JPWO2019111804A1 - How to drive optical semiconductor devices and optical semiconductor devices - Google Patents

How to drive optical semiconductor devices and optical semiconductor devices Download PDF

Info

Publication number
JPWO2019111804A1
JPWO2019111804A1 JP2019558179A JP2019558179A JPWO2019111804A1 JP WO2019111804 A1 JPWO2019111804 A1 JP WO2019111804A1 JP 2019558179 A JP2019558179 A JP 2019558179A JP 2019558179 A JP2019558179 A JP 2019558179A JP WO2019111804 A1 JPWO2019111804 A1 JP WO2019111804A1
Authority
JP
Japan
Prior art keywords
region
electrode
optical waveguide
clad layer
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019558179A
Other languages
Japanese (ja)
Inventor
正道 山西
正道 山西
徹 廣畑
徹 廣畑
田中 和典
和典 田中
和上 藤田
和上 藤田
彰 樋口
彰 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Publication of JPWO2019111804A1 publication Critical patent/JPWO2019111804A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

光半導体素子の駆動方法は、第1電極と第4電極との間、及び第2電極と第4電極との間のそれぞれに順バイアスをかけることにより、第1領域及び第2領域を利得領域として機能させる共に、第3電極と第4電極との間に逆バイアスをかけることにより、第3領域を損失領域として機能させる工程を含む。第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、第2領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第2領域の長さとの積は、第1領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第1領域の長さとの積よりも大きい。The driving method of the optical semiconductor element is to apply a forward bias between the first electrode and the fourth electrode and between the second electrode and the fourth electrode, respectively, so that the first region and the second region are gain regions. The third region is made to function as a loss region by applying a reverse bias between the third electrode and the fourth electrode. In a state where the first region and the second region function as a gain region and the third region functions as a loss region, the value corresponding to the gain acquired while the light travels a unit distance in the second region and the optical waveguide. The product of the length of the second region in the direction is greater than the product of the length of the first region in the optical waveguide direction and the value corresponding to the gain gained while the light travels a unit distance in the first region.

Description

本開示の一側面は、光半導体素子の駆動方法、及び光半導体素子に関する。 One aspect of the present disclosure relates to a driving method of an optical semiconductor element and an optical semiconductor element.

集光性に優れ且つ広いスペクトルを有する出力光を発生させ得る光源として、スーパールミネッセントダイオード(以下、SLDという)が注目されている。SLDとして、例えば特許文献1には、ダブルヘテロ構造の光導波路体がイオン注入領域によって発光領域と光損失領域とに電気的に分離された端面発光ダイオードが記載されている。 Super luminescent diodes (hereinafter referred to as SLDs) are attracting attention as light sources capable of generating output light having excellent light collection properties and a wide spectrum. As the SLD, for example, Patent Document 1 describes an end face light emitting diode in which an optical waveguide having a double heterostructure is electrically separated into a light emitting region and a light loss region by an ion implantation region.

特開平4−259262号公報Japanese Unexamined Patent Publication No. 4-259262

上述したような光半導体素子では、注入電流が増加するほど出力光の強度が大きくなるが、所定量よりも大きな電流が注入されると、光導波路体内で光が発振してしまい、良好な出力光を得ることができない。一方で、上述したような半導体素子には、更なる高出力化が望まれている。 In the optical semiconductor device as described above, the intensity of the output light increases as the injection current increases, but when a current larger than a predetermined amount is injected, the light oscillates inside the optical waveguide, resulting in good output. I can't get the light. On the other hand, it is desired that the semiconductor element as described above has a higher output.

本開示の一側面は、光半導体素子の高出力化を図ることができる光半導体素子の駆動方法、及びそのような駆動方法に適した光半導体素子を提供することを目的とする。 One aspect of the present disclosure is to provide a method for driving an optical semiconductor device capable of increasing the output of the optical semiconductor element, and an optical semiconductor element suitable for such a driving method.

本開示の一側面に係る光半導体素子の駆動方法では、光半導体素子は、活性層、並びに、活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、第2クラッド層上に設けられた第1電極と、光導波路体の光導波方向における第1電極の一方の側において第2クラッド層上に設けられた第2電極と、光導波路体の光導波方向における第1電極の他方の側において第2クラッド層上に設けられた第3電極と、光導波路体を挟んで、第1電極、第2電極及び第3電極と対向する少なくとも1つの第4電極と、を備え、光導波路体には、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第2電極下の第2領域との間を光学的に接続しつつ、第1領域と第2領域とを互いに電気的に分離する第1分離領域と、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第3電極下の第3領域との間を光学的に接続しつつ、第1領域と第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、光半導体素子の駆動方法は、第1電極と少なくとも1つの第4電極との間、及び第2電極と少なくとも1つの第4電極との間のそれぞれに順バイアスをかけることにより、第1領域及び第2領域を利得領域として機能させる共に、第3電極と少なくとも1つの第4電極との間に逆バイアスをかけることにより、第3領域を損失領域として機能させる工程を含み、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、第2領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第2領域の長さとの積は、第1領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第1領域の長さとの積よりも大きい。 In the method for driving an optical semiconductor element according to one aspect of the present disclosure, the optical semiconductor element is an optical waveguide configured as a double heterostructure including an active layer and a first clad layer and a second clad layer sandwiching the active layer. And the first electrode provided on the second clad layer, the second electrode provided on the second clad layer on one side of the first electrode in the optical waveguide direction of the optical waveguide, and the optical waveguide of the optical waveguide. At least one facing the first electrode, the second electrode, and the third electrode with the optical waveguide sandwiched between the third electrode provided on the second clad layer on the other side of the first electrode in the optical waveguide direction. A fourth electrode is provided, and the optical waveguide includes an optical waveguide from the surface of the second clad layer to the first clad layer, and optics between the first region under the first electrode and the second region under the second electrode. The first separation region that electrically separates the first region and the second region from each other while being connected to each other, and the first region under the first electrode from the surface of the second clad layer to the first clad layer. A second separation region that electrically separates the first region and the third region from each other while optically connecting to the third region under the third electrode is provided, and the optical semiconductor element is provided with a second separation region. The driving method is to apply a forward bias between the first electrode and at least one fourth electrode, and between the second electrode and at least one fourth electrode, thereby forming the first region and the second region. It includes a step of making the third region function as a loss region by functioning as a gain region and applying a reverse bias between the third electrode and at least one fourth electrode, and gains the first region and the second region. In a state where the region functions as a region and the third region functions as a loss region, the value corresponding to the gain acquired while the light travels a unit distance in the second region and the length of the second region in the optical waveguide direction The product is greater than the product of the value corresponding to the gain gained while the light travels a unit distance in the first region and the length of the first region in the optical waveguide direction.

この光半導体素子の駆動方法では、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、第2領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第2領域の長さとの積(以下、第2領域の利得量という)が、第1領域を光が単位距離進行する間に獲得する利得に対応する値と光導波方向における第1領域の長さとの積(以下、第1領域の利得量という)よりも大きい。これにより、第1領域及び第2領域で発生した光を効果的に増倍させて取り出すことができ、光半導体素子の高出力化を図ることができる。 In this method of driving an optical semiconductor device, in a state where the first region and the second region function as a gain region and the third region functions as a loss region, the second region is acquired while the light travels a unit distance. The product of the value corresponding to the gain to be gained and the length of the second region in the optical waveguide direction (hereinafter referred to as the gain amount of the second region) corresponds to the gain obtained while the light travels a unit distance in the first region. It is larger than the product of the value and the length of the first region in the optical waveguide direction (hereinafter referred to as the gain amount of the first region). As a result, the light generated in the first region and the second region can be effectively multiplied and extracted, and the output of the photosemiconductor element can be increased.

本開示の一側面に係る光半導体素子の駆動方法では、活性層は、多重量子井戸構造を有していてもよい。この場合、光半導体素子の一層の高出力化を図ることができる。 In the method for driving an optical semiconductor device according to one aspect of the present disclosure, the active layer may have a multiple quantum well structure. In this case, it is possible to further increase the output of the optical semiconductor element.

本開示の一側面に係る光半導体素子の駆動方法において、第1領域及び前記第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態では、活性層における第1準位から基底準位への遷移によって光が発生してもよい。この場合、光半導体素子の高出力化が好適に図られる。 In the method for driving an optical semiconductor element according to one aspect of the present disclosure, in a state where the first region and the second region function as a gain region and the third region functions as a loss region, the first quasi in the active layer. Light may be generated by the transition from the position to the base level. In this case, it is preferable to increase the output of the optical semiconductor element.

本開示の一側面に係る光半導体素子の駆動方法では、光導波方向は、真っ直ぐに延在する方向であってもよい。この場合、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することが容易化される。更に、光導波方向が真っ直ぐに延在する方向であるため、良好なビームパターンを有する出力光を得ることができる。 In the method for driving an optical semiconductor device according to one aspect of the present disclosure, the optical waveguide direction may be a straight extending direction. In this case, it is easy to drive the optical semiconductor element so that the gain amount in the second region is larger than the gain amount in the first region. Further, since the optical waveguide direction is a straight extending direction, output light having a good beam pattern can be obtained.

本開示の一側面に係る光半導体素子の駆動方法では、第2領域における第1領域とは反対側の端面は、光導波方向に垂直な面であってもよい。この場合、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することが一層容易化される。更に、当該端面が光導波方向に垂直な面であるため、一層良好なビームパターンを有する出力光を得ることができる。 In the method for driving an optical semiconductor device according to one aspect of the present disclosure, the end face of the second region opposite to the first region may be a plane perpendicular to the optical waveguide direction. In this case, it is further facilitated to drive the optical semiconductor element so that the gain amount in the second region is larger than the gain amount in the first region. Further, since the end face is a plane perpendicular to the optical waveguide direction, output light having a better beam pattern can be obtained.

本開示の一側面に係る光半導体素子の駆動方法では、第2領域における第1領域とは反対側の端面には、低反射層が設けられていてもよい。この場合、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することがより一層容易化される。更に、出力光の出射面となる当該端面で出力光の一部が反射されることにより光学的なロスが生じるのを抑制することができる。 In the method for driving an optical semiconductor device according to one aspect of the present disclosure, a low reflection layer may be provided on an end surface of the second region opposite to the first region. In this case, it is further facilitated to drive the optical semiconductor element so that the gain amount in the second region is larger than the gain amount in the first region. Further, it is possible to suppress the occurrence of optical loss due to the reflection of a part of the output light on the end surface which is the emission surface of the output light.

本開示の一側面に係る光半導体素子の駆動方法では、第1分離領域は、イオン注入領域又は不純物拡散領域によって構成されており、第2分離領域は、イオン注入領域、不純物拡散領域、又は第2クラッド層とは伝導型が異なる半導体領域によって構成されていてもよい。この場合、第1分離領域により、第1領域と第2領域との間の光学的な接続及び電気的な分離を好適に実現することができる。また、第2分離領域により、第1領域と第3領域との間の光学的な接続及び電気的な分離を好適に実現することができる。 In the method for driving an optical semiconductor device according to one aspect of the present disclosure, the first separation region is composed of an ion implantation region or an impurity diffusion region, and the second separation region is an ion implantation region, an impurity diffusion region, or a first. It may be composed of a semiconductor region having a different conduction type from the two-clad layer. In this case, the first separation region can suitably realize the optical connection and electrical separation between the first region and the second region. In addition, the second separation region can suitably realize an optical connection and an electrical separation between the first region and the third region.

本開示の一側面に係る光半導体素子の駆動方法では、光導波方向における第2領域の長さは、光導波方向における第1領域の長さよりも長くてもよい。この場合、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することがより一層容易化される。 In the method for driving an optical semiconductor device according to one aspect of the present disclosure, the length of the second region in the optical waveguide direction may be longer than the length of the first region in the optical waveguide direction. In this case, it is further facilitated to drive the optical semiconductor element so that the gain amount in the second region is larger than the gain amount in the first region.

