JPWO2019208257A1 - In-vehicle camera device - Google Patents

In-vehicle camera device Download PDF

Info

Publication number
JPWO2019208257A1
JPWO2019208257A1 JP2020516227A JP2020516227A JPWO2019208257A1 JP WO2019208257 A1 JPWO2019208257 A1 JP WO2019208257A1 JP 2020516227 A JP2020516227 A JP 2020516227A JP 2020516227 A JP2020516227 A JP 2020516227A JP WO2019208257 A1 JPWO2019208257 A1 JP WO2019208257A1
Authority
JP
Japan
Prior art keywords
distance
measuring unit
parallax
unit
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020516227A
Other languages
Japanese (ja)
Other versions
JP6877636B2 (en
Inventor
衛 大場
衛 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2019208257A1 publication Critical patent/JPWO2019208257A1/en
Application granted granted Critical
Publication of JP6877636B2 publication Critical patent/JP6877636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Traffic Control Systems (AREA)

Abstract

本発明は、先行車両の一部が車載カメラ装置の死角に入り込んだ場合であっても、車間距離の正確な測定を継続できる車載カメラ装置を提供することを目的とする。本発明は、左右に近接配置した二つの撮像部と、該二つの撮像部が撮像した一対の撮像画像の視差から該撮像画像中の障害物との距離を測定する視差測距部と、一方の撮像部の撮像画像から前記障害物の特徴点を抽出する特徴点抽出部と、前記視差測距部が測定した距離と、前記視差測距部が距離を測定した以降の前記特徴点の移動距離に基づいて、前記撮像画像中の障害物との距離を測定する単眼測距部と、前記視差測距部と前記単眼測距部が測定した前記障害物との距離の一方を選択して出力する距離出力部と、備える。An object of the present invention is to provide an in-vehicle camera device capable of continuing accurate measurement of an inter-vehicle distance even when a part of a preceding vehicle enters a blind spot of the in-vehicle camera device. The present invention includes two imaging units arranged close to each other on the left and right, and a parallax distance measuring unit that measures the distance from an obstacle in the captured image from the disparity of a pair of captured images captured by the two imaging units. The movement of the feature point extraction unit that extracts the feature points of the obstacle from the image captured by the imaging unit, the distance measured by the parallax distance measuring unit, and the movement of the feature points after the distance measuring unit measures the distance. Based on the distance, one of the monocular distance measuring unit that measures the distance to the obstacle in the captured image and the distance between the parallax distance measuring unit and the obstacle measured by the monocular distance measuring unit is selected. It is equipped with a distance output unit for output.

Description

本発明は、撮像画像から先行車両との車間距離を測定する車載カメラ装置に関する。 The present invention relates to an in-vehicle camera device that measures an inter-vehicle distance from a preceding vehicle from a captured image.

撮像画像から先行車両との車間距離を測定する車載カメラ装置として、近接配置した二つのカメラ(ステレオカメラ)の視差を利用した複眼視によって車間距離を測定するものが知られている。 As an in-vehicle camera device that measures the inter-vehicle distance from a preceding vehicle from an captured image, there is known that the inter-vehicle distance is measured by double-eyed vision using the parallax of two cameras (stereo cameras) arranged close to each other.

例えば、特許文献1の請求項1には、「車外の設定範囲内の対象に対し、互いに異なる方向から複数枚の画像を撮像する撮像系を備え、上記撮像系で撮像した複数枚の画像を処理して画像全体に渡る距離分布を出力する画像処理手段に、上記撮像系で撮像した複数枚の画像に対応して、所定の領域毎に一致度を高速で計算する一致度計算部と、上記一致度計算部で計算した一致度の最小値に基づいて、上記複数枚の画像の対応する画素位置のずれ量を上記距離分布に係わる情報として決定するずれ量決定部とを備えたことを特徴とする車輌用距離検出装置」と記載されている。 For example, claim 1 of Patent Document 1 includes "an imaging system for capturing a plurality of images from different directions with respect to an object within a set range outside the vehicle, and a plurality of images captured by the imaging system. Image processing means that processes and outputs the distance distribution over the entire image includes a matching degree calculation unit that calculates the matching degree for each predetermined area at high speed corresponding to a plurality of images captured by the imaging system. It is provided with a deviation amount determining unit that determines the deviation amount of the corresponding pixel positions of the plurality of images as information related to the distance distribution based on the minimum value of the matching degree calculated by the matching degree calculation unit. "Characteristic vehicle distance detection device" is described.

特開平5−114099号公報Japanese Unexamined Patent Publication No. 5-114099

車両前方を撮像する車載カメラ装置を車室内に取り付ける場合、その取り付け位置によっては、車両前方に死角が生じることがある。通常、カメラの仰角方向の視野角は一定であるから、車載カメラ装置の取り付け位置が高くなるほど、車両前方の死角が増加する。
そして、先行車両に接近するほど、先行車両が死角に入る可能性が高まり、ステレオカメラを利用して先行車両を検出する特許文献1の方式では、車間距離を検知できなくなることが多い。
When an in-vehicle camera device that captures the front of the vehicle is installed in the vehicle interior, a blind spot may occur in the front of the vehicle depending on the mounting position. Normally, the viewing angle in the elevation angle direction of the camera is constant, so the higher the mounting position of the in-vehicle camera device, the greater the blind spot in front of the vehicle.
The closer the vehicle is to the preceding vehicle, the more likely it is that the preceding vehicle will enter the blind spot, and the method of Patent Document 1 in which the preceding vehicle is detected using a stereo camera often cannot detect the inter-vehicle distance.

特に、車高の高いボックスタイプの車両は、車載カメラ装置の設置位置の高さの影響により死角が大きくなる構造に加え、一般的な乗用車と同じ車間距離の場合でも、短いボンネットの影響により先行車両と車載カメラ装置の距離も短くなるため、ある程度の車間距離を確保していても、先行車両の一部が死角に入りこむ可能性が高くなる。このような構造上の問題により、ボックスタイプの車両では、一般的な乗用車に比べ、ステレオカメラを利用しての車間距離測定が不能となる場合が多かった。 In particular, a box-type vehicle with a high vehicle height has a structure in which the blind spot becomes large due to the influence of the installation position of the in-vehicle camera device, and even if the distance between vehicles is the same as that of a general passenger car, it is preceded by the influence of a short bonnet. Since the distance between the vehicle and the in-vehicle camera device is also shortened, there is a high possibility that a part of the preceding vehicle will enter the blind spot even if a certain distance between the vehicles is secured. Due to such structural problems, it is often impossible to measure the inter-vehicle distance using a stereo camera in a box-type vehicle as compared with a general passenger car.

