JPWO2019131966A1 - 光学素子、導光素子および画像表示装置 - Google Patents

光学素子、導光素子および画像表示装置 Download PDF

Info

Publication number
JPWO2019131966A1
JPWO2019131966A1 JP2019562484A JP2019562484A JPWO2019131966A1 JP WO2019131966 A1 JPWO2019131966 A1 JP WO2019131966A1 JP 2019562484 A JP2019562484 A JP 2019562484A JP 2019562484 A JP2019562484 A JP 2019562484A JP WO2019131966 A1 JPWO2019131966 A1 JP WO2019131966A1
Authority
JP
Japan
Prior art keywords
liquid crystal
cholesteric liquid
optical element
light
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019562484A
Other languages
English (en)
Other versions
JP7030847B2 (ja
Inventor
佐藤 寛
佐藤  寛
齊藤 之人
之人 齊藤
克己 篠田
克己 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2019131966A1 publication Critical patent/JPWO2019131966A1/ja
Application granted granted Critical
Publication of JP7030847B2 publication Critical patent/JP7030847B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • G02F1/13473Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells for wavelength filtering or for colour display without the use of colour mosaic filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13478Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells based on selective reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

反射の波長依存性が少ない光学素子、この光学素子を用いる導光素子、および、この導光素子を用いる画像表示装置の提供を課題とする。選択反射中心波長が互いに異なるコレステリック液晶層を、複数、有し、コレステリック液晶層は、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、光学軸の向きが回転する一方向における光学軸が180°回転する長さを1周期とした際に、コレステリック液晶層の選択反射中心波長の長さの順列と、1周期の長さの順列とが、一致していることにより、課題を解決する。