本開示の一側面に係る光半導体素子の駆動方法では、第2領域は、第2クラッド層に垂直な方向から見た場合に、第1領域から遠ざかるほど幅が広くなるフレア形状をなしていてもよい。この場合、広いビームパターンを有する出力光を得ることができる。更に、第2領域がフレア形状をなしていることにより、注入される電流の密度を低減して利得飽和の発生を抑制することができると共に、熱の影響を低減することができるため、光半導体素子の一層の高出力化を図ることができる。 In the method for driving an optical semiconductor device according to one aspect of the present disclosure, the second region has a flare shape in which the width becomes wider as the distance from the first region increases when viewed from a direction perpendicular to the second clad layer. May be good. In this case, output light having a wide beam pattern can be obtained. Further, since the second region has a flare shape, the density of the injected current can be reduced, the occurrence of gain saturation can be suppressed, and the influence of heat can be reduced. It is possible to further increase the output of the element.

本開示の一側面に係る光半導体素子の駆動方法では、光半導体素子は、活性層、並びに、活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、第2クラッド層上に設けられた第1電極と、光導波路体の光導波方向における第1電極の一方の側において第2クラッド層上に設けられた第2電極と、光導波路体の光導波方向における第1電極の他方の側において第2クラッド層上に設けられた第3電極と、光導波路体を挟んで、第1電極、第2電極及び第3電極と対向する少なくとも1つの第4電極と、を備え、光導波路体には、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第2電極下の第2領域との間を光学的に接続しつつ、第1領域と第2領域とを互いに電気的に分離する第1分離領域と、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第3電極下の第3領域との間を光学的に接続しつつ、第1領域と第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、光半導体素子の駆動方法は、第1電極と少なくとも1つの第4電極との間、及び第2電極と少なくとも1つの第4電極との間のそれぞれに順バイアスをかけることにより、第1領域及び第2領域を利得領域として機能させる共に、第3電極と少なくとも1つの第4電極との間に逆バイアスをかけることにより、第3領域を損失領域として機能させる工程を含み、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、光導波方向に沿って第2領域を通過した光が獲得する利得は、光導波方向に沿って第1領域を通過した光が獲得する利得よりも大きい。 In the method for driving an optical semiconductor element according to one aspect of the present disclosure, the optical semiconductor element is an optical waveguide configured as a double heterostructure including an active layer and a first clad layer and a second clad layer sandwiching the active layer. And the first electrode provided on the second clad layer, the second electrode provided on the second clad layer on one side of the first electrode in the optical waveguide direction of the optical waveguide, and the optical waveguide of the optical waveguide. At least one facing the first electrode, the second electrode, and the third electrode with the optical waveguide sandwiched between the third electrode provided on the second clad layer on the other side of the first electrode in the optical waveguide direction. A fourth electrode is provided, and the optical waveguide includes an optical waveguide from the surface of the second clad layer to the first clad layer, and optically between the first region under the first electrode and the second region under the second electrode. A first separation region that electrically separates the first region and the second region from each other while being connected to each other, and a first region under the first electrode from the surface of the second clad layer to the first clad layer. A second separation region that electrically separates the first region and the third region from each other while optically connecting to the third region under the third electrode is provided, and the optical semiconductor element is provided with a second separation region. The driving method is to apply a forward bias between the first electrode and at least one fourth electrode, and between the second electrode and at least one fourth electrode, thereby forming the first region and the second region. It includes a step of making the third region function as a loss region by functioning as a gain region and applying a reverse bias between the third electrode and at least one fourth electrode, and gains the first region and the second region. The gain acquired by the light passing through the second region along the optical waveguide direction passes through the first region along the optical waveguide direction in a state where the region functions as a region and the third region functions as a loss region. Greater than the gain that light gains.

この光半導体素子の駆動方法では、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において、光導波方向に沿って第2領域を通過した光が獲得する利得が、光導波方向に沿って第1領域を通過した光が獲得する利得よりも大きい。これにより、第1領域及び第2領域で発生した光を効果的に増倍させて取り出すことができ、光半導体素子の高出力化を図ることができる。 In this method of driving an optical semiconductor device, light that has passed through a second region along the optical waveguide direction in a state where the first region and the second region function as a gain region and the third region functions as a loss region. The gain obtained by the light is larger than the gain obtained by the light passing through the first region along the optical waveguide direction. As a result, the light generated in the first region and the second region can be effectively multiplied and extracted, and the output of the photosemiconductor element can be increased.

本開示の一側面に係る光半導体素子は、活性層、並びに、活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、第2クラッド層上に設けられた第1電極と、光導波路体の光導波方向における第1電極の一方の側において第2クラッド層上に設けられた第2電極と、光導波路体の光導波方向における第1電極の他方の側において第2クラッド層上に設けられた第3電極と、光導波路体を挟んで、第1電極、第2電極及び第3電極と対向する少なくとも1つの第4電極と、を備え、光導波路体には、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第2電極下の第2領域との間を光学的に接続しつつ、第1領域と第2領域とを互いに電気的に分離する第1分離領域と、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第3電極下の第3領域との間を光学的に接続しつつ、第1領域と第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、光導波方向における第2領域の長さは、光導波方向における第1領域の長さよりも長い。 The optical semiconductor element according to one aspect of the present disclosure includes an active layer, an optical waveguide configured as a double heterostructure including a first clad layer and a second clad layer sandwiching the active layer, and a second clad layer. The first electrode provided, the second electrode provided on the second clad layer on one side of the first electrode in the optical waveguide direction of the optical waveguide, and the first electrode in the optical waveguide direction of the optical waveguide. A third electrode provided on the second clad layer on the other side and at least one fourth electrode facing the first electrode, the second electrode, and the third electrode across the optical waveguide are provided. In the optical waveguide, the surface of the second clad layer reaches the first clad layer, and the first region is optically connected between the first region under the first electrode and the second region under the second electrode. A first separation region that electrically separates the region and the second region from each other, and a first region under the first electrode and a third region under the third electrode from the surface of the second clad layer to the first clad layer. A second separation region that electrically separates the first region and the third region from each other is provided while optically connecting the two regions, and the length of the second region in the optical waveguide direction is It is longer than the length of the first region in the optical waveguide direction.

この光半導体素子では、第1電極と少なくとも1つの第4電極との間、及び第2電極と少なくとも1つの第4電極との間のそれぞれに順バイアスをかけて第1領域及び第2領域を利得領域として機能させると共に第3電極と少なくとも1つの第4電極との間に逆バイアスをかけて第3領域を損失領域として機能させることにより、集光性に優れ且つ広いスペクトルを有する出力光を発生させることができる。更に、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することで、第1領域及び第2領域で発生した光を効果的に増倍させて取り出すことができ、光半導体素子の高出力化を図ることができる。また、この光半導体素子では、光導波方向における第2領域の長さが光導波方向における第1領域の長さよりも長いため、第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することが容易化されている。 In this optical semiconductor device, the first region and the second region are subjected to forward bias by applying a forward bias between the first electrode and at least one fourth electrode and between the second electrode and at least one fourth electrode, respectively. By functioning as a gain region and applying a reverse bias between the third electrode and at least one fourth electrode to make the third region function as a loss region, output light having excellent condensing property and a wide spectrum can be obtained. Can be generated. Further, in a state where the first region and the second region function as the gain region and the third region functions as the loss region, the optical semiconductor so that the gain amount in the second region becomes larger than the gain amount in the first region. By driving the element, the light generated in the first region and the second region can be effectively multiplied and extracted, and the output of the optical semiconductor element can be increased. Further, in this optical semiconductor device, since the length of the second region in the optical waveguide direction is longer than the length of the first region in the optical waveguide direction, the gain amount of the second region is larger than the gain amount of the first region. As described above, it is easy to drive the optical semiconductor element.

本開示の一側面に係る光半導体素子では、活性層は、多重量子井戸構造を有していてもよい。この場合、光半導体素子の一層の高出力化を図ることができる。 In the optical semiconductor device according to one aspect of the present disclosure, the active layer may have a multiple quantum well structure. In this case, it is possible to further increase the output of the optical semiconductor element.

本開示の一側面に係る光半導体素子では、光導波方向は、真っ直ぐに延在する方向であってもよい。この場合、光導波方向が真っ直ぐに延在する方向であるため、良好なビームパターンを有する出力光を得ることができる。 In the optical semiconductor device according to one aspect of the present disclosure, the optical waveguide direction may be a straight extending direction. In this case, since the optical waveguide direction is a straight extending direction, output light having a good beam pattern can be obtained.

本開示の一側面に係る光半導体素子では、第2領域における第1領域とは反対側の端面は、光導波方向に垂直な面であってもよい。この場合、当該端面が光導波方向に垂直な面であるため、一層良好なビームパターンを有する出力光を得ることができる。 In the optical semiconductor device according to one aspect of the present disclosure, the end face of the second region opposite to the first region may be a plane perpendicular to the optical waveguide direction. In this case, since the end face is a plane perpendicular to the optical waveguide direction, output light having a better beam pattern can be obtained.

本開示の一側面に係る光半導体素子では、第2領域における第1領域とは反対側の端面には、低反射層が設けられていてもよい。この場合、出力光の出射面となる当該端面で出力光の一部が反射されることにより光学的なロスが生じるのを抑制することができる。 In the optical semiconductor device according to one aspect of the present disclosure, a low reflection layer may be provided on the end surface of the second region opposite to the first region. In this case, it is possible to suppress the occurrence of optical loss due to the reflection of a part of the output light on the end surface which is the emission surface of the output light.

本開示の一側面に係る光半導体素子では、第1分離領域は、イオン注入領域又は不純物拡散領域によって構成されており、第2分離領域は、イオン注入領域、不純物拡散領域、又は第2クラッド層とは伝導型が異なる半導体領域によって構成されていてもよい。この場合、第1分離領域により、第1領域と第2領域との間の光学的な接続及び電気的な分離を好適に実現することができる。また、第2分離領域により、第1領域と第3領域との間の光学的な接続及び電気的な分離を好適に実現することができる。 In the optical semiconductor device according to one aspect of the present disclosure, the first separation region is composed of an ion implantation region or an impurity diffusion region, and the second separation region is an ion implantation region, an impurity diffusion region, or a second clad layer. It may be composed of semiconductor regions having different conduction types from the above. In this case, the first separation region can suitably realize the optical connection and electrical separation between the first region and the second region. In addition, the second separation region can suitably realize an optical connection and an electrical separation between the first region and the third region.

本開示の一側面に係る光半導体素子は、活性層、並びに、活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、第2クラッド層上に設けられた第1電極と、光導波路体の光導波方向における第1電極の一方の側において第2クラッド層上に設けられた第2電極と、光導波路体の光導波方向における第1電極の他方の側において第2クラッド層上に設けられた第3電極と、光導波路体を挟んで、第1電極、第2電極及び第3電極と対向する少なくとも1つの第4電極と、を備え、光導波路体には、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第2電極下の第2領域との間を光学的に接続しつつ、第1領域と第2領域とを互いに電気的に分離する第1分離領域と、第2クラッド層の表面から第1クラッド層に至り、第1電極下の第1領域と第3電極下の第3領域との間を光学的に接続しつつ、第1領域と第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、第2領域は、第2クラッド層に垂直な方向から見た場合に、第1領域から遠ざかるほど幅が広くなるフレア形状をなしている。 The optical semiconductor element according to one aspect of the present disclosure includes an active layer, an optical waveguide configured as a double heterostructure including a first clad layer and a second clad layer sandwiching the active layer, and a second clad layer. The first electrode provided, the second electrode provided on the second clad layer on one side of the first electrode in the optical waveguide direction of the optical waveguide, and the first electrode in the optical waveguide direction of the optical waveguide. A third electrode provided on the second clad layer on the other side and at least one fourth electrode facing the first electrode, the second electrode, and the third electrode across the optical waveguide are provided. In the optical waveguide, the surface of the second clad layer reaches the first clad layer, and the first region is optically connected between the first region under the first electrode and the second region under the second electrode. A first separation region that electrically separates the region and the second region from each other, and a first region under the first electrode and a third region under the third electrode from the surface of the second clad layer to the first clad layer. A second separation region is provided which electrically separates the first region and the third region from each other while optically connecting the two regions, and the second region is perpendicular to the second clad layer. When viewed from the direction, it has a flare shape in which the width becomes wider as the distance from the first region increases.