本発明はこれらの問題を踏まえてなされたものであり、先行車両の一部が車載カメラ装置の死角に入り込んだ場合であっても、車間距離の正確な測定を継続できる車載カメラ装置を提供することを目的とする。 The present invention has been made in view of these problems, and provides an in-vehicle camera device capable of continuing accurate measurement of the inter-vehicle distance even when a part of the preceding vehicle enters the blind spot of the in-vehicle camera device. The purpose is.

上記課題を解決するために、本発明の車載カメラ装置は、左右に近接配置した二つの撮像部と、該二つの撮像部が撮像した一対の撮像画像の視差から該撮像画像中の障害物との距離を測定する視差測距部と、一方の撮像部の撮像画像から前記障害物の特徴点を抽出する特徴点抽出部と、前記視差測距部が測定した距離と、前記視差測距部が距離を測定した以降の前記特徴点の移動距離に基づいて、前記撮像画像中の障害物との距離を測定する単眼測距部と、前記視差測距部と前記単眼測距部が測定した前記障害物との距離の一方を選択して出力する距離出力部と、備えたものとした。 In order to solve the above problems, the in-vehicle camera device of the present invention has two image pickup units arranged close to each other on the left and right, and an obstacle in the captured image from the difference between the pair of captured images captured by the two image pickup units. The distance measuring unit that measures the distance, the feature point extraction unit that extracts the feature points of the obstacle from the image captured by one of the imaging units, the distance measured by the parallax distance measuring unit, and the parallax distance measuring unit. Based on the movement distance of the feature point after the distance was measured, the monocular distance measuring unit that measures the distance to the obstacle in the captured image, and the parallax distance measuring unit and the monocular distance measuring unit measured the distance. It is provided with a distance output unit that selects and outputs one of the distances to the obstacle.

本発明によれば、自車両が先行車両に接近し、先行車両の一部が車載カメラ装置の死角に入った場合でも、車間距離を正確に測定することができる。 According to the present invention, even when the own vehicle approaches the preceding vehicle and a part of the preceding vehicle enters the blind spot of the in-vehicle camera device, the inter-vehicle distance can be accurately measured.

実施例1の車載カメラ装置の概略構成を示すブロック図。The block diagram which shows the schematic structure of the vehicle-mounted camera device of Example 1. 車載カメラ装置の取り付け位置と死角の関係を説明する概略図。The schematic diagram explaining the relationship between the mounting position of an in-vehicle camera device and a blind spot. 先行車両が普通車である場合の、視差検出限界前後の撮像画像を比較した図。The figure which compared the captured images before and after the parallax detection limit when the preceding vehicle is an ordinary vehicle. 先行車両がトラックである場合の、視差検出限界前後の撮像画像を比較した図。The figure which compared the captured image before and after the parallax detection limit when the preceding vehicle is a truck. 実施例1における先行車両の特徴点の抽出方法を示した図。The figure which showed the extraction method of the characteristic point of the preceding vehicle in Example 1. FIG. 実施例1における車間距離測定処理を説明するフロー図。The flow chart explaining the inter-vehicle distance measurement process in Example 1. FIG. 図6の二閾値の大小関係を示す図。The figure which shows the magnitude relation of two thresholds of FIG. 実施例2における車間距離測定処理を説明するフロー図。The flow chart explaining the inter-vehicle distance measurement process in Example 2. FIG.

以下、本発明の実施例について図面を用いて説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

まず、図2を用いて、自車両10と先行車両20の位置関係、および、本実施例の車載カメラ装置1の取り付け位置とその死角の関係を説明する。ここに例示する自車両10は車高が高くボンネットの短いボックスタイプの車両であり、先行車両20は車高の低い普通車であるが、両車両の組合せはこの例に限定されない。 First, with reference to FIG. 2, the positional relationship between the own vehicle 10 and the preceding vehicle 20, and the relationship between the mounting position of the vehicle-mounted camera device 1 of this embodiment and its blind spot will be described. The own vehicle 10 illustrated here is a box-type vehicle having a high vehicle height and a short bonnet, and the preceding vehicle 20 is an ordinary vehicle having a low vehicle height, but the combination of both vehicles is not limited to this example.

車載カメラ装置1は、先行車両20から車載カメラ装置1までの距離(以下、「距離R」と称する)を測定するためのステレオカメラであり、自車両10の車室内であって、自車両10の先端から距離r1の位置、かつ、地面から高さhの位置に設置されている。自車両10がボックスタイプの場合、距離r1は約20cm程度であるが、一般的な車両の場合には、距離r1は約2m程度となることもある。 The in-vehicle camera device 1 is a stereo camera for measuring the distance from the preceding vehicle 20 to the in-vehicle camera device 1 (hereinafter, referred to as “distance R”), and is inside the vehicle interior of the own vehicle 10 and is in the vehicle interior of the own vehicle 10. It is installed at a distance r1 from the tip of the camera and at a height h from the ground. When the own vehicle 10 is a box type, the distance r1 is about 20 cm, but in the case of a general vehicle, the distance r1 may be about 2 m.

車載カメラ装置1が測定する距離Rは、前述の距離r1と、先行車両20の後端から自車両10の先端までの距離(以下、「車間距離r2」と称する)の和であるため、距離Rから既知の距離r1を減算することで車間距離r2を算出できる。なお、上述したように、車載カメラ装置1の取り付け位置が高くなるほど、また、距離r1が短くなるほど、自車両前方の死角領域(図2の斜線領域)が広がる傾向があるため、本実施例のように、車載カメラ装置1の取り付け位置が高く、距離r1が短いボックスタイプの自車両10では、先行車両20に接近した場合、視差を利用した距離Rの測定が不能となることが多い。 The distance R measured by the in-vehicle camera device 1 is the sum of the above-mentioned distance r1 and the distance from the rear end of the preceding vehicle 20 to the tip of the own vehicle 10 (hereinafter, referred to as "inter-vehicle distance r2"). The inter-vehicle distance r2 can be calculated by subtracting the known distance r1 from R. As described above, the higher the mounting position of the in-vehicle camera device 1 and the shorter the distance r1, the wider the blind spot region (diagonal region in FIG. 2) in front of the own vehicle tends to be. As described above, in the box-type own vehicle 10 in which the mounting position of the in-vehicle camera device 1 is high and the distance r1 is short, it is often impossible to measure the distance R using the parallax when approaching the preceding vehicle 20.