Description

本発明は、光を反射する光学素子、この光学素子を用いる導光素子、および、この導光素子を用いる画像表示装置に関する。
近年、非特許文献1に記載されるような、実際に見ている光景に、仮想の映像および各種の情報等を重ねて表示する、AR(Augmented Reality(拡張現実))グラスが実用化されている。ARグラスは、スマートグラス、ヘッドマウントディスプレイ(HMD(Head Mounted Display))、および、ARメガネ等とも呼ばれている。
非特許文献1に示されるように、ARグラスは、一例として、ディスプレイ(光学エンジン)が表示した映像を、導光板の一端に入射して伝播し、他端から出射することにより、使用者が実際に見ている光景に、仮想の映像を重ねて表示する。
ARグラスでは、回折素子を用いて、ディスプレイからの光(投影光)を回折(屈折)させて導光板の一方の端部に入射する。これにより、角度を付けて導光板に光を導入して、導光板内で光を伝播させる。導光板を伝播した光は、導光板の他方の端部において同じく回折素子によって回折されて、導光板から、使用者による観察位置に出射される。
ARグラスに用いられる導光板としては、一例として、特許文献1に記載される導光板(導波路)が知られている。
この導光板は、光を反射して導波する前面および後面を有し、前面または後面に設けられる第1の部分、および、前面または後面に設けられる第2の部分を有する。第1の部分は、第1の部分からの反射によって、第1の量だけ光の位相を変化させる構造を有する。また、同じ表面の第2の部分は、第2の部分からの反射によって、第1の量とは異なる第2の量だけ光の位相を変化させる、第1の部分とは異なる構造を有する。さらに、この導光板において、第1の部分は、第2の量と第1の量との差に実質的に一致する距離だけ、第2の部分とオフセットされる構成を有する。
米国特許第2016/0231568号公報
Bernard C. Kress et al., Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices, SID 2017 DIGEST, pp.127-131
ところで、特許文献1の[0060]にも記載されるように、回折素子による光の回折の角度は、光の波長に依存する。すなわち、回折素子によって回折される光の進行方向は、光の波長によって異なる。
従って、異なる波長の光を1つの回折素子によって回折させて導光板に導入し、かつ、導光板から出射させると、例えば、赤色画像、緑色画像および青色画像からなるカラー画像であれば、赤色画像、緑色画像および青色画像の位置が異なってしまう、いわゆる色ズレが生じてしまう。
この問題を解決するために、非特許文献1に記載されるARグラスでは、赤色画像、緑色画像および青色画像の、それぞれに対応して、両端に回折素子(表面レリーフ格子(Surface Relief Grating(SRG)))を設けた長尺な導光板を作製して、回折素子を設けた導光板を、3枚、積層して、それぞれの導光板で、ディスプレイが表示した各色の投影像を使用者による観察位置まで導波して、カラー画像を表示している。
ARグラスでは、これにより、赤色画像、緑色画像および青色画像の位置を一致させて、色ズレの無いカラー画像を表示している。
このように、従来のARグラスでは、ディスプレイが表示した画像を使用者による観察位置まで導波するために、回折素子を設けた導光板を、3枚、積層した構成とする必要があるので、全体として導光板が厚く、かつ、重くなってしまい、さらに、装置の構成も複雑になってしまう。
本発明の目的は、このような従来技術の問題点を解決することにあり、反射角度の波長依存性が小さく、例えば、同じ方向から入射した赤色光、緑色光および青色光を、ほとんど同じ方向に反射できる光学素子、この光学素子を用いる導光素子、および、この導光素子を用いる画像表示装置を提供することにある。
この課題を解決するために、本発明は、以下の構成を有する。
[1] コレステリック液晶相を固定してなるコレステリック液晶層を、複数層、積層してなる光学素子であって、
選択反射中心波長が互いに異なるコレステリック液晶層を、複数、有し、
コレステリック液晶層は、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、
さらに、コレステリック液晶層の液晶配向パターンの、液晶化合物由来の光学軸の向きが連続的に回転しながら変化する一方向における、液晶化合物由来の光学軸の向きが180°回転する長さを1周期とした際に、選択反射中心波長が互いに異なる複数のコレステリック液晶層は、選択反射中心波長の長さの順列と、1周期の長さの順列とが、一致していることを特徴とする光学素子。
[2] 記選択反射中心波長が互いに異なる複数のコレステリック液晶層は、コレステリック液晶層の積層方向に向かって、選択反射中心波長が、順次、長くなるように積層される、[1]に記載の光学素子。
[3] 液晶配向パターンにおける1周期の長さが50μm以下である、[1]または[2]に記載の光学素子。
[4] 選択反射中心波長が同じで、反射する円偏光の方向が互いに異なるコレステリック液晶層を有する、[1]〜[3]のいずれかに記載の光学素子。
[5] 選択反射中心波長が同じで、反射する円偏光の方向が互いに異なるコレステリック液晶層は、液晶配向パターンにおける液晶化合物由来の光学軸の向きの連続的な回転方向が、互いに異なる、[4]に記載の光学素子。
[6] コレステリック液晶層の少なくとも1層が、面内に、液晶配向パターンにおける1周期の長さが異なる領域を有する、[1]〜[5]のいずれかに記載の光学素子。
[7] 液晶化合物由来の光学軸の向きが連続的に回転しながら変化する一方向に向かって、コレステリック液晶層の液晶配向パターンの1周期が短くなる、[6]に記載の光学素子。
[8] コレステリック液晶層の液晶配向パターンが、液晶化合物由来の光学軸の向きが連続的に回転しながら変化する一方向を、内側から外側に向かう同心円状に有する、同心円状のパターンである、[1]〜[7]のいずれかに記載の光学素子。
[9] 選択反射中心波長が異なるコレステリック液晶層を、3層以上有する、[1]〜[8]のいずれかに記載の光学素子。
[10] 少なくとも、赤色光の波長域に選択反射中心波長を有するコレステリック液晶層、緑色光の波長域に選択反射中心波長を有するコレステリック液晶層、および、青色光の波長域に選択反射中心波長を有するコレステリック液晶層を有する、[9]に記載の光学素子。
[11] 少なくとも1組のコレステリック液晶層の間に配向膜を有し、コレステリック液晶層の間の配向膜の少なくとも1つは、少なくとも一方の表面が、コレステリック液晶層に接触している、[1]〜[10]のいずれかに記載の光学素子。
[12] コレステリック液晶層の間の配向膜の少なくとも1つは、両方の表面がコレステリック液晶層に接触している、[11]に記載の光学素子。
[13] [1]〜[12]のいずれかに記載の光学素子と、導光板と、を有する、導光素子。
[14] 離間する2つの光学素子が、導光板に設けられる、[13]に記載の導光素子。
[15] 離間する3以上の光学素子が、導光板に設けられる、[13]に記載の導光素子。
[16] 光学素子として、導光板に光を入射させる第1光学素子、導光板から光を出射させる第3光学素子、および、第1光学素子が反射した光を第3光学素子に反射する第2光学素子とを有し、
第1光学素子、第2光学素子および第3光学素子において、光学素子が有するコレステリック液晶層のうち、最も選択反射中心波長が長いコレステリック液晶層の液晶配向パターンにおける1周期の長さが、第2光学素子が最も短い、[15]に記載の導光素子。
[17] [13]〜[16]のいずれかに記載の導光素子と、導光素子の光学素子に画像を照射する表示素子とを有する画像表示装置。
[18] 表示素子が、導光素子の光学素子に円偏光を照射する、[17]に記載の画像表示装置。
本発明の光学素子は、反射角度の波長依存性が小さく、同じ方向から入射した、例えば、赤色光、緑色光および青色光を、ほとんど同じ方向に反射できる。また、この光学素子を用いる本発明の導光素子は、1枚の導光板で、波長の異なる複数種の光を色ズレなく導光して出射できる。さらに、この導光素子を用いる本発明の画像表示装置は、色ズレの無い画像を、広い視野角で表示できる。
図1は、本発明の光学素子の一例を概念的に示す図である。 図2は、図1に示す光学素子のコレステリック液晶層を説明するための概念図である。 図3は、図1に示す光学素子のコレステリック液晶層の平面図である。 図4は、図1に示す光学素子のコレステリック液晶層の作用を説明するための概念図である。 図5は、図1に示す光学素子の配向膜を露光する露光装置の一例の概念図である。 図6は、本発明の光学素子のコレステリック液晶層の別の例の平面図である。 図7は、本発明の光学素子の配向膜を露光する露光装置の別の例の概念図である。 図8は、図1に示す光学素子を備える本発明の導光素子を用いるARグラスを説明するための概念図である。 図9は、図1に示す光学素子を備える本発明の導光素子の別の例を概念的に示す図である。 図10は、実施例における反射角度の測定方法を説明するための概念図である。
以下、本発明の光学素子、導光素子および画像表示装置について、添付の図面に示される好適実施例を基に詳細に説明する。
本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」および「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
本明細書において、可視光は、電磁波のうち、ヒトの目で見える波長の光であり、380〜780nmの波長域の光を示す。非可視光は、380nm未満の波長域および780nmを超える波長域の光である。
またこれに限定されるものではないが、可視光のうち、420〜490nmの波長域の光は青色光であり、495〜570nmの波長域の光は緑色光であり、620〜750nmの波長域の光は赤色光である。
本明細書において、選択反射中心波長とは、対象となる物(部材)における透過率の極小値をTmin(%)とした場合、下記の式で表される半値透過率:T1/2(%)を示す2つの波長の平均値のことを言う。
半値透過率を求める式: T1/2=100−(100−Tmin)÷2
また、複数の層の選択反射中心波長が「等しい」とは、厳密に等しいことを意味するものではなく、光学的に影響のない範囲の誤差は許容される。具体的には、複数の物の選択反射中心波長が「等しい」とは、それぞれの物同士における選択反射中心波長の差が20nm以下であることを意図し、この差は15nm以下であることが好ましく、10nm以下であることがより好ましい。
本発明の光学素子は、入射した光を反射する光反射素子であって、コレステリック液晶相を固定してなるコレステリック液晶層を、複数、積層した構成を有し、かつ、選択反射中心波長が異なるコレステリック液晶層を、複数、有する。
また、コレステリック液晶層は、液晶化合物由来の光学軸の向きが、面内の一方向に向かって連続的に回転する液晶配向パターンを有する。
さらに、コレステリック液晶層は、選択反射中心波長の順列と、液晶配向パターンにおける光学軸の回転周期の順列とが、一致している。すなわち、本発明の光学素子においては、選択反射中心波長が長いコレステリック液晶層ほど、液晶配向パターンにおける光学軸の回転周期が長く、選択反射中心波長が短いコレステリック液晶層ほど、液晶配向パターンにおける光学軸の回転周期が短い。
後に詳述するが、本発明の光学素子は、このような構成を有することにより、反射角度の波長依存性が小さく、同じ方向から入射した波長の異なる光を、ほとんど同じ方向に反射できる。
図1に、本発明の光学素子の一例を概念的に示す。
図示例の光学素子10は、赤色光を選択的に反射するR反射層12と、緑色光を選択的に反射するG反射層14と、青色光を選択的に反射するB反射層16と、を有する。
前述のように、本発明の光学素子は、選択反射中心波長が異なるコレステリック液晶層を、複数、積層した構成を有するものである。R反射層12は、支持体20と、R配向膜24Rと、R反射コレステリック液晶層26Rと、を有する。G反射層14は、支持体20と、G配向膜24Gと、G反射コレステリック液晶層26Gと、を有する。さらに、B反射層16は、支持体20と、B配向膜24Bと、B反射コレステリック液晶層26Bと、を有する。
図示は省略するが、R反射層12とG反射層14、および、G反射層14とB反射層16とは、層間に設けられた貼合層によって貼り合わされている。
本発明において、貼合層は、貼り合わせの対象となる物同士を貼り合わせられる層であれば、公知の各種の材料からなる層が利用可能である。貼合層としては、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。従って、貼合層は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、および、紫外線硬化型樹脂等の、光学装置および光学素子等でシート状物の貼り合わせに用いられる公知の層を用いればよい。
あるいは、貼合層で貼り合わせるのではなく、R反射層12、G反射層14、および、B反射層16を積層して、枠体または治具等で保持して、本発明の光学素子を構成してもよい。
また、図示例の光学素子10は、各反射層毎に支持体20を有しているが、本発明の光学素子は、各反射層毎に支持体20を設けなくてもよい。
例えば、本発明の光学素子は、R反射層12(R反射コレステリック液晶層26R)の表面にG配向膜24Gを形成し、その上にG反射コレステリック液晶層26Gを形成し、さらに、G反射コレステリック液晶層26Gの表面にB配向膜24Bを形成し、その上にB反射コレステリック液晶層26Bを形成した構成でもよい。
あるいは、上記構成から、R反射層12の支持体20を剥離して、配向膜およびコレステリック液晶層のみで、または、コレステリック液晶層のみで、本発明の光学素子を構成してもよい。
すなわち、図1に示す光学素子10では、配向膜の1面(一方の界面)のみにコレステリック液晶層が接触しているが、本発明は、これに制限はされない。本発明の光学素子は、少なくとも1層の配向膜が、両面(両界面)に接触して、コレステリック液晶層を有する構成でもよい。言い換えれば、本発明の光学素子では、コレステリック液晶層の少なくとも1層は、両面に接触して配向膜を有してもよい。すなわち、本発明の光学素子は、コレステリック液晶層の表面に、直接、配向膜を形成して、この配向膜の表面に、コレステリック液晶層を形成した構成であってもよい。
このような配向膜の両面にコレステリック液晶層を有する構成、すなわち、コレステリック液晶層の表面に、直接、配向膜を有する構成は、公知の方法で作製できる。一例として、コレステリック液晶層の表面に、塗布法によって光配向膜を形成して、露光によって光配向膜に配向パターンを形成し、この光配向膜の表面に、塗布法によってコレステリック液晶層を形成することで、作製する方法が例示される。塗布法による光配向膜およびコレステリック液晶層の形成、ならびに、光配向膜の露光に関しては、後に詳述する。
すなわち、本発明の光学素子は、選択反射中心波長が互いに異なる複数のコレステリック液晶層を有し、かつ、選択反射中心波長が異なる各コレステリック液晶層が、液晶化合物由来の光学軸の向きが一方向に向かって回転する液晶配向パターンを有し、さらに、選択反射中心波長、および、液晶配向パターンの光学軸の回転周期が、所定の関係を満たせば、各種の層構成が利用可能である。
<支持体>
R反射層12、G反射層14およびB反射層16において、支持体20は、R配向膜24R、G配向膜24GおよびB配向膜24B、ならびに、R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bを支持するものである。
以下の説明では、R配向膜24R、G配向膜24GおよびB配向膜24Bを区別する必要がない場合には、R配向膜24R、G配向膜24GおよびB配向膜24Bをまとめて『配向膜』とも言う。また、以下の説明では、R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bを区別する必要がない場合には、R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bをまとめて『コレステリック液晶層』とも言う。
支持体20は、配向膜およびコレステリック液晶層を支持できるものであれば、各種のシート状物(フィルム、板状物)が利用可能である。
なお、支持体20は、対応する光に対する透過率が50%以上であるのが好ましく、70%以上であるのがより好ましく、85%以上であるのがさらに好ましい。
支持体20の厚さには、制限はなく、光学素子10の用途および支持体20の形成材料等に応じて、配向膜およびコレステリック液晶層を保持できる厚さを、適宜、設定すればよい。
支持体20の厚さは、1〜1000μmが好ましく、3〜250μmがより好ましく、5〜150μmがさらに好ましい。
支持体20は単層であっても、多層であってもよい。
単層である場合の支持体20としては、ガラス、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリ塩化ビニル、アクリル、および、ポリオレフィン等からなる支持体20が例示される。多層である場合の支持体20の例としては、前述の単層の支持体のいずれかなどを基板として含み、この基板の表面に他の層を設けたもの等が例示される。
<配向膜>
R反射層12において、支持体20の表面にはR配向膜24Rが形成される。G反射層14において、支持体20の表面にはG配向膜24Gが形成される。B反射層16において、支持体20の表面にはB配向膜24Bが形成される。
R配向膜24Rは、R反射層12のR反射コレステリック液晶層26Rを形成する際に、液晶化合物30を所定の液晶配向パターンに配向するための配向膜である。G配向膜24Gは、G反射層14のG反射コレステリック液晶層26Gを形成する際に、液晶化合物30を所定の液晶配向パターンに配向するための配向膜である。B配向膜24Bは、B反射層16のB反射コレステリック液晶層26Bを形成する際に、液晶化合物30を所定の液晶配向パターンに配向するための配向膜である。
後述するが、本発明の光学素子10において、コレステリック液晶層は、液晶化合物30に由来する光学軸30A(図3参照)の向きが、面内の一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する。
さらに、液晶配向パターンにおける、光学軸30Aの向きが連続的に回転しながら変化する一方向において、光学軸30Aの向きが180°回転する長さを1周期Λ(光学軸の回転周期)とした際に、コレステリック液晶層は、選択反射中心波長の長さの順列と、1周期の長さの順列とが、一致している。すなわち、光学素子10において、各コレステリック液晶層の選択反射中心波長は『R反射コレステリック液晶層26R>G反射コレステリック液晶層26G>B反射コレステリック液晶層26B』であるので、各コレステリック液晶層の液晶配向パターンの1周期Λの長さも『R反射コレステリック液晶層26R>G反射コレステリック液晶層26G>B反射コレステリック液晶層26B』となる。
従って、各反射層の配向膜は、各コレステリック液晶層が、この液晶配向パターンを形成できるように、形成される。
以下の説明では、『光学軸30Aの向きが回転』を単に『光学軸30Aが回転』とも言う。
配向膜は、公知の各種のものが利用可能である。
例えば、ポリマーなどの有機化合物からなるラビング処理膜、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、ならびに、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチルなどの有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett:ラングミュア・ブロジェット)膜を累積させた膜、等が例示される。
ラビング処理による配向膜は、ポリマー層の表面を紙または布で一定方向に数回こすることにより形成できる。
配向膜に使用する材料としては、ポリイミド、ポリビニルアルコール、特開平9−152509号公報に記載された重合性基を有するポリマー、特開2005−97377号公報、特開2005−99228号公報、および、特開2005−128503号公報記載の配向膜等の形成に用いられる材料が好ましい。
本発明の光学素子10においては、配向膜は、光配向性の素材に偏光または非偏光を照射して配向膜とした、いわゆる光配向膜が好適に利用される。すなわち、本発明の光学素子10においては、配向膜として、支持体20上に、光配向材料を塗布して形成した光配向膜が、好適に利用される。
偏光の照射は、光配向膜に対して、垂直方向または斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
本発明に利用可能な光配向膜に用いられる光配向材料としては、例えば、特開2006−285197号公報、特開2007−76839号公報、特開2007−138138号公報、特開2007−94071号公報、特開2007−121721号公報、特開2007−140465号公報、特開2007−156439号公報、特開2007−133184号公報、特開2009−109831号公報、特許第3883848号公報および特許第4151746号公報に記載のアゾ化合物、特開2002−229039号公報に記載の芳香族エステル化合物、特開2002−265541号公報および特開2002−317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号および特許第4205198号に記載の光架橋性シラン誘導体、特表2003−520878号公報、特表2004−529220号公報および特許第4162850号に記載の光架橋性ポリイミド、光架橋性ポリアミドおよび光架橋性ポリエステル、ならびに、特開平9−118717号公報、特表平10−506420号公報、特表2003−505561号公報、国際公開第2010/150748号、特開2013−177561号公報および特開2014−12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物およびクマリン化合物等が、好ましい例として例示される。
中でも、アゾ化合物、光架橋性ポリイミド、光架橋性ポリアミド、光架橋性ポリエステル、シンナメート化合物、および、カルコン化合物は、好適に利用される。
配向膜の厚さには制限はなく、配向膜の形成材料に応じて、必要な配向機能を得られる厚さを、適宜、設定すればよい。
配向膜の厚さは、0.01〜5μmが好ましく、0.05〜2μmがより好ましい。