この光半導体素子では、第1電極と少なくとも1つの第4電極との間、及び第2電極と少なくとも1つの第4電極との間のそれぞれに順バイアスをかけて第1領域及び第2領域を利得領域として機能させると共に第3電極と少なくとも1つの第4電極との間に逆バイアスをかけて第3領域を損失領域として機能させることにより、集光性に優れ且つ広いスペクトルを有する出力光を発生させることができる。更に、第1領域及び第2領域を利得領域として機能させると共に第3領域を損失領域として機能させている状態において第2領域の利得量が第1領域の利得量よりも大きくなるように光半導体素子を駆動することで、第1領域及び第2領域で発生した光を効果的に増倍させて取り出すことができ、光半導体素子の高出力化を図ることができる。また、この光半導体素子では、第2領域がフレア形状をなしており、第2領域において光が広がりながら増幅されるため、広いビームパターンを有する出力光を得ることができる。更に、注入される電流の密度を低減して利得飽和の発生を抑制することができると共に、熱の影響を低減することができるため、光半導体素子の一層の高出力化を図ることができる。 In this optical semiconductor device, the first region and the second region are subjected to forward bias by applying a forward bias between the first electrode and at least one fourth electrode and between the second electrode and at least one fourth electrode, respectively. By functioning as a gain region and applying a reverse bias between the third electrode and at least one fourth electrode to make the third region function as a loss region, output light having excellent condensing property and a wide spectrum can be obtained. Can be generated. Further, in a state where the first region and the second region function as the gain region and the third region functions as the loss region, the optical semiconductor so that the gain amount in the second region becomes larger than the gain amount in the first region. By driving the element, the light generated in the first region and the second region can be effectively multiplied and extracted, and the output of the optical semiconductor element can be increased. Further, in this optical semiconductor element, the second region has a flare shape, and the light is amplified while spreading in the second region, so that it is possible to obtain output light having a wide beam pattern. Further, the density of the injected current can be reduced to suppress the occurrence of gain saturation, and the influence of heat can be reduced, so that the output of the optical semiconductor element can be further increased.

本開示の一側面によれば、光半導体素子の高出力化を図ることができる光半導体素子の駆動方法、及びそのような駆動方法に適した光半導体素子を提供することできる。 According to one aspect of the present disclosure, it is possible to provide a method for driving an optical semiconductor device capable of increasing the output of the optical semiconductor element, and an optical semiconductor element suitable for such a driving method.

実施形態に係る光半導体素子を示す斜視図である。It is a perspective view which shows the optical semiconductor element which concerns on embodiment. 図1に示されるII−II線に沿っての断面図である。It is sectional drawing along the line II-II shown in FIG. (a)及び(b)は、実施形態に係る光半導体素子の駆動方法の作用効果を説明するための概念図である。(A) and (b) are conceptual diagrams for explaining the action and effect of the driving method of the optical semiconductor element according to the embodiment. 活性層の井戸数と電流及び利得との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the number of wells of an active layer, current and gain. 第1変形例の光半導体素子の斜視図である。It is a perspective view of the optical semiconductor element of the 1st modification. 第2変形例の光半導体素子の斜視図である。It is a perspective view of the optical semiconductor element of the 2nd modification. 第3変形例の光半導体素子の斜視図である。It is a perspective view of the optical semiconductor element of the 3rd modification. 第4変形例の光半導体素子の斜視図である。It is a perspective view of the optical semiconductor element of the 4th modification.

以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光半導体素子の構成]
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and overlapping parts are omitted.
[Structure of optical semiconductor device]

図1及び図2に示されるように、光半導体素子1は、基板2と、光導波路体10と、を備えている。光導波路体10は、基板2の表面2aにバッファ層3を介して設けられている。基板2及びバッファ層3は、それぞれ、例えばn型GaAsからなる。基板2は、例えば、1.5〜6.0mm程度の長さ、300〜1000μm程度の幅、及び100〜600μm程度の厚さを有する長方形板状を呈している。以下、基板2の長さ方向をX軸方向、基板2の幅方向をY軸方向、基板2の厚さ方向をZ軸方向という。As shown in FIGS. 1 and 2, the optical semiconductor element 1 includes a substrate 2 and an optical waveguide 10. The optical waveguide 10 is provided on the surface 2a of the substrate 2 via the buffer layer 3. Substrate 2 and the buffer layer 3, respectively, for example, the n - -type GaAs. The substrate 2 has, for example, a rectangular plate having a length of about 1.5 to 6.0 mm, a width of about 300 to 1000 μm, and a thickness of about 100 to 600 μm. Hereinafter, the length direction of the substrate 2 is referred to as the X-axis direction, the width direction of the substrate 2 is referred to as the Y-axis direction, and the thickness direction of the substrate 2 is referred to as the Z-axis direction.

光導波路体10は、第1クラッド層11、第1ガイド層12、活性層13、第2ガイド層14、第2クラッド層15及びコンタクト層16がこの順序でバッファ層3上に積層されることにより構成されている。光導波路体10は、活性層13、並びに、活性層13を挟む第1クラッド層11及び第2クラッド層15を含むダブルヘテロ構造として構成されている。第1クラッド層11は、例えばn型Al0.3Ga0.7Asからなる。第1ガイド層12は、例えばノンドープAl0.25Ga0.75Asからなる。活性層13は、例えばGaAs/Al0.2Ga0.8As多重量子井戸構造を有している。第2ガイド層14は、例えばノンドープAl0.25Ga0.75Asからなる。第2クラッド層15は、例えばp型Al0.3Ga0.7Asからなる。コンタクト層16は、例えばp型GaAsからなる。In the optical waveguide 10, the first clad layer 11, the first guide layer 12, the active layer 13, the second guide layer 14, the second clad layer 15, and the contact layer 16 are laminated on the buffer layer 3 in this order. It is composed of. The optical waveguide 10 is configured as a double heterostructure including an active layer 13, a first clad layer 11 and a second clad layer 15 sandwiching the active layer 13. The first clad layer 11 is made of, for example, n type Al 0.3 Ga 0.7 As. The first guide layer 12 is made of, for example, non-doped Al 0.25 Ga 0.75 As. The active layer 13 has, for example, a GaAs / Al 0.2 Ga 0.8 As multiplex quantum well structure. The second guide layer 14 is made of, for example, non-doped Al 0.25 Ga 0.75 As. The second clad layer 15 is made of, for example, p - type Al 0.3 Ga 0.7 As. The contact layer 16 is made of, for example, p + type GaAs.

光導波路体10は、基板2上においてリッジ構造として構成されている。光導波路体10の光導波方向Aは、X軸方向と平行に真っ直ぐに延在する方向である。一例として、光導波路体10の幅は、第1クラッド層11におけるバッファ層3側の部分を除いて、基板2及びバッファ層3の幅よりも小さくされている。リッジ構造部分において、光導波路体10は、例えば、1.5〜6.0mm程度の長さ、2〜50μm程度の幅、及び1〜2μm程度の厚さを有する長方形板状(層状)を呈している。なお、光導波方向Aとは、光を閉じ込めるための筒状の領域(リッジ構造では、第1クラッド層11、第2クラッド層15及び空気層によって形成される領域)の中心線に沿った方向、換言すれば、当該筒状の領域によって囲まれた活性層13が延在する方向である。 The optical waveguide 10 is configured as a ridge structure on the substrate 2. The optical waveguide direction A of the optical waveguide 10 is a direction that extends straight in parallel with the X-axis direction. As an example, the width of the optical waveguide 10 is smaller than the width of the substrate 2 and the buffer layer 3 except for the portion of the first clad layer 11 on the buffer layer 3 side. In the ridge structure portion, the optical waveguide 10 exhibits, for example, a rectangular plate shape (layered shape) having a length of about 1.5 to 6.0 mm, a width of about 2 to 50 μm, and a thickness of about 1 to 2 μm. ing. The optical waveguide direction A is a direction along the center line of a tubular region for confining light (in the ridge structure, a region formed by the first clad layer 11, the second clad layer 15, and the air layer). In other words, the active layer 13 surrounded by the tubular region extends in the direction of extension.

光半導体素子1は、第1電極5と、第2電極6と、第3電極7と、第4電極8と、を更に備えている。第1電極5、第2電極6及び第3電極7は、それぞれ、コンタクト層16を介して第2クラッド層15上に設けられており、それぞれ、コンタクト層16を介して直下の第2クラッド層15と電気的に接続されている。第4電極8は、基板2の裏面2bに設けられており、基板2と電気的に接続されている。第1電極5、第2電極6、第3電極7及び第4電極8は、それぞれ、例えばAu系の金属からなる。 The optical semiconductor element 1 further includes a first electrode 5, a second electrode 6, a third electrode 7, and a fourth electrode 8. The first electrode 5, the second electrode 6, and the third electrode 7 are each provided on the second clad layer 15 via the contact layer 16, and each of them is a second clad layer directly below the second clad layer 15 via the contact layer 16. It is electrically connected to 15. The fourth electrode 8 is provided on the back surface 2b of the substrate 2 and is electrically connected to the substrate 2. The first electrode 5, the second electrode 6, the third electrode 7, and the fourth electrode 8 are each made of, for example, an Au-based metal.

第1電極5、第2電極6及び第3電極7は、光導波方向Aに沿って並んでいる。第2電極6は、光導波方向Aにおける第1電極5の一方の側に位置している。第3電極7は、光導波方向Aにおける第1電極5の他方の側に位置している。第4電極8は、基板2、バッファ層3及び光導波路体10を挟んで、第1電極5、第2電極6及び第3電極7と対向している。 The first electrode 5, the second electrode 6, and the third electrode 7 are arranged along the optical waveguide direction A. The second electrode 6 is located on one side of the first electrode 5 in the optical waveguide direction A. The third electrode 7 is located on the other side of the first electrode 5 in the optical waveguide direction A. The fourth electrode 8 faces the first electrode 5, the second electrode 6, and the third electrode 7 with the substrate 2, the buffer layer 3, and the optical waveguide 10 interposed therebetween.

第1電極5と第2電極6との間には、Y軸方向に延在する隙間S1が形成されており、コンタクト層16は、隙間S1に沿って物理的に分離されている。第1電極5と第3電極7との間には、Y軸方向に延在する隙間S2が形成されており、コンタクト層16は、隙間S2に沿って物理的に分離されている。つまり、第1電極5、第2電極6及び第3電極7は、光導波路体10の上面(第4電極8とは反対側の表面)の全体を覆うように形成された金属層が隙間S1及び隙間S2のそれぞれを介して分離されることにより、形成されている。換言すれば、第1電極5、第2電極6及び第3電極7は、光導波路体10の上面のうち隙間S1及び隙間S2を除く領域の全体に渡るように、形成されている。また、コンタクト層16は、第1電極5、第2電極6及び第3電極7のそれぞれの直下の部分ごとに、各隙間S1,S2を介して分離されている。 A gap S1 extending in the Y-axis direction is formed between the first electrode 5 and the second electrode 6, and the contact layer 16 is physically separated along the gap S1. A gap S2 extending in the Y-axis direction is formed between the first electrode 5 and the third electrode 7, and the contact layer 16 is physically separated along the gap S2. That is, in the first electrode 5, the second electrode 6, and the third electrode 7, a metal layer formed so as to cover the entire upper surface of the optical waveguide 10 (the surface opposite to the fourth electrode 8) has a gap S1. It is formed by being separated through each of the gap S2 and the gap S2. In other words, the first electrode 5, the second electrode 6, and the third electrode 7 are formed so as to cover the entire region of the upper surface of the optical waveguide 10 except for the gap S1 and the gap S2. Further, the contact layer 16 is separated from each of the portions directly below the first electrode 5, the second electrode 6, and the third electrode 7 via the gaps S1 and S2.

