 10 bubbles / mL because the balance between the bubble formation time and the residualness of the bubbles is good. It is more preferable to have bubbles of × 10 8 cells / mL to 5 × 10 9 cells / mL.

本発明において、上記ナノバブル水には、上述した農薬以外の他の成分が含まれていてもよい。
上記他の成分としては、例えば、肥料、界面活性剤、凍結防止剤、消泡剤、防腐剤、酸化防止剤、及び増粘剤等が挙げられる。なお、上記他の成分の種類、及び含有量は、特に限定されず、目的に応じて選択可能である。
ただし、本発明においては、上記他の成分として、上記ナノバブル水中にラジカルを実質的に含まないことが好ましい。なお、「ラジカルを実質的に含まない」ことについて付言すると、上記ナノバブル水の生成に使用する水(例えば、不純物を含む井水)などに起因して不可避的にラジカルが含まれるケースは、「ラジカルを実質的に含まない」ことになる。他方、何らかの人為的操作で生成させたラジカルを混入させるケースは、「ラジカルを実質的に含まない」ことにはならない。
In the present invention, the nanobubble water may contain components other than the above-mentioned pesticides.
Examples of the other components include fertilizers, surfactants, antifreeze agents, antifoaming agents, preservatives, antioxidants, thickeners and the like. The type and content of the other components are not particularly limited and can be selected according to the purpose.
However, in the present invention, it is preferable that the nanobubble water does not substantially contain radicals as the other components. In addition, to add that "substantially free of radicals", the case where radicals are unavoidably contained due to the water used for the generation of the nanobubble water (for example, well water containing impurities) is ". It is virtually free of radicals. " On the other hand, the case of mixing radicals generated by some artificial operation does not mean that the radicals are substantially free.

以下に、実施例を挙げて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.

<試験の内容>
試験は、2017年の4月〜9月にかけて埼玉県行田市で栽培した生姜(品種:大生姜)の圃場において、以下の区分により実施した。なお、試験区I及びIIは、互いに同一の圃場に設定されている。
試験区I:露地栽培にて生姜を栽培し、生姜への散水、及び、散布する農薬(具体的には、トレボン粉剤)の希釈にナノバブル水を用いた。
試験区II:露地栽培にて生姜を栽培し、生姜への散水、及び、散布する農薬(具体的には、トレボン粉剤)の希釈にナノバブル水を用いず、通常の水(ナノバブルを含まない水)を用いた。
各試験区では、それぞれ、1500株の種生姜の植え付けを行い、常法に従って生姜を栽培した。
また、散水の頻度及び量については、栽培期間中の天候等に応じて適定し、両試験区で概ね同様となるように調整した。なお、試験を実施した2017年の梅雨時期には、晴天又は晴れの日が続いたために降雨量が例年より少なく、雨天日以外の日(詳しくは、晴天日又は晴れの日)が約2週間続いた時期に散水を実施した。
また、散布した農薬の種類、時期、希釈率、及び散布回数については、栽培期間中に発生した病気又は害虫の種類等に応じて適宜設定し、両試験区で概ね同様となるように調整した。具体的には、上述のトレボン粉剤を所定の濃度まで希釈したものを7月下旬に1回散布した。
<Contents of the test>
The test was carried out in the field of ginger (variety: large ginger) cultivated in Gyoda City, Saitama Prefecture from April to September 2017 according to the following categories. The test plots I and II are set in the same field.
Test group I: Ginger was cultivated in open field cultivation, and nanobubble water was used for watering the ginger and for diluting the pesticide (specifically, trebon powder) to be sprayed.
Test Group II: Ginger is cultivated in open field cultivation, and normal water (water without nanobubbles) is not used for watering the ginger and diluting the pesticides (specifically, trebon powder) to be sprayed. ) Was used.
In each test plot, 1500 strains of seed ginger were planted, and ginger was cultivated according to a conventional method.
In addition, the frequency and amount of watering were adjusted according to the weather during the cultivation period, and adjusted so that they would be almost the same in both test plots. During the rainy season in 2017, when the test was conducted, the amount of rainfall was less than usual due to continuous sunny or sunny days, and days other than rainy days (specifically, sunny or sunny days) were about two weeks. Watering was carried out at the following time.
In addition, the type, timing, dilution rate, and frequency of spraying of pesticides were appropriately set according to the type of disease or pest that occurred during the cultivation period, and adjusted so that they would be approximately the same in both test plots. .. Specifically, the above-mentioned trebon powder diluted to a predetermined concentration was sprayed once in late July.

