JPWO2019124467A1 - 抵抗スポット溶接継手の製造方法 - Google Patents

抵抗スポット溶接継手の製造方法 Download PDF

Info

Publication number
JPWO2019124467A1
JPWO2019124467A1 JP2019526633A JP2019526633A JPWO2019124467A1 JP WO2019124467 A1 JPWO2019124467 A1 JP WO2019124467A1 JP 2019526633 A JP2019526633 A JP 2019526633A JP 2019526633 A JP2019526633 A JP 2019526633A JP WO2019124467 A1 JPWO2019124467 A1 JP WO2019124467A1
Authority
JP
Japan
Prior art keywords
energization
electrode
current
main
welded joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019526633A
Other languages
English (en)
Other versions
JP6593572B1 (ja
Inventor
古迫 誠司
誠司 古迫
泰山 正則
正則 泰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6593572B1 publication Critical patent/JP6593572B1/ja
Publication of JPWO2019124467A1 publication Critical patent/JPWO2019124467A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

本発明に係る抵抗スポット溶接継手の製造方法は、表層に電気抵抗の高い物質が存在している鋼板のスポット溶接に対し、チリを抑制し、安定してナゲット径を確保できる。本発明に係る溶接継手の製造方法は、電極の先端表面の曲率半径が40mm以上の表面領域が前記電極の加圧方向に対して垂直な面へ投影された領域の面積と、面積が等価な円の直径である電極先端部直径が、8.0mm以上であり、5.5kN以上で電極を加圧しつつ直流電流Ia(t)(kA)を以下の式(1)、(2)を満たすようにta秒間通電する予備通電工程と、5.0kN以上で前記電極を加圧しつつ直流を通電する本通電工程とを備え、前記電流Ia(t)は、前記taの80%以上において連続通電であることを特徴とする。Ia(t)≦6.0(kA)・・・式(1)