光導波路体10には、第1分離領域17と、第2分離領域18と、が設けられている。第1分離領域17は、光導波路体10において、第1電極5下の第1領域101と第2電極6下の第2領域102との間を光学的に接続しつつ、第1領域101と第2領域102とを互いに電気的に分離している。つまり、活性層13内を進行する光は、第1分離領域17を介して第1領域101と第2領域102との間を移動することができる。第2分離領域18は、光導波路体10において、第1電極5下の第1領域101と第3電極7下の第3領域103との間を光学的に接続しつつ、第1領域101と第3領域103とを互いに電気的に分離している。つまり、活性層13内を進行する光は、第2分離領域18を介して第1領域101と第3領域103との間を移動することができる。 The optical waveguide 10 is provided with a first separation region 17 and a second separation region 18. The first separation region 17 connects with the first region 101 while optically connecting the first region 101 under the first electrode 5 and the second region 102 under the second electrode 6 in the optical waveguide 10. The second region 102 is electrically separated from each other. That is, the light traveling in the active layer 13 can move between the first region 101 and the second region 102 via the first separation region 17. The second separation region 18 is connected to the first region 101 in the optical waveguide 10 while optically connecting the first region 101 under the first electrode 5 and the third region 103 under the third electrode 7. The third region 103 is electrically separated from each other. That is, the light traveling in the active layer 13 can move between the first region 101 and the third region 103 via the second separation region 18.

第1領域101は、Z軸方向から見た場合に光導波路体10において第1電極5と重なる領域であって、光導波路体10のうち第1電極5と第4電極8とで挟まれた領域である。第2領域102は、Z軸方向から見た場合に光導波路体10において第2電極6と重なる領域であって、光導波路体10のうち第2電極6と第4電極8とで挟まれた領域である。第3領域103は、Z軸方向から見た場合に光導波路体10において第3電極7と重なる領域であって、光導波路体10のうち第3電極7と第4電極8とで挟まれた領域である。 The first region 101 is a region that overlaps with the first electrode 5 in the optical waveguide 10 when viewed from the Z-axis direction, and is sandwiched between the first electrode 5 and the fourth electrode 8 of the optical waveguide 10. It is an area. The second region 102 is a region that overlaps with the second electrode 6 in the optical waveguide 10 when viewed from the Z-axis direction, and is sandwiched between the second electrode 6 and the fourth electrode 8 of the optical waveguide 10. It is an area. The third region 103 is a region that overlaps with the third electrode 7 in the optical waveguide 10 when viewed from the Z-axis direction, and is sandwiched between the third electrode 7 and the fourth electrode 8 of the optical waveguide 10. It is an area.

第1分離領域17は、隙間S1に対応する位置(光導波方向Aにおける位置)において、光導波方向Aに垂直な面に沿うように、光導波路体10に形成されている。第2分離領域18は、隙間S2に対応する位置(光導波方向Aにおける位置)において、光導波方向Aに垂直な面に沿うように、光導波路体10に形成されている。第1分離領域17は、Z軸方向においては、第2クラッド層15の表面15aから第1クラッド層11に至っており、Y軸方向においては、光導波路体10の両側面に至っている。第2分離領域18は、Z軸方向においては、第2クラッド層15の表面15aから第1クラッド層11に至っており、Y軸方向においては、光導波路体10の両側面に至っている。 The first separation region 17 is formed in the optical waveguide 10 so as to be along a plane perpendicular to the optical waveguide direction A at a position corresponding to the gap S1 (position in the optical waveguide direction A). The second separation region 18 is formed in the optical waveguide 10 so as to be along a plane perpendicular to the optical waveguide direction A at a position corresponding to the gap S2 (position in the optical waveguide direction A). The first separation region 17 reaches from the surface 15a of the second clad layer 15 to the first clad layer 11 in the Z-axis direction, and reaches both side surfaces of the optical waveguide 10 in the Y-axis direction. The second separation region 18 reaches from the surface 15a of the second clad layer 15 to the first clad layer 11 in the Z-axis direction, and reaches both side surfaces of the optical waveguide 10 in the Y-axis direction.

本実施形態では、第1分離領域17及び第2分離領域18のそれぞれは、イオン注入領域によって構成されている。イオン注入領域は、例えば、イオン注入により、プロトン、ボロン、炭素イオン、酸素イオン、窒素イオン等が光導波路体10に添加されることによって形成されている。第1分離領域17及び第2分離領域18のそれぞれは、不純物拡散領域によって構成されてもよい。不純物拡散領域には、不純物ドーピングによって深い準位が形成される。不純物拡散領域は、例えば、熱拡散又はイオン注入により、鉄、酸素、クロム等が光導波路体10にドープされることによって形成される。第2分離領域18は、第2クラッド層15とは伝導型が異なる半導体領域によって構成されてもよい。例えば、この例では第2クラッド層15がp型の半導体であるので、第2分離領域18は、n型の半導体領域によって構成されてもよい。第1分離領域17及び第2分離領域18は、互いに異なる種類の領域によって構成されてもよい。例えば、第1分離領域17及び第2分離領域18の一方がイオン注入領域によって構成され、他方が不純物拡散領域によって構成されてもよい。いずれの場合においても、第1分離領域17及び第2分離領域18は、空隙ではなく、固体からなる物理的な領域によって構成される。 In the present embodiment, each of the first separation region 17 and the second separation region 18 is composed of an ion implantation region. The ion implantation region is formed by, for example, adding protons, boron, carbon ions, oxygen ions, nitrogen ions, etc. to the optical waveguide 10 by ion implantation. Each of the first separation region 17 and the second separation region 18 may be composed of an impurity diffusion region. Deep levels are formed in the impurity diffusion region by impurity doping. The impurity diffusion region is formed by doping the optical waveguide 10 with iron, oxygen, chromium, etc., for example, by thermal diffusion or ion implantation. The second separation region 18 may be composed of a semiconductor region having a conduction type different from that of the second clad layer 15. For example, in this example, since the second clad layer 15 is a p-type semiconductor, the second separation region 18 may be composed of an n-type semiconductor region. The first separation region 17 and the second separation region 18 may be composed of regions of different types from each other. For example, one of the first separation region 17 and the second separation region 18 may be composed of an ion implantation region, and the other may be composed of an impurity diffusion region. In either case, the first separation region 17 and the second separation region 18 are composed of physical regions made of solids, not voids.

第1分離領域17及び第2分離領域18のそれぞれの厚さ(光導波方向Aにおける幅)は、10〜50μm程度である。光導波方向Aにおける第1領域101の長さは、光導波方向Aにおける第2領域102及び第3領域103のそれぞれの長さよりも長い。光導波方向Aにおける第2領域102の長さは、光導波方向Aにおける第3領域103の長さよりも長い。光導波方向Aにおける第1領域101の長さL1は、例えば0.5〜3.0mm程度である。光導波方向Aにおける第2領域102の長さL2は、例えば0.2〜0.5mm程度である。光導波方向Aにおける第3領域103の長さL3は、例えば0.8〜2.0mm程度である。本実施形態では、一例として、長さL1は1mmであり、長さL2は0.5mmであり、長さL3は0.3mmである。第1領域101、第2領域102及び第3領域103の幅(Y軸方向における長さ)は、互いに同一であり、例えば2〜50μm程度である。 The thickness (width in the optical waveguide direction A) of each of the first separation region 17 and the second separation region 18 is about 10 to 50 μm. The length of the first region 101 in the optical waveguide direction A is longer than the length of each of the second region 102 and the third region 103 in the optical waveguide direction A. The length of the second region 102 in the optical waveguide direction A is longer than the length of the third region 103 in the optical waveguide direction A. The length L1 of the first region 101 in the optical waveguide direction A is, for example, about 0.5 to 3.0 mm. The length L2 of the second region 102 in the optical waveguide direction A is, for example, about 0.2 to 0.5 mm. The length L3 of the third region 103 in the optical waveguide direction A is, for example, about 0.8 to 2.0 mm. In the present embodiment, as an example, the length L1 is 1 mm, the length L2 is 0.5 mm, and the length L3 is 0.3 mm. The widths (lengths in the Y-axis direction) of the first region 101, the second region 102, and the third region 103 are the same as each other, and are, for example, about 2 to 50 μm.

第2領域102における第1領域101とは反対側の端面102aには、低反射層9が設けられている。端面102aは、出力光Lの出射面であり、光導波方向Aに垂直な面である。低反射層9は、端面102aで出力光Lの一部が反射されて光導波路体10内に戻ることを抑制する。低反射層9は、例えば、ARコーティングと称される誘電体多層膜である。なお、図1では、低反射層9の図示が省略されている。
[光半導体素子の駆動方法]
A low reflection layer 9 is provided on the end surface 102a of the second region 102 opposite to the first region 101. The end surface 102a is an exit surface of the output light L and is a surface perpendicular to the optical waveguide direction A. The low reflection layer 9 suppresses that a part of the output light L is reflected by the end face 102a and returns to the inside of the optical waveguide 10. The low reflection layer 9 is, for example, a dielectric multilayer film called AR coating. In addition, in FIG. 1, the illustration of the low reflection layer 9 is omitted.
[How to drive optical semiconductor devices]

本実施形態に係る光半導体素子の駆動方法は、第1電極5と第4電極8との間、及び第2電極6と第4電極8との間のそれぞれに順バイアスをかけることにより、第1領域101及び第2領域102を利得領域として機能させる共に、第3電極7と第4電極8との間に逆バイアスをかけることにより、第3領域103を損失領域として機能させる工程を含む。 The method for driving the optical semiconductor element according to the present embodiment is to apply a forward bias between the first electrode 5 and the fourth electrode 8 and between the second electrode 6 and the fourth electrode 8, respectively. A step of making the first region 101 and the second region 102 function as a gain region and causing the third region 103 to function as a loss region by applying a reverse bias between the third electrode 7 and the fourth electrode 8 is included.

具体的には、第4電極8を接地電位として第1電極5に正電圧(例えば+1.5〜+2V)が印加される。これにより、第1領域101が利得領域として機能し、当該利得領域がレーザダイオードとして光を発振させようとする。また、第4電極8を接地電位として第2電極6に正電圧(例えば+1.5〜+3V)が印加される。これにより、第2領域102が利得領域として機能し、当該利得領域がレーザダイオードとして光を発振させようとする。更に、第4電極8を接地電位として第3電極7に負電圧(例えば−5V)が印加される。これにより、第2領域102が損失領域として機能し、当該損失領域がレーザダイオードとしての光発振を止めようとする。したがって、第1領域101、第2領域102及び第3領域103は、SLDとして機能し、集光性に優れ且つ広いスペクトルを有する出力光Lを発生させる。本実施形態では、活性層13が多重量子井戸構造を有しており、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態では、活性層13における第1準位から基底準位への遷移によって光が発生する。 Specifically, a positive voltage (for example, +1.5 to + 2V) is applied to the first electrode 5 with the fourth electrode 8 as the ground potential. As a result, the first region 101 functions as a gain region, and the gain region attempts to oscillate light as a laser diode. Further, a positive voltage (for example, +1.5 to + 3V) is applied to the second electrode 6 with the fourth electrode 8 as the ground potential. As a result, the second region 102 functions as a gain region, and the gain region attempts to oscillate light as a laser diode. Further, a negative voltage (for example, −5 V) is applied to the third electrode 7 with the fourth electrode 8 as the ground potential. As a result, the second region 102 functions as a loss region, and the loss region attempts to stop optical oscillation as a laser diode. Therefore, the first region 101, the second region 102, and the third region 103 function as SLDs to generate output light L having excellent light-collecting properties and a wide spectrum. In the present embodiment, in a state where the active layer 13 has a multiple quantum well structure, the first region 101 and the second region 102 function as a gain region and the third region 103 functions as a loss region. Light is generated by the transition from the first level to the basal level in the active layer 13.