<ナノバブル水の生成方法>
ナノバブル水は、ナノバブル生成装置(株式会社カクイチ製作所 アクアソリューション事業部(現:株式会社アクアソリューション)製、100V,10L/minタイプ)を用いて加圧溶解方式にて水中に気泡(ナノバブル)を発生させることで生成した。
なお、ナノバブル水の生成用に使用した水(原水)は、水道水であり、気泡を構成する気体の種類は、酸素(工業用酸素、濃度:99.5体積%)であることとした。
また、上記のナノバブル生成装置を用いてナノバブルを発生させる条件は、以下のとおりとした。
水1mL当たりの気泡の数:5×10個/mL
気泡のサイズ(最頻粒子径):100nm
<Method of generating nano bubble water>
Nano bubble water generates bubbles (nano bubbles) in water by a pressure dissolution method using a nano bubble generator (Kakuichi Seisakusho Co., Ltd. Aqua Solution Division (currently Aqua Solution Co., Ltd.), 100V, 10L / min type). It was generated by letting it.
The water (raw water) used for producing nanobubble water was tap water, and the type of gas constituting the bubbles was oxygen (industrial oxygen, concentration: 99.5% by volume).
The conditions for generating nanobubbles using the above nanobubble generator are as follows.
Number of bubbles per 1 mL of water: 5 x 10 8 cells / mL
Bubble size (mode of particle size): 100 nm

<収穫量の評価>
2017年9月に各試験区で栽培した生姜を収穫し、それぞれの試験区につき、任意に選択した1株を対象として、茎部の大きさを測定することで収穫量を評価したところ、図2及び図3に示すように、試験区Iでは、試験区IIよりも生姜の茎部が肥大化しており、より多くの収穫量が得られた。ちなみに、図2は、試験区Iの生姜の画像を、図3は、試験区IIの生姜の画像を、それぞれ示しており、各図には、各試験区で選択した1株分の生姜を横に寝かせて測定した横幅の長さが図示されている。
試験区Iでの収穫量について付言しておくと、試験を実施した2017年は、前述したように梅雨時期の降雨量が例年よりも少ない年であり、本来であれば収穫量が例年よりも少なくなると予想されたが、試験区Iの収穫量は、約700kgとなり、平均年間収量(約600kg/年)を超える収穫量となった。
以上の結果から、ナノバブル水を栽培中の生姜に施用する効果が明らかとなった。すなわち、梅雨時期に雨天日以外の日(晴天日、晴れ、及び曇りの日)が続いて渇水となったときにナノバブル水を散水することで生姜が効率よく水分を吸収することができ、また、ナノバブル水を用いて希釈した農薬を散布することで農薬の薬効が有効に発揮されて害虫及び病気の発生を効果的に抑えることが可能となった。これにより、生姜が良好に生育し、例年を超える収穫量が得られた。
<Evaluation of yield>
Ginger cultivated in each test plot was harvested in September 2017, and the yield was evaluated by measuring the size of the stem of one arbitrarily selected strain in each test plot. As shown in 2 and FIG. 3, in the test plot I, the ginger stalk was enlarged as compared with the test plot II, and a larger yield was obtained. By the way, FIG. 2 shows an image of ginger in Test Group I, FIG. 3 shows an image of ginger in Test Group II, and each figure shows one strain of ginger selected in each Test Group. The length of the width measured by laying it on its side is shown in the figure.
As for the yield in the test plot I, 2017, when the test was conducted, is a year in which the rainfall during the rainy season is less than usual, and the yield is originally higher than usual. Although it was expected to decrease, the yield of Test Group I was about 700 kg, which exceeded the average annual yield (about 600 kg / year).
From the above results, the effect of applying nanobubble water to cultivated ginger was clarified. In other words, when the rainy season is followed by days other than rainy days (sunny, sunny, and cloudy days) and the water becomes drought, nanobubble water can be sprinkled so that the ginger can efficiently absorb water. By spraying pesticides diluted with nanobubble water, the medicinal effects of pesticides can be effectively exerted and the outbreak of pests and diseases can be effectively suppressed. As a result, ginger grew well and the yield exceeded the average year.