Description

本発明は、鋼板の抵抗スポット溶接継手の製造方法に関するものである。
自動車の車体はプレス成形された鋼板を、主に抵抗溶接によるスポット溶接にて接合することで組み立てられる。スポット溶接では、板厚に応じたナゲット径の確保とチリ(散り)の発生抑制の両立が求められる。
近年、自動車の分野では、車体の軽量化と衝突安全性を確保するため、骨格部品に高強度鋼板の採用が拡大しつつある。中でも、高強度鋼板を用いて熱間成形したホットスタンプ鋼板は高い成形精度と低いプレス荷重を両立できるため、その採用が進んでいる。
しかし、高強度鋼板を1段通電方式でスポット溶接する場合ではチリが発生し易く、適正電流範囲の確保が困難となる。また、ホットスタンプ用鋼板の表層に亜鉛めっきやアルミめっきがあると、加熱中にめっきの酸化が進んで酸化亜鉛や酸化アルミなどが形成される。これら酸化物が成長すると鋼板の接触抵抗が上昇する。その結果、車体のスポット組付溶接においてチリが発生し易くなり、ナゲット径の安定確保が困難となるという問題もある。
このような問題に対して、特許文献1には、予備通電により鋼板の接触面同士のなじみを向上させた後に本通電を行う2段通電方法を採用することによって、高張力鋼板のスポット溶接におけるチリの発生を抑制するスポット溶接方法が開示されている。
特許文献2には、予備通電により3√t〜5√tの径を有するナゲットを形成させた後に電流値を下げ、その後、再び電流値を上げて一定電流の本通電またはパルス状の本通電を行う通電方式を採用することによって、高張力鋼板のスポット溶接におけるチリの発生を抑制するスポット溶接方法が開示されている。
また、そのような予備通電、本通電による2段通電方法をホットスタンプ鋼板のスポット溶接に適用した例として、特許文献3では、酸化亜鉛等の電気抵抗が高い皮膜で覆われたホットスタンプ鋼板をスポット溶接する際、予備通電を、電極で鋼板を加圧しながら通電と通電休止を複数回繰り返すパルセーション通電で行い、その後に、パルセーション通電時の最大通電時間よりも長時間連続的に本通電するようにしたスポット溶接方法が開示されている。
さらに、特許文献4では、特許文献3と同様の鋼板をスポット溶接する際、予備通電と本通電を、パルセーション通電で行い、かつ、本通電の最大電流を予備通電の最大電流より高く通電するようにしたスポット溶接方法が開示されている。
この特許文献3、4に開示の方法では、予備通電のパルセーション通電時に、通電と通電休止とが繰り返されることにより、熱膨張、収縮による振動を鋼板の電極接触面に与えて、高融点の酸化物層を効果的に溶接部の外側に排除することができるとともに、パルセーション通電の通電休止により電極の冷却効果を十分に働かせて、溶接部の急激な温度上昇を抑制できる。このため、チリの発生を抑制しつつ、短時間で鋼板の接触面同士のなじみを向上させる効果を得ることができ、接触界面での電流密度の上昇を抑制し急激なナゲット成長を抑制することができる。その結果、ホットスタンプ鋼板のスポット溶接におけるチリの発生を抑制することができる。
特許文献5には、電極の加圧力を鋼板の板厚に応じた適正な範囲とし、さらに、通電パターンを適正範囲とすることで、インデンテーションの発生を抑制しつつナゲット径を確保し、且つ、散りの発生を防止するスポット溶接方法が開示されている。
特開2010−188408号公報 特開2010−207909号公報 国際公開第2015/005134号 国際公開第2015/093568号 国際公開第2014/045431号
ホットスタンプに用いる鋼板は、高温に加熱した時に鉄スケールの発生を防止するため、亜鉛系めっき、アルミニウム系めっきなどの表面処理が施されたものが多い。そのような表面処理鋼板をホットスタンプすると、加熱中にめっきの酸化が進んで酸化亜鉛や酸化アルミなどの酸化物層が形成される。これら酸化物層が成長すると、ホットスタンプ後の鋼板(ホットスタンプ鋼板)では接触抵抗が1mΩ以上に上昇する。そのようなホットスタンプ鋼板を用いた車体等のスポット組付溶接において、チリの発生が容易となり、ナゲット径の安定確保が困難となるという問題もある。
特許文献3、4に開示の技術は、インバータ直流の溶接電源を用いたパルセーション通電(通電および通電休止を短時間に複数回繰り返す通電)の作用によって、高融点の酸化物層を溶接部の外側に排除することにより、予備通電時における鋼板の接触面同士のなじみを向上させるものである。しかし、酸化物層が厚い場合など効果が十分でない場合があり、そのような場合でもさらにチリの発生を抑制できることが望まれる。また、電源は小さいなどの利点があるため最近は主流となりつつあるインバータ直流では、特許文献4に開示されているように、交流より適正電流範囲が狭くなるという問題がある。そして、インバータ直流であり、且つ、パルセーション通電をほとんど用いず主に連続通電或いは短時間の通電休止の繰返しがない通電とする場合においても、より広い適正電流範囲が得られる溶接方法が望まれる。
特許文献5に開示の技術は、板厚に応じて加圧力を変え、さらに通電パターンを適正な範囲とすることにより、ナゲット径を確保し、チリの発生も抑制するものであるが、酸化物層が厚い場合など効果が十分でない場合があり、そのような場合でもさらにチリの発生を抑制できることが望まれる。
本発明では、このような実情に鑑み、少なくとも一枚のホットスタンプ鋼板を含む鋼板のスポット溶接の際、チリの発生を抑制できるスポット溶接技術を提供することを課題とする。
インバータ直流の溶接電源を用いてパルセーション通電をほとんど用いず、連続通電を主体とする場合であっても、表層に酸化亜鉛などの電気抵抗の高い物質が形成されている接触抵抗の高い鋼板同士を組合せてスポット溶接する場合において、表層の電気抵抗の高い物質を分散または移動させてチリを抑制し、安定してナゲット径を確保する手段について検討した。
その結果、先端径が大きな電極を用い、鋼板への加圧力を高めた条件の下で、特許文献1〜4のように、本通電の前に予備通電を実施すると、表層の電気抵抗の高い物質を効果的に分散または移動させることができ、このため本通電でのチリの発生電流が上昇し、適正な溶接電流範囲を拡大できることを見出した。
そして、電極の先端径、鋼板への加圧力、予備通電の通電条件についてさらに検討した結果、表層の電気抵抗の高い物質を分散または移動させてチリを抑制し、安定してナゲット径を確保できる条件を見出した。
そのようにしてなされた本発明の要旨は、以下のとおりである。
(1) 2枚以上の鋼板を重ね合わせ、その重ね合わせ部を電極により加圧して通電する抵抗スポット溶接継手の製造方法であって、
前記電極の先端表面の曲率半径が40mm以上の表面領域が前記電極の加圧方向に対して垂直な面へ投影された領域の面積と、面積が等価な円の直径である電極の先端部直径が、8.0mm以上であり、