配向膜の形成方法には、制限はなく、配向膜の形成材料に応じた公知の方法が、各種、利用可能である。一例として、配向膜を支持体20の表面に塗布して乾燥させた後、配向膜をレーザ光によって露光して、配向パターンを形成する方法が例示される。
図5に、配向膜を露光して、配向パターンを形成する露光装置の一例を概念的に示す。なお、図5に示す例は、R反射層12のR配向膜24Rを形成する例であるが、G反射層14のG配向膜24GおよびB反射層16のB配向膜24Bも、同じ露光装置で同様に配向パターンを形成できる。
図5に示す露光装置60は、レーザ62を備えた光源64と、レーザ62が出射したレーザ光Mを光線MAおよびMBの2つに分離する偏光ビームスプリッター68と、分離された2つの光線MAおよびMBの光路上にそれぞれ配置されたミラー70Aおよび70Bと、λ/4板72Aおよび72Bと、を備える。
なお、図示は省略するが、光源64は直線偏光P0を出射する。λ/4板72Aは、直線偏光P0(光線MA)を右円偏光PRに、λ/4板72Bは直線偏光P0(光線MB)を左円偏光PLに、それぞれ変換する。
ここで用いるλ/4板72Aおよび72Bは、照射する光の波長に対応したλ/4板であればよい。露光装置60はレーザ光Mを照射するので、例えばレーザ光Mの中心波長が325nmであれば、325nmの波長の光に対して機能するλ/4板を用いればよい。
配向パターンを形成される前のR配向膜24Rを有する支持体20が露光部に配置され、2つの光線MAと光線MBとをR配向膜24R上において交差させて干渉させ、その干渉光をR配向膜24Rに照射して露光する。
この際の干渉により、R配向膜24Rに照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。これにより、R配向膜24Rにおいて、配向状態が周期的に変化する配向パターンが得られる。
露光装置60においては、2つの光線MAおよびMBの交差角αを変化させることにより、配向パターンの周期を調節できる。すなわち、露光装置60においては、交差角αを調節することにより、液晶化合物30に由来する光学軸30Aが一方向に向かって連続的に回転する配向パターンにおいて、光学軸30Aが回転する1方向における、光学軸30Aが180°回転する1周期の長さを調節できる。
このような配向状態が周期的に変化した配向パターンを有する配向膜上に、コレステリック液晶層を形成することにより、後述するように、液晶化合物30に由来する光学軸30Aが一方向に向かって連続的に回転する液晶配向パターンを有する、R反射コレステリック液晶層26Rを形成できる。
また、λ/4板72Aおよび72Bの光学軸を、それぞれ、90°回転することにより、光学軸30Aの回転方向を逆にすることができる。
なお、本発明の光学素子において、配向膜は、好ましい態様として設けられるものであり、必須の構成要件ではない。
例えば、支持体20をラビング処理する方法、支持体20をレーザ光等で加工する方法等によって、支持体20に配向パターンを形成することにより、R反射コレステリック液晶層26R等が、液晶化合物30に由来する光学軸30Aの向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する構成とすることも、可能である。
<コレステリック液晶層>
R反射層12において、R配向膜24Rの表面には、R反射コレステリック液晶層26Rが形成される。G反射層14において、G配向膜24Gの表面には、G反射コレステリック液晶層26Gが形成される。さらに、B反射層16において、B配向膜24Bの表面にはB反射コレステリック液晶層26Bが形成される。
なお、図1においては、図面を簡略化して光学素子10の構成を明確に示すために、R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bは、共に、配向膜の表面の液晶化合物30(液晶化合物分子)のみを概念的に示している。しかしながら、R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bは、図2にR反射コレステリック液晶層26Rを例示して概念的に示すように、通常のコレステリック液晶相を固定してなるコレステリック液晶層と同様に、液晶化合物30が螺旋状に旋回して積み重ねられた螺旋構造を有し、液晶化合物30が螺旋状に1回転(360°回転)して積み重ねられた構成を螺旋1ピッチとして、螺旋状に旋回する液晶化合物30が、複数ピッチ、積層された構造を有する。
R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bは、波長選択反射性を有する。
R反射コレステリック液晶層26Rは、赤色光の右円偏光RRを反射して、それ以外の光を透過するもので、赤色光の波長域に選択反射中心波長を有するコレステリック液晶層である。
G反射コレステリック液晶層26Gは、緑色光の右円偏光GRを反射して、それ以外の光を透過するもので、緑色光の波長域に選択反射中心波長を有するコレステリック液晶層である。
B反射コレステリック液晶層26Bは、青色光の右円偏光BRを反射して、それ以外の光を透過するもので、青色光の波長域に選択反射中心波長を有するコレステリック液晶層である。
前述のように、R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bは、コレステリック液晶相を固定してなるものである。
すなわち、R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bは、共に、コレステリック構造を有する液晶化合物30(液晶材料)からなる層である。
<<コレステリック液晶相>>
コレステリック液晶相は、特定の波長において左右いずれかの円偏光に対して選択反射性を示す。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相の螺旋の捩れ方向(センス)による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
従って、図示例の光学素子10においては、コレステリック液晶層は、右捩れのコレステリック液晶相を固定してなる層である。
なお、コレステリック液晶相の旋回の方向は、コレステリック液晶層を形成する液晶化合物の種類および/または添加されるキラル剤の種類によって調節できる。
また、選択反射を示す選択反射帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶相のΔnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層を形成する液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度により調節できる。
反射波長帯域の半値幅は、光学素子10の用途に応じて調節され、例えば10〜500nmであればよく、好ましくは20〜300nmであり、より好ましくは30〜100nmである。
<<コレステリック液晶層の形成方法>>
コレステリック液晶層(R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26B)は、コレステリック液晶相を層状に固定して形成できる。
コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造が好ましい。
なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、コレステリック液晶層において、液晶化合物30は液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。
コレステリック液晶相を固定してなるコレステリック液晶層の形成に用いる材料としては、一例として、液晶化合物を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
また、コレステリック液晶層の形成に用いる液晶組成物は、さらに界面活性剤およびキラル剤を含んでいてもよい。
−−重合性液晶化合物−−
重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよい。
コレステリック液晶相を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、および、アルケニルシクロヘキシルベンゾニトリル類等が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基がより好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1〜6個、より好ましくは1〜3個である。
重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、米国特許第5622648号明細書、米国特許第5770107号明細書、国際公開第95/22586号、国際公開第95/24455号、国際公開第97/00600号、国際公開第98/23580号、国際公開第98/52905号、特開平1−272551号公報、特開平6−16616号公報、特開平7−110469号公報、特開平11−80081号公報、および、特開2001−328973号公報等に記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
また、上記以外の重合性液晶化合物としては、特開昭57−165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9−133810号公報に開示されているような液晶性高分子、および、特開平11−293252号公報に開示されているような液晶性高分子等を用いることができる。
−−円盤状液晶化合物−−
円盤状液晶化合物としては、例えば、特開2007−108732号公報や特開2010−244038号公報に記載のものを好ましく用いることができる。
また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、75〜99.9質量%であるのが好ましく、80〜99質量%であるのがより好ましく、85〜90質量%であるのがさらに好ましい。
−−界面活性剤−−
コレステリック液晶層を形成する際に用いる液晶組成物は、界面活性剤を含有してもよい。
界面活性剤は、安定的にまたは迅速にプレーナー配向のコレステリック液晶相とするために寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ−ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましく例示される。
界面活性剤の具体例としては、特開2014−119605号公報の段落[0082]〜[0090]に記載の化合物、特開2012−203237号公報の段落[0031]〜[0034]に記載の化合物、特開2005−99248号公報の段落[0092]および[0093]中に例示されている化合物、特開2002−129162号公報の段落[0076]〜[0078]および段落[0082]〜[0085]中に例示されている化合物、ならびに、特開2007−272185号公報の段落[0018]〜[0043]等に記載のフッ素(メタ)アクリレート系ポリマー、などが挙げられる。
なお、界面活性剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
フッ素系界面活性剤として、特開2014−119605号公報の段落[0082]〜[0090]に記載の化合物が好ましい。
液晶組成物中における、界面活性剤の添加量は、液晶化合物の全質量に対して0.01〜10質量%が好ましく、0.01〜5質量%がより好ましく、0.02〜1質量%がさらに好ましい。
−−キラル剤(光学活性化合物)−−
キラル剤(カイラル剤)はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
キラル剤には、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4−3項、TN(twisted nematic)、STN(Super Twisted Nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、および、イソマンニド誘導体等を用いることができる。
キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン、および、これらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
また、キラル剤は、液晶化合物であってもよい。
キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、または、シンナモイル基が好ましい。具体的な化合物として、特開2002−80478号公報、特開2002−80851号公報、特開2002−179668号公報、特開2002−179669号公報、特開2002−179670号公報、特開2002−179681号公報、特開2002−179682号公報、特開2002−338575号公報、特開2002−338668号公報、特開2003−313189号公報、および、特開2003−313292号公報等に記載の化合物を用いることができる。
液晶組成物における、キラル剤の含有量は、液晶化合物の含有モル量に対して0.01〜200モル%が好ましく、1〜30モル%がより好ましい。
−−重合開始剤−−
液晶組成物が重合性化合物を含む場合は、重合開始剤を含有しているのが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。
光重合開始剤の例には、α−カルボニル化合物(米国特許第2367661号、米国特許第2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許第4239850号明細書記載)、ならびに、オキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
液晶組成物中の光重合開始剤の含有量は、液晶化合物の含有量に対して0.1〜20質量%であるのが好ましく、0.5〜12質量%であるのがさらに好ましい。
−−架橋剤−−
液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、および、湿気等で硬化するものが好適に使用できる。
架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレートおよびペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレートおよびエチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2−ビスヒドロキシメチルブタノール−トリス[3−(1−アジリジニル)プロピオネート]および4,4−ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネートおよびビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ならびに、ビニルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
架橋剤の含有量は、液晶組成物の固形分質量に対して、3〜20質量%が好ましく、5〜15質量%がより好ましい。架橋剤の含有量が上記範囲内であれば、架橋密度向上の効果が得られやすく、コレステリック液晶相の安定性がより向上する。
−−その他の添加剤−−
液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、および、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。
液晶組成物は、コレステリック液晶層(R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26B)を形成する際には、液体として用いられるのが好ましい。
液晶組成物は溶媒を含んでいてもよい。溶媒には、制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましい。
有機溶媒には、制限はなく、目的に応じて適宜選択することができ、例えば、ケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、および、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。
コレステリック液晶層を形成する際には、コレステリック液晶層の形成面に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶層とするのが好ましい。
すなわち、配向膜上にコレステリック液晶層を形成する場合には、配向膜に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶相を固定してなるコレステリック液晶層を形成するのが好ましい。
液晶組成物の塗布は、インクジェットおよびスクロール印刷等の印刷法、ならびに、スピンコート、バーコートおよびスプレー塗布等のシート状物に液体を一様に塗布できる公知の方法が全て利用可能である。
塗布された液晶組成物は、必要に応じて乾燥および/または加熱され、その後、硬化され、コレステリック液晶層を形成する。この乾燥および/または加熱の工程で、液晶組成物中の液晶化合物がコレステリック液晶相に配向すればよい。加熱を行う場合、加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。
配向させた液晶化合物は、必要に応じて、さらに重合される。重合は、熱重合、および、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いるのが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2が好ましく、50〜1500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射する紫外線の波長は250〜430nmが好ましい。
コレステリック液晶層の厚さには、制限はなく、光学素子10の用途、コレステリック液晶層に要求される光の反射率、および、コレステリック液晶層の形成材料等に応じて、必要な光の反射率が得られる厚さを、適宜、設定すればよい。
<<コレステリック液晶層の液晶配向パターン>>
前述のように、本発明の光学素子10において、コレステリック液晶層(R反射コレステリック液晶層26R、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26B)は、コレステリック液晶相を形成する液晶化合物30に由来する光学軸30Aの向きが、コレステリック液晶層の面内において、一方向に連続的に回転しながら変化する液晶配向パターンを有する。
なお、液晶化合物30に由来する光学軸30Aとは、液晶化合物30において屈折率が最も高くなる軸、いわゆる遅相軸である。例えば、液晶化合物30が棒状液晶化合物である場合には、光学軸30Aは、棒形状の長軸方向に沿っている。以下の説明では、液晶化合物30に由来する光学軸30Aを、『液晶化合物30の光学軸30A』または『光学軸30A』ともいう。
図3に、R反射コレステリック液晶層26Rの平面図を概念的に示す。
なお、平面図とは、図1において、光学素子10を上方から見た図であり、すなわち、光学素子10を厚さ方向から見た図である。光学素子10のを厚さ方向とは、言い換えれば、各層(膜)の積層方向である。
また、図3では、本発明の光学素子10の構成を明確に示すために、図1と同様、液晶化合物30はR配向膜24Rの表面の液晶化合物30のみを示している。
なお、図3では、R反射コレステリック液晶層26Rを代表例として説明するが、G反射コレステリック液晶層26GおよびB反射コレステリック液晶層26Bも、後述する液晶配向パターンの1周期の長さΛが異なる以外は、基本的に、同様の構成および作用効果を有する。
図3に示すように、R配向膜24Rの表面において、R反射コレステリック液晶層26Rを構成する液晶化合物30は、下層のR配向膜24Rに形成された配向パターンに応じて、矢印Xで示す所定の一方向、および、この一方向(矢印X方向)と直交する方向に、二次元的に配列された状態になっている。
以下の説明では、矢印X方向と直交する方向を、便宜的にY方向とする。すなわち、図1、図2および後述する図4では、Y方向は、紙面に直交する方向となる。
また、R反射コレステリック液晶層26Rを形成する液晶化合物30は、R反射コレステリック液晶層26Rの面内において、矢印X方向に沿って、光学軸30Aの向きが、連続的に回転しながら変化する、液晶配向パターンを有する。図示例においては、液晶化合物30の光学軸30Aが、矢印X方向に沿って、時計方向に連続的に回転しながら変化する、液晶配向パターンを有する。
液晶化合物30の光学軸30Aの向きが矢印X方向(所定の一方向)に連続的に回転しながら変化しているとは、具体的には、矢印X方向に沿って配列されている液晶化合物30の光学軸30Aと、矢印X方向とが成す角度が、矢印X方向の位置によって異なっており、矢印X方向に沿って、光学軸30Aと矢印X方向とが成す角度がθからθ+180°あるいはθ−180°まで、順次、変化していることを意味する。
なお、矢印X方向に互いに隣接する液晶化合物30の光学軸30Aの角度の差は、45°以下であるのが好ましく、15°以下であるのがより好ましく、より小さい角度であるのがさらに好ましい。
一方、R反射コレステリック液晶層26Rを形成する液晶化合物30は、矢印X方向と直交するY方向、すなわち、光学軸30Aが連続的に回転する一方向と直交するY方向では、光学軸30Aの向きが等しい。
言い換えれば、R反射コレステリック液晶層26Rを形成する液晶化合物30は、Y方向では、液晶化合物30の光学軸30Aと矢印X方向とが成す角度が等しい。
本発明の光学素子10においては、このような液晶化合物30の液晶配向パターンにおいて、面内で光学軸30Aが連続的に回転して変化する矢印X方向において、液晶化合物30の光学軸30Aが180°回転する長さ(距離)を、液晶配向パターンにおける1周期の長さΛ(ΛR)とする。
すなわち、矢印X方向に対する角度が等しい2つの液晶化合物30の、矢印X方向の中心間の距離を、1周期の長さΛとする。具体的には、図3に示すように、矢印X方向と光学軸30Aの方向とが一致する2つの液晶化合物30の、矢印X方向の中心間の距離を、1周期の長さΛとする。以下の説明では、この1周期の長さΛを『1周期Λ』とも言う。