次に、図1のブロック図を用いて、本実施例に係る車載カメラ装置1の概要を説明する。ここに示すように、車載カメラ装置1は、主に、右撮像部2Rと、左撮像部2Lと、測距装置3より構成されたものであり、測距装置3からは測定した距離RがECU8に出力される。この測距装置3は、撮像部が撮像した撮像画像に基づいて距離Rを演算するものであり、これを実現するためのハードウェアとして、図示しない、CPU、主記憶装置、補助記憶装置、通信装置等を備えている。そして、主記憶装置にロードしたプログラムをCPUが実行することで、後述する視差測距部4、特徴点抽出部5、単眼測距部6、距離出力部7の各機能を実現するものであるが、以下では、このような周知技術を適宜省略しながら説明する。なお、図1では測距装置3とECU8を分離した構成を示しているが、本実施例の測距装置3をECU8に統合した構成としても良い。以下、各々の構成について、更に詳細に説明する。 Next, the outline of the in-vehicle camera device 1 according to the present embodiment will be described with reference to the block diagram of FIG. As shown here, the in-vehicle camera device 1 is mainly composed of a right image pickup unit 2R, a left image pickup unit 2L, and a distance measuring device 3, and the distance R measured from the distance measuring device 3 is obtained. It is output to the ECU 8. The distance measuring device 3 calculates the distance R based on the captured image captured by the imaging unit, and as hardware for realizing this, a CPU, a main storage device, an auxiliary storage device, and a communication (not shown) are used. It is equipped with equipment. Then, by executing the program loaded in the main storage device by the CPU, each function of the parallax distance measuring unit 4, the feature point extraction unit 5, the monocular distance measuring unit 6, and the distance output unit 7, which will be described later, is realized. However, in the following, such a well-known technique will be described while being omitted as appropriate. Although FIG. 1 shows a configuration in which the distance measuring device 3 and the ECU 8 are separated, the distance measuring device 3 of this embodiment may be integrated into the ECU 8. Hereinafter, each configuration will be described in more detail.

右撮像部2Rと左撮像部2Lは、レンズ等を介してカメラ前方の状態を画像として取り込むものであり、近接配置された二つの撮像部によりステレオカメラを構成する。 The right imaging unit 2R and the left imaging unit 2L capture the state in front of the camera as an image via a lens or the like, and the stereo camera is composed of two imaging units arranged close to each other.

視差測距部4は、右撮像部2Rと左撮像部2Lで撮像した一対の撮像画像の視差から、画像内立体物の奥行方向の距離を求める、ステレオ視での距離測定機能を持つ。ここで、ステレオ視での距離測定方法は、画像内立体物を構成する縦辺に注目し、右撮像部2Rと左撮像部2Lでその縦辺の画素上のずれを奥行方向の距離に換算するものであるが、これは周知技術であるので、その具体的な説明は省略する。 The parallax ranging unit 4 has a distance measuring function in stereo vision that obtains the distance in the depth direction of a three-dimensional object in the image from the parallax of the pair of captured images captured by the right imaging unit 2R and the left imaging unit 2L. Here, in the distance measurement method in stereo view, attention is paid to the vertical side constituting the three-dimensional object in the image, and the deviation on the pixel of the vertical side is converted into the distance in the depth direction by the right imaging unit 2R and the left imaging unit 2L. However, since this is a well-known technique, a specific description thereof will be omitted.

特徴点抽出部5は、右撮像部2Rあるいは左撮像部2Lから入力された撮像画像に基づいて、先行車両20の特徴的な部分(以下、「特徴点20a」と称する)を抽出するものである。ここで、特徴点20aとは、例えば、コントラストの濃淡の境界部(ルーフとリアガラスの境目、ルーフそのもの)や、特徴的な形状部(ルーフアンテナ等の突起)のように、撮像画像の画素レベルでユニークな部分であり、異なるタイミングに撮像した撮像画像からも容易に同一部を抽出できるような特徴的な部分である。ここで、特徴点20aの候補が複数ある場合は、なるべく画像上部のものを抽出することが望ましい。抽出された特徴点20aは、撮像画像上での座標yとして随時、単眼測距部6に出力される。なお、図1に例示する特徴点抽出部5では、左撮像部2Lの撮像画像が入力されているが、右撮像部2Rの撮像画像が入力される構成としても良い。 The feature point extraction unit 5 extracts a characteristic portion of the preceding vehicle 20 (hereinafter, referred to as “feature point 20a”) based on an image captured from the right image pickup unit 2R or the left image pickup section 2L. is there. Here, the feature point 20a is a pixel level of the captured image, such as a boundary portion of contrast shading (the boundary between the roof and the rear glass, the roof itself) and a characteristic shape portion (projection of a roof antenna or the like). It is a unique part, and it is a characteristic part that allows the same part to be easily extracted from captured images taken at different timings. Here, when there are a plurality of candidates for the feature points 20a, it is desirable to extract the upper part of the image as much as possible. The extracted feature points 20a are output to the monocular distance measuring unit 6 at any time as the coordinates y on the captured image. In the feature point extraction unit 5 illustrated in FIG. 1, the captured image of the left imaging unit 2L is input, but the captured image of the right imaging unit 2R may be input.

単眼測距部6は、視差測距部4が測定したステレオ視での距離Rと、特徴点抽出部5が抽出した特徴点20aの座標yの変化に基づいて、一方の撮像部(以下、「単眼」と称する)の撮像画像から距離R’を算出するものである。 The monocular distance measuring unit 6 is one of the imaging units (hereinafter,, based on the change of the distance R in stereo vision measured by the parallax measuring unit 4 and the coordinate y of the feature point 20a extracted by the feature point extracting unit 5). The distance R'is calculated from the captured image (referred to as "monocular").