本実施形態に係る光半導体素子の駆動方法では、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において、第2領域102を光が単位距離進行する間に獲得する利得に対応する値と、光導波方向Aにおける第2領域102の長さL2との積が、第1領域101を光が単位距離進行する間に獲得する利得に対応する値と、光導波方向Aにおける第1領域101の長さL1との積よりも大きい。以下、或る領域を光が単位距離進行する間に獲得する利得に対応する値を利得係数gといい、利得係数gと光導波方向Aにおける当該領域の長さとの積を利得量gLという。活性層13における閉じ込め係数をΓとすると、光導波方向Aに沿って当該領域を通過した光が獲得する利得Gは、式G=exp(ΓgL)により求められる。利得係数gは、当該領域の吸収係数に−1を乗じた値とみなすことができる。利得量gLは、光導波方向Aに沿って当該領域を光が通過した場合に当該光が獲得する利得に対応する。つまり、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態においては、光導波方向Aに沿って第2領域102を通過した光が獲得する利得が、光導波方向Aに沿って第1領域101を通過した光が獲得する利得よりも大きい。 In the method for driving an optical semiconductor element according to the present embodiment, in a state where the first region 101 and the second region 102 function as a gain region and the third region 103 functions as a loss region, the second region 102 is illuminated. The product of the value corresponding to the gain obtained while traveling a unit distance and the length L2 of the second region 102 in the optical waveguide direction A is the gain obtained while the light travels a unit distance in the first region 101. It is larger than the product of the value corresponding to and the length L1 of the first region 101 in the optical waveguide direction A. Hereinafter, the value corresponding to the gain acquired while the light travels a certain region by a unit distance is referred to as a gain coefficient g, and the product of the gain coefficient g and the length of the region in the optical waveguide direction A is referred to as a gain amount gL. Assuming that the confinement coefficient in the active layer 13 is Γ, the gain G acquired by the light passing through the region along the optical waveguide direction A is obtained by the equation G = exp (ΓgL). The gain coefficient g can be regarded as a value obtained by multiplying the absorption coefficient of the region by -1. The gain amount gL corresponds to the gain acquired by the light when the light passes through the region along the optical waveguide direction A. That is, in a state where the first region 101 and the second region 102 function as the gain region and the third region 103 functions as the loss region, the light passing through the second region 102 along the optical waveguide direction A The gain to be acquired is larger than the gain acquired by the light passing through the first region 101 along the optical waveguide direction A.

下記表1、表2及び表3には、第1領域101及び第2領域102への注入電流を変化させた場合における出力光Lの強度の測定結果が示されている。表1〜表3に示される例では、利得係数gに代わる量として電流密度が用いられ、利得量gLに代わる量として利得量(A/cm)が用いられている。これは、利得係数gが電流密度の増加に従って増加するためである。利得係数gは上位準位のキャリア密度に比例する。すなわち、利得係数gと電流密度とは、比例するとみなすことができる。或る領域の電流密度は、当該領域への注入電流をZ軸方向から見た場合の当該領域の面積で除した値である。上述したとおり、光導波方向Aにおける第1領域101の長さL1は1mmであり、光導波方向Aにおける第2領域102の長さL2は0.5mmである。第1領域101及び第2領域102の幅は、0.02mmである。

Figure 2019111804
Figure 2019111804
Figure 2019111804
Tables 1, 2 and 3 below show the measurement results of the intensity of the output light L when the injection currents into the first region 101 and the second region 102 are changed. In the examples shown in Tables 1 to 3, the current density is used as an alternative amount to the gain coefficient g, and the gain amount (A / cm) is used as an alternative amount to the gain amount gL. This is because the gain coefficient g increases as the current density increases. The gain coefficient g is proportional to the carrier density of the upper level. That is, the gain coefficient g and the current density can be regarded as proportional. The current density in a certain region is a value obtained by dividing the injection current into the region by the area of the region when viewed from the Z-axis direction. As described above, the length L1 of the first region 101 in the optical waveguide direction A is 1 mm, and the length L2 of the second region 102 in the optical waveguide direction A is 0.5 mm. The width of the first region 101 and the second region 102 is 0.02 mm.
Figure 2019111804
Figure 2019111804
Figure 2019111804

表1〜表3から、第1領域101への注入電流と第2領域102への注入電流との和が等しい場合同士を比較すると、第2領域102の利得量gLが第1領域101の利得量gLよりも大きい場合の方が、第2領域102の利得量gLが第1領域101の利得量gLよりも小さい場合よりも、出力光Lの強度が高かったことが分かる。例えば、第1領域101への注入電流と第2領域102への注入電流との和が300mAである場合を比較すると、第2領域102への注入電流が200mAであり、第1領域101への注入電流が100mAであり、第2領域102における利得量gLが100A/cmであり、第1領域101における利得量gLが50A/cmである場合、出力光Lの強度が−41dBであるのに対し、第2領域102への注入電流が100mAであり、第1領域101への注入電流が200mAであり、第2領域102における利得量gLが50A/cmであり、第1領域101における利得量gLが100A/cmである場合には、出力光Lの強度は−53dBである。 Comparing the cases where the sum of the injection current into the first region 101 and the injection current into the second region 102 is equal from Tables 1 to 3, the gain amount gL of the second region 102 is the gain of the first region 101. It can be seen that the intensity of the output light L was higher when the amount gL was larger than when the gain amount gL in the second region 102 was smaller than the gain amount gL in the first region 101. For example, comparing the case where the sum of the injection current into the first region 101 and the injection current into the second region 102 is 300 mA, the injection current into the second region 102 is 200 mA, and the injection current into the first region 101 is When the injection current is 100 mA, the gain amount gL in the second region 102 is 100 A / cm, and the gain amount gL in the first region 101 is 50 A / cm, the intensity of the output light L is −41 dB. On the other hand, the injection current into the second region 102 is 100 mA, the injection current into the first region 101 is 200 mA, the gain amount gL in the second region 102 is 50 A / cm, and the gain amount in the first region 101. When gL is 100 A / cm, the intensity of the output light L is −53 dB.

このように、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において、第2領域102を光が単位距離進行する間に獲得する利得に対応する値(利得係数g)と光導波方向Aにおける第2領域102の長さL2との積(利得量gL)が、第1領域101を光が単位距離進行する間に獲得する利得に対応する値(利得係数g)と光導波方向Aにおける第1領域101の長さL1との積(利得量gL)よりも大きいことにより、第1領域101及び第2領域102で発生した光を効果的に増倍させて取り出すことができ、光半導体素子1の高出力化を図ることができる。 In this way, in a state where the first region 101 and the second region 102 function as the gain region and the third region 103 functions as the loss region, the second region 102 is acquired while the light travels a unit distance. The product (gain amount gL) of the value corresponding to the gain (gain coefficient g) and the length L2 of the second region 102 in the photomultiplier direction A is the gain obtained while the light travels a unit distance in the first region 101. The light generated in the first region 101 and the second region 102 is larger than the product (gain amount gL) of the value corresponding to (gain coefficient g) and the length L1 of the first region 101 in the photomultiplier direction A. Can be effectively multiplied and taken out, and the output of the optical semiconductor element 1 can be increased.

この点について、図3(a)及び図3(b)を参照しつつ更に説明する。図3(a)は、本実施形態に係る光半導体素子の駆動方法とは異なり、第2領域102における利得量gLが第1領域101における利得量gLよりも小さい場合を示している。図3(b)は、本実施形態に係る光半導体素子の駆動方法のように、第2領域102における利得量gLが第1領域101における利得量gLよりも大きい場合を示している。図3(a)及び図3(b)に示されるように、光半導体素子1から取り出せる光は、出射面側に向かう光のみであり、出射面とは反対側に向かう光は、損失領域として機能する第3領域103により吸収される。 This point will be further described with reference to FIGS. 3 (a) and 3 (b). FIG. 3A shows a case where the gain amount gL in the second region 102 is smaller than the gain amount gL in the first region 101, unlike the method of driving the optical semiconductor element according to the present embodiment. FIG. 3B shows a case where the gain amount gL in the second region 102 is larger than the gain amount gL in the first region 101, as in the method of driving the optical semiconductor element according to the present embodiment. As shown in FIGS. 3 (a) and 3 (b), the light that can be extracted from the optical semiconductor element 1 is only the light that goes toward the exit surface side, and the light that goes toward the side opposite to the exit surface is used as a loss region. It is absorbed by the functioning third region 103.

図3(a)に示されるように、出射端側に利得量gLが比較的小さい領域が配置されている場合、第2領域102で発生した光を効果的に増倍することができず、出力光Lの強度を高めることは難しい。これに対し、図3(b)に示されるように、本実施形態に係る光半導体素子の駆動方法では、出射面側に利得量gLが比較的大きい領域が配置されているため、第1領域101及び第2領域102の双方で発生した光を効果的に増倍させて取り出すことができる。 As shown in FIG. 3A, when a region having a relatively small gain amount gL is arranged on the emission end side, the light generated in the second region 102 cannot be effectively multiplied. It is difficult to increase the intensity of the output light L. On the other hand, as shown in FIG. 3B, in the method of driving the photosemiconductor element according to the present embodiment, a region having a relatively large gain amount gL is arranged on the exit surface side, so that the first region The light generated in both the 101 and the second region 102 can be effectively multiplied and extracted.

本実施形態に係る光半導体素子の駆動方法では、活性層13が、多重量子井戸構造を有している。これにより、光半導体素子1の一層の高出力化を図ることができる。 In the method for driving an optical semiconductor device according to the present embodiment, the active layer 13 has a multiple quantum well structure. As a result, the output of the optical semiconductor element 1 can be further increased.

この点について、図4を参照しつつ更に説明する。図4は、井戸数nが1,2,3,10のそれぞれの場合における電流と利得との関係を示している。図4に示されるように、井戸数nが多くなるほど、吸収域Rが広くなり、利得を発生させるのに大きな電流が必要となる。一方、井戸数nが多くなるほど、利得発生時の立ち上がり量Cが大きくなる。したがって、本実施形態に係る光半導体素子の駆動方法のように活性層13が多重量子井戸構造を有していることにより、吸収域Rの利用効率を向上することができると共に、立ち上がり量Cを増加させて発光効率を向上することができる。その結果、光半導体素子1の一層の高出力化を図ることができる。 This point will be further described with reference to FIG. FIG. 4 shows the relationship between the current and the gain when the number of wells n is 1, 2, 3, and 10, respectively. As shown in FIG. 4, as the number of wells n increases, the absorption region R becomes wider, and a large current is required to generate a gain. On the other hand, as the number of wells n increases, the rising amount C at the time of gain generation increases. Therefore, since the active layer 13 has the multiple quantum well structure as in the method for driving the optical semiconductor element according to the present embodiment, the utilization efficiency of the absorption region R can be improved and the rising amount C can be increased. Luminous efficiency can be improved by increasing the amount. As a result, it is possible to further increase the output of the optical semiconductor element 1.

本実施形態に係る光半導体素子の駆動方法において、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態では、活性層13における第1準位から基底準位への遷移によって光が発生する。これにより、光半導体素子1の高出力化が好適に図られる。 In the method for driving an optical semiconductor element according to the present embodiment, in a state where the first region 101 and the second region 102 function as a gain region and the third region 103 functions as a loss region, the first in the active layer 13 Light is generated by the transition from the level to the base level. As a result, the output of the optical semiconductor element 1 can be preferably increased.