また、以下の説明では、各コレステリック液晶層における1周期Λを識別するために、R反射コレステリック液晶層26Rにおける1周期Λを『ΛR』、G反射コレステリック液晶層26Gにおける1周期Λを『ΛG』、B反射コレステリック液晶層26Bにおける1周期Λを『ΛB』、とも言う。
本発明の光学素子10において、コレステリック液晶層の液晶配向パターンは、この1周期Λを、矢印X方向すなわち光学軸30Aの向きが連続的に回転して変化する一方向に繰り返す。
コレステリック液晶相を固定してなるコレステリック液晶層は、通常、入射した光(円偏光)を鏡面反射する。
これに対して、R反射コレステリック液晶層26Rは、入射した光を、入射光に対して矢印X方向に角度を有した方向に反射する。R反射コレステリック液晶層26Rは、面内において、矢印X方向(所定の一方向)に沿って光学軸30Aが連続的に回転しながら変化する、液晶配向パターンを有するものである。以下、図4を参照して説明する。
前述のように、R反射コレステリック液晶層26Rは、赤色光の右円偏光RRを選択的に反射するコレステリック液晶層である。従って、R反射層12に光が入射すると、R反射コレステリック液晶層26Rは、赤色光の右円偏光RRのみを反射し、それ以外の光を透過する。
R反射コレステリック液晶層26Rに入射した赤色光の右円偏光RRは、R反射コレステリック液晶層26Rによって反射される際に、各液晶化合物30の光学軸30Aの向きに応じて絶対位相が変化する。
ここで、R反射コレステリック液晶層26Rでは、液晶化合物30の光学軸30Aが矢印X方向(一方向)に沿って回転しながら変化している。そのため、光学軸30Aの向きによって、入射した赤色光の右円偏光RRの絶対位相の変化量が異なる。
さらに、R反射コレステリック液晶層26Rに形成された液晶配向パターンは、矢印X方向に周期的なパターンである。そのため、R反射コレステリック液晶層26Rに入射した赤色光の右円偏光RRには、図4に概念的に示すように、それぞれの光学軸30Aの向きに対応した矢印X方向に周期的な絶対位相Qが与えられる。
また、液晶化合物30の光学軸30Aの矢印X方向に対する向きは、矢印X方向と直交するY方向の液晶化合物30の配列では、均一である。
これによりR反射コレステリック液晶層26Rでは、赤色光の右円偏光RRに対して、XY面に対して矢印X方向に傾いた等位相面Eが形成される。
そのため、赤色光の右円偏光RRは、等位相面Eの法線方向に反射され、反射された赤色光の右円偏光RRは、XY面(R反射コレステリック液晶層26Rの主面)に対して矢印X方向に傾いた方向に反射される。
ここで、一方向(矢印X方向)に向かって液晶化合物30の光学軸30Aが連続的に回転するコレステリック液晶層による光の反射角度は、反射する光の波長によって、角度が異なる。具体的には、長波長の光ほど、入射光に対する反射光の角度が大きくなる。従って、図1に示す光学素子のように、赤色光、緑色光および青色光を反射する場合には、赤色光と緑色光と青色光とで反射角度が異なる。具体的には、液晶配向パターンのピッチΛが同じであって、コレステリック反射層の反射中心波長が、赤色、緑色および青色のもので比較した場合には、入射光に対する反射光の角度は、赤色光が最も大きく、次いで緑色光が大きく、青色光が最も小さい。
そのため、例えば、ARグラスの導光板において、導光板への光の入射および出射のための回折素子として、液晶配向パターンの1周期Λが同じで、反射中心波長が異なるコレステリック液晶層による反射素子を用いた場合には、フルカラー画像では、赤色光と緑色光と青色光とで反射方向が異なってしまい、赤色画像と緑色画像と青色画像とが一致しない、いわゆる色ズレを有する画像が観察されてしまう。
非特許文献1に記載されるように、赤色画像、緑色画像および青色画像のそれぞれに対応して導光板を設け、3枚の導光板を積層した構成とすることで、色ズレは解消できる。しかしながら、この構成では、全体として導光板が厚く、かつ、重くなってしまい、さらに、構成も複雑になってしまう。
ここで、矢印X方向(一方向)に向かって、液晶化合物30の光学軸30Aが連続的に回転するコレステリック液晶層による光の反射角度は、矢印X方向において、光学軸30Aが180°回転する液晶配向パターンの1周期の長さΛ、すなわち、1周期Λによって異なる。具体的には、1周期Λが短いほど、入射光に対する反射光の角度が大きくなる。
本発明は、これらの知見を得ることによって成されたものであり、選択反射中心波長が互いに異なる複数のコレステリック液晶層において、コレステリック液晶層の選択反射中心波長の順列と、1周期Λの順列とが、一致している。
すなわち、R反射コレステリック液晶層26Rの選択反射中心波長をλR、G反射コレステリック液晶層26Gの選択反射中心波長をλG、および、B反射コレステリック液晶層26Bの選択反射中心波長をλBとすると、図示例の光学素子10では、選択反射中心波長は、『λR>λG>λB』であるので、各コレステリック液晶層の液晶配向パターンの1周期Λは図1に示すように、『1周期ΛR>1周期ΛG>1周期ΛB』となっている。
前述のように、液晶化合物30の光学軸30Aが回転するコレステリック液晶層による光の入射方向に対する反射角度は、光の波長が長いほど大きい。他方、液晶化合物30の光学軸30Aが回転するコレステリック液晶層による光の入射方向に対する反射角度は、1周期Λが短いほど、大きくなる。
従って、選択反射中心波長が異なる複数のコレステリック液晶層において、選択反射中心波長の順列と、1周期Λの順列とが一致している本発明の光学素子10によれば、光の反射角度の波長依存性を大幅に少なくして、波長の異なる光を、ほぼ同じ方向に反射できる。そのため、本発明の光学素子10を、例えば、ARグラスにおいて、導光板への光の入射部材および導光板からの光の出射部材として用いることにより、1枚の導光板で、色ズレを生じることなく、赤色画像、緑色画像および青色画像を伝播して、適正な画像を使用者に表示できる。
しかも、本発明の光学素子10は、コレステリック液晶層で光を反射するので、液晶配向パターンにおける1周期Λの調節によって、光の反射角度も高い自由度で調節可能である。
本発明の光学素子10においては、コレステリック液晶層の選択反射中心波長と、液晶配向パターンの1周期Λとは、選択反射中心波長が異なる複数のコレステリック液晶層で順列が一致していれば、他には制限はない。
ここで、本発明の光学素子10は、コレステリック液晶層の積層方向において、いずれか一方の表面から見た際に、
1層目のコレステリック液晶層の選択反射中心波長をλ1
n層目(nは2以上の整数)のコレステリック液晶層の選択反射中心波長をλn
1層目のコレステリック液晶層の液晶配向パターンにおける1周期ΛをΛ1
n層目のコレステリック液晶層の液晶配向パターンにおける1周期ΛをΛn; とした際に、下記の式(1)を満たすのが好ましい。
0.8×[(λn/λ1)Λ1]≦Λn≦1.2×[(λn/λ1)Λ1]・・・ 式(1)
また、本発明の光学素子は、下記の式(2)を満たすのがより好ましい。
0.9×[(λn/λ1)Λ1]≦Λn≦1.1×[(λn/λ1)Λ1]・・・ 式(2)
さらに、本発明の光学素子は、下記の式(3)を満たすのがさらに好ましい。
0.95×[(λn/λ1)Λ1]≦Λn≦1.05×[(λn/λ1)Λ1]・・ 式(3)
各コレステリック液晶層の選択反射中心波長λと、液晶配向パターンにおける1周期Λとが、式(1)を満たすことにより、各波長の光の反射角度を、より好適に一致させることができ、より光の反射角度の波長依存性を小さくできる。
本発明の光学素子10において、コレステリック液晶層の積層順には、制限はない。
ここで、本発明においては、図1の光学素子10のように、コレステリック液晶層の積層方向に向かって、選択反射中心波長が、順次、長くなるように、コレステリック液晶層を積層するのが好ましい。
コレステリック液晶層による光の反射では、入射光の角度に応じて、選択反射する光の波長が短波長側に移動する、いわゆるブルーシフト(短波シフト)が生じる。これに対して、コレステリック液晶層を、選択反射中心波長の順番に積層することで、選択反射中心波長が短い側を光入射側にして、ブルーシフトによる影響を低減できる。
本発明の光学素子10において、コレステリック液晶層の配向パターンにおける1周期Λにも、制限はなく、光学素子10の用途等に応じて、適宜、設定すればよい。
ここで、本発明の光学素子10は、一例として、ARグラスにおいて、ディスプレイが表示した光を反射して導光板に導入する回折素子、および、導光板を伝播した光を反射して導光板から使用者による観察位置に出射させる回折素子に、好適に利用される。
この際においては、導光板で光を全反射させるためには、入射光に対して、ある程度の大きな角度で光を反射させて導光板に導入する必要がある。また、導光板を伝播してきた光を確実に出射させるためにも、入射光に対して、ある程度の大きな角度で光を反射させる必要がある。
また、前述のように、コレステリック液晶層による光の反射角度は、液晶配向パターンにおける1周期Λを短くすることで、入射光に対する反射角度を大きくできる。
この点を考慮すると、コレステリック液晶層の液晶配向パターンにおける1周期Λは、50μm以下が好ましく、10μm以下がより好ましい。導光板で光を全反射して用いる場合には、コレステリック液晶層の液晶配向パターンにおける1周期Λは、1μm以下が好ましく、入射する光の波長λμm以下がより好ましい。
なお、液晶配向パターンの精度等を考慮すると、コレステリック液晶層の液晶配向パターンにおける1周期Λは、0.1μm以上とするのが好ましい。
図1に示す光学素子10は、全てのコレステリック液晶層の選択反射中心波長が異なるが、本発明は、これに制限はされない。
すなわち、本発明の光学素子は、選択反射中心波長が同じ(略同一)で、反射する円偏光の方向(螺旋構造のセンス)が異なる、コレステリック液晶層を有してもよい。
例えば、図示例の光学素子10であれば、さらに、赤色光の波長域に選択反射中心波長を有し、左円偏光を反射する第2のR反射コレステリック液晶層、緑色光の波長域に選択反射中心波長を有し、左円偏光を反射する第2のG反射コレステリック液晶層、および、青色光の波長域に選択反射中心波長を有し、左円偏光を反射する第2のB反射コレステリック液晶層の、少なくとも1層のコレステリック液晶層をさらに有してもよい。
このように、選択反射中心波長が同じで、反射する円偏光の方向が異なるコレステリック液晶層を有することにより、各色の光の反射率を向上する。
ここで、選択反射中心波長が同じで、反射する円偏光の方向が異なるコレステリック液晶層は、液晶配向パターンにおける液晶化合物30の光学軸30Aの回転方向が互いに異なるのが好ましい。
例えば、赤色光の右円偏光を反射するR反射コレステリック液晶層26Rにおける液晶化合物30の光学軸30Aの回転方向が、図3に示すように時計回りである場合には、赤色光の左円偏光を反射する第2のR反射コレステリック液晶層における液晶化合物30の光学軸30Aの回転方向は、反時計回りであるのが好ましい。
液晶化合物30の光学軸30Aが矢印X方向(一方向)に沿って連続的に回転するコレステリック液晶層では、円偏光の方向が異なる場合に、光学軸30Aの回転方向が同じ場合には、右円偏光を反射するコレステリック液晶層と、左円偏光を反射するコレステリック液晶層とで、円偏光の反射方向が逆になる。
これに対して、選択反射中心波長が同じで、反射する円偏光の方向が異なるコレステリック液晶層において、液晶配向パターンにおける液晶化合物30の光学軸30Aの回転方向を互いに逆にすることにより、右円偏光を反射するコレステリック液晶層と、左円偏光を反射するコレステリック液晶層とで、円偏光の反射方向を、同一にできる。
また、このように、本発明の光学素子が、選択反射中心波長が同じで、反射する円偏光の方向が異なるコレステリック液晶層を有する場合には、選択反射中心波長が同じであるコレステリック液晶層は、コレステリック液晶層の液晶配向パターンにおける1周期Λは、等しいのが好ましい。
図1〜図3に示す光学素子は、コレステリック液晶層の液晶配向パターンにおける液晶化合物30の光学軸30Aは、矢印X方向のみに沿って、連続して回転している。
しかしながら、本発明は、これに制限はされず、コレステリック液晶層において、液晶化合物30の光学軸30Aが一方向に沿って連続して回転するものであれば、各種の構成が利用可能である。
一例として、図6の平面図に概念的に示すような、液晶配向パターンが、液晶化合物30の光学軸の向きが連続的に回転しながら変化する一方向を、内側から外側に向かう同心円状に有する、同心円状のパターンである、コレステリック液晶層34が例示される。
あるいは、同心円状ではなく、液晶化合物30の光学軸の向きが連続的に回転しながら変化する一方向が、コレステリック液晶層34の中心から放射状に設けられた液晶配向パターンも、利用可能である。
なお、図6においても、図3と同様、配向膜の表面の液晶化合物30のみを示すが、コレステリック液晶層34においては、図2に示されるように、この配向膜の表面の液晶化合物30から、液晶化合物30が螺旋状に旋回して積み重ねられた螺旋構造を有するのは、前述のとおりである。
さらに、図6では、コレステリック液晶層34を1層のみ示すが、本発明の光学素子は、選択反射中心波長が互いに異なるコレステリック液晶層を、複数、有するのは、前述のとおりである。従って、このような同心円状の液晶配向パターンを有するコレステリック液晶層を有する場合でも、一例として、図1に示す光学素子のように、赤色光を選択的に反射するR反射コレステリック液晶層と、緑色光を選択的に反射するG反射コレステリック液晶層と、青色光を選択的に反射するB反射コレステリック液晶層と、を積層した構成を有する。また、選択反射中心波長の異なる複数のコレステリック液晶層において、選択反射中心波長の順列と、液晶配向パターンにおける1周期Λの順列とが一致するのも、前述のとおりである。
図6に示すコレステリック液晶層34において、液晶化合物30の光学軸(図示省略)は、液晶化合物30の長手方向である。
コレステリック液晶層34では、液晶化合物30の光学軸の向きは、コレステリック液晶層34の中心から外側に向かう多数の方向、例えば、矢印A1で示す方向、矢印A2で示す方向、矢印A3で示す方向…に沿って、連続的に回転しながら変化している。
また、好ましい態様として、図6に示すようにコレステリック液晶層34の中心から放射状に、同じ方向に回転しながら変化するものが挙げられる。図6で示す態様は、反時計回りの配向である。図6中の矢印A1、A2およびA3の各矢印において、光軸の回転方向は、中心から外側に向かうにつれて反時計回りとなっている。
この液晶配向パターンを有するコレステリック液晶層34に入射した円偏光は、液晶化合物30の光学軸の向きが異なる個々の局所的な領域において、それぞれ、絶対位相が変化する。この際に、それぞれの絶対位相の変化量は、円偏光が入射した液晶化合物30の光学軸の向きに応じて異なる。
このような、同心円状の液晶配向パターン、すなわち、放射状に光学軸が連続的に回転して変化する液晶配向パターンを有するコレステリック液晶層34は、液晶化合物30の光学軸の回転方向および反射する円偏光の方向に応じて、入射光を、発散光または集束光として反射できる。
すなわち、コレステリック液晶層の液晶配向パターンを同心円状とすることにより、本発明の光学素子は、例えば、凹面鏡または凸面鏡として機能を発現する。
ここで、コレステリック液晶層の液晶配向パターンを同心円状として、光学素子を凹面鏡として作用させる場合には、液晶配向パターンにおいて光学軸が180°回転する1周期Λを、コレステリック液晶層34の中心から、光学軸が連続的に回転する1方向の外方向に向かって、漸次、短くするのが好ましい。
前述のように、入射方向に対する光の反射角度は、液晶配向パターンにおける1周期Λが短いほど、大きくなる。従って、液晶配向パターンにおける1周期Λを、コレステリック液晶層34の中心から、光学軸が連続的に回転する1方向の外方向に向かって、漸次、短くすることにより、光を、より集束でき、凹面鏡としての性能を、向上できる。
本発明において、光学素子を凸面鏡として作用させる場合には、液晶配向パターンにおける光学軸の連続的な回転方向を、コレステリック液晶層34の中心から、逆方向に回転させるのが好ましい。
また、コレステリック液晶層34の中心から、光学軸が連続的に回転する1方向の外方向に向かって、光学軸が180°回転する1周期Λを、漸次、短くすることにより、コレステリック液晶層による光を、より発散でき、凸面鏡としての性能を、向上できる。
本発明において、光学素子を凸面鏡として作用させる場合には、コレステリック液晶層が反射する円偏光の方向(螺旋構造のセンス)を凹面鏡の場合と逆にする、つまりコレステリック液晶層が螺旋状に旋回する方向を逆にするのも好ましい。
また、コレステリック液晶層34の中心から、光学軸が連続的に回転する1方向の外方向に向かって、光学軸が180°回転する1周期Λを、漸次、短くすることにより、コレステリック液晶層による光を、より発散でき、凸面鏡としての性能を、向上できる。
なお、コレステリック液晶層の螺旋状に旋回する方向を逆にした上で、液晶配向パターンにおいて光学軸の連続的な回転方向を、コレステリック液晶層34の中心から、逆方向に回転させることで、光学素子を凹面鏡として作用させることができる。
本発明において、光学素子を凸面鏡または凹面鏡として作用させる場合には、下記の式(4)を満たすのが好ましい。
Φ(r)=(π/λ)[(r2+f21/2−f]・・・式(4)
ここで、rは同心円の中心からの距離で式『r=(x2+y21/2』で表わされる。xおよびyは面内の位置を表し、(x、y)=(0、0)は同心円の中心を表す。Φ(r)は中心からの距離rにおける光学軸の角度、λはコレステリック液晶層の選択反射中心波長、fは目的とする焦点距離を表わす。
なお、本発明においては、光学素子の用途によっては、逆に、同心円状の液晶配向パターンにおける1周期Λを、コレステリック液晶層34の中心から、光学軸が連続的に回転する1方向の外方向に向かって、漸次、長くしてもよい。
さらに、例えば反射光に光量分布を設けたい場合など、光学素子の用途によって、光学軸が連続的に回転する1方向に向かって、1周期Λを、漸次、変更するのではなく、光学軸が連続的に回転する1方向において、部分的に1周期Λが異なる領域を有する構成も利用可能である。
さらに、本発明の光学素子は、1周期Λが全面的に均一なコレステリック液晶層と、1周期Λが異なる領域を有するコレステリック液晶層とを有してもよい。この点に関しては、後述する、図1に示すような、一方向のみに光学軸が連続的に回転する構成でも、同様である。
図7に、配向膜に、このような同心円状の配向パターンを形成する露光装置の一例を概念的に示す。配向膜とは、例えば、R配向膜24R、G配向膜24GおよびB配向膜24Bである。
露光装置80は、レーザ82を備えた光源84と、レーザ82からのレーザ光MをS偏光MSとP偏光MPとに分割する偏光ビームスプリッター86と、P偏光MPの光路に配置されたミラー90AおよびS偏光MSの光路に配置されたミラー90Bと、S偏光MSの光路に配置されたレンズ92と、偏光ビームスプリッター94と、λ/4板96とを有する。
偏光ビームスプリッター86で分割されたP偏光MPは、ミラー90Aによって反射されて、偏光ビームスプリッター94に入射する。他方、偏光ビームスプリッター86で分割されたS偏光MSは、ミラー90Bによって反射され、レンズ92によって集光されて偏光ビームスプリッター94に入射する。
P偏光MPおよびS偏光MSは、偏光ビームスプリッター94で合波されて、λ/4板96によって偏光方向に応じた右円偏光および左円偏光となって、支持体20の上の配向膜24に入射する。
ここで、右円偏光と左円偏光の干渉により、配向膜24に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。同心円の内側から外側に向かうにしたがい、左円偏光と右円偏光の交差角が変化するため、内側から外側に向かってピッチが変化する露光パターンが得られる。これにより、配向膜24において、配向状態が周期的に変化する同心円状の配向パターンが得られる。
この露光装置80において、液晶化合物30の光学軸が連続的に180°回転する液晶配向パターンの1周期の長さΛは、レンズ92の屈折力(レンズ92のFナンバー)、レンズ92の焦点距離、および、レンズ92と配向膜14との距離等を変化させることで、制御できる。
また、レンズ92の屈折力を調節することによって、光軸が連続的に回転する一方向において、液晶配向パターンの1周期の長さΛを変更できる。具体的には、平行光と干渉させる、レンズ92で広げる光の広がり角によって、光軸が連続的に回転する一方向において、液晶配向パターンの1周期の長さΛを変えることができる。より具体的には、レンズ92の屈折力を弱くすると、平行光に近づくため、液晶配向パターンの1周期の長さΛは、内側から外側に向かって緩やかに短くなり、Fナンバーは大きくなる。逆に、レンズ92の屈折力を強めると、液晶配向パターンの1周期の長さΛは、内側から外側に向かって急に短くなり、Fナンバーは小さくなる。
このように、光学軸が連続的に回転する1方向において、光学軸が180°回転する1周期Λを変更する構成は、図1〜3に示す、矢印X方向の一方向のみに液晶化合物30の光学軸30Aが連続的に回転して変化する構成でも、利用可能である。
例えば、液晶配向パターンの1周期Λを、矢印X方向に向かって、漸次、短くすることにより、集光するように光を反射する光学素子を得ることができる。
また、液晶配向パターンにおいて光学軸が180°回転する方向を逆にすることにより、矢印X方向にのみ拡散するように光を反射する光学素子を得ることができる。コレステリック液晶層が反射する円偏光の方向(螺旋構造のセンス)を逆にすることでも、矢印X方向にのみ拡散するように光を反射する光学素子を得ることができる。なお、コレステリック液晶層が反射する円偏光の方向を逆にした上で、液晶配向パターンにおいて光学軸が180°回転する方向を逆にすることにより、集光するように光を反射する光学素子を得ることができる。
さらに、例えば反射光に光量分布を設けたい場合など、光学素子の用途によって、矢印X方向に向かって、1周期Λを漸次、変更するのではなく、矢印X方向において、部分的に1周期Λが異なる領域を有する構成も利用可能である。例えば、部分的に1周期Λを変更する方法として、集光したレーザー光の偏光方向を任意に変えながら、光配向膜をスキャン露光してパターニングする方法等を利用することができる。
本発明の光学素子は、光学装置における光路変更部材、光集光素子、所定方向への光拡散素子、回折素子等、鏡面反射ではない角度で光を反射する、各種の用途に利用可能である。