距離出力部7は、視差測距部4が測定した距離Rと、単眼測距部6が測定した距離R’のいずれかを選択してECU8に出力する。距離Rと距離R’の双方が測定できた場合には、距離出力部7は、原理的に精度が高い視差測距部4による距離Rを選択して出力するが、視差測距部4による測定が不能となった場合には、単眼測距部6による距離R’を選択して出力する。 The distance output unit 7 selects either the distance R measured by the parallax distance measuring unit 4 or the distance R'measured by the monocular distance measuring unit 6 and outputs the distance to the ECU 8. When both the distance R and the distance R'can be measured, the distance output unit 7 selects and outputs the distance R by the parallax distance measuring unit 4 having high accuracy in principle, but the parallax distance measuring unit 4 determines. When the measurement becomes impossible, the distance R'by the monocular distance measuring unit 6 is selected and output.

次に、図3と図4を用いて、視差測距部4による測定が不能となる状況を説明する。 Next, the situation in which the measurement by the parallax distance measuring unit 4 becomes impossible will be described with reference to FIGS. 3 and 4.

図3は、先行車両20が普通車であるときの、視差測距部4による視差検出限界距離前後の撮像画像を比較した図である。図3(a)、(b)を比較すると、図3(a)では、先行車両20の後端位置を示す網掛けした先行車検出枠30と、視差測距部4が測定した距離Rに相当する「測定距離2m」が表示されているのに対し、図3(b)では、これらが表示されていない。 FIG. 3 is a diagram comparing images taken before and after the parallax detection limit distance by the parallax distance measuring unit 4 when the preceding vehicle 20 is an ordinary vehicle. Comparing FIGS. 3A and 3B, in FIG. 3A, the shaded preceding vehicle detection frame 30 indicating the rear end position of the preceding vehicle 20 and the distance R measured by the parallax distance measuring unit 4 are shown. While the corresponding "measurement distance 2 m" is displayed, these are not displayed in FIG. 3 (b).

このような違いが生じるのは、車間距離がある程度確保されている図3(a)では、先行車両20の一部(後バンパーや後輪など)が死角に入り撮像できていないものの、車両の横部分を含む先行車両20の大部分が撮像されており、立体物を構成する縦辺部を検出できるため、視差による先行車両20の検出や距離測定が可能であるのに対し、図3(b)では、自車両10が先行車両20にさらに接近し、先行車両20の大部分が死角に入った結果、縦辺部が検出できなくなり、視差での先行車両20の検出や距離測定が不能となったからである。 This difference occurs in FIG. 3A, in which the inter-vehicle distance is secured to some extent, although a part of the preceding vehicle 20 (rear bumper, rear wheel, etc.) enters the blind spot and cannot be imaged. Since most of the preceding vehicle 20 including the horizontal portion is imaged and the vertical side portion constituting the three-dimensional object can be detected, the preceding vehicle 20 can be detected and the distance can be measured by parallax. In b), as a result of the own vehicle 10 getting closer to the preceding vehicle 20 and most of the preceding vehicle 20 entering the blind spot, the vertical side portion cannot be detected, and the preceding vehicle 20 cannot be detected or the distance can be measured by parallax. Because it became.

また、図4は、先行車両20が荷台を持つトラック21であるときの、視差測距部4による視差検出限界距離前後の撮像画像を比較した図である。図4(a)、(b)を比較すると、図4(a)では、トラック21の後端位置を示す先行車検出枠30と「測定距離2m」が正常に表示されているのに対し、図4(b)では、トラック21のキャビン部分に先行車検出枠30が誤って表示され、本来の車間距離は1m未満であるのに視差測距部4は「測定距離3m」と誤検出している。 Further, FIG. 4 is a diagram comparing images taken before and after the parallax detection limit distance by the parallax distance measuring unit 4 when the preceding vehicle 20 is a truck 21 having a loading platform. Comparing FIGS. 4 (a) and 4 (b), in FIG. 4 (a), the preceding vehicle detection frame 30 indicating the rear end position of the truck 21 and the "measurement distance 2 m" are normally displayed. In FIG. 4B, the preceding vehicle detection frame 30 is erroneously displayed in the cabin portion of the truck 21, and the parallax distance measuring unit 4 erroneously detects "measurement distance 3 m" even though the original inter-vehicle distance is less than 1 m. ing.

このような違いが生じるのは、十分な車間距離が確保されている図4(a)では、車両全体が見えており、トラック21の荷台後方部を正しく検出できるが、図4(b)のように荷台後方部が死角に入りこむ場合は、荷台を見失う一方で、キャビン部分を先行車両として検知し、キャビン部分との距離を誤って測定するからである。 Such a difference occurs in FIG. 4 (a) in which a sufficient inter-vehicle distance is secured, although the entire vehicle can be seen and the rear portion of the truck bed can be correctly detected, but in FIG. 4 (b). This is because when the rear part of the loading platform enters the blind spot, the cabin portion is detected as a preceding vehicle and the distance to the cabin portion is erroneously measured while losing sight of the loading platform.

図3(b)や図4(b)の状況は、複眼視によっては、先行車両20を見失ったり、距離測定に失敗したりした状況であるので、複眼視による測定距離を利用する従来技術では、追従走行や先行車両20の発進お知らせ等のアプリケーションを正常に利用することができなかった。 The situation of FIGS. 3B and 4B is a situation in which the preceding vehicle 20 is lost or the distance measurement fails depending on the compound eye. Therefore, in the conventional technique using the measurement distance by the compound eye, the measurement distance is used. , Applications such as follow-up running and start notification of the preceding vehicle 20 could not be used normally.

そこで、本実施例では、視差測距部4による距離測定に失敗した場合は、単眼測距部6により距離測定に切り替え、所望のアプリケーションの利用を継続できるようにした。単眼測距部6による距離R’の測定方法には各種方法があるが、以下では、視差検出限界距離前後の撮像画像を比較した図5等を用いて、距離R’の算出方法の一例を説明する。なお、視差検出限界距離は、自車両10への車載カメラ装置1の取り付け位置から予め計算でき、例えば、一般的な乗用車のルーフ部しか見えなくなる車間距離を視差検出限界距離とする場合には、2m程度である。 Therefore, in this embodiment, when the distance measurement by the parallax distance measuring unit 4 fails, the monocular distance measuring unit 6 switches to the distance measurement so that the desired application can be continued to be used. There are various methods for measuring the distance R'by the monocular distance measuring unit 6, but the following is an example of a method for calculating the distance R'using FIG. 5 or the like comparing captured images before and after the parallax detection limit distance. explain. The parallax detection limit distance can be calculated in advance from the mounting position of the in-vehicle camera device 1 on the own vehicle 10. For example, when the inter-vehicle distance where only the roof portion of a general passenger car can be seen is set as the parallax detection limit distance, It is about 2m.