本実施形態に係る光半導体素子の駆動方法では、光導波方向Aが、真っ直ぐに延在する方向である。これにより、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することが容易化される。すなわち、仮に、光導波方向Aが真っ直ぐに延在する方向ではない場合、Y軸方向における光半導体素子1のサイズ(幅)が大きくなり易い。光半導体素子1は、例えばサブマウント等の熱膨張係数が異なる材料に半田で接合されるが、光半導体素子1のサイズが大きくなると、接合面積が大きくなるため、光半導体素子1に蓄えられる内部応力が大きくなる。この場合、発光成分の偏光比TE/TMが低下する、すなわちTMモード成分比率が増加することが考えられる。損失領域におけるQCSE効果(Quantum Confined Stark Effect)は主にTEモード成分に寄与し、TMモード成分への寄与は小さい。すなわち、TMモード成分に対して損失領域は透明体のように機能する。損失領域を透過したTMモード成分は端面における反射により正帰還を受け、レーザ発振に至る。したがって、光半導体素子1のサイズが大きくなると、SLD動作から発振状態に至り易くなるため、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することが難しくなる。これに対し、本実施形態に係る光半導体素子の駆動方法では、光導波方向Aが真っ直ぐに延在する方向であるため、光半導体素子1のサイズの増加を抑制することができ、その結果、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することが容易化される。更に、光導波方向Aが真っ直ぐに延在する方向であるため、良好なビームパターンを有する出力光Lを得ることができる。 In the method for driving an optical semiconductor device according to the present embodiment, the optical waveguide direction A is a direction in which the optical waveguide direction A extends straight. As a result, it becomes easy to drive the optical semiconductor element 1 so that the gain amount of the second region 102 is larger than the gain amount of the first region 101. That is, if the optical waveguide direction A is not in a straight extending direction, the size (width) of the optical semiconductor element 1 in the Y-axis direction tends to increase. The optical semiconductor element 1 is bonded to a material having a different coefficient of thermal expansion such as a submount by soldering. However, as the size of the optical semiconductor element 1 increases, the bonding area increases, so that the inside stored in the optical semiconductor element 1 is stored. The stress increases. In this case, it is conceivable that the polarization ratio TE / TM of the light emitting component decreases, that is, the TM mode component ratio increases. The QCSE effect (Quantum Confined Stark Effect) in the loss region mainly contributes to the TE mode component, and the contribution to the TM mode component is small. That is, the loss region functions like a transparent body with respect to the TM mode component. The TM mode component that has passed through the loss region receives positive feedback due to reflection at the end face, leading to laser oscillation. Therefore, as the size of the optical semiconductor element 1 increases, it becomes easier to reach the oscillation state from the SLD operation, so that the optical semiconductor element 1 is driven so that the gain amount in the second region 102 is larger than the gain amount in the first region 101. It becomes difficult to do. On the other hand, in the method for driving the optical semiconductor element according to the present embodiment, since the optical waveguide direction A extends straight, it is possible to suppress an increase in the size of the optical semiconductor element 1, and as a result, It is easy to drive the optical semiconductor element 1 so that the gain amount of the second region 102 is larger than the gain amount of the first region 101. Further, since the optical waveguide direction A is a direction extending straight, it is possible to obtain output light L having a good beam pattern.

本実施形態に係る光半導体素子の駆動方法では、第2領域102における第1領域101とは反対側の端面102aが、光導波方向Aに垂直な面である。これにより、光半導体素子1のサイズの増加を一層抑制することができ、その結果、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することが一層容易化される。更に、端面102aが光導波方向Aに垂直な面であるため、一層良好なビームパターンを有する出力光Lを得ることができる。 In the method for driving an optical semiconductor element according to the present embodiment, the end surface 102a of the second region 102 opposite to the first region 101 is a surface perpendicular to the optical waveguide direction A. As a result, the increase in the size of the optical semiconductor element 1 can be further suppressed, and as a result, the optical semiconductor element 1 is driven so that the gain amount in the second region 102 is larger than the gain amount in the first region 101. Is made even easier. Further, since the end surface 102a is a surface perpendicular to the optical waveguide direction A, the output light L having a better beam pattern can be obtained.

本実施形態に係る光半導体素子の駆動方法では、端面102aには低反射層9が設けられている。これにより、低反射層9によって端面102aにおける反射を抑制することで、発振状態に至り難くすることができ、その結果、第2領域102の利得量が第1領域101の利得量よりも大きくなるように光半導体素子1を駆動することがより一層容易化される。更に、出力光Lの出射面となる端面102aで出力光Lの一部が反射されることにより光学的なロスが生じるのを抑制することができる。 In the method for driving an optical semiconductor element according to the present embodiment, the low reflection layer 9 is provided on the end face 102a. As a result, the low reflection layer 9 suppresses the reflection on the end face 102a, so that it is difficult to reach the oscillation state, and as a result, the gain amount in the second region 102 becomes larger than the gain amount in the first region 101. As described above, it is further facilitated to drive the optical semiconductor element 1. Further, it is possible to suppress the occurrence of optical loss due to the reflection of a part of the output light L on the end surface 102a which is the exit surface of the output light L.

本実施形態に係る光半導体素子の駆動方法では、第1分離領域17が、イオン注入領域又は不純物拡散領域によって構成されており、第2分離領域18が、イオン注入領域、不純物拡散領域、又は第2クラッド層15とは伝導型が異なる半導体領域によって構成されている。このため、第1分離領域17により、第1領域101と第2領域102との間の光学的な接続及び電気的な分離を好適に実現することができる。また、第2分離領域18により、第1領域101と第3領域との間の光学的な接続及び電気的な分離を好適に実現することができる。 In the method for driving an optical semiconductor device according to the present embodiment, the first separation region 17 is composed of an ion implantation region or an impurity diffusion region, and the second separation region 18 is an ion implantation region, an impurity diffusion region, or a first. It is composed of a semiconductor region having a different conduction type from the two-clad layer 15. Therefore, the first separation region 17 can suitably realize the optical connection and the electrical separation between the first region 101 and the second region 102. In addition, the second separation region 18 can suitably realize an optical connection and an electrical separation between the first region 101 and the third region.

本開示は、上記実施形態に限られない。例えば、図5に示される第1変形例のように、光導波方向Aにおける第2領域102の長さL2と光導波方向Aにおける第1領域101の長さL1とが互いに等しくてもよい。第1変形例では、長さL1,L2は例えば0.75mmである。図6に示される第2変形例のように、第2領域102の長さL2が第1領域101の長さL1よりも長くてもよい。第2変形例では、例えば、長さL2は1mmであり、長さL1は0.5mmである。 The present disclosure is not limited to the above embodiment. For example, as in the first modification shown in FIG. 5, the length L2 of the second region 102 in the optical waveguide direction A and the length L1 of the first region 101 in the optical waveguide direction A may be equal to each other. In the first modification, the lengths L1 and L2 are, for example, 0.75 mm. As in the second modification shown in FIG. 6, the length L2 of the second region 102 may be longer than the length L1 of the first region 101. In the second modification, for example, the length L2 is 1 mm and the length L1 is 0.5 mm.

このような第1変形例及び第2変形例においても、上記実施形態と同様に、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において第2領域102の利得量gLが第1領域101の利得量gLよりも大きくなるように光半導体素子1を駆動することで、第1領域101及び第2領域102で発生した光を効果的に増倍させて取り出すことができ、光半導体素子1の高出力化を図ることができる。更に、第2変形例では、第2領域102の長さL2が第1領域101の長さL1よりも長いため、第2領域102の利得量gLが第1領域101の利得量gLよりも大きくなるように光半導体素子1を駆動することが容易化されている。 In such a first modification and a second modification, the first region 101 and the second region 102 function as a gain region and the third region 103 functions as a loss region, as in the above embodiment. By driving the photosemiconductor element 1 so that the gain amount gL of the second region 102 is larger than the gain amount gL of the first region 101 in the state, the light generated in the first region 101 and the second region 102 is effective. The optical semiconductor element 1 can be increased in output and can be taken out. Further, in the second modification, since the length L2 of the second region 102 is longer than the length L1 of the first region 101, the gain amount gL of the second region 102 is larger than the gain amount gL of the first region 101. It is easy to drive the optical semiconductor element 1 so as to be.

上記実施形態では光導波路体10が第1領域101、第2領域102及び第3領域103の3つの領域に分割されていたが、図7に示される第3変形例のように、光導波路体10が第1領域101、第2領域102、第3領域103及び第4領域104の4つの領域に分割されていてもよい。第4領域104は、第1電極5、第2電極6及び第3電極7と同様に設けられた第5電極21の下方の領域である。第5電極21は、光導波方向Aにおいて第2電極6に対して第1電極5とは反対側に配置されている。第5電極21と第2電極6との間には、Y軸方向に延在する隙間S3が形成されており、第5電極21と第2電極6との間は、第3分離領域19により、光学的に接続され且つ電気的に分離されている。第3分離領域19は、第1分離領域17及び第2分離領域18と同様に構成されている。 In the above embodiment, the optical waveguide 10 is divided into three regions, a first region 101, a second region 102, and a third region 103, but as in the third modification shown in FIG. 7, the optical waveguide is 10 may be divided into four regions, a first region 101, a second region 102, a third region 103, and a fourth region 104. The fourth region 104 is a region below the fifth electrode 21 provided similarly to the first electrode 5, the second electrode 6, and the third electrode 7. The fifth electrode 21 is arranged on the side opposite to the first electrode 5 with respect to the second electrode 6 in the optical waveguide direction A. A gap S3 extending in the Y-axis direction is formed between the fifth electrode 21 and the second electrode 6, and a third separation region 19 is formed between the fifth electrode 21 and the second electrode 6. , Optically connected and electrically separated. The third separation region 19 is configured in the same manner as the first separation region 17 and the second separation region 18.

第3変形例では、光導波方向Aにおける第1領域101の長さL1、光導波方向Aにおける第2領域102の長さL2、及び光導波方向Aにおける第4領域104の長さL4は、互いに等しい。長さL1,L2,L4は例えば0.5mmである。第3変形例では、第1電極5と第4電極8との間、第2電極6と第4電極8との間、及び第5電極21と第4電極8と間のそれぞれに順バイアスをかけることにより、第1領域101、第2領域102及び第4領域104を利得領域として機能させる共に、第3電極7と第4電極8との間に逆バイアスをかけることにより、第3領域103を損失領域として機能させる。第1領域101、第2領域102及び第4領域104を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において、第4領域104の利得量gLが第2領域102の利得量gL及び第1領域101の利得量gLよりも大きくなり、且つ、第2領域102の利得量gLが第1領域101の利得量gLよりも大きくなるように、光半導体素子1を駆動する。これにより、第1領域101、第2領域102及び第4領域104で発生した光を効果的に増倍させて取り出すことができ、光半導体素子1の一層の高出力化を図ることができる。 In the third modification, the length L1 of the first region 101 in the optical waveguide direction A, the length L2 of the second region 102 in the optical waveguide direction A, and the length L4 of the fourth region 104 in the optical waveguide direction A are Equal to each other. The lengths L1, L2 and L4 are, for example, 0.5 mm. In the third modification, a forward bias is applied between the first electrode 5 and the fourth electrode 8, between the second electrode 6 and the fourth electrode 8, and between the fifth electrode 21 and the fourth electrode 8. By applying, the first region 101, the second region 102, and the fourth region 104 function as gain regions, and by applying a reverse bias between the third electrode 7 and the fourth electrode 8, the third region 103 To function as a loss area. In a state where the first region 101, the second region 102, and the fourth region 104 function as the gain region and the third region 103 functions as the loss region, the gain amount gL of the fourth region 104 is the second region 102. The optical semiconductor element 1 is driven so that the gain amount gL and the gain amount gL of the first region 101 are larger than the gain amount gL of the first region 101 and the gain amount gL of the second region 102 is larger than the gain amount gL of the first region 101. .. As a result, the light generated in the first region 101, the second region 102, and the fourth region 104 can be effectively multiplied and extracted, and the output of the photosemiconductor element 1 can be further increased.