5.5kN以上の加圧力で前記電極を加圧しつつ電流Ia(t)(kA)を以下の式(1)、(2)を満たすように通電時間ta秒の間通電する予備通電工程と、
前記予備通電工程後に5.0kN以上で前記電極を加圧しつつ通電する本通電工程とを備え、
前記予備通電工程および本通電工程の電流はすべて直流であり、
前記予備通電時間taおよび本通電工程の通電時間のそれぞれの80%以上の通電方式が連続的に通電する連続通電であることを特徴とする抵抗スポット溶接継手の製造方法。
Ia(t)≦6.0(kA)・・・式(1)
Figure 2019124467
(2) 前記予備通電工程において電流を増大させることを特徴とする上記(1)に記載の抵抗スポット溶接継手の製造方法。
(3) 本通電工程において電流を増大させることを特徴とする上記(1)または(2)に記載の抵抗スポット溶接継手の製造方法。
(4) 前記予備通電工程の通電方式が連続通電であることを特徴とする上記(1)〜(3)のいずれかに記載の抵抗スポット溶接継手の製造方法。
(5) 前記本通電工程の通電方式が連続通電であることを特徴とする(1)〜(4)のいずれかに記載の抵抗スポット溶接継手の製造方法。
(6) 前記鋼板の少なくとも1枚の鋼板の接触抵抗が1mΩ以上であることを特徴とする上記(1)〜(5)のいずれかに記載の抵抗スポット溶接継手の製造方法。
本発明によれば、ホットスタンプ鋼板のように、表層に電気抵抗の高い物質が存在している鋼板を、直流で主に連続通電によるスポット溶接に対し、チリを抑制し、安定してナゲット径を確保できる溶接方法を提供する。
板厚1.4mmの1800MPa級ホットスタンプ材を、インバータ直流の溶接電源を用いた連続通電により、通電パターン、電極径、加圧力を変化させてスポット溶接した場合におけるナゲット成長挙動を示すグラフである。 スポット溶接の通電パターンの一例を示す図である。 電極の先端部直径を説明するための図である。 スポット溶接の通電パターンの一例を説明するための図である。 本通電にパルセーション通電を用いる場合の通電パターンを説明するための図である。 接触抵抗の測定方法を説明するための図である。
以下、添付の図面を参照して本発明の実施の形態を説明する。
溶融めっきなどの表面処理がなされた鋼板をホットスタンプした後のホットスタンプ鋼板(表面処理ホットスタンプ鋼板)を抵抗スポット溶接すると、中チリと共に表チリも出やすくなり、適正電流範囲が著しく狭くなり、チリの発生する電流が低くなる。このため適正電流範囲内(ただし、適正電流範囲の上限付近の電流を除く。)の電流値でチリを発生せずに溶接すると、得られるナゲット径も小さくなる。
ここで、「適正電流範囲」とは、少しずつ電流を上げていき、スポット溶接される鋼板の板厚の平均値をtとしたときに、ナゲット径が4√t以上となる最初の電流(以下、「4√t電流」という。)から、チリが初めて発生する電流までの範囲を言う。
表面処理ホットスタンプ鋼板を抵抗スポット溶接すると、チリが出やすくなり、適正電流範囲が狭くなる原因については次のように考えられる。
表面処理ホットスタンプ鋼板は、めっき金属と基材の鋼との合金化反応によって、金属間化合物および鉄基の固溶体がその表面に形成されており、さらにその外面にめっきに由来する金属(例えば、Zn)を主成分とする酸化皮膜を有している。そのため、表面処理ホットスタンプ鋼板は冷間でプレスした鋼板と比べて、鋼板同士の接触部での抵抗が高く発熱量が大きい。
一方、ホットスタンプ工程でめっき金属と鋼との合金化が進行し、表面近傍の融点も鉄に近い高い値となっているので、ホットスタンプ前のめっき鋼板と比較して、鋼板同士の接触部が軟化しにくく通電パスの拡大が抑制される。特に、(インバータ)直流方式の通電では単相交流に比べ発熱効率が高いため、通電初期のナゲットの形成が非常に急激となる。このためナゲットの周囲における圧接部の成長が追い付かず溶融金属を閉じ込めることができなくなり中チリが発生するものと推定される。
また、直流は単相交流のような電流休止時間がないため、電極による冷却効果が得られにくい。このため、ナゲットが板厚方向に成長しやすく、鋼板の最表層まで溶融部が達して、表チリが発生するものと推定される。本発明において、「直流」とは、時間によって大きさが変化しても流れる方向(プラス/マイナス)が変化しない電流をいい、時間によって大きさが0アンペアになる場合も含む。このため、連続通電のように常に電流が流れている通電だけではなく、通電および通電休止を短時間に複数回繰り返すパルセーション通電も、プラス/マイナスが逆転しない限り、直流と判定する。
本発明者らは、まず直流の連続通電方式による2段通電によるスポット溶接の予備通電工程の際に、酸化物層の厚みなどによらず、酸化物層を分断して溶接部の外側に確実に排除する手段について検討した。
その結果、先端部の径の大きい電極により高加圧力をホットスタンプ鋼板に作用させると、電極先端部と鋼板との接触面積が増大し、酸化物を分散・移動できる範囲が拡大し、また加圧力の増加は面圧の増加をもたらし、酸化物の分散・移動(排除)効果が増す。さらに電極の冷却効果によって鋼板表層の冷却効果が高いため、特に表チリの発生が抑制されることを見出した。
図1にそのような知見を得た試験結果の一例を示す。
試験では、ホットスタンプされた板厚1.4mmの亜鉛めっき鋼板(ホットスタンプ鋼板)を2枚重ね合わせ、本通電のみの1段通電でスポット溶接した場合と、予備通電工程及び本通電工程の2段通電でスポット溶接した場合において、電極の先端部直径と電極の前記鋼板の重ね合わせ部への加圧力をそれぞれ変化させ、さらに本通電の電流値をチリが発生するまで、増加させたときのナゲットの拡大挙動を調べた。
2段通電は、図2に示すように、電流値Ia:3.5kAで通電時間ta(=0.4s)の予備通電を行い、続いて、種々の電流値Ibで通電時間tbの本通電(本通電の通電時間は0.28s)を行う通電パターンを用いた。
電極には、図3に示すようなDR(ドームラジアス)型で、後述の電極先端部直径d(初期接触部)が6.0mm(通常電極)と8.0mm(太電極)のものを用いた。通電中の加圧力は、電極先端部直径6.0mmの電極を用いた場合には5.5kN(低加圧)とし、電極先端部直径8.0mmの電極を用いた場合には6.9kN(高加圧)とした。
図1に、低加圧+通常電極+本通電のみ、低加圧+通常電極+予備通電あり、高加圧+太電極+本通電のみ、高加圧+太電極+予備通電ありの4パターンでのスポット溶接結果を示す。図1中のE点は、チリが発生した実験点を示す。
図1に示されるように、本通電のみを行い、予備通電を行なわない通電パターンでスポット溶接した場合に対し、2段通電によって溶接することによりチリの発生する上限電流値が上昇する。特に、予備通電に加え、高加圧と太電極とを合わせて実施すると、通常条件(低加圧+通常電極+本通電のみ)や予備通電有りでも低加圧+通常電極の場合に比較し、チリの発生する上限電流値が大きく増大し、適正な溶接電流範囲が拡大することが確認された。