図5(a)は、視差検出限界距離以上の距離が確保されており、視差測距部4による距離測定が成功した時点の撮像画像である。ここでは、視差測距部4が測定した距離Rと、特徴点抽出部5が抽出したこの時点の特徴点20aの撮像画像上での高さ方向の座標yを図示している。一方、図5(b)は、車間距離が縮小した結果、視差測距部4による距離測定が失敗した状況を示しており、特徴点抽出部5が抽出したこの時点の特徴点20aの撮像画像上での高さ方向の座標yと、図5(a)の特徴点20aから図5(b)の特徴点20a’への移動距離Rを図示している。この場合、単眼測距部6が測定する距離R’は、視差測距部4が測定した距離Rと、特徴点20aの移動距離Rを用いて、次の式1に基づいて算出できる。FIG. 5A is an captured image at a time when a distance equal to or greater than the parallax detection limit distance is secured and the distance measurement by the parallax measuring unit 4 is successful. Here, the distance R 0 measured by the parallax distance measuring unit 4 and the coordinates y 0 in the height direction of the feature point 20a at this time extracted by the feature point extracting unit 5 on the captured image are illustrated. On the other hand, FIG. 5B shows a situation in which the distance measurement by the parallax distance measuring unit 4 fails as a result of the reduction in the inter-vehicle distance, and the captured image of the feature point 20a at this time extracted by the feature point extracting unit 5. The coordinates y 1 in the height direction above and the moving distance R 1 from the feature point 20a in FIG. 5 (a) to the feature point 20a'in FIG. 5 (b) are shown. In this case, the distance R'measured by the monocular distance measuring unit 6 can be calculated based on the following equation 1 using the distance R 0 measured by the parallax measuring unit 4 and the moving distance R 1 of the feature point 20a. ..

Figure 2019208257
Figure 2019208257

ここで、単眼測距部6で実行される、特徴点20aの移動距離Rの算出方法には、種々方法があり、例えば、次の式2、式3の何れかを用いることができる(ただし、式2、式3におけるRの最大値はR)。Here, executed by the monocular distance measuring unit 6, the method of calculating the moving distance R 1 of the feature point 20a, there are various methods, for example, the following formula 2, can be used either formula 3 ( However, the maximum value of R 1 in Equations 2 and 3 is R 0 ).

Figure 2019208257
Figure 2019208257

Figure 2019208257
Figure 2019208257

なお、式2、式3には、単純化した演算式を例示しているが、実際には、画素の距離的な重みに関する補正をほどこし、より精度の良く距離を求めることとしても良い。 Although the simplified arithmetic expressions are illustrated in the equations 2 and 3, in reality, the distance may be obtained with higher accuracy by performing a correction regarding the distance weight of the pixels.

図7に本実施例の車載カメラ装置1が実行する距離測定処理のフローチャートを示す。
視差測距部4による距離測定精度は、単眼測距部6による距離測定精度よりも高いため、ここに示すフローチャートは、通常は、視差測距部4により測定し、これに失敗した場合に、単眼測距部6による測定を行うものとなっている。
FIG. 7 shows a flowchart of the distance measurement process executed by the in-vehicle camera device 1 of this embodiment.
Since the distance measurement accuracy by the parallax distance measuring unit 4 is higher than the distance measurement accuracy by the monocular distance measuring unit 6, the flowchart shown here is usually measured by the parallax distance measuring unit 4, and if this fails, The measurement is performed by the monocular distance measuring unit 6.

自車両10が走行を開始し先行車両20を見つけ、追従等の車間距離情報を利用した制御を実行する場合、先ずは、精度が良い視差測距部4を用いた距離測定を実行する(S61)。そして、視差測距部4で測定した距離が視差検出限界距離(閾値、例えば2m)以下であるかを判定する(S62)。NOの場合(十分な車間距離が確保されている場合)は、そのまま視差での距離測定を継続する(S61)。一方、YESの場合は、単眼測距部6による距離測定を準備する。すなわち、特徴点抽出部5は、撮像画像から先行車両20の特徴点20aを抽出し、また、単眼測距部6は、画像上での特徴点20aの座標yと、現時点での視差による測定距離Rを記憶する(S63)。When the own vehicle 10 starts traveling, finds the preceding vehicle 20, and executes control using inter-vehicle distance information such as tracking, first, distance measurement using the highly accurate parallax distance measuring unit 4 is executed (S61). ). Then, it is determined whether the distance measured by the parallax measuring unit 4 is equal to or less than the parallax detection limit distance (threshold value, for example, 2 m) (S62). If NO (when a sufficient inter-vehicle distance is secured), the distance measurement by parallax is continued as it is (S61). On the other hand, if YES, the distance measurement by the monocular distance measuring unit 6 is prepared. That is, the feature point extraction unit 5 extracts the feature point 20a of the preceding vehicle 20 from the captured image, and the monocular distance measuring unit 6 depends on the coordinates y 0 of the feature point 20a on the image and the current parallax. The measurement distance R 0 is stored (S63).

そして、所定時間経過後、視差測距部4による距離測定を再度実行し(S64)、その成否を判断する(S65)。視差測距部4による距離測定が成功した場合は(S65でYes)、視差での距離測定が実現可能な距離が確保されているため、S61に戻り、視差測距部4による距離測定を継続する。一方、自車両10が先行車両20に更に接近していた場合等は、視差での距離測定が不能となっているため(S65でNo)、視差測距部4による距離測定から単眼測距部6による距離測定を利用した制御に移行する(S66)。
続いて、単眼測距部6が再測定した測定距離R’と視差検出限界距離(閾値)を比較し(S67)、測定距離R’が視差検出限界距離(閾値)以上となるまで、単眼測距部6による距離測定を継続する(S66)。一方、単眼測距部6が測定した測定距離R’が視差検出限界距離(閾値)以上となった場合は、再び視差測距部4による距離測定に復帰する(S61)。
Then, after the elapse of a predetermined time, the distance measurement by the parallax distance measuring unit 4 is executed again (S64), and the success or failure of the measurement is determined (S65). If the distance measurement by the parallax distance measuring unit 4 is successful (Yes in S65), the distance that can be measured by the parallax is secured, so the process returns to S61 and the distance measurement by the parallax distance measuring unit 4 is continued. To do. On the other hand, when the own vehicle 10 is closer to the preceding vehicle 20, the distance measurement by parallax is impossible (No in S65), so the distance measurement by the parallax distance measuring unit 4 is performed by the monocular distance measuring unit. The control shifts to the control using the distance measurement according to 6 (S66).
Subsequently, the measurement distance R'remeasured by the monocular distance measuring unit 6 is compared with the parallax detection limit distance (threshold value) (S67), and monocular measurement is performed until the measurement distance R'is equal to or greater than the parallax detection limit distance (threshold value). The distance measurement by the distance portion 6 is continued (S66). On the other hand, when the measurement distance R'measured by the monocular distance measuring unit 6 becomes equal to or greater than the parallax detection limit distance (threshold value), the distance measurement by the parallax measuring unit 4 is resumed (S61).