図8に示される第4変形例のように、第2領域102が、Z軸方向(第2クラッド層15に垂直な方向)から見た場合に、第1領域101から遠ざかるほど幅が広くなるフレア形状をなしていてもよい。この例では、第2領域102の幅は、第1領域101から遠ざかるほど直線的に広くなっている。このような第4変形例においても、上記実施形態と同様に、第1領域101及び第2領域102を利得領域として機能させると共に第3領域103を損失領域として機能させている状態において、第2領域102の利得量gLが第1領域101の利得量gLよりも大きくなるように光半導体素子1を駆動することで、第1領域101及び第2領域102で発生した光を効果的に増倍させて取り出すことができ、光半導体素子1の高出力化を図ることができる。更に、第4変形例では、第2領域102がフレア形状をなしており、第2領域102において光が広がりながら増幅されるため、広いビームパターンを有する出力光Lを得ることができる。また、電流密度を低減して利得飽和の発生を抑制することができると共に、熱の影響を低減することができるため、光半導体素子1の一層の高出力化を図ることもできる。 As in the fourth modification shown in FIG. 8, when the second region 102 is viewed from the Z-axis direction (direction perpendicular to the second clad layer 15), the width becomes wider as the distance from the first region 101 increases. It may have a flared shape. In this example, the width of the second region 102 becomes linearly wider as the distance from the first region 101 increases. In such a fourth modification, as in the above embodiment, the second region 101 and the second region 102 function as the gain region and the third region 103 functions as the loss region. By driving the optical semiconductor device 1 so that the gain amount gL of the region 102 is larger than the gain amount gL of the first region 101, the light generated in the first region 101 and the second region 102 is effectively multiplied. It is possible to increase the output of the photosemiconductor element 1 by allowing it to be taken out. Further, in the fourth modification, the second region 102 has a flare shape, and the light is amplified while spreading in the second region 102, so that the output light L having a wide beam pattern can be obtained. Further, since the current density can be reduced to suppress the occurrence of gain saturation and the influence of heat can be reduced, the output of the optical semiconductor element 1 can be further increased.

上述した実施形態では、1つの第4電極8が共通電極として第1電極5、第2電極6及び第3電極7と対向していたが、複数の第4電極8が第1電極5、第2電極6及び第3電極7とそれぞれ対向していてもよい。上述した実施形態では、光導波路体10がリッジ構造として構成されていたが、光導波路体10が埋め込み構造として構成されていてもよい。その場合にも、光を閉じ込めるための筒状の領域の中心線に沿った方向、換言すれば、当該筒状の領域によって囲まれた活性層13が延在する方向が光導波方向Aとなる。光導波方向Aは、湾曲して延在する方向であってもよく、真っ直ぐに延在する部分及び湾曲して延在する部分の双方を含む方向であってもよい。光導波方向Aは、第2領域102の端面102aに対して傾斜して延在する方向であってもよい。各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。 In the above-described embodiment, one fourth electrode 8 faces the first electrode 5, the second electrode 6, and the third electrode 7 as a common electrode, but a plurality of fourth electrodes 8 are the first electrode 5, the first electrode 5, and the third electrode 7. The two electrodes 6 and the third electrode 7 may be opposed to each other. In the above-described embodiment, the optical waveguide 10 is configured as a ridge structure, but the optical waveguide 10 may be configured as an embedded structure. Even in that case, the direction along the center line of the tubular region for confining the light, in other words, the direction in which the active layer 13 surrounded by the tubular region extends is the optical waveguide direction A. .. The optical waveguide direction A may be a curved and extending direction, or may be a direction including both a straight extending portion and a curved and extending portion. The optical waveguide direction A may be a direction that is inclined and extends with respect to the end face 102a of the second region 102. As the material and shape of each configuration, not only the above-mentioned material and shape but also various materials and shapes can be adopted.

1…光半導体素子、5…第1電極、6…第2電極、7…第3電極、8…第4電極、9…低反射層、10…光導波路体、11…第1クラッド層、13…活性層、15…第2クラッド層、15a…表面、17…第1分離領域、18…第2分離領域、101…第1領域、102…第2領域、102a…端面、103…第3領域、A…光導波方向。 1 ... Optical semiconductor device, 5 ... 1st electrode, 6 ... 2nd electrode, 7 ... 3rd electrode, 8 ... 4th electrode, 9 ... Low reflection layer, 10 ... Optical waveguide, 11 ... 1st clad layer, 13 ... active layer, 15 ... second clad layer, 15a ... surface, 17 ... first separation region, 18 ... second separation region, 101 ... first region, 102 ... second region, 102a ... end face, 103 ... third region , A ... Optical waveguide direction.

Claims (17)

光半導体素子の駆動方法であって、
前記光半導体素子は、
活性層、並びに、前記活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、
前記第2クラッド層上に設けられた第1電極と、
前記光導波路体の光導波方向における前記第1電極の一方の側において前記第2クラッド層上に設けられた第2電極と、
前記光導波路体の前記光導波方向における前記第1電極の他方の側において前記第2クラッド層上に設けられた第3電極と、
前記光導波路体を挟んで、前記第1電極、前記第2電極及び前記第3電極と対向する少なくとも1つの第4電極と、を備え、
前記光導波路体には、
前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の第1領域と前記第2電極下の第2領域との間を光学的に接続しつつ、前記第1領域と前記第2領域とを互いに電気的に分離する第1分離領域と、
前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の前記第1領域と前記第3電極下の第3領域との間を光学的に接続しつつ、前記第1領域と前記第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、
前記光半導体素子の駆動方法は、
前記第1電極と前記少なくとも1つの第4電極との間、及び前記第2電極と前記少なくとも1つの第4電極との間のそれぞれに順バイアスをかけることにより、前記第1領域及び前記第2領域を利得領域として機能させる共に、前記第3電極と前記少なくとも1つの第4電極との間に逆バイアスをかけることにより、前記第3領域を損失領域として機能させる工程を含み、
前記第1領域及び前記第2領域を利得領域として機能させると共に前記第3領域を損失領域として機能させている状態において、前記第2領域を光が単位距離進行する間に獲得する利得に対応する値と前記光導波方向における前記第2領域の長さとの積は、前記第1領域を光が単位距離進行する間に獲得する利得に対応する値と前記光導波方向における前記第1領域の長さとの積よりも大きい、光半導体素子の駆動方法。
It is a driving method for optical semiconductor elements.
The optical semiconductor element is
An optical waveguide configured as a double heterostructure including an active layer and a first clad layer and a second clad layer sandwiching the active layer.
The first electrode provided on the second clad layer and
A second electrode provided on the second clad layer on one side of the first electrode in the optical waveguide direction of the optical waveguide, and a second electrode.
A third electrode provided on the second clad layer on the other side of the first electrode in the optical waveguide direction of the optical waveguide, and a third electrode.
The first electrode, the second electrode, and at least one fourth electrode facing the third electrode are provided across the optical waveguide.
The optical waveguide has
The first clad layer is reached from the surface of the second clad layer, and the first region is optically connected between the first region under the first electrode and the second region under the second electrode. And the first separation region that electrically separates the second region from each other,
The first clad layer is reached from the surface of the second clad layer, and the first region is optically connected between the first region under the first electrode and the third region under the third electrode. A second separation region that electrically separates the region and the third region from each other is provided.
The driving method of the optical semiconductor element is
By applying a forward bias between the first electrode and the at least one fourth electrode, and between the second electrode and the at least one fourth electrode, the first region and the second electrode are applied. It includes a step of making the third region function as a loss region by making the region function as a gain region and applying a reverse bias between the third electrode and at least one fourth electrode.
Corresponding to the gain acquired while the light travels a unit distance in the second region in a state where the first region and the second region function as a gain region and the third region functions as a loss region. The product of the value and the length of the second region in the optical waveguide direction is the value corresponding to the gain obtained while the light travels the first region for a unit distance and the length of the first region in the optical waveguide direction. A method of driving an optical semiconductor element that is larger than the product of the gain.
前記活性層は、多重量子井戸構造を有する、請求項1に記載の光半導体素子の駆動方法。 The method for driving an optical semiconductor device according to claim 1, wherein the active layer has a multiple quantum well structure. 前記第1領域及び前記第2領域を利得領域として機能させると共に、前記第3領域を損失領域として機能させている状態では、前記活性層における第1準位から基底準位への遷移によって光が発生する、請求項1又は2に記載の光半導体素子の駆動方法。 In a state where the first region and the second region function as a gain region and the third region functions as a loss region, light is emitted by the transition from the first level to the basal level in the active layer. The method for driving an optical semiconductor element according to claim 1 or 2, which is generated. 前記光導波方向は、真っ直ぐに延在する方向である、請求項1〜3のいずれか一項に記載の光半導体素子の駆動方法。 The method for driving an optical semiconductor element according to any one of claims 1 to 3, wherein the optical waveguide direction is a direction extending straight. 前記第2領域における前記第1領域とは反対側の端面は、前記光導波方向に垂直な面である、請求項1〜4のいずれか一項に記載の光半導体素子の駆動方法。 The method for driving an optical semiconductor device according to any one of claims 1 to 4, wherein the end surface of the second region opposite to the first region is a surface perpendicular to the optical waveguide direction. 前記第2領域における前記第1領域とは反対側の端面には、低反射層が設けられている、請求項1〜5のいずれか一項に記載の光半導体素子の駆動方法。 The method for driving an optical semiconductor device according to any one of claims 1 to 5, wherein a low reflection layer is provided on an end surface of the second region opposite to the first region. 前記第1分離領域は、イオン注入領域又は不純物拡散領域によって構成されており、
前記第2分離領域は、イオン注入領域、不純物拡散領域、又は前記第2クラッド層とは伝導型が異なる半導体領域によって構成されている、請求項1〜6のいずれか一項に記載の光半導体素子の駆動方法。
The first separation region is composed of an ion implantation region or an impurity diffusion region.
The optical semiconductor according to any one of claims 1 to 6, wherein the second separation region is composed of an ion implantation region, an impurity diffusion region, or a semiconductor region having a conduction type different from that of the second clad layer. How to drive the element.
前記光導波方向における前記第2領域の長さは、前記光導波方向における前記第1領域の長さよりも長い、請求項1〜7のいずれか一項に記載の光半導体素子の駆動方法。 The method for driving an optical semiconductor device according to any one of claims 1 to 7, wherein the length of the second region in the optical waveguide direction is longer than the length of the first region in the optical waveguide direction. 前記第2領域は、前記第2クラッド層に垂直な方向から見た場合に、前記第1領域から遠ざかるほど幅が広くなるフレア形状をなしている、請求項1〜8のいずれか一項に記載の光半導体素子の駆動方法。 According to any one of claims 1 to 8, the second region has a flare shape in which the width becomes wider as the distance from the first region increases when viewed from a direction perpendicular to the second clad layer. The method for driving an optical semiconductor device described. 光半導体素子の駆動方法であって、
前記光半導体素子は、
活性層、並びに、前記活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、
前記第2クラッド層上に設けられた第1電極と、
前記光導波路体の光導波方向における前記第1電極の一方の側において前記第2クラッド層上に設けられた第2電極と、
前記光導波路体の前記光導波方向における前記第1電極の他方の側において前記第2クラッド層上に設けられた第3電極と、
前記光導波路体を挟んで、前記第1電極、前記第2電極及び前記第3電極と対向する少なくとも1つの第4電極と、を備え、
前記光導波路体には、
前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の第1領域と前記第2電極下の第2領域との間を光学的に接続しつつ、前記第1領域と前記第2領域とを互いに電気的に分離する第1分離領域と、
前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の前記第1領域と前記第3電極下の第3領域との間を光学的に接続しつつ、前記第1領域と前記第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、
前記光半導体素子の駆動方法は、
前記第1電極と前記少なくとも1つの第4電極との間、及び前記第2電極と前記少なくとも1つの第4電極との間のそれぞれに順バイアスをかけることにより、前記第1領域及び前記第2領域を利得領域として機能させる共に、前記第3電極と前記少なくとも1つの第4電極との間に逆バイアスをかけることにより、前記第3領域を損失領域として機能させる工程を含み、
前記第1領域及び前記第2領域を利得領域として機能させると共に、前記第3領域を損失領域として機能させている状態において、前記光導波方向に沿って前記第2領域を通過した光が獲得する利得は、前記光導波方向に沿って前記第1領域を通過した光が獲得する利得よりも大きい、光半導体素子の駆動方法。
It is a driving method for optical semiconductor elements.
The optical semiconductor element is
An optical waveguide configured as a double heterostructure including an active layer and a first clad layer and a second clad layer sandwiching the active layer.
The first electrode provided on the second clad layer and
A second electrode provided on the second clad layer on one side of the first electrode in the optical waveguide direction of the optical waveguide, and a second electrode.
A third electrode provided on the second clad layer on the other side of the first electrode in the optical waveguide direction of the optical waveguide, and a third electrode.
The first electrode, the second electrode, and at least one fourth electrode facing the third electrode are provided across the optical waveguide.
The optical waveguide has
The first clad layer is reached from the surface of the second clad layer, and the first region is optically connected between the first region under the first electrode and the second region under the second electrode. And the first separation region that electrically separates the second region from each other,
The first clad layer is reached from the surface of the second clad layer, and the first region is optically connected between the first region under the first electrode and the third region under the third electrode. A second separation region that electrically separates the region and the third region from each other is provided.
The driving method of the optical semiconductor element is
By applying a forward bias between the first electrode and the at least one fourth electrode, and between the second electrode and the at least one fourth electrode, the first region and the second electrode are applied. It includes a step of making the third region function as a loss region by making the region function as a gain region and applying a reverse bias between the third electrode and at least one fourth electrode.
In a state where the first region and the second region function as a gain region and the third region functions as a loss region, light that has passed through the second region along the optical waveguide direction is acquired. A method for driving an optical semiconductor device, wherein the gain is larger than the gain acquired by the light passing through the first region along the optical waveguide direction.
活性層、並びに、前記活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、
前記第2クラッド層上に設けられた第1電極と、
前記光導波路体の光導波方向における前記第1電極の一方の側において前記第2クラッド層上に設けられた第2電極と、
前記光導波路体の前記光導波方向における前記第1電極の他方の側において前記第2クラッド層上に設けられた第3電極と、
前記光導波路体を挟んで、前記第1電極、前記第2電極及び前記第3電極と対向する少なくとも1つの第4電極と、を備え、
前記光導波路体には、
前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の第1領域と前記第2電極下の第2領域との間を光学的に接続しつつ、前記第1領域と前記第2領域とを互いに電気的に分離する第1分離領域と、
前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の前記第1領域と前記第3電極下の第3領域との間を光学的に接続しつつ、前記第1領域と前記第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、
前記光導波方向における前記第2領域の長さは、前記光導波方向における前記第1領域の長さよりも長い、光半導体素子。
An optical waveguide configured as a double heterostructure including an active layer and a first clad layer and a second clad layer sandwiching the active layer.
The first electrode provided on the second clad layer and
A second electrode provided on the second clad layer on one side of the first electrode in the optical waveguide direction of the optical waveguide, and a second electrode.
A third electrode provided on the second clad layer on the other side of the first electrode in the optical waveguide direction of the optical waveguide, and a third electrode.
The first electrode, the second electrode, and at least one fourth electrode facing the third electrode are provided across the optical waveguide.
The optical waveguide has
The first clad layer is reached from the surface of the second clad layer, and the first region is optically connected between the first region under the first electrode and the second region under the second electrode. And the first separation region that electrically separates the second region from each other,
The first clad layer is reached from the surface of the second clad layer, and the first region is optically connected between the first region under the first electrode and the third region under the third electrode. A second separation region that electrically separates the region and the third region from each other is provided.
An optical semiconductor device in which the length of the second region in the optical waveguide direction is longer than the length of the first region in the optical waveguide direction.
前記活性層は、多重量子井戸構造を有する、請求項11に記載の光半導体素子。 The optical semiconductor device according to claim 11, wherein the active layer has a multiple quantum well structure. 前記光導波方向は、真っ直ぐに延在する方向である、請求項11又は12に記載の光半導体素子。 The optical semiconductor device according to claim 11 or 12, wherein the optical waveguide direction is a direction extending straight. 前記第2領域における前記第1領域とは反対側の端面は、前記光導波方向に垂直な面である、請求項11〜13のいずれか一項に記載の光半導体素子。 The optical semiconductor device according to any one of claims 11 to 13, wherein the end surface of the second region opposite to the first region is a surface perpendicular to the optical waveguide direction. 前記第2領域における前記第1領域とは反対側の端面には、低反射層が設けられている、請求項11〜14のいずれか一項に記載の光半導体素子。 The optical semiconductor device according to any one of claims 11 to 14, wherein a low reflection layer is provided on an end surface of the second region opposite to the first region. 前記第1分離領域は、イオン注入領域又は不純物拡散領域によって構成されており、
前記第2分離領域は、イオン注入領域、不純物拡散領域、又は前記第2クラッド層とは伝導型が異なる半導体領域によって構成されている、請求項11〜15のいずれか一項に記載の光半導体素子の駆動方法。
The first separation region is composed of an ion implantation region or an impurity diffusion region.
The optical semiconductor according to any one of claims 11 to 15, wherein the second separation region is composed of an ion implantation region, an impurity diffusion region, or a semiconductor region whose conduction type is different from that of the second clad layer. How to drive the element.
活性層、並びに、前記活性層を挟む第1クラッド層及び第2クラッド層を含むダブルヘテロ構造として構成された光導波路体と、
前記第2クラッド層上に設けられた第1電極と、
前記光導波路体の光導波方向における前記第1電極の一方の側において前記第2クラッド層上に設けられた第2電極と、
前記光導波路体の前記光導波方向における前記第1電極の他方の側において前記第2クラッド層上に設けられた第3電極と、
前記光導波路体を挟んで、前記第1電極、前記第2電極及び前記第3電極と対向する少なくとも1つの第4電極と、を備え、
前記光導波路体には、
前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の第1領域と前記第2電極下の第2領域との間を光学的に接続しつつ、前記第1領域と前記第2領域とを互いに電気的に分離する第1分離領域と、
前記第2クラッド層の表面から前記第1クラッド層に至り、前記第1電極下の前記第1領域と前記第3電極下の第3領域との間を光学的に接続しつつ、前記第1領域と前記第3領域とを互いに電気的に分離する第2分離領域と、が設けられており、
前記第2領域は、前記第2クラッド層に垂直な方向から見た場合に、前記第1領域から遠ざかるほど幅が広くなるフレア形状をなしている、光半導体素子。
An optical waveguide configured as a double heterostructure including an active layer and a first clad layer and a second clad layer sandwiching the active layer.
The first electrode provided on the second clad layer and
A second electrode provided on the second clad layer on one side of the first electrode in the optical waveguide direction of the optical waveguide, and a second electrode.
A third electrode provided on the second clad layer on the other side of the first electrode in the optical waveguide direction of the optical waveguide, and a third electrode.
The first electrode, the second electrode, and at least one fourth electrode facing the third electrode are provided across the optical waveguide.
The optical waveguide has
The first clad layer is reached from the surface of the second clad layer, and the first region is optically connected between the first region under the first electrode and the second region under the second electrode. And the first separation region that electrically separates the second region from each other,
The first clad layer is reached from the surface of the second clad layer, and the first region is optically connected between the first region under the first electrode and the third region under the third electrode. A second separation region that electrically separates the region and the third region from each other is provided.
The second region is an optical semiconductor device having a flare shape in which the width becomes wider as the distance from the first region increases when viewed from a direction perpendicular to the second clad layer.
JP2019558179A 2017-12-05 2018-11-29 How to drive optical semiconductor devices and optical semiconductor devices Pending JPWO2019111804A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017233300 2017-12-05
JP2017233300 2017-12-05
PCT/JP2018/044053 WO2019111804A1 (en) 2017-12-05 2018-11-29 Optical semiconductor element driving method, and optical semiconductor element