以上の知見をもとに、さらに本発明者は、通電を予備通電と本通電の2段通電で行うことを前提として、電極の先端部直径、電極の加圧力及び予備通電の通電条件を変化させて、チリを抑制して、必要なナゲット径を得られる条件を検討した結果、前記式(1)及び(2)で規定した条件とすることにより、チリを発生させないで、必要とするナゲット径が得られる適正な溶接電流範囲が拡大することを見出した。
本発明は、このような検討結果に基づいてなされたものであり、以下本発明に必要な要件や好ましい要件についてさらに説明する。
(スポット溶接の対象とする鋼板)
本発明は、高強度鋼からなる素材鋼板(例えば、電気めっき鋼板または溶融めっき鋼板を含む薄鋼板)を、焼き入れ可能な温度まで加熱しオーステナイト化した後、金型でプレス成形と同時に冷却し焼き入れするホットスタンプされた鋼板(以下、ホットスタンプ鋼板という。)であって、表面に、高温に加熱した時に鉄スケールの発生を防止するための亜鉛系めっき、アルミニウム系めっきなどの表面処理が施された素材鋼板を用いてホットスタンプされたホットスタンプ鋼板をスポット溶接の主な対象とする。本発明はホットスタンプ鋼板以外の鋼板にも適用可能であり、特にホットスタンプ鋼板に限定される必要はない。
なお、ホットスタンプ鋼板は、多くの場合、平板ではなく成形加工された成形体であるが、要は、重ね合わされる部分が板状であればよいので、本発明では、成形体である場合も含めて「ホットスタンプ鋼板」という。また、亜鉛系めっき鋼板やアルミニウム系めっき鋼板をホットスタンプして得られるホットスタンプ鋼板を、以下の説明では「表面処理ホットスタンプ鋼板」という場合がある。
ホットスタンプ鋼板は、亜鉛系またはアルミニウム系のめっき皮膜と基材の鋼との合金化反応によって、金属間化合物および鉄基の固溶体がその表面に形成されており、さらにその外面にめっきに由来する金属(例えば、亜鉛系めっきであれば亜鉛を指す。)を主成分とする酸化物層を有している。そのため、表面処理ホットスタンプ鋼板は裸の鋼板と比べて、接触抵抗が1mΩ以上と高く、通電による発熱量が大きい。また、ホットスタンプ鋼板は、ホットスタンプ工程でめっきと鋼との合金化が進行し、表面近傍の融点も鉄に近い高い値となっているので、加熱前のめっき皮膜を備える鋼板と比較して、鋼板同士の接触部が軟化しにくくなっている。本発明は、そのような接触抵抗が1mΩ以上の鋼板のスポット溶接に適用することにより特に効果を発揮する。なお、接触抵抗の測定方法については後述する。
鋼板の板厚について、特に制限はない。一般に、自動車用部品または車体で使用される鋼板の板厚は0.6〜3.2mmであり、本発明のスポット溶接継手の製造方法は、この範囲において十分な効果を有する。
(板組)
2枚以上の鋼板を重ね合わせる際の板組みは、電極の当たる側の鋼板の少なくとも1枚が表面処理ホットスタンプ鋼板を含むことが好ましい。表面処理ホットスタンプ鋼板に組合わされる鋼板としては、表面処理ホットスタンプ鋼板や590MPa級以上の高張力鋼板を含む組み合わせが好ましい。通常の自動車車体の組立てでは、これらの鋼板を2枚または3枚の鋼板を重ね合わせた板組みに対して抵抗スポット溶接が行われる。
(電極)
本発明では、電極の先端表面の曲率半径が40mm以上の表面領域(ただし、電極の最先端部を含む表面領域とする。)が電極の加圧方向(通常は電極の長さ方法と同じになる。)に対して垂直な面へ投影された領域の面積Aと、面積が等価な円の直径(いわゆる、等価円相当径)を、電極の先端部直径dと定義する。つまり、電極の先端部直径dは、2√(A/π)として算出される。この定義によると、例えば、図3のように、曲率半径が40mm以上の表面領域が、電極の鋼板の重ね合わせ部への加圧方向(通常は電極の長さ方法と同じになる。)に対して垂直な面へ投影された領域が、円形の場合、その円の直径が電極の先端部直径dとなる。
本発明では、電極の先端部直径dは、8.0mm以上とする。8.0mm超であることが好ましい。8.5mm以上、9.0mm以上、9.5mm以上又は10.0mm以上としてもよい。上限は、特に限定されるものではないが、溶接部の形状や溶接機の電極取付け部の構造により制約され、一般的には、12.0mm程度である。必要に応じて、11.0mm以下又は10.5mm以下としてもよい。
このような先端部直径が大きい電極、つまり先端部直径が太い電極を使用することにより、鋼板との接触面積が増大し、酸化物を排除できる範囲が拡大する。また、先端部直径が太い電極とすることにより、電極による鋼板表層の冷却効果が高まるため、特に表チリの発生が抑制される。
電極としては、例えば、JIS C9304:1999に規定されている電極を使用できる。この中で、電極先端部直径dを8.0mm以上とするため、先端部曲率半径が40mm以上のDR型の電極、または電極先端の円すい台の径が大きいCR型の電極を使用することができる。例えば、DR型先端曲面部の曲率Rが40〜60mmの電極が例示される。
電極の材質としては、クロム銅またはアルミナ分散銅が好ましいが、溶着および表チリを防止する観点ではアルミナ分散銅の方が望ましい。
(溶接電源)
スポット溶接における通電は、インバータ直流方式などの直流の溶接電源を用いて通電する。インバータ直流方式はトランスを小さくでき、可搬重量の小さいロボットに搭載できるメリットがあるため、特に自動化ラインで多く用いられる。
インバータ直流方式は、従来用いられてきた単相交流方式のような電流のオンオフがなく、連続的に電流を付与するため、発熱効率が高い。
(加圧・通電条件)
図2に、スポット溶接における通電パターンの基本的な例をタイムチャートで示す。この通電パターンでは、まず、所定の加圧力を鋼板の重ね合わせ部に印加しながら電流値Iaで通電する予備通電を行い、次いで、電流値Ibで通電して、ナゲットが所定の径になるよう本通電を行う。ここで、IbはIaよりも高いことが好ましい。そして、本通電の通電が終了した後、所定のホールド時間が経過した時点で電極を鋼板から離間し、加圧力を解放する。
その際、前記のように電極先端部直径が8.0mm以上の電極を使用したうえで、電極加圧力、予備通電の通電条件を特定の条件とする。
予備通電では、電極と鋼板表面を広い面積で接触させた状態で、加圧力を増大させて、鋼板表面の酸化物層を分散させ、さらに酸化物の一部を電極の接触範囲の外に移動(排除)させるようにして、表面の接触抵抗を低下させる。また、電流値を下げて、接触初期にナゲットの急速な成長を抑制し、チリが発生しないようにする。