次に、図7を用いて、先行車両20との距離と、距離測定に用いる測距部の関係を説明する。図7のグラフは、横軸が時間、縦軸が先行車両20との距離であり、自車両10が先行車両20に接近し、先行車両20との距離が時間と共に短くなる様子を示したものである。 Next, with reference to FIG. 7, the relationship between the distance to the preceding vehicle 20 and the distance measuring unit used for distance measurement will be described. In the graph of FIG. 7, the horizontal axis is time and the vertical axis is the distance to the preceding vehicle 20, and the own vehicle 10 approaches the preceding vehicle 20 and the distance to the preceding vehicle 20 decreases with time. Is.

ここに示すように、距離が視差検出限界距離(閾値)となったタイミングTで特徴点抽出部5による特徴点20aの抽出と、単眼測距部5による座標yと距離Rの記憶が開始され、単眼での距離測定に必要な準備を開始する。すなわち、このタイミングTまでは、特徴抽出部5と単眼測距部6を停止しておいても良く、車載カメラ装置1のCPUの処理能力を抑制できる。自車両10が更に先行車両20に接近し、視差での距離検出結果が無くなったタイミングT以降は、視差測距部4を停止し、単眼測距部6による距離測定結果を使用しての制御を実行する。As shown here, at the timing T 1 when the distance reaches the discrepancy detection limit distance (threshold), the feature point extraction unit 5 extracts the feature point 20a, and the monocular distance measurement unit 5 stores the coordinates y 0 and the distance R 0 . Is started, and the preparation necessary for distance measurement with a single eye is started. That is, the feature extraction unit 5 and the monocular distance measuring unit 6 may be stopped until this timing T 1 , and the processing capacity of the CPU of the in-vehicle camera device 1 can be suppressed. Vehicle 10 further approaches the preceding vehicle 20, the timing T 2 after the distance detection result has been lost in the parallax stop parallax distance measuring unit 4, for using the distance measurement result by monocular distance measuring unit 6 Take control.

以上の実施例によれば、先行車両20等の接近により視差を利用した距離測定が不能となった場合でも、単眼視による距離測定に切り替えることで、所望のアプリケーションの利用を継続することが可能となる。その際、視差で距離測定結果を単眼視での距離情報として引き継ぐため、単に単眼視による距離測定を実行する場合よりも精度の良い距離測定が可能となる。また、単眼視により距離測定する際は、抽出した特徴点のみに注目して先行車両20の移動量を推定するためCPUの処理負荷を低減することも可能である。 According to the above embodiment, even if distance measurement using parallax becomes impossible due to the approach of the preceding vehicle 20 or the like, it is possible to continue using the desired application by switching to distance measurement using monocular vision. It becomes. At that time, since the distance measurement result is inherited as the distance information in monocular vision by parallax, the distance measurement can be performed with higher accuracy than the case where the distance measurement by simple monocular vision is simply executed. Further, when measuring the distance by monocular vision, it is possible to reduce the processing load of the CPU because the movement amount of the preceding vehicle 20 is estimated by paying attention only to the extracted feature points.

次に、図8を用いて、本発明の実施例2の車載カメラ装置1を説明する。なお、実施例1との共通点は重複説明を省略する。 Next, the in-vehicle camera device 1 of the second embodiment of the present invention will be described with reference to FIG. It should be noted that the common points with the first embodiment will be omitted.

実施例1でも説明したように、ステレオ視により距離を測定するには、同時に撮像された二つの撮像画像を必要とする。しかし、実使用時には、片側の撮像部が故障したり、片側のレンズが遮蔽されたりして、突発的に一つの撮像画像しか得られなくなる場合もある。 As also described in Example 1, in order to measure the distance by stereo vision, two captured images captured at the same time are required. However, in actual use, the image pickup unit on one side may break down or the lens on one side may be shielded, so that only one captured image may be suddenly obtained.

実施例1では、CPUの処理負荷を軽減するために、車間距離が所定未満となった時のみ、特徴点抽出部5と単眼測距部6を稼働する構成とした。しかし、より高性能なCPUを持つシステムの場合は、上記の処理開始に関する制限を設けることなく、常に特徴点抽出部5と単眼測距部6を稼働することで、撮像画像が突如一枚しか正常に撮像できなくなった場合も距離測定の継続が可能となる。 In the first embodiment, in order to reduce the processing load of the CPU, the feature point extraction unit 5 and the monocular distance measuring unit 6 are operated only when the inter-vehicle distance is less than a predetermined value. However, in the case of a system having a higher performance CPU, the feature point extraction unit 5 and the monocular distance measuring unit 6 are always operated without setting the above-mentioned restrictions on the start of processing, so that only one captured image is suddenly obtained. It is possible to continue the distance measurement even if the image cannot be taken normally.

図8に、これらの処理を常時実施する場合のフローチャートを示す。ここに示す本実施例のフローチャートは、図7に示したフローチャートに対して、視差検出限界距離付近まで先行車接近していることを判定する処理(S62等)が削除された代わりに、先行車両20の特徴点20aの抽出、記憶処理(S81)と、視差測距部4による距離測定、記憶処理(S82)と、単眼測距部6による距離測定、記憶処理(S83)を常に実行し、更に、両測定距離の比較を行うものである(S84)。 FIG. 8 shows a flowchart in the case where these processes are constantly performed. The flowchart of the present embodiment shown here is based on the flowchart shown in FIG. 7, instead of deleting the process of determining that the preceding vehicle is approaching to the vicinity of the discrepancy detection limit distance (S62, etc.), the preceding vehicle. Extraction and storage processing (S81) of the feature point 20a of 20 and distance measurement and storage processing (S82) by the parallax distance measuring unit 4 and distance measurement and storage processing (S83) by the monocular distance measuring unit 6 are always executed. Further, both measurement distances are compared (S84).