Publications (1)

Publication Number Publication Date
JPWO2019111804A1 true JPWO2019111804A1 (en) 2020-11-26

Family

ID=66750940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019558179A Pending JPWO2019111804A1 (en) 2017-12-05 2018-11-29 How to drive optical semiconductor devices and optical semiconductor devices

Country Status (2)

Country Link
JP (1) JPWO2019111804A1 (en)
WO (1) WO2019111804A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018182306A (en) * 2017-04-17 2018-11-15 浜松ホトニクス株式会社 Optical semiconductor element and method for driving optical semiconductor element
JP7314037B2 (en) * 2019-12-04 2023-07-25 浜松ホトニクス株式会社 semiconductor light emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843611A (en) * 1987-07-27 1989-06-27 Ortel Corporation Superluminescent diode and single mode laser
JPH01238082A (en) * 1988-03-18 1989-09-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JPH0653547A (en) * 1992-06-10 1994-02-25 Hewlett Packard Co <Hp> Ultrahigh-brightness light-emitting diode
JP2007158063A (en) * 2005-12-06 2007-06-21 Oki Electric Ind Co Ltd Semiconductor optical communication element
JP2009152605A (en) * 2007-12-18 2009-07-09 Korea Electronics Telecommun Optical amplifier-integrated super luminescent diode and external cavity laser using the same
JP2014082485A (en) * 2012-09-28 2014-05-08 Canon Inc Light source and optical interference tomographic imaging device using light source
WO2015163057A1 (en) * 2014-04-25 2015-10-29 ソニー株式会社 Semiconductor optical device and display apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843611A (en) * 1987-07-27 1989-06-27 Ortel Corporation Superluminescent diode and single mode laser
JPH01238082A (en) * 1988-03-18 1989-09-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
JPH0653547A (en) * 1992-06-10 1994-02-25 Hewlett Packard Co <Hp> Ultrahigh-brightness light-emitting diode
JP2007158063A (en) * 2005-12-06 2007-06-21 Oki Electric Ind Co Ltd Semiconductor optical communication element
JP2009152605A (en) * 2007-12-18 2009-07-09 Korea Electronics Telecommun Optical amplifier-integrated super luminescent diode and external cavity laser using the same
JP2014082485A (en) * 2012-09-28 2014-05-08 Canon Inc Light source and optical interference tomographic imaging device using light source
WO2015163057A1 (en) * 2014-04-25 2015-10-29 ソニー株式会社 Semiconductor optical device and display apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN, Y.-C. ET AL.: ""1.3-μm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth"", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 19, no. 7, JPN6022020283, 1 April 2007 (2007-04-01), pages 501 - 503, XP055253509, ISSN: 0004925697, DOI: 10.1109/LPT.2007.893567 *

Also Published As

Publication number Publication date
WO2019111804A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6790529B2 (en) Luminescent device
WO2021200168A1 (en) Two-dimensional photonic crystal laser
JP2012151291A (en) Semiconductor light-emitting device and manufacturing method of the same
JPWO2019111804A1 (en) How to drive optical semiconductor devices and optical semiconductor devices
JP6581024B2 (en) Distributed feedback laser diode
US20030202550A1 (en) GaSb-clad mid-infrared semiconductor laser
US10840406B2 (en) Optical semiconductor element and method of driving optical semiconductor element
JP2008521245A5 (en)
WO2019111805A1 (en) Superluminescent diode
JPH04296067A (en) Super luminescent diode
US7269195B2 (en) Laser diode with an amplification section that has a varying index of refraction
JPWO2020255565A1 (en) Semiconductor optical device
JPS5948975A (en) Semiconductor light emitting element
JPS59152683A (en) Surface light emitting semiconductor laser
JP2014096513A (en) Semiconductor light-emitting element
JPS6155276B2 (en)
JP2017147256A (en) Light amplifier, method for driving light amplifier, and method for amplifying light
JP2007019339A (en) Quantum cascade laser
JP2719669B2 (en) Semiconductor light emitting diode
JP2001024211A (en) Semiconductor light receiving element
JPH0433386A (en) End surface emitting type semiconductor light emitting element and driving method therefor
JPS60165777A (en) Light bistable integrated element
JPH06350196A (en) Optical semiconductor device
JP2011134944A (en) Photonic crystal light-emitting element
JPH0438880A (en) Semiconductor light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221122