そのために、加圧力を5.5kN以上とする。加圧力は好ましくは5.9kN以上である。さらに好ましくは6.0kN以上、6.3kN以上、6.5kN以上又は6.9kN以上である。加圧力が適正な範囲を超えて大きくなると、例えば電極加圧部の凹みが大きくなって(局所的に板厚の薄い部分が形成されて)継手強度が低下したり、または電流密度が極端に低下して本通電時のナゲット形成が困難になったりする場合がある。そのため、加圧力は10.0kN以下、9.5kN以下又は9.0kN以下とすることが好ましい。
さらに、予備通電は、前記加圧力にて前記電極を加圧しつつ、以下の式(1)、(2)を満たすようにta秒間通電する。
Ia(t)≦6.0(kA) ・・・式(1)
Figure 2019124467
但し、式(1)及び式(2)中のIa(t)(kA)は予備通電開始からt時間経過時における予備通電の電流値であり、前記電流Ia(t)は前記taの80%以上において連続通電とする。
予備通電の効果を発現させるため、以下の式(3)で定義される予備通電における電流積分値Sは、式(2)に示されるように、0.5kA・s以上とする。必要に応じて、前記電流積分値Sの下限を0.6kA・s、0.8kA・s、1.0kA・s又は1.2kA・sとしてもよい。予備通電の通電時間を特に定める必要はないが、0.05〜1sとなる場合が多い。必要に応じて、その通電時間の下限を0.1s、0.15s又は0.2sとしてもよい。その上限を0.9s、0.8s、0.7s又は0.8sとしてもよい。
Figure 2019124467
なお、上述のとおり、本発明の実施形態においては、予備通電における電流(予備通電時に電流が変動する場合は、予備通電時の電流の最大値)は6.0kA以下である。予備通電の電流の下限を特に定める必要はないが、パルセーション通電も考慮すると、その下限は0kAである。必要に応じて、1.0kA又は2.0kAとしてもよい。
予備通電では、鋼板表面の電極と接触する部分の酸化層を破壊し、一部を接触範囲外に排除することを主な目的としているので、予備通電時にナゲットを形成しなくてもよい。
予備通電での通電時間は、鋼板表面の酸化物層を分離・排除できる時間以上で、電流値Ia(t)との関係で上記関係を満たすように通電する。
予備通電での通電は、前述したように、予備通電の時間のうち80%以上を連続通電とする。ここで、連続通電とは、直流電流の大きさが0アンペアにならないように通電することであり、一定の大きさの電流を継続して流すだけでなく、直流電流の大きさを時間の経過とともに増加させても良く、また、直流電流の大きさが0アンペアにならないように、直流電流の大きさを時間の経過とともに増減させても良い。ただし、通常のパルセーション通電ではない長時間の通電休止(例えば、1s以上の通電休止)がある通電は、連続通電に含まないこととする。また、予備通電での通電は、好ましくは、予備通電の時間のうち85%以上が連続通電であり、100%連続通電であっても良い。なお、パルセーション通電のような短時間(例えば、0.01〜0.1s程度)の通電休止時間は、通電時間に含むが、1s以上の通電休止時間は通電時間から除外する。
予備通電に続く本通電では、5.0kN以上で電極を加圧しつつ通電する。本発明の実施形態では、適正電流範囲も十分広くなる。このため、前記のように加圧力を高めることを除き、非ホットスタンプ鋼板と同様な条件でのスポット溶接が可能となる。このため、5.0kN以上で電極を加圧しつつ通電すること以外は、本通電に関する条件について詳細を定める必要はない。必要に応じ従来知見の範囲内での予備試験を行って、本通電の溶接条件を決定すればよい。本通電の通電時間を特に定める必要はないが、0.05〜1s(秒)となる場合が多い。必要に応じて、その通電時間の下限を0.1s、0.15s又は0.2sとしてもよい。その上限を0.9s、0.8s、0.7s又は0.8sとしてもよい。
本通電時の電流値の時間積分の範囲(予備通電時の式(2)の左辺に相当する。)を特に定める必要はないが、1.0〜20.0kA・sとなる場合が多い。必要に応じて、その下限を2.0kA・s、3.0kA・s又は5.0kA・sとしてもよい。その上限を15.0kA・s、12.0kA・s、10.0kA・s又は9.0kA・sとしてもよい。本通電の電流値の時間積分は、通常、予備通電の電流値の時間積分よりも大きくなる。
なお、本通電の電流の範囲を特に定める必要はないが、パルセーション通電の場合を除き、1.0〜10.0kAとしてもよい。その下限を2.0kA、3.0kA、5.5kA、6.0kA、6.5kAとしてもよい。その上限を12.0kA、11.5kA、11.0kA、10.5kA又は10.0kAとしてもよい。パルセーション通電も考慮すると、電流の下限は、0kAである。本通電の電流値の最大値は、通常、予備通電の最大値よりも大きくなる。
一般的には、4√t以上のナゲット径が生産管理上の基準とされることが多い。本発明では、図1に示されるように、チリが発生することなくより大きいナゲット径(例えば4√t以上)を有する溶接継手を得ることができる。
以上では、通電パターンとして、図2に示されるような、予備通電と本通電を一定の電流値で連続通電するパターンを例に説明したが、一定の電流値ではなく、電流値を徐々に増加させたり、段階的に増加させたりすることができる。
図4(a)に、予備通電の開始初期に、電流を徐々に増大させる通電、すなわちアップスロープ通電を行う例を示す。実線は最初から、破線は途中の電流値からアップスロープ通電を行う例を示す。予備通電をアップスロープ通電で開始することにより、通電初期の接触抵抗が高い時期のナゲットの生成及び急成長を抑制することができる。
また、図4(b)に本通電の開始初期に、電流を徐々に増大させるアップスロープ通電を行う例を、図4(c)に、本通電の途中で電流を段階的に増加させる例をそれぞれ示す。但し、前述した通り、前記電流Ia(t)が予備通電開始から6.0kAを越えた時点で、本通電が開始されたと判断される。
本通電をアップスロープ通電で開始することにより、ナゲットの急成長を抑制することができる。また、途中で電流を増加させることにより通電時間を短縮することができる。
本通電は、通電時間の80%以上が連続通電で行われる。したがって、本発明においては、図5のような本通電がすべてパルセーション通電のような通電方式で行われる実施形態は、含まない。好ましくは、本通電の通電時間の85%以上が連続通電による通電方式で行われ、100%連続通電であっても良い。なお、パレセーション通電のような短時間(例えば、通常のパルセーション通電の通電休止時間は0.01〜0.1s程度が多い。)の通電休止の場合、通電休止時間も通電時間に含むこととする。しかし、1s以上の通電休止時間がある場合、その通電休止時間を通電時間から除外し、予備通電の通電時間の80%以上が連続通電であればよい。
本発明において、予備通電と本通電の定義は下記のとおりとする。