通常は、視差測距部4と単眼測距部6の測定距離は一致しないながらも、略同程度の距離を測定できるため、距離出力部7は、より精度の高い視差測距部4による測定距離を選択して出力する(S85)。一方、何らかの事情により片方の撮像画像に突発的な不備が生じた場合は、視差測距部4と単眼測距部6の測定距離に誤差が大きくなるため、その誤差が所定値(例えば±5%)を超える場合、距離出力部7は、片方の撮像画像に不備が生じたと判断し、単眼測距部6による測定距離R’を選択して出力する(S86)。 Normally, although the measurement distances of the parallax distance measuring unit 4 and the monocular distance measuring unit 6 do not match, the distances can be measured to be approximately the same, so that the distance output unit 7 measures with the parallax measuring unit 4 with higher accuracy. The distance is selected and output (S85). On the other hand, if there is a sudden defect in one of the captured images for some reason, the error between the parallax ranging unit 4 and the monocular ranging unit 6 becomes large, so the error becomes a predetermined value (for example, ± 5). %), The distance output unit 7 determines that a defect has occurred in one of the captured images, and selects and outputs the measurement distance R'by the monocular distance measuring unit 6 (S86).

このような処理により、本実施例の車載カメラ装置では、突発的に片側の撮像部に不備が生じた場合でも、視差測距部4から単眼測距部6に随時切り替えることができるため、先行車両20などの前方障害物の距離測定を継続することが可能となる。また、視差、単眼の両方が距離測定が可能な状態では、両者の測定結果を比較することにより、システムの信頼性をより向上させることが可能である。 By such processing, in the in-vehicle camera device of the present embodiment, even if a defect suddenly occurs in the imaging unit on one side, the parallax distance measuring unit 4 can be switched to the monocular distance measuring unit 6 at any time. It becomes possible to continue measuring the distance of a front obstacle such as the vehicle 20. Further, in a state where both parallax and monocular can measure the distance, it is possible to further improve the reliability of the system by comparing the measurement results of both.

10…自車両、1…車載カメラ装置、2R…右撮像部、2L…左撮像部、3…測距装置、4…視差測距部、5…特徴点抽出部、6…単眼測距部、7…距離出力部、8…ECU20…先行車両、20a…特徴点、21…トラック、30…先行車検出枠 10 ... own vehicle, 1 ... in-vehicle camera device, 2R ... right imaging unit, 2L ... left imaging unit, 3 ... distance measuring device, 4 ... parallax ranging unit, 5 ... feature point extraction unit, 6 ... monocular distance measuring unit, 7 ... distance output unit, 8 ... ECU 20 ... preceding vehicle, 20a ... feature point, 21 ... truck, 30 ... preceding vehicle detection frame

Claims (5)

左右に近接配置した二つの撮像部と、
該二つの撮像部が撮像した一対の撮像画像の視差から該撮像画像中の障害物との距離を測定する視差測距部と、
一方の撮像部の撮像画像から前記障害物の特徴点を抽出する特徴点抽出部と、
前記視差測距部が測定した距離と、前記視差測距部が距離を測定した以降の前記特徴点の移動距離に基づいて、前記撮像画像中の障害物との距離を測定する単眼測距部と、
前記視差測距部と前記単眼測距部が測定した前記障害物との距離の一方を選択して出力する距離出力部と、を備えたことを特徴とする車載カメラ装置。
Two imaging units placed close to each other on the left and right,
A parallax ranging unit that measures the distance to an obstacle in the captured image from the parallax of the pair of captured images captured by the two imaging units.
A feature point extraction unit that extracts feature points of the obstacle from an image captured by one of the imaging units,
A monocular distance measuring unit that measures the distance to an obstacle in the captured image based on the distance measured by the parallax measuring unit and the moving distance of the feature point after the parallax measuring unit measures the distance. When,
An in-vehicle camera device including a distance output unit that selects and outputs one of the distances between the parallax distance measuring unit and the obstacle measured by the monocular distance measuring unit.
前記距離出力部は、
前記視差測距部による距離測定が可能な場合は、前記視差測距部が測定した前記障害物との距離を出力し、
前記視差測距部による距離測定が不能な場合は、前記単眼測距部が測定した前記障害物との距離を出力することを特徴とする請求項1に記載の車載カメラ装置。
The distance output unit
When the distance can be measured by the parallax distance measuring unit, the distance to the obstacle measured by the parallax distance measuring unit is output.
The vehicle-mounted camera device according to claim 1, wherein when the distance measurement by the parallax distance measuring unit is impossible, the distance to the obstacle measured by the monocular distance measuring unit is output.
前記視差測距部が測定した前記障害物との距離が所定の閾値以上である場合は、前記特徴点抽出部と前記単眼測距部の処理を停止するとともに、
前記視差測距部が測定した前記障害物との距離が所定の閾値未満である場合は、前記特徴点抽出部と前記単眼測距部の処理を実行することを特徴とする請求項1に記載の車載カメラ装置。
When the distance to the obstacle measured by the parallax distance measuring unit is equal to or greater than a predetermined threshold value, the processing of the feature point extracting unit and the monocular distance measuring unit is stopped, and the processing is stopped.
The first aspect of claim 1, wherein when the distance to the obstacle measured by the parallax distance measuring unit is less than a predetermined threshold value, the processing of the feature point extracting unit and the monocular distance measuring unit is executed. In-vehicle camera device.
前記距離出力部は、
前記視差測距部と前記単眼測距部が測定した前記障害物との距離の誤差が所定値未満である場合は、前記視差測距部が測定した前記障害物との距離を出力し、
前記視差測距部と前記単眼測距部が測定した前記障害物との距離の誤差が所定値以上である場合は、前記単眼測距部が測定した前記障害物との距離を出力することを特徴とする請求項1に記載の車載カメラ装置。
The distance output unit
When the error in the distance between the parallax distance measuring unit and the obstacle measured by the monocular distance measuring unit is less than a predetermined value, the distance to the obstacle measured by the parallax distance measuring unit is output.
When the error in the distance between the parallax ranging unit and the obstacle measured by the monocular ranging unit is equal to or greater than a predetermined value, the distance between the obstacle and the obstacle measured by the monocular ranging unit is output. The in-vehicle camera device according to claim 1.
前記二つの撮像部の取り付け高さ、前記二つの撮像部から自車両の前面ノーズまでの長さ、および、前記車載カメラ装置の視野角から計算される車両近傍の死角に前記障害物が入り込んだ場合、
前記単眼測距部は、前記障害物が死角に入りこむ前に前記視差測距部が測定した距離と、前記特徴点抽出部が抽出した前記障害物が死角に入りこむ前後の特徴点の移動距離に基づいて、前記障害物までの距離を測定することを特徴とする請求項1に記載の車載カメラ装置。
The obstacle has entered the mounting height of the two imaging units, the length from the two imaging units to the front nose of the own vehicle, and the blind spot near the vehicle calculated from the viewing angle of the in-vehicle camera device. If,
The monocular distance measuring unit determines the distance measured by the parallax ranging unit before the obstacle enters the blind spot and the moving distance of the feature points before and after the obstacle extracted by the feature point extracting unit enters the blind spot. The vehicle-mounted camera device according to claim 1, wherein the distance to the obstacle is measured based on the above.
JP2020516227A 2018-04-23 2019-04-12 In-vehicle camera device Active JP6877636B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018082014 2018-04-23
JP2018082014 2018-04-23
PCT/JP2019/015905 WO2019208257A1 (en) 2018-04-23 2019-04-12 In-vehicle camera device