好ましい一例として、図8に概念的に示すように、本発明の光学素子10を2個、離間して導光板42に設け、本発明の導光素子とする構成が例示される。このような本発明の導光素子は、例えば、本発明の光学素子を上述したARグラスの回折素子として用いることで、一方の光学素子10によって、ディスプレイ40が照射した光(投影像)を、全反射に十分な角度(臨界角以上の角度)で導光板42に導入し、導光板42内を伝播した光を、他方の光学素子10によって、伝搬された光を出射に対応する角度で反射して、導光板42からARグラスの使用者Uによる観察位置に出射することができる。
すなわち、図8に示すのは、ディスプレイ40(表示素子)と本発明の導光素子を用いる、本発明の画像表示装置である。
前述のように、本発明の光学素子は、反射角度の波長依存性が小さいので、ディスプレイ40が照射した赤色光、緑色光および青色光を同じ方向に反射できる。そのため、1枚の導光板42で、赤色画像、緑色画像および青色画像を伝播しても、色ズレのないフルカラー画像を、導光板からARグラスの使用者Uによる観察位置に出射できる。従って、本発明の光学素子10を用いる本発明の導波素子によれば、ARグラスの導光板を、全体的に薄く、軽くして、ARグラスの構成を簡略化できる。
また、本発明の光学素子を用いる本発明の導光素子および画像表示装置によれば、ARグラス等に利用した際に、視野角(FOV(Field of View))を広くできる。
導光板42に入射した光を導光させるためには、臨界角よりも大きな角度で光を反射させる必要がある。上述したように、光学軸30Aが一方向に向かって連続的に回転する液晶配向パターンを有するコレステリック液晶層は、液晶配向パターンの1周期Λを調節することで、ディスプレイ40が照射した光の導光板への入射角度を調節できるので、臨界角となるように光を導光板に入射できる。ここで、上述したように、この液晶配向パターンを有するコレステリック液晶層では、波長によって反射角度が異なり、長波長の光ほど、入射方向に対して大きな角度で傾けて反射される。そのため、臨界角に合わせて液晶配向パターンの1周期Λを設定すると、光の波長および導光板42への入射角度によっては、臨界角以下となってしまい、導光しない光が生じてしまう。
その結果、ARグラス等に利用した際に、フルカラー画像であれば、赤色光、緑色光および青色光で、共通する視野角が狭くなってしまい、表示画像の視野角が狭くなってしまう。
これに対して、本発明の光学素子10を用いる、本発明の導光素子および画像表示装置によれば、光学素子10におけるコレステリック液晶層の選択反射中心波長と、液晶配向パターンの1周期Λとの順列を一致させることで、反射角度の波長依存性を小さくしている。その結果、本発明によれば、赤色光、緑色光および青色光を合わせて導光できるので、ARグラス等に利用した際に、赤色光、緑色光および青色光で共通する視野角を広くして、表示画像の視野角を広くできる。
なお、本発明の導光素子は、図8に示すように、導光板42に、互いに離間する2つの本発明の光学素子を設ける構成に制限はされず、導光板42への光の導入のため、または、導光板42から光を出射するため、導光板に本発明の光学素子を1つのみ、設けた構成であってもよい。
本発明の画像表示装置において、ディスプレイ40には、制限はなく、例えば、ARグラス等に用いられる公知のディスプレイが、各種、利用可能である。
ディスプレイとしては、一例として、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、および、DLP(Digital Light Processing)等が例示される。液晶ディスプレイには、LCOS(Liquid Crystal On Silicon)なども含む。
なお、ディスプレイ40は、二色画像を表示するものでも、赤色、緑色および青色のフルカラー画像を表示するものでもよいが、本発明によれば、フルカラー画像のような多色画像であっても、好適に対応できるのは、上述のとおりである。
また、導光板42にも制限はなく、ARグラスおよびエッジライト型の液晶ディスプレイ等に用いられる導光板等、公知の導光板が、各種、利用可能である。
なお、これらの光学素子(液晶回折格子および傾斜コレステリック鏡面反射素子等)を用いる場合は、ディスプレイ40が照射した光を円偏光化するのが好ましい。すなわち、本発明の画像表示装置において、表示素子は、円偏光を本発明の光学素子10に照射するのが好ましい。ディスプレイ40が照射した光を円偏光化することで、回折効率や反射効率を高めることができる。
ディスプレイ40が照射した光の円偏光化は、ディスプレイ40が照射する光が無偏光である場合には、ディスプレイ40が照射した光を直線偏光子およびλ/4板を介して照射することで行えばよい。また、ディスプレイ40が照射する光が直線偏光である場合には、ディスプレイ40が照射した光をλ/4板を介して照射することで、ディスプレイ40が照射した光の円偏光化を行えばよい。
このとき、λ/4板のRe(550)は、100〜180nmが好ましく、110〜170nmがより好ましく、120〜160nmがさらに好ましい。
Re(λ)は、波長λにおける面内のレタデーションを表し、Rth(λ)は、波長λにおける厚さ方向のレタデーションを表す。具体的には、Re(λ)、Rth(λ)は以下の式で定義される値である。カッコ内のλは測定波長[nm]であり、例えば、Axometry(Axometric社製)で測定される値を用いることができる。
Re(λ)=(nx−ny)×d
Rth(λ)=((nx+ny)/2−nz)×d
上記式において、nxは遅相軸方向の屈折率、nyは進相軸方向の屈折率、nzは膜厚方向の屈折率、dは膜厚[nm]である。
また、ディスプレイ40が照射した光が、円偏光化するためのλ/4板の法線方向に対し、斜め方向からも入射することを考慮すると、ディスプレイ40が照射した光を円偏光化するためのλ/4板のRth(λ)は−70〜70nmが好ましく、−50〜50nmがより好ましく、−30〜30nmがさらに好ましい。
配向膜の形成で用いるλ/4板と異なり、ディスプレイ40が照射した光を円偏光化するためのλ/4板の場合には、実際に人が見ることから、色味についても考慮されていることが好ましい。
色味の均一性を確保するために、ディスプレイ40が照射した光を円偏光化するためのλ/4板の波長分散は、逆分散であることが好ましい。具体的には、450〜550nmの範囲では、以下の各波長でのRe(λ)の比の値が
0.74≦Re(450)/Re(550)≦0.91であるのが好ましく、
0.75≦Re(450)/Re(550)≦0.89であるのがより好ましく、
0.78≦Re(450)/Re(550)≦0.87であるのがさらに好ましい。
また、Rth(λ)についても、以下の各波長でのRth(λ)の比の値が
0.74≦Rth(450)/Rth(550)≦0.91であるのが好ましく、
0.75≦Rth(450)/Rth(550)≦0.89であるのがより好ましく、
0.78≦Rth(450)/Rth(550)≦0.87であるのがさらに好ましい。
さらに、550〜650nmの範囲では、以下の各波長でのRe(λ)の比の値が
0.102≦Re(650)/Re(550)≦0.126であるのが好ましく、
0.106≦Re(650)/Re(550)≦0.123であるのがより好ましく、
0.112≦Re(650)/Re(550)≦0.120であるのがさらに好ましい。
また、Rth(λ)についても、以下の各波長でのRth(λ)の比の値が
0.102≦Rth(650)/Rth(550)≦0.126であるのが好ましく、
0.106≦Rth(650)/Rth(550)≦0.123であるのがより好ましく、
0.112≦Rth(650)/Rth(550)≦0.120であるのがさらに好ましい。
また、本発明の導光素子は、3以上の本発明の光学素子を有してもよい。
一例として、図9に示す導光素子(画像表示装置)が例示される。図9に示す導光素子は、導光板42に、回折素子として、第1光学素子10A、第2光学素子10Bおよび第3光学素子10Cの、3つの本発明の光学素子を、離間して、導光板42に設けたものである。
なお、図9は、導光素子を、導光板42の主面と直交する方向に、光学素子の装着円側から見た図である。主面とは、シート状物(フィルム、板状物)の最大面である。
第1光学素子10A、第2光学素子10Bおよび第3光学素子10Cは、光学軸30Aが一方向に向かって連続的に回転する一方向すなわち矢印X方向の向きが異なる以外は、基本的に、上述した光学素子10と同様の構成を有するものである。
図9に示す導光素子では、図示を省略するディスプレイ40の画像は、第1光学素子10Aに照射される。第1光学素子10Aは、入射した光を入射方向に対して傾けて反射して、全反射に十分な角度(臨界角以上の角度)として導光板42に入射する。
ここで、第1光学素子10Aは、第2光学素子10Bに向けて、光を反射する。第1光学素子10Aによって導光板42に入射された光は、第2光学素子10Bに向かって伝搬される。第2光学素子10Bは、同様に、入射した光を入射方向に対して傾けて、第3光学素子10Cに向けて反射する。
さらに、第3光学素子10Cは、同様に、入射した光を入射方向に対して傾けて反射することにより、臨界角以下として、導光板42から出射させ、図示を省略する使用者Uによる画像の観察に供する。
このように、3つ以上の本発明の光学素子を離間して導光板に設けて、入射部となる回折素子である第1光学素子10Aが導光板42に入射した光を、中間の回折素子である第2光学素子10Bを経て、出射部となる回折素子である第3光学素子10Cに伝搬することにより、使用者Uすなわち観察領域に向かって出射する光の範囲を広角度化して、視野角を広くできる。
このように、第1光学素子10A、第2光学素子10Bおよび第3光学素子10Cを有する導光素子において、各光学素子における液晶配向パターンの1周期Λには、制限はない。すなわち、各光学素子における液晶配向パターンの1周期Λは、各光学素子の位置および形状等に応じて、第1光学素子10Aから第3光学素子10Cまで光を適正に伝搬できる反射角度となる液晶配向パターンの1周期Λを、適宜、設定すればよい。
ここで、第1光学素子10A、第2光学素子10Bおよび第3光学素子10Cにおいては、最も長波長の光に対応するコレステリック液晶層、すなわち、図示例ではR反射コレステリック液晶層26Rで比較した際に、第2光学素子10Bの液晶配向パターンの1周期Λが、最も短いのが好ましい。すなわち、R反射コレステリック液晶層26Rの1周期Λを、第1光学素子10AがΛ1、第2光学素子10BがΛ2、第3光学素子10CがΛ3とした際に、『Λ2<Λ1』および『Λ2<Λ3』を満たすのが好ましい。
言い換えれば、導光板42への光入射部となる回折素子である第1光学素子10A、および、導光板42からの光出射部となる第3回折素子10Cよりも、中間の回折素子である第2回折素子10Bにおける液晶配向パターンの1周期を短くして、光の入射方向に対して光を大きく傾けて反射するのが好ましい。
このような構成を有することにより、より適正に第1光学素子10Aから第3光学素子10Cまで光を伝搬でき、導光板から使用者Uへ適切に光を出射することができる点で好ましい。
上述した本発明の導光素子(画像表示装置)は、いずれも、好ましい態様として導光板を1枚のみ有するものであるが、本発明は、これに制限はされない。
すなわち、本発明の導光素子は、例えば、赤色画像用および青色画像用の導光板と、緑色画像用の導光板との2枚の導光板を有するものでもよく、または、従来のARグラスと同様、赤色画像用の導光板、緑色画像用の導光板、および、青色画像用の導光板の3枚の導光板を有するものであってもよい。
また、導光板を複数枚用いる場合は、導光板を積層配置したときに、導光板主面方向からみて、各導光板に配置された光学素子が同一面内になくても同様の効果を得ることができる。
以上の例は、本発明の光学素子を、3層のコレステリック液晶層を有する、赤色光、緑色光および青色光の3色の光を反射する光学素子に利用したものであるが、本発明は、これに限定はされず、各種の構成が利用可能である。
例えば、本発明の光学素子は、同様に選択反射中心波長が異なる3層のコレステリック液晶層を有し、赤色光、緑色光および青色光等の可視光から選択される1色または2色と、赤外線および/または紫外線を反射する構成でもよく、可視光以外の光のみを反射する構成でもよい。あるいは、本発明の光学素子は、選択反射中心波長が異なるコレステリック液晶層を4層または5層または6層以上、有し、赤色光、緑色光および青色光に加え、赤外線および/または紫外線を反射する構成でもよく、可視光以外の光のみを反射する構成でもよい。あるいは、本発明の光学素子は、選択反射中心波長が異なるコレステリック液晶層を2層、有し、赤色光、緑色光および青色光から選択される2色を反射する構成、または、赤色光、緑色光および青色光から選択される1色と、赤外線または紫外線とを反射する構成でもよく、可視光以外の光のみを反射する構成でもよい。
以上、本発明の光学素子、導光素子および画像表示装置について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
<B反射層の作製>
(支持体、および、支持体の鹸化処理)
支持体として、市販されているトリアセチルセルロースフィルム(富士フイルム社製、Z−TAC)を用意した。
支持体を、温度60℃の誘電式加熱ロールを通過させて、支持体の表面温度を40℃に昇温した。
その後、支持体の片面に、バーコーターを用いて下記に示すアルカリ溶液を塗布量14mL(リットル)/m2で塗布し、支持体を110℃に加熱し、さらに、スチーム式遠赤外ヒーター(ノリタケカンパニーリミテド社製)の下を、10秒間搬送した。
続いて、同じくバーコーターを用いて、支持体のアルカリ溶液塗布面に、純水を3mL/m2塗布した。次いで、ファウンテンコーターによる水洗およびエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンを10秒間搬送して乾燥させ、支持体の表面をアルカリ鹸化処理した。
アルカリ溶液
――――――――――――――――――――――――――――――――――
水酸化カリウム 4.70質量部
水 15.80質量部
イソプロパノール 63.70質量部
界面活性剤SF−1:C1429O(CH2CH2O)2OH
1.0 質量部
プロピレングリコール 14.8 質量部
――――――――――――――――――――――――――――――――――
(下塗り層の形成)
支持体のアルカリ鹸化処理面に、下記の下塗り層形成用塗布液を#8のワイヤーバーで連続的に塗布した。塗膜が形成された支持体を60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、下塗り層を形成した。
下塗り層形成用塗布液
――――――――――――――――――――――――――――――――――
下記変性ポリビニルアルコール 2.40質量部
イソプロピルアルコール 1.60質量部
メタノール 36.00質量部
水 60.00質量部
――――――――――――――――――――――――――――――――――
(配向膜の形成)
下塗り層を形成した支持体上に、下記の配向膜形成用塗布液を#2のワイヤーバーで連続的に塗布した。この配向膜形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向膜を形成した。
配向膜形成用塗布液
――――――――――――――――――――――――――――――――――
下記光配向用素材 1.00質量部
水 16.00質量部
ブトキシエタノール 42.00質量部
プロピレングリコールモノメチルエーテル 42.00質量部
――――――――――――――――――――――――――――――――――
−光配向用素材−
(配向膜の露光)
図5に示す露光装置を用いて配向膜を露光して、配向パターンを有する配向膜P−1を形成した。
露光装置において、レーザとして波長(325nm)のレーザ光を出射するものを用いた。干渉光による露光量を100mJ/cm2とした。なお、2つのレーザ光およびの干渉により形成される配向パターンの1周期(光学軸が180°回転する長さ)は、2つの光の交差角(交差角α)を変化させることによって制御した。
(B反射コレステリック液晶層の形成)
コレステリック液晶層を形成する液晶組成物として、下記の組成物A−1を調製した。この組成物A−1は、選択反射中心波長が450nmで、右円偏光を反射するコレステリック液晶層(コレステリック液晶相)を形成する、液晶組成物である。
組成物A−1
――――――――――――――――――――――――――――――――――
棒状液晶化合物L−1 100.00質量部
重合開始剤(BASF製、Irgacure(登録商標)907)
3.00質量部
光増感剤(日本化薬製、KAYACURE DETX−S)
1.00質量部
キラル剤Ch−1 6.77質量部
レベリング剤T−1 0.08質量部
メチルエチルケトン 268.20質量部
――――――――――――――――――――――――――――――――――
棒状液晶化合物L−1
キラル剤Ch−1
レベリング剤T−1
B反射コレステリック液晶層は、組成物A−1を配向膜P−1上に多層塗布することにより形成した。多層塗布とは、先ず配向膜の上に1層目の組成物A−1を塗布、加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱、冷却後に紫外線硬化を行うことを繰り返すことを指す。多層塗布により形成することにより、液晶層の総厚が厚くなった時でも配向膜の配向方向が液晶層の下面から上面にわたって反映される。
先ず1層目は、配向膜P−1上に下記の組成物A−1を塗布して、塗膜をホットプレート上で95℃に加熱し、その後、25℃に冷却した後、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を100mJ/cm2の照射量で塗膜に照射することにより、液晶化合物の配向を固定化した。この時の1層目の液晶層の膜厚は0.2μmであった。
2層目以降は、この液晶層に重ね塗りして、上と同じ条件で加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した。このようにして、総厚が所望の膜厚になるまで重ね塗りを繰り返し、B反射コレステリック液晶層を形成して、B反射層を作製した。塗布層の断面をSEM(Scanning Electron Microscope)で確認したところ、B反射層のコレステリック液晶相は8ピッチであった。
B反射コレステリック液晶層は、図3に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このB反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、2.6μmであった。
<G反射層の作製>
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、配向膜P−1と同様にして、配向パターンを有する配向膜P−2を形成した。
また、キラル剤Ch−1の添加量を5.68質量部に変更した以外は、組成物A−1と同様にして、コレステリック液晶層を形成する組成物A−2を調製した。この組成物A−2は、選択反射中心波長が530nmで、右円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
組成物A−2を配向膜P−2上に多層塗布した以外は、Bコレステリック液晶層と同様にして、Gコレステリック液晶層を形成して、G反射層を作製した。
G反射コレステリック液晶層は、図3に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このG反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、3.1μmであった。
<R反射層の作製>
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、配向膜P−1と同様にして、配向パターンを有する配向膜P−3を形成した。
また、キラル剤Ch−1の添加量を4.69質量部に変更した以外は、組成物A−1と同様にして、コレステリック液晶層を形成する組成物A−3を調製した。この組成物A−3は、選択反射中心波長が635nmで、右円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
組成物A−3を配向膜P−3上に多層塗布した以外は、Bコレステリック液晶層と同様にして、Rコレステリック液晶層を形成して、R反射層を作製した。
R反射コレステリック液晶層は、図3に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このR反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、3.7μmであった。
<光学素子の作製>
作製したB反射層、G反射層およびR反射層を、図1に示す光学素子と同様にR反射層、G反射層およびB反射層の順番で、接着剤(綜研化学社製、SKダイン2057)で貼り合わせて、光学素子を作製した。なお、貼り合わせ時は支持体および配向膜を剥離してから、次の層を貼り合わせた。
[実施例2]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例1と同様にして、B反射層、G反射層およびR反射層を作製した。
なお、実施例1と同様に確認したところ、B反射コレステリック液晶層の液晶配向パターンおける、液晶化合物由来の光学軸が180°回転する1周期は0.9μm、
G反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は1.1μm、
R反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は、1.3μm、であった。
このB反射層、G反射層およびR反射層を用いて、実施例1と同様にして、光学素子を作製した。
[実施例3]
<B反射層の作製>
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、配向膜P−1と同様にして、配向パターンを有する配向膜P−4を形成した。
コレステリック液晶層を形成する液晶組成物として、下記の組成物B−1を調製した。この組成物B−1は、選択反射中心波長が450nmで、右円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
組成物B−1
――――――――――――――――――――――――――――――――――