まず、一定電流の通電で1段階の通電の場合(連続通電又はパルセーション通電であろうとも、また通電休止時間の有無および通電休止時間の長さにかかわらず)、予備通電はなく本通電のみとする。一定電流の通電後に異なる一定電流の通電の段階の通電の場合(連続通電又はパルセーション通電であろうとも、また通電休止時間の有無および通電休止時間の長さにかかわらず)、1段階目を予備通電と、2段階目を本通電とする。
前後の段階で電流が異なるものの各段階では一定電流の通電であり、且つ3段階以上の通電の場合(連続通電又はパルセーション通電であろうとも、また通電休止時間の有無および通電休止時間の長さにかかわらず)、6.0kAを初めて超えた段階以降の通電をすべて本通電とし、本通電以前の通電をすべて予備通電とする(ただし、各段階の電流がすべて6.0kA未満の場合、最後の段階の通電を本通電とし、本通電以前の通電を予備通電とする。)。
アップスロープ通電のように通電中の電流の増減がある場合(連続通電又はパルセーション通電であろうとも、また通電休止時間の有無および通電休止時間の長さにかかわらず)、6.0kAを初めて超えた時点以降の通電をすべて本通電とし、本通電以前の通電をすべて予備通電とする。したがって、このようなアップスロープ通電のように通電中の電流の増減がある場合であり、且つ、電流がすべて6.0kA未満の場合、本発明の実施形態と判断しない。
(接触抵抗)
接触抵抗の測定方法を図6に示す。鋼板2(めっき層3はなくてもよい)を1枚スポット溶接用電極1a、1bで挟む。前記溶接用電極1a、1bに1Aの電流Iを通電する。上側電極1aと鋼板2との間の電圧V1、下側電極1bと鋼板2との間の電圧V2を測定する。
上側電極1aと鋼板間の電気抵抗をR1、下側電極1bと鋼板間の電気抵抗をR3、鋼板バルク(母材)そのものの固有抵抗に起因する抵抗をR2とする。R2はゼロと近似できる。また、上下の電極1a、1bの抵抗もゼロと近似できる。よって、測定された電圧V1、V2と電気抵抗R1、R3との間の関係は次のように近似できる。
V1= (R1+R2)×I ≒ R1×I = R1×1(A)= R1
V2= (R2+R3)×I ≒ R3×I = R3×1(A)= R3
R1、R3のいずれか大きいほうの抵抗値を本発明での接触抵抗とする。
本発明では、接触抵抗が1mΩ以上の鋼板を主な適用対象とするが、接触抵抗が1mΩ未満の鋼板にも適用可能であり、接触抵抗が1mΩ以上の鋼板に限定される必要はない。必要に応じて、接触抵抗の下限を2mΩ、5mΩ、8mΩ又は10mΩに限定してもよい。接触抵抗の上限を特に定める必要はないが、その上限を100mΩ、50mΩ、30mΩ又は20mΩとしてもよい。
本発明は、以上説明したように構成されるものであるが、以下、実施例を用いて、本発明の実施可能性及び効果についてさらに説明する。
複数の種類の電極先端部直径のDR型電極(クロム銅)を備えた、サーボ加圧式インバータ直流スポット溶接機を用い、後述の処理番号24を除き、板厚2.0mmの強度(引張強さ)が1500MPa級のGAめっきホットスタンプ鋼板(ホットスタンプ前のめっき付着量:片側あたり55g/m、加熱条件:900℃で4分炉加熱)を2枚重ね合わせて、抵抗スポット溶接試験を実施し、適正電流範囲を測定した。ただし、一部は非ホットスタンプ鋼板を2枚重ね合わせて同様な試験を行った。通電はすべてIa(t)<Ibの条件で行った。供試鋼板の板厚、強度(引張強さ)及び接触抵抗に加え、溶接条件及び試験結果(適正電流範囲)を、表1に示す。抵抗スポット溶接を実施する試験片の形状は、巾30mm、長さ100mmの短冊状とした。鋼板の接触抵抗を前記の方法で測定したところ、非ホットスタンプ鋼板を除きすべて12mΩであった。
表1に示す電流値で予備通電工程を実施した後、本通電工程における電流値を変化させ、ナゲット径およびチリ発生状況の調査を行った。各試験番号における本通電工程の適正電流範囲を表1に示す。すべての電源は、インバータ直流の電源とした。
表1から分かるように、本発明例は、本通電工程での上限電流を上昇させることができるため、1段通電を行った比較例よりも、幅広く1.5kA以上の適正電流範囲を試験片レベルで得ることができる。これにより、本発明では4√t電流以上、且つ、チリ発生電流以下の値に本通電工程の電流値を設定することで、実部品の溶接でもチリを発生させず、かつ、分流、電極損耗による外乱があってもナゲット径が4√t以上となるスポット溶接部を安定して確保することができる。一方、比較例では、適正電流範囲が目標の1.5kA以上を満たさなかった。
Figure 2019124467
表1のIaの項目は、Iaが予備通電時間内で変動する場合、その平均値をIaとした(表1の*1)。処理番号10のIa(kA)は、3.0kAから5.0kAまで直線的に増加させた(表1の*5)。表1の項目「予備通電の電流積分値S (kA・s)」は、前記式(3)で定義される予備通電における電流積分値Sの値である。
また、表1の「Ibの波形」の項目は、Ibが本通電時間内で変動する場合、その平均値をIbとし、適正電流範囲はこのIbで評価した(表1の*2)。この項目では、一定の電流で連続通電したものを「一定」と記載した。処理番号11のIbは、アップスロープ方式の通電パターンであり、本通電開始時から終了時の電流差が1.0kAとなるように、電流を直線的に増加させた(表1の*7)。電流Ibは直線的に増加するため、表1中の処理番号11の適正電流範囲は、本通電開始時電流、本通電終了時電流又は平均電流の適正範囲でもある。処理番号12のIbは、一定の電流で連続通電した後、最後の0.11秒間は0.04s通電と、0.015秒の通電休止を2回繰り返したパルセーション通電とした(表1の*8)。
また、表1の「t(b)」の項目は、パルセーション通電のように、通電と休止を繰り返す場合、tbに通電と休止の時間の両方を含むが、予備通電と本通電の間に行った通電休止時間はtaおよびtbの各時間から除外した(表1の*3)。
処理番号13において、taのうち、一定の電流で連続通電した後、最後の0.11秒はパルセーション方式(0.04sの通電と、0.015sの通電休止を2回繰り返した(表1の*6))とした。
また、表1の処理番号29は、本鋼種のみ合金化溶融亜鉛めっきされたままの非ホットスタンプ鋼板である。ホットスタンプしていないので、表層にZnOなどの酸化物層が存在しないためと思われるが、接触抵抗は1mΩ以下であった(表1の*4)。
以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示にすぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
本発明によれば、ホットスタンプ鋼板のように、表層に電気抵抗の高い物質が存在している鋼板のスポット溶接に対し、チリを抑制し、安定してナゲット径を確保することができる。
1 スポット溶接用電極
1a 上側電極
1b 下側電極
2 鋼板
3 めっき層