Publications (2)

Publication Number Publication Date
JPWO2019208257A1 true JPWO2019208257A1 (en) 2021-02-12
JP6877636B2 JP6877636B2 (en) 2021-05-26

Family

ID=68295412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020516227A Active JP6877636B2 (en) 2018-04-23 2019-04-12 In-vehicle camera device

Country Status (3)

Country Link
JP (1) JP6877636B2 (en)
CN (1) CN111971528B (en)
WO (1) WO2019208257A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117392A (en) * 2000-10-06 2002-04-19 Nissan Motor Co Ltd Inter-vehicle distance estimation device
JP2015206798A (en) * 2015-06-25 2015-11-19 日立オートモティブシステムズ株式会社 distance calculation device
JP2017068712A (en) * 2015-09-30 2017-04-06 株式会社東芝 On-vehicle device and inter-vehicle-head distance calculation method
JP2017096777A (en) * 2015-11-25 2017-06-01 日立オートモティブシステムズ株式会社 Stereo camera system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258497A (en) * 2005-03-15 2006-09-28 Omron Corp Object recognition apparatus for vehicle
CN101391589A (en) * 2008-10-30 2009-03-25 上海大学 Vehicle intelligent alarming method and device
JP5414714B2 (en) * 2011-03-04 2014-02-12 日立オートモティブシステムズ株式会社 Car camera and in-vehicle camera system
JP6182866B2 (en) * 2012-03-21 2017-08-23 株式会社リコー Calibration device, distance measuring device, and vehicle
US20160275359A1 (en) * 2013-12-26 2016-09-22 Mitsubishi Electric Corporation Information processing apparatus, information processing method, and computer readable medium storing a program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117392A (en) * 2000-10-06 2002-04-19 Nissan Motor Co Ltd Inter-vehicle distance estimation device
JP2015206798A (en) * 2015-06-25 2015-11-19 日立オートモティブシステムズ株式会社 distance calculation device
JP2017068712A (en) * 2015-09-30 2017-04-06 株式会社東芝 On-vehicle device and inter-vehicle-head distance calculation method
JP2017096777A (en) * 2015-11-25 2017-06-01 日立オートモティブシステムズ株式会社 Stereo camera system

Also Published As

Publication number Publication date
JP6877636B2 (en) 2021-05-26
CN111971528B (en) 2022-06-03
WO2019208257A1 (en) 2019-10-31
CN111971528A (en) 2020-11-20

Similar Documents

Publication Publication Date Title
US10242576B2 (en) Obstacle detection device
JP4052650B2 (en) Obstacle detection device, method and program
JP3630100B2 (en) Lane detection device
US10776946B2 (en) Image processing device, object recognizing device, device control system, moving object, image processing method, and computer-readable medium
US7542835B2 (en) Vehicle image processing device
JP7206583B2 (en) Information processing device, imaging device, device control system, moving object, information processing method and program
JPWO2017158958A1 (en) Image processing apparatus, object recognition apparatus, device control system, image processing method and program
EP3282389B1 (en) Image processing apparatus, image capturing apparatus, moving body apparatus control system, image processing method, and program
EP3432265A1 (en) Image processing device, apparatus control system, image pickup device, image processing method, and program
CN110341621B (en) Obstacle detection method and device
CN111213153A (en) Target object motion state detection method, device and storage medium
US20090201370A1 (en) Traveling Lane Detector
US20190325607A1 (en) Movement information estimation device, abnormality detection device, and abnormality detection method
KR102304851B1 (en) Ecu, autonomous vehicle including the ecu, and method of recognizing near vehicle for the same
JP2017151535A (en) Image processing device, object recognition device, equipment control system, image processing method, and program
WO2019068699A1 (en) Method for classifying an object point as static or dynamic, driver assistance system, and motor vehicle
EP2913998B1 (en) Disparity value deriving device, equipment control system, movable apparatus, robot, disparity value deriving method, and computer-readable storage medium
JP6631691B2 (en) Image processing device, device control system, imaging device, image processing method, and program
JP6877636B2 (en) In-vehicle camera device
EP3287948B1 (en) Image processing apparatus, moving body apparatus control system, image processing method, and program
US10643077B2 (en) Image processing device, imaging device, equipment control system, equipment, image processing method, and recording medium storing program
CN112400094B (en) Object detecting device
WO2020036039A1 (en) Stereo camera device
EP2919191B1 (en) Disparity value deriving device, equipment control system, movable apparatus, robot, and disparity value producing method
JP2022123153A (en) Stereo image processing device and stereo image processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210427

R150 Certificate of patent or registration of utility model

Ref document number: 6877636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6877636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250