液晶化合物L−2 80.00質量部
液晶化合物L−3 20.00質量部
重合開始剤(BASF製、Irgacure(登録商標)907)
5.00質量部
キラル剤Ch−2 5.06質量部
メガファックF444(DIC製) 0.50質量部
メチルエチルケトン 255.00質量部
――――――――――――――――――――――――――――――――――
液晶化合物L−2
液晶化合物L−3
−キラル剤Ch−2−
組成物B−1を配向膜P−4上に多層塗布した以外は、実施例1のBコレステリック液晶層と同様に、Bコレステリック液晶層を形成して、B反射層を作製した。
R反射コレステリック液晶層は、図3に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このB反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、0.9μmであった。
<G反射層の作製>
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、配向膜P−1と同様にして、配向パターンを有する配向膜P−5を形成した。
また、キラル剤Ch−2の添加量を4.25質量部に変更した以外は、組成物B−1と同様にして、コレステリック液晶層を形成する組成物B−2を調製した。この組成物B−2は、選択反射中心波長が530nmで、右円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
組成物B−2を配向膜P−5上に多層塗布した以外は、実施例1のBコレステリック液晶層と同様にして、Gコレステリック液晶層を形成して、G反射層を作製した。
G反射コレステリック液晶層は、図3に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このG反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、1.1μmであった。
<R反射層の作製>
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、配向膜P−1と同様にして、配向パターンを有する配向膜P−6を形成した。
また、キラル剤Ch−2の添加量を3.55質量部に変更した以外は、組成物B−1と同様にして、コレステリック液晶層を形成する組成物B−3を調製した。この組成物B−3は、選択反射中心波長が635nmで、右円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
組成物B−3を配向膜P−6上に多層塗布した以外は、実施例1のBコレステリック液晶層と同様にして、Rコレステリック液晶層を形成して、R反射層を作製した。
R反射コレステリック液晶層は、図3に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このR反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、1.3μmであった。
<光学素子の作製>
このB反射層、G反射層およびR反射層を用いて、実施例1と同様にして、光学素子を作製した。
[比較例1]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例1と同様にして、B反射層、G反射層およびR反射層を作製して、光学素子を作製した。
なお、本例においては、配向膜を露光する際の2つの光の交差角は、B反射層、G反射層およびR反射層の全てで均一にした。
形成したコレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、全て、3.1μmであった。
[比較例2]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例2と同様にして、B反射層、G反射層およびR反射層を作製して、光学素子を作製した。
なお、本例においては、配向膜を露光する際の2つの光の交差角は、B反射層、G反射層およびR反射層の全てで均一にした。
形成したコレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、全て、1.1μmであった。
[比較例3]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例3と同様にして、B反射層、G反射層およびR反射層を作製して、光学素子を作製した。
なお、本例においては、配向膜を露光する際の2つの光の交差角は、B反射層、G反射層およびR反射層の全てで均一にした。
形成したコレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、全て、1.1μmであった。
[実施例4]
<B反射層の作製>
配向膜を露光する露光装置として、図7に示す露光装置を用いた以外は、配向膜P−1と同様にして配向膜P−7を形成した。なお、図7に示す露光装置を用いることによって、配向パターンの1周期が、外方向に向かって、漸次、短くなるようにした。
組成物A−1を配向膜P−7上に多層塗布した以外は、実施例1のBコレステリック液晶層と同様にして、Bコレステリック液晶層を形成して、B反射層を作製した。
R反射コレステリック液晶層は、図6に示すような同心円状(放射状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このB反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、中心部の1周期が300μmで、中心から2.5mmの距離での1周期が9.0μm、中心から5.0mmの距離での1周期が4.5μmで、外方向に向かって1周期が短くなる液晶配向パターンであった。
表1には中心から5.0mmの距離での1周期を記載している。この点に関しては、他のG反射層およびR反射層も同様である。
<G反射層の作製>
図7に示す露光装置において、レンズの焦点距離およびレンズと配向膜との距離を変更した以外は、配向膜P−7と同様にして、配向膜P−8を形成した。
組成物A−2を配向膜P−8上に多層塗布した以外は、実施例1のBコレステリック液晶層と同様にして、Gコレステリック液晶層を形成して、G反射層を作製した。
R反射コレステリック液晶層は、図6に示すような同心円状(放射状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このR反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、中心部の1周期が326μmで、中心から2.5mmの距離での1周期が10.6μm、中心から5.0mmの距離での1周期が5.3μmで、外方向に向かって1周期が短くなる液晶配向パターンであった。
<R反射層の作製>
図7に示す露光装置において、レンズの焦点距離およびレンズと配向膜との距離を変更した以外は、配向膜P−7と同様にして、配向膜P−9を形成した。
組成物A−3を配向膜P−9上に多層塗布した以外は、実施例1のBコレステリック液晶層と同様にして、Rコレステリック液晶層を形成して、R反射層を作製した。
R反射コレステリック液晶層は、図6に示すような同心円状(放射線状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、このR反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、中心部の1周期が356μmで、中心から2.5mmの距離での1周期が12.7μm、中心から5.0mmの距離での1周期が6.4μmで、外方向に向かって1周期が短くなる液晶配向パターンであった。
<光学素子の作製>
このB反射層、G反射層およびR反射層を用いて、実施例1と同様にして、光学素子を作製した。
[比較例4]
図7に示す露光装置によって配向膜を露光する際のレンズの焦点距離およびレンズと配向膜との距離を変更した以外は、実施例4と同様にして、B反射層、G反射層およびR反射層を作製して、光学素子を作製した。
なお、本例においては、露光装置のレンズの焦点距離は、B反射層、G反射層およびR反射層の全てで均一にした。
形成したコレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、全て、中心部の1周期が326μmで、中心から2.5mmの距離での1周期が10.6μm、中心から5.0mmの距離での1周期が5.3μmで、外方向に向かって周期が短くなる液晶配向パターンで同一であった。
[実施例5]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例1と同様にして、B反射層、G反射層およびR反射層を作製した。
なお、実施例1と同様に確認したところ、B反射コレステリック液晶層の液晶配向パターンおける、液晶化合物由来の光学軸が180°回転する1周期は2.7μm、
G反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は3.1μm、
R反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は、3.5μm、であった。
このB反射層、G反射層およびR反射層を用いて、実施例1と同様にして、光学素子を作製した。
[実施例6]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例1と同様にして、B反射層、G反射層およびR反射層を作製した。
なお、実施例1と同様に確認したところ、B反射コレステリック液晶層の液晶配向パターンおける、液晶化合物由来の光学軸が180°回転する1周期は2.8μm、
G反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は3.1μm、
R反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は、3.3μm、であった。
このB反射層、G反射層およびR反射層を用いて、実施例1と同様にして、光学素子を作製した。
[実施例7]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例1と同様にして、B反射層、G反射層およびR反射層を作製した。
なお、実施例1と同様に確認したところ、B反射コレステリック液晶層の液晶配向パターンおける、液晶化合物由来の光学軸が180°回転する1周期は2.9μm、
G反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は3.1μm、
R反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は、3.2μm、であった。
このB反射層、G反射層およびR反射層を用いて、実施例1と同様にして、光学素子を作製した。
[実施例8]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例1と同様にして、B反射層、G反射層およびR反射層を作製した。
なお、実施例1と同様に確認したところ、B反射コレステリック液晶層の液晶配向パターンおける、液晶化合物由来の光学軸が180°回転する1周期は1.0μm、
G反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は1.1μm、
R反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は、1.2μm、であった。
このB反射層、G反射層およびR反射層を用いて、実施例1と同様にして、光学素子を作製した。
[実施例9]
(配向膜の形成)
ガラス基板上に、実施例1の配向膜形成用塗布液をスピンコートで塗布した。この配向膜形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向膜を形成した。
(配向膜の露光)
図5に示す露光装置によって配向膜を露光する際の露光量を300mJ/cm2に変更し、2つの光の交差角を変更した以外は、実施例1と同様にして、配向膜の露光を行った。
(B反射コレステリック液晶層の形成)
実施例1のB反射コレステリック液晶層の形成において、メチルエチルケトンの量を2660質量部に変更し、塗布液をスピンコートで塗布した。紫外線照射時の温度を80℃、照射量を300mJ/cm2に変更した以外は実施例1と同様にして1層目のB反射層を形成した。1層目の液晶層の膜厚は0.15μmであった。
2層目以降は、この液晶層に重ね塗りして、先と同じ条件で加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した。このようにして、総厚が所望の膜厚になるまで重ね塗りを繰り返し、B反射コレステリック液晶層を形成して、B反射層を作製した。
塗布層の断面をSEM(Scanning Electron Microscope)で確認したところ、B反射層のコレステリック液晶相は8ピッチであり、このB反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、0.34μmであった。
(G反射コレステリック液晶層の形成)
作製したB反射コレステリック液晶層にメチルエチルケトンをスピンコートした後、上記と同様にしてB反射コレステリック液晶層上に配向膜を形成し、図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、B反射コレステリック液晶層作製と同様にして配向膜を露光した。
B反射コレステリック液晶層の形成において、キラル剤Ch−1の量を5.68質量部に変更した以外はB反射コレステリック液晶層と同様にして、G反射コレステリック液晶層を作製した。G反射層のコレステリック液晶相は8ピッチであり、このG反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、0.41μmであった。
(R反射コレステリック液晶層の形成)
作製したG反射コレステリック液晶層にメチルエチルケトンをスピンコートした後、上記と同様にしてB反射コレステリック液晶層上に配向膜を形成し、図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、B反射コレステリック液晶層作製と同様にして配向膜を露光した。
B反射コレステリック液晶層の形成において、キラル剤Ch−1の量を4.69質量部に変更した以外はB反射コレステリック液晶層と同様にして、R反射コレステリック液晶層を作製した。R反射層のコレステリック液晶相は8ピッチであり、このR反射コレステリック液晶層の液晶配向パターンにおいて、液晶化合物由来の光学軸が180°回転する1周期は、0.49μmであった。
このようにして、光学素子を作製した。
[比較例5]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例9と同様にして、B反射層、G反射層およびR反射層を作製した。
なお、実施例9と同様に確認したところ、B反射コレステリック液晶層の液晶配向パターンおける、液晶化合物由来の光学軸が180°回転する1周期は0.41μm、
G反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は0.41μm、
R反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は、0.42μm、であった。
このB反射層、G反射層およびR反射層を用いて、実施例9と同様にして、光学素子を作製した。
[実施例10]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例9と同様にして、B反射層、G反射層およびR反射層を作製した。
なお、実施例9と同様に確認したところ、B反射コレステリック液晶層の液晶配向パターンおける、液晶化合物由来の光学軸が180°回転する1周期は0.44μm、
G反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は0.52μm、
R反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は、0.63μm、であった。
このB反射層、G反射層およびR反射層を用いて、実施例9と同様にして、光学素子を作製した。
[比較例6]
図5に示す露光装置によって配向膜を露光する際の2つの光の交差角を変更した以外は、実施例9と同様にして、B反射層、G反射層およびR反射層を作製した。
なお、実施例9と同様に確認したところ、B反射コレステリック液晶層の液晶配向パターンおける、液晶化合物由来の光学軸が180°回転する1周期は0.52μm、
G反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は0.52μm、
R反射コレステリック液晶層の液晶配向パターンにおける、液晶化合物由来の光学軸が180°回転する1周期は、0.52μm、であった。
このB反射層、G反射層およびR反射層を用いて、実施例9と同様にして、光学素子を作製した。
[反射の波長依存性の評価]
作製した光学素子に正面(法線に対する角度0°の方向)から光を入射した際における、赤色光、緑色光および青色光の反射光の、入射光に対する角度(反射角度)を測定した。
具体的には、赤色光(635nm)、緑色光(530nm)および青色光(450nm)に出力の中心波長を持つレーザー光を、作製した光学素子に、法線方向に100cm離れた位置から垂直入射させ、反射光を100cmの距離に配置したスクリーンで捉えて、反射角度を算出した。
赤色光、緑色光および青色光の平均反射角度θaveと、赤色光、緑色光および青色光のうちの最大反射角度θmaxおよび最小反射角度θminとから、下記の式によって、反射の波長依存性PE[%]を算出した。PEが小さいほど、反射の波長依存性が低い。
PE[%]=[(θmax−θmin)/θave]×100
PEが10%以下の場合をA、
PEが10%超20%以下の場合をB、
PEが20%超30%以下の場合をC、
PEが30%超の場合をD、と評価した。
なお、実施例4および比較例4は、作製した光学素子における液晶配向パターンの同心円の中心から5.0mmの離れた点にレーザー光を垂直に入射し、同様にして、波長依存性PE[%]を算出した。
また、実施例9〜10および比較例5〜6では支持体主面で光が全反射するため、図10のように端面が傾斜している導光板に作製した光学素子を貼合して評価を行った。それぞれ、測定した反射角度から、スネルの法則を用いて反射光の導光板内における反射角度を算出した。導光板として、屈折率1.52のガラスを用いた。
結果を下記の表に示す。
上記表に示されるように、コレステリック液晶層の選択反射中心波長の順列と、コレステリック液晶層における液晶配向パターンの1周期の順列とが一致している本発明の光学素子は、反射角度の波長依存性が小さく、赤色光、緑色光および青色光を、殆ど同じ角度で反射できる。
中でも、液晶化合物由来の光学軸が180°回転する1周期が、この1周期の好ましい範囲を示す式(1)を満たす実施例6および実施例8は、反射角度の波長依存性が、より小さい。特に、液晶化合物由来の光学軸が180°回転する1周期が、この1周期の、より好ましい式(2)を満たす実施例5、さらに好ましい式(3)を満たす実施例1〜4は、反射角度の波長依存性が、さらに小さい。なお、実施例1〜4と実施例5とは、同じA評価であるが、式(3)を満たす実施例1〜4は、いずれもPE(反射の波長依存性)が5%以下と非常に小さく、反射角度の波長依存性が、特に小さい。
また、実施例9および実施例10に示されるように、本発明の光学素子は、液晶化合物由来の光学軸が180°回転する1周期が1μm以下の微細な液晶配向パターンでも、好適に、反射角度の波長依存性を小さくできる。
これに対し、コレステリック液晶層の選択反射中心波長の順列と、コレステリック液晶層における液晶配向パターンの1周期の順列とが一致していない比較例の光学素子は、反射の波長依存性が大きく、赤色光、緑色光および青色光を同方向に反射できない。
[実施例11]
キラル剤をCh−3に変更し、添加量を11.30質量部に変更した以外は、実施例1と同様にして、選択反射中心波長が635nmである左円偏光を反射するR反射コレステリック液晶層を形成して、第2のR反射層を作製した。
第2のR反射層を実施例1の光学素子に加えたところ、実施例1と同様の反射の波長依存性の評価を示し、さらに、実施例1に比して、赤色光の反射がより優れていた。
なお、右円偏光を反射するR反射層と、左円偏光を反射する第2のR反射層とを積層する際には、液晶配向パターンにおける光学軸の向きの連続的な回転方向が、互いに異なるように貼合した。
−キラル剤Ch−3−
[実施例12]
キラル剤の添加量を変更した以外は、実施例9と同様にして、選択反射中心波長が530nmである左円偏光を反射するG反射コレステリック液晶層を有する第2のG反射層、および、選択反射中心波長が450nmである左円偏光を反射するB反射コレステリック液晶層を有する第2のB反射層を作製した。ここで、キラル剤の添加量は、それぞれ、9.50質量部(G反射層)および7.87質量部(B反射層)とした。
実施例9と同様の第2のR反射層、ならびに、第2のG反射層および第2のB反射層を実施例1の光学素子に加えたところ、実施例1と同様の反射の波長依存性の評価を示し、さらに、実施例1に比して、赤色光、緑色光および青色光の反射がより優れていた。
なお、右円偏光を反射する反射層と、左円偏光を反射する反射層とは、液晶配向パターンにおける光学軸の向きの連続的な回転方向が、互いに異なるように貼合した。
以上の結果より、本発明の効果は明らかである。
ARグラスの導光板に光を入射および出射させる回折素子など、光学装置において光を反射する各種の用途に好適に利用可能である。
10 光学素子
12 R反射層
14 G反射層
16 B反射層
20 支持体
24B B配向膜
24G G配向膜
24R R配向膜
26B B反射コレステリック液晶層
26G G反射コレステリック液晶層
26R R反射コレステリック液晶層
30 液晶化合物
30A 光学軸
34 コレステリック液晶層
40 ディスプレイ
42 導光板
60,80 露光装置
62.82 レーザ
64,84 光源
68,86,94 偏光ビームスプリッター
70A,70B,90A,90B ミラー
72A,72B,96 λ/4板
92 レンズ
R 青色光の右円偏光
R 緑色光の右円偏光
R 赤色光の右円偏光
M レーザ光
MA,MB 光線
MP P偏光
MS S偏光
O 直線偏光
R 右円偏光
L 左円偏光
Q 絶対位相
E 等位相面
U 使用者