10 ナノバブル生成装置
30 液体吐出機
40 気体混入機
41 容器
42 気体混入機本体
50 ナノバブル生成ノズル
10 Nano bubble generator 30 Liquid discharger 40 Gas mixer 41 Container 42 Gas mixer body 50 Nano bubble generation nozzle

Claims (8)

ナノバブル水を栽培中の生姜に施用する、生姜の栽培方法。 A method of cultivating ginger by applying nanobubble water to cultivated ginger. 前記ナノバブル水を用いた散水、及び、前記ナノバブル水を用いて希釈した農薬の散布のうち、少なくとも一方を実施する、請求項1に記載の生姜の栽培方法。 The method for cultivating ginger according to claim 1, wherein at least one of the watering using the nanobubble water and the spraying of the pesticide diluted using the nanobubble water is carried out. 生姜の栽培期間中、雨季に該当する時期において、生姜の培地である土壌が乾燥して生姜の葉が枯れた場合に、前記ナノバブル水を用いた散水を実施する、請求項2に記載の生姜の栽培方法。 The ginger according to claim 2, wherein watering using the nanobubble water is carried out when the soil which is the medium of ginger dries and the leaves of ginger die during the period corresponding to the rainy season during the cultivation period of ginger. Cultivation method. 露地栽培によって生姜を栽培する、請求項1〜3のいずれかに記載の生姜の栽培方法。 The method for cultivating ginger according to any one of claims 1 to 3, wherein ginger is cultivated by open-field cultivation. 前記ナノバブル水を用いて希釈した農薬を生姜の葉面に付着させる、請求項2又は3に記載の生姜の栽培方法。 The method for cultivating ginger according to claim 2 or 3, wherein the pesticide diluted with the nanobubble water is attached to the leaf surface of ginger. 前記ナノバブル水に含まれる気泡の最頻粒子径が10〜500nmである、請求項1〜5のいずれかに記載の生姜の栽培方法。 The method for cultivating ginger according to any one of claims 1 to 5, wherein the most frequent particle size of bubbles contained in the nanobubble water is 10 to 500 nm. 前記ナノバブル水に含まれる気泡が、酸素、窒素、オゾン及び二酸化炭素からなる群から選択される少なくとも1種の気体を含む、請求項1〜6のいずれかに記載の生姜の栽培方法。 The method for cultivating ginger according to any one of claims 1 to 6, wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone and carbon dioxide. 前記ナノバブル水が、1×10個/mL〜1×1010個/mLの気泡を有する、請求項1〜7のいずれかに記載の生姜の栽培方法。The nanobubbles water has bubbles 1 × 10 8 cells / mL~1 × 10 10 cells / mL, cultivation methods ginger according to any one of claims 1 to 7.
JP2020522244A 2018-05-30 2019-05-29 How to grow ginger Pending JPWO2019230786A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018103011 2018-05-30
JP2018103011 2018-05-30
PCT/JP2019/021262 WO2019230786A1 (en) 2018-05-30 2019-05-29 Ginger cultivation method

Publications (1)

Publication Number Publication Date
JPWO2019230786A1 true JPWO2019230786A1 (en) 2021-08-19

Family

ID=68698214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020522244A Pending JPWO2019230786A1 (en) 2018-05-30 2019-05-29 How to grow ginger

Country Status (3)