Claims (6)

  1. 2枚以上の鋼板を重ね合わせ、その重ね合わせ部を電極により加圧して通電する抵抗スポット溶接継手の製造方法であって、
    前記電極の先端表面の曲率半径が40mm以上の表面領域が前記電極の加圧方向に対して垂直な面へ投影された領域の面積と、面積が等価な円の直径である電極の先端部直径が、8.0mm以上であり、
    5.5kN以上の加圧力で前記電極を加圧しつつ電流Ia(t)(kA)を以下の式(1)、(2)を満たすように通電時間ta秒の間通電する予備通電工程と、
    前記予備通電工程後に5.0kN以上で前記電極を加圧しつつ通電する本通電工程とを備え、
    前記予備通電工程および前記本通電工程の電流はすべて直流であり、
    前記通電時間taおよび本通電工程の通電時間のそれぞれの80%以上の通電方式が連続的に通電する連続通電であることを特徴とする抵抗スポット溶接継手の製造方法。
    Ia(t)≦6.0(kA)・・・式(1)
    Figure 2019124467
  2. 前記予備通電工程において電流を増大させることを特徴とする請求項1に記載の抵抗スポット溶接継手の製造方法。
  3. 前記本通電工程において電流を増大させることを特徴とする請求項1または2に記載の抵抗スポット溶接継手の製造方法。
  4. 前記予備通電工程が連続通電であることを特徴とする請求項1〜3のうちいずれか1項に記載の抵抗スポット溶接継手の製造方法。
  5. 前記本通電工程が連続通電であることを特徴とする請求項1〜4のうちいずれか1項に記載の抵抗スポット溶接継手の製造方法。
  6. 前記鋼板の少なくとも1枚の鋼板の接触抵抗が1mΩ以上であることを特徴とする請求項1〜5のうちいずれか1項に記載の抵抗スポット溶接継手の製造方法。
JP2019526633A 2017-12-19 2018-12-19 抵抗スポット溶接継手の製造方法 Active JP6593572B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017242970 2017-12-19
JP2017242970 2017-12-19
PCT/JP2018/046887 WO2019124467A1 (ja) 2017-12-19 2018-12-19 抵抗スポット溶接継手の製造方法