Claims (18)

  1. コレステリック液晶相を固定してなるコレステリック液晶層を、複数層、積層してなる光学素子であって、
    選択反射中心波長が互いに異なる前記コレステリック液晶層を、複数、有し、
    前記コレステリック液晶層は、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、
    さらに、前記コレステリック液晶層の前記液晶配向パターンの、前記液晶化合物由来の光学軸の向きが連続的に回転しながら変化する前記一方向における、前記液晶化合物由来の光学軸の向きが180°回転する長さを1周期とした際に、前記選択反射中心波長が互いに異なる複数の前記コレステリック液晶層は、前記選択反射中心波長の長さの順列と、前記1周期の長さの順列とが、一致していることを特徴とする光学素子。
  2. 前記選択反射中心波長が互いに異なる複数の前記コレステリック液晶層は、前記コレステリック液晶層の積層方向に向かって、前記選択反射中心波長が、順次、長くなるように積層される、請求項1に記載の光学素子。
  3. 前記液晶配向パターンにおける前記1周期の長さが50μm以下である、請求項1または2に記載の光学素子。
  4. 選択反射中心波長が同じで、反射する円偏光の方向が互いに異なる前記コレステリック液晶層を有する、請求項1〜3のいずれか1項に記載の光学素子。
  5. 前記選択反射中心波長が同じで、反射する円偏光の方向が互いに異なる前記コレステリック液晶層は、前記液晶配向パターンにおける前記液晶化合物由来の光学軸の向きの連続的な回転方向が、互いに異なる、請求項4に記載の光学素子。
  6. 前記コレステリック液晶層の少なくとも1層が、面内に、前記液晶配向パターンにおける前記1周期の長さが異なる領域を有する、請求項1〜5のいずれか1項に記載の光学素子。
  7. 前記液晶化合物由来の光学軸の向きが連続的に回転しながら変化する前記一方向に向かって、前記コレステリック液晶層の前記液晶配向パターンの前記1周期が短くなる、請求項6に記載の光学素子。
  8. 前記コレステリック液晶層の前記液晶配向パターンが、前記液晶化合物由来の光学軸の向きが連続的に回転しながら変化する前記一方向を、内側から外側に向かう同心円状に有する、同心円状のパターンである、請求項1〜7のいずれか1項に記載の光学素子。
  9. 選択反射中心波長が異なる前記コレステリック液晶層を、3層以上有する、請求項1〜8のいずれか1項に記載の光学素子。
  10. 少なくとも、赤色光の波長域に選択反射中心波長を有する前記コレステリック液晶層、緑色光の波長域に選択反射中心波長を有する前記コレステリック液晶層、および、青色光の波長域に選択反射中心波長を有する前記コレステリック液晶層を有する、請求項9に記載の光学素子。
  11. 少なくとも1組の前記コレステリック液晶層の間に配向膜を有し、前記コレステリック液晶層の間の前記配向膜の少なくとも1つは、少なくとも一方の表面が、前記コレステリック液晶層に接触している、請求項1〜10のいずれか1項に記載の光学素子。
  12. 前記コレステリック液晶層の間の前記配向膜の少なくとも1つは、両方の表面が前記コレステリック液晶層に接触している、請求項11に記載の光学素子。
  13. 請求項1〜12のいずれか1項に記載の光学素子と、導光板と、を有する、導光素子。
  14. 離間する2つの前記光学素子が、前記導光板に設けられる、請求項13に記載の導光素子。
  15. 離間する3以上の前記光学素子が、前記導光板に設けられる、請求項13に記載の導光素子。
  16. 前記光学素子として、前記導光板に光を入射させる第1光学素子、前記導光板から光を出射させる第3光学素子、および、前記第1光学素子が反射した光を前記第3光学素子に反射する第2光学素子とを有し、
    前記第1光学素子、前記第2光学素子および前記第3光学素子において、前記光学素子が有する前記コレステリック液晶層のうち、最も選択反射中心波長が長い前記コレステリック液晶層の前記液晶配向パターンにおける1周期の長さが、前記第2光学素子が最も短い、請求項15に記載の導光素子。
  17. 請求項13〜16のいずれか1項に記載の導光素子と、前記導光素子の前記光学素子に画像を照射する表示素子とを有する画像表示装置。
  18. 前記表示素子が、前記導光素子の前記光学素子に円偏光を照射する、請求項17に記載の画像表示装置。
JP2019562484A 2017-12-27 2018-12-27 光学素子、導光素子および画像表示装置 Active JP7030847B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2017250971 2017-12-27
JP2017250971 2017-12-27
JP2018193324 2018-10-12
JP2018193324 2018-10-12
JP2018231747 2018-12-11
JP2018231747 2018-12-11
PCT/JP2018/048366 WO2019131966A1 (ja) 2017-12-27 2018-12-27 光学素子、導光素子および画像表示装置