Country Link
JP (1) JPWO2019230786A1 (en)
TW (1) TW202015532A (en)
WO (1) WO2019230786A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094117A (en) * 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2011073988A (en) * 2009-09-29 2011-04-14 Japan Techno Co Ltd Plant disease controlling functional agent and method of growing plant using the same
JP2016013547A (en) * 2009-08-06 2016-01-28 株式会社Ligaric Composition and production method thereof
JP2016053004A (en) * 2014-09-03 2016-04-14 サンスター株式会社 Preparation method of diluted pesticide and diluted pesticide
JP2018075240A (en) * 2016-11-10 2018-05-17 国立大学法人 東京大学 Co2 micro nanobubble water generated in water opened to air by applying several atmospheres for conducting sterilization and bacteriostasis of microorganism or pest control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094117A (en) * 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2016013547A (en) * 2009-08-06 2016-01-28 株式会社Ligaric Composition and production method thereof
JP2011073988A (en) * 2009-09-29 2011-04-14 Japan Techno Co Ltd Plant disease controlling functional agent and method of growing plant using the same
JP2016053004A (en) * 2014-09-03 2016-04-14 サンスター株式会社 Preparation method of diluted pesticide and diluted pesticide
JP2018075240A (en) * 2016-11-10 2018-05-17 国立大学法人 東京大学 Co2 micro nanobubble water generated in water opened to air by applying several atmospheres for conducting sterilization and bacteriostasis of microorganism or pest control

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
""小さな泡"が世界を変える!?〜日本発・技術革命は成功するか〜", [ONLINE], JPN6019032668, 6 October 2015 (2015-10-06), ISSN: 0005098510 *
"「水で日本の農業が変わる」ナノバブルウォーターのご紹介", [ONLINE], JPN6019032669, 11 July 2017 (2017-07-11), ISSN: 0005033816 *
吉岡(小林)徹 他: "地域イノベーションの事例研究:高知におけるファインバブルの農業・水産業への応用", 一橋大学イノベーション研究センター IIRケーススタディ, JPN6023014251, 31 May 2017 (2017-05-31), ISSN: 0005098511 *
高知県農業技術センター: "ファインバブル水の利用が施設ショウガおよび養液栽培ミョウガの生育・収量に及ぼす影響", 高知の農林業新技術, JPN6023014252, pages 20 - 22, ISSN: 0005033817 *

Also Published As

Publication number Publication date
WO2019230786A1 (en) 2019-12-05
TW202015532A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
EP2601834B1 (en) A method for increasing wetted soil volume
El-Habbasha et al. Effect of pressured irrigation systems, deficit irrigation and fertigation rates on yield, quality and water use efficiency of groundnut
CN106034705B (en) A kind of paris polyphylla method for culturing seedlings improving planting percent
CN102577784A (en) Planting method of sugarcane single bud and double buds sparse planting in horizontal rows
EP3518672A1 (en) Methods and compositions for modifying plant growth and reducing water consumption by plants
TW202005516A (en) Fertilizer absorption rate improvement method
Jurayev et al. IRRIGATION OF COTTON BY WATER-SAVING METHOD
CN206821222U (en) A kind of ultra-high pressure water fluid jet stalk pre-cut cutter, ditching machine and no-tillage seeding machine
Jurayev et al. WATERING THE COTTON BY DRIP IRRIGATION METHOD
CN107148878A (en) A kind of direct sowing on dry paddy field cultivation technique
Shekara et al. Effect of irrigation schedules on growth and yield of aerobic rice (Oryza sativa) under varied levels of farmyard manure in Cauvery command area
JP2007037541A (en) Method for producing seedling of plant belonging to genus ophiopogon and genus liriope and method for covering and greening ground utilizing the method
JPWO2019230786A1 (en) How to grow ginger
WO2019230776A1 (en) Method of suppressing clubroot
JP7370972B2 (en) How to control magnesium deficiency
JP2023541135A (en) Hydrogen nanobubble-infused water for industrial crop irrigation
JP7324747B2 (en) Method for controlling bacterial spot
JP7327922B2 (en) Agent for preventing or improving soil damage
Kaur et al. Role of micro-irrigation in vegetable crops
RU2655963C1 (en) Method of stevia growing in arid conditions
JP7366890B2 (en) How to control armyworms
JPWO2019230766A1 (en) Tomato fruit shape control method
CN108718967A (en) A kind of organic upland rice water-fertilizer-pesticide integration cultivation technique
Elshikha et al. Guayule Cultivation and Irrigation Methods for the Southwestern United States
RU74031U1 (en) HOPPER WITH HUMIDIFIER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230808

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230908