Publications (2)

Publication Number Publication Date
JP6593572B1 JP6593572B1 (ja) 2019-10-23
JPWO2019124467A1 true JPWO2019124467A1 (ja) 2019-12-19

Family

ID=66994212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019526633A Active JP6593572B1 (ja) 2017-12-19 2018-12-19 抵抗スポット溶接継手の製造方法

Country Status (6)

Country Link
US (1) US20200361021A1 (ja)
JP (1) JP6593572B1 (ja)
KR (1) KR20200086730A (ja)
CN (1) CN111511497A (ja)
MX (1) MX2020005803A (ja)
WO (1) WO2019124467A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101999005B1 (ko) * 2017-12-22 2019-07-10 주식회사 포스코 아연도금강판의 점용접 균열 방지방법
CN113857636A (zh) * 2019-08-08 2021-12-31 沈阳大学 一种1800MPa级超高强度热成形钢板电阻点焊工艺
US20230121205A1 (en) * 2019-10-09 2023-04-20 Jfe Steel Corporation Resistance spot welding method and weld member production method
CN114502310B (zh) * 2019-10-09 2023-04-07 杰富意钢铁株式会社 电阻点焊方法和焊接构件的制造方法
JP7201569B2 (ja) * 2019-11-20 2023-01-10 トヨタ自動車株式会社 抵抗スポット溶接方法
CN117693411A (zh) * 2021-07-30 2024-03-12 杰富意钢铁株式会社 电阻点焊方法
KR102657531B1 (ko) * 2022-04-28 2024-04-18 테스원 주식회사 핫스탬핑강 저항 점 용접의 업슬로프 전류 제어에 의한 표면날림 억제 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291088A (ja) * 2003-03-13 2004-10-21 Sumitomo Metal Ind Ltd 鋼材の表面品質の検査方法
CN100437099C (zh) * 2003-09-29 2008-11-26 丰田自动车株式会社 钢材的表面质量的检查方法
JP5415896B2 (ja) * 2009-01-29 2014-02-12 Jfeスチール株式会社 インダイレクトスポット溶接方法
JP5359571B2 (ja) 2009-02-12 2013-12-04 新日鐵住金株式会社 高張力鋼板の抵抗溶接方法および抵抗溶接継手の製造方法
JP2010188408A (ja) 2009-02-20 2010-09-02 Honda Motor Co Ltd 抵抗溶接の通電方法
JP5333560B2 (ja) * 2011-10-18 2013-11-06 Jfeスチール株式会社 高張力鋼板の抵抗スポット溶接方法及び抵抗スポット溶接継手
CN104661784B (zh) 2012-09-24 2017-11-07 新日铁住金株式会社 接头强度优异的高强度钢板的点焊方法
WO2014167772A1 (ja) * 2013-04-09 2014-10-16 Jfeスチール株式会社 インダイレクトスポット溶接方法
EP3020499B1 (en) 2013-07-11 2020-08-12 Nippon Steel Corporation Resistive spot welding method
MX351205B (es) * 2013-10-04 2017-10-05 Jfe Steel Corp Metodo de soldadura por puntos de resistencia.
JP6137337B2 (ja) 2013-12-20 2017-05-31 新日鐵住金株式会社 抵抗スポット溶接方法
MX2016014260A (es) * 2014-05-07 2017-02-22 Nippon Steel & Sumitomo Metal Corp Metodo de soldadura por puntos.
MX2017007020A (es) * 2014-12-01 2017-08-14 Jfe Steel Corp Metodo de soldadura por puntos de resistencia.
WO2016125446A1 (ja) * 2015-02-02 2016-08-11 Jfeスチール株式会社 鋼板の接合体、鋼板の接合体の製造方法およびスポット溶接方法
JP6108018B2 (ja) * 2015-09-03 2017-04-05 新日鐵住金株式会社 スポット溶接方法

Also Published As

Publication number Publication date
WO2019124467A1 (ja) 2019-06-27
JP6593572B1 (ja) 2019-10-23
MX2020005803A (es) 2020-08-20
US20200361021A1 (en) 2020-11-19
CN111511497A (zh) 2020-08-07
KR20200086730A (ko) 2020-07-17

Similar Documents

Publication Publication Date Title
JP6593572B1 (ja) 抵抗スポット溶接継手の製造方法
JP6584728B1 (ja) 抵抗スポット溶接継手の製造方法
KR101892828B1 (ko) 저항 스폿 용접 방법
RU2663659C2 (ru) Способ точечной контактной сварки
JP6558443B2 (ja) 抵抗スポット溶接方法
JP5332857B2 (ja) 高張力鋼板の抵抗溶接方法
CN108857013B (zh) 点焊方法
CN110461528B (zh) 电阻点焊接头的制造方法
JP5359571B2 (ja) 高張力鋼板の抵抗溶接方法および抵抗溶接継手の製造方法
WO2017104647A1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6079935B2 (ja) 抵抗スポット溶接方法
JP5392142B2 (ja) 合金化アルミめっき鋼板またはアルミ合金層を有するプレス部品のスポット溶接方法
JP6584729B1 (ja) 抵抗スポット溶接継手の製造方法
CN110475642B (zh) 电阻点焊接头的制造方法
CN110325313B (zh) 电阻点焊方法
JP6160581B2 (ja) 抵抗スポット溶接方法
WO2020045678A1 (ja) 抵抗スポット溶接方法
JP2017140633A (ja) スポット溶接方法
KR20240019358A (ko) 용접 방법
CN117693411A (zh) 电阻点焊方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190517

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R151 Written notification of patent or utility model registration

Ref document number: 6593572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151