Publications (2)

Publication Number Publication Date
JPWO2019131966A1 true JPWO2019131966A1 (ja) 2021-01-14
JP7030847B2 JP7030847B2 (ja) 2022-03-07

Family

ID=67063809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019562484A Active JP7030847B2 (ja) 2017-12-27 2018-12-27 光学素子、導光素子および画像表示装置

Country Status (4)

Country Link
US (1) US11435629B2 (ja)
JP (1) JP7030847B2 (ja)
CN (1) CN111527428B (ja)
WO (1) WO2019131966A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975258B2 (ja) * 2017-12-27 2021-12-01 富士フイルム株式会社 光学素子およびセンサー
WO2019172271A1 (ja) * 2018-03-06 2019-09-12 富士フイルム株式会社 光学装置
US10750145B1 (en) * 2018-05-24 2020-08-18 Facebook Technologies, Llc Variable-pitch liquid crystal diffraction grating
WO2021020287A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 光学素子
WO2021060528A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 光学積層体、導光素子および画像表示装置
WO2021075180A1 (ja) * 2019-10-18 2021-04-22 富士フイルム株式会社 画像表示装置
WO2021132063A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 画像表示装置およびarグラス
JPWO2021131709A1 (ja) * 2019-12-27 2021-07-01
WO2021132015A1 (ja) * 2019-12-27 2021-07-01 富士フイルム株式会社 光学素子の製造方法および光学素子
WO2021201218A1 (ja) 2020-04-03 2021-10-07 富士フイルム株式会社 光学素子および画像表示装置
JP7416941B2 (ja) 2020-06-19 2024-01-17 富士フイルム株式会社 光学素子および画像表示装置
CN116323180A (zh) * 2020-10-09 2023-06-23 富士胶片株式会社 层叠光学膜及图像显示装置
JPWO2022075264A1 (ja) * 2020-10-09 2022-04-14
WO2023013216A1 (ja) * 2021-08-04 2023-02-09 株式会社ジャパンディスプレイ 液晶光学素子
JPWO2023013215A1 (ja) * 2021-08-04 2023-02-09
WO2023013214A1 (ja) * 2021-08-04 2023-02-09 株式会社ジャパンディスプレイ 液晶光学素子及びその製造方法
JPWO2023080115A1 (ja) 2021-11-05 2023-05-11
WO2023171245A1 (ja) * 2022-03-09 2023-09-14 株式会社ジャパンディスプレイ 液晶光学素子及びその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206638A (ja) * 1997-01-24 1998-08-07 Sharp Corp 広帯域コレステリック偏光板、光源および光学装置
JP2011247934A (ja) * 2010-05-24 2011-12-08 Dic Corp 重合性液晶組成物、及び、それを用いたコレステリック反射フィルム、反射型偏光板
JP2012181360A (ja) * 2011-03-01 2012-09-20 Fujifilm Corp 積層フィルムの製造方法
WO2016017728A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 フィルム、フィルムの製造方法、輝度向上フィルム、光学シート部材および液晶表示装置
US20160231568A1 (en) * 2015-02-09 2016-08-11 Microsoft Technology Licensing, Llc Waveguide
WO2016194890A1 (ja) * 2015-06-01 2016-12-08 富士フイルム株式会社 画像表示装置の画像表示部表面に用いられるハーフミラーの製造方法、ハーフミラー、および画像表示機能付きミラー
WO2016194961A1 (ja) * 2015-06-04 2016-12-08 国立大学法人大阪大学 反射構造体、機器、及び反射構造体の製造方法
WO2017199812A1 (ja) * 2016-05-18 2017-11-23 富士フイルム株式会社 投影部材、投影システム、投影部材の製造方法
JP2020501186A (ja) * 2016-12-08 2020-01-16 マジック リープ, インコーポレイテッドMagic Leap,Inc. コレステリック液晶に基づく回折デバイス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232315A (ja) * 1997-02-20 1998-09-02 Dainippon Printing Co Ltd ホログラフィック光学部材
JP3690472B2 (ja) * 1998-10-08 2005-08-31 富士ゼロックス株式会社 表示記憶媒体、画像書き込み方法および画像書き込み装置
JP2000352611A (ja) * 1999-06-10 2000-12-19 Fuji Photo Film Co Ltd 反射透過型液晶表示器用カラーフイルタとそれを用いた表示素子
JP3641780B2 (ja) 2000-03-22 2005-04-27 ナノックス株式会社 液晶表示装置
KR100736115B1 (ko) * 2000-11-07 2007-07-06 엘지.필립스 엘시디 주식회사 액정 광학필름
DE102004018702B4 (de) * 2004-04-17 2006-05-24 Leonhard Kurz Gmbh & Co. Kg Folie mit Polymerschicht
GB2455127B (en) * 2007-11-30 2012-07-25 Hewlett Packard Development Co Reflective display
TWI400493B (zh) * 2008-05-01 2013-07-01 Ind Tech Res Inst 低色偏偏光組合體及其於背光單元、液晶顯示器之應用
JP2010079287A (ja) * 2008-08-28 2010-04-08 Fujifilm Corp 液晶表示装置
CN102378937B (zh) * 2009-04-08 2014-08-20 夏普株式会社 液晶显示装置、液晶显示装置的制造方法、光聚合物膜形成用组合物和液晶层形成用组合物
JP2012208164A (ja) * 2011-03-29 2012-10-25 Fujitsu Ltd 反射型表示パネル
KR102117138B1 (ko) * 2012-07-27 2020-06-01 시리얼 테크놀로지즈 에스.에이. 경사 입사각을 위한 편광 격자
WO2016052404A1 (ja) * 2014-09-29 2016-04-07 富士フイルム株式会社 コレステリック液晶層を含む光学フィルム、およびコレステリック液晶層を含む光学フィルムの製造方法
CN111902749B (zh) * 2018-03-23 2022-09-20 富士胶片株式会社 胆甾醇型液晶层的制造方法、胆甾醇型液晶层、液晶组合物、固化物、光学各向异性体、反射层

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206638A (ja) * 1997-01-24 1998-08-07 Sharp Corp 広帯域コレステリック偏光板、光源および光学装置
JP2011247934A (ja) * 2010-05-24 2011-12-08 Dic Corp 重合性液晶組成物、及び、それを用いたコレステリック反射フィルム、反射型偏光板
JP2012181360A (ja) * 2011-03-01 2012-09-20 Fujifilm Corp 積層フィルムの製造方法
WO2016017728A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 フィルム、フィルムの製造方法、輝度向上フィルム、光学シート部材および液晶表示装置
US20160231568A1 (en) * 2015-02-09 2016-08-11 Microsoft Technology Licensing, Llc Waveguide
WO2016194890A1 (ja) * 2015-06-01 2016-12-08 富士フイルム株式会社 画像表示装置の画像表示部表面に用いられるハーフミラーの製造方法、ハーフミラー、および画像表示機能付きミラー
WO2016194961A1 (ja) * 2015-06-04 2016-12-08 国立大学法人大阪大学 反射構造体、機器、及び反射構造体の製造方法
WO2017199812A1 (ja) * 2016-05-18 2017-11-23 富士フイルム株式会社 投影部材、投影システム、投影部材の製造方法
JP2020501186A (ja) * 2016-12-08 2020-01-16 マジック リープ, インコーポレイテッドMagic Leap,Inc. コレステリック液晶に基づく回折デバイス

Also Published As

Publication number Publication date
CN111527428B (zh) 2022-05-24
US11435629B2 (en) 2022-09-06
WO2019131966A1 (ja) 2019-07-04
CN111527428A (zh) 2020-08-11
JP7030847B2 (ja) 2022-03-07
US20200326579A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP7030847B2 (ja) 光学素子、導光素子および画像表示装置
JP6980901B2 (ja) 光学素子、導光素子および画像表示装置
JP6975321B2 (ja) 光学素子および導光素子
JP7153087B2 (ja) 導光素子、画像表示装置およびセンシング装置
JP7175995B2 (ja) 光学積層体、導光素子および画像表示装置
WO2020075711A1 (ja) 光学積層体、導光素子およびar表示デバイス
JP6975257B2 (ja) 光学素子および導光素子
JP7427077B2 (ja) 光学素子、画像表示ユニットおよびヘッドマウントディスプレイ
JP6931417B2 (ja) 光学素子
WO2022070799A1 (ja) 透過型液晶回折素子
WO2021157585A1 (ja) 光学素子および画像表示装置
WO2021132015A1 (ja) 光学素子の製造方法および光学素子
WO2021106749A1 (ja) 光学部材および画像表示装置
WO2020075740A1 (ja) 光学積層体、導光素子およびar表示デバイス
WO2019172270A1 (ja) 光学装置
WO2021132063A1 (ja) 画像表示装置およびarグラス
WO2021106875A1 (ja) 導光素子および画像表示装置
WO2021132016A1 (ja) 画像表示装置およびarグラス
WO2022239859A1 (ja) 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置
WO2022239835A1 (ja) 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置
WO2021201218A1 (ja) 光学素子および画像表示装置
WO2022024581A1 (ja) 光学素子および導光素子
WO2021106766A1 (ja) 光学部材および画像表示装置
WO2021256453A1 (ja) 光学素子および画像表示装置
WO2021132097A1 (ja) 導光素子および画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220118

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150