JPWO2019111548A1 - 画像表示装置 - Google Patents

画像表示装置 Download PDF

Info

Publication number
JPWO2019111548A1
JPWO2019111548A1 JP2019558048A JP2019558048A JPWO2019111548A1 JP WO2019111548 A1 JPWO2019111548 A1 JP WO2019111548A1 JP 2019558048 A JP2019558048 A JP 2019558048A JP 2019558048 A JP2019558048 A JP 2019558048A JP WO2019111548 A1 JPWO2019111548 A1 JP WO2019111548A1
Authority
JP
Japan
Prior art keywords
light source
temperature
display device
image display
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019558048A
Other languages
English (en)
Other versions
JP7264063B2 (ja
Inventor
恵子 藤田
恵子 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2019111548A1 publication Critical patent/JPWO2019111548A1/ja
Application granted granted Critical
Publication of JP7264063B2 publication Critical patent/JP7264063B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本技術の一形態に係る画像表示装置は、光源部と、第1のセンサ部と、第2のセンサ部と、光源制御部とを具備する。前記光源部は、出射光を出射可能である。前記第1のセンサ部は、前記出射光の状態を検出可能である。前記第2のセンサ部は、前記光源部の温度を検出可能である。前記光源制御部は、前記第1のセンサ部による第1の検出結果、及び前記第2のセンサ部による第2の検出結果に基づいて、前記光源部を制御可能である。

Description

本技術は、プロジェクタ等の画像表示装置に関する。
従来からプロジェクタ等の画像表示装置が広く用いられている。例えば光源からの光が液晶素子等の光変調素子により変調され、その変調光がスクリーン等に投影されることで画像が表示される。光源としては、水銀ランプ、キセノンランプ、LED(Light Emitting Diode)やLD(Laser Diode)等が用いられる。このうちLEDやLD等の固体光源は寿命が長く従来のようなランプ交換が不要であり、また電源を入れて即時に点灯するといった利点を有する。
特許文献1には、環境温度センサ、光源温度センサ、及び光学系温度センサが備えられた画像表示装置が記載されている。環境温度センサは、吸気口の近傍に配置され外部温度を測定可能である。光源温度センサはレーザ光源の温度を測定可能であり、光学系温度センサは照明光学系の温度を測定可能である。各温度センサにより測定された温度に基づいて画像表示装置を適宜制御することで、装置の長寿命化が実現されている(特許文献1の明細書段落[0102][0103][0113][0124][0131]図1等)。
国際公開第2014/196124号
プロジェクタ等の画像表示装置では、光源の経時変化等により輝度が低下してしまうことがある。このような問題を防止するために光源を高精度に制御することを可能とする技術が求められている。
以上のような事情に鑑み、本技術の目的は、光源を高精度に制御することが可能な画像表示装置を提供することにある。
上記目的を達成するため、本技術の一形態に係る画像表示装置は、光源部と、第1のセンサ部と、第2のセンサ部と、光源制御部とを具備する。
前記光源部は、出射光を出射可能である。
前記第1のセンサ部は、前記出射光の状態を検出可能である。
前記第2のセンサ部は、前記光源部の温度を検出可能である。
前記光源制御部は、前記第1のセンサ部による第1の検出結果、及び前記第2のセンサ部による第2の検出結果に基づいて、前記光源部を制御可能である。
この画像表示装置では、第1及び第2のセンサ部により、出射光の状態及び光源部の温度がそれぞれ検出される。これらの検出結果を利用することで、光源部を高精度に制御することが可能となる。
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも低い場合に、前記光源部から出射される前記出射光の強度が一定に維持されるように、前記光源部を制御してもよい。
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記光源部の温度の上昇が抑制されるように、前記光源部を制御してもよい。
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記光源部の温度の上昇を抑制しつつ、前記光源部から出射される前記出射光の強度が一定に維持されるように、前記光源部を制御してもよい。
前記光源部は、電流が供給されることにより駆動する1以上の光源を有してもよい。この場合、前記第2のセンサ部は、前記1以上の光源の温度を前記光源部の温度として検出してもよい。また前記光源制御部は、前記1以上の光源に供給される電流を制御してもよい。
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記1以上の光源に供給される電流を増加させるための増加率を制御してもよい。
前記光源制御部は、前記第2の検出結果が前記所定の基準温度よりも高い第1の温度よりも高い場合に、前記1以上の光源に供給される電流の増加を禁止してもよい。
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも低い場合に、前記1以上の光源に供給される電流を増加させるための増加率として、第1の増加率を設定してもよい。
前記光源制御部は、前記第2の検出結果が所定の基準温度から前記第1の温度までの範囲に含まれる場合に、前記1以上の光源に供給される電流を増加させるための増加率として、前記第1の増加率よりも低い第2の増加率を設定してもよい。
前記光源制御部は、前記第2の検出結果が前記第1の温度から前記第1の温度よりも高い第2の温度までの範囲に含まれる場合に、第1の減少率により前記1以上の光源に供給される電流を減少させてもよい。
前記光源制御部は、前記第2の検出結果が前記第2の温度から前記第2の温度よりも高い第3の温度までの範囲に含まれる場合に、前記第1の減少率よりも高い第2の減少率により前記1以上の光源に供給される電流を減少させてもよい。
前記光源制御部は、前記第2の検出結果が前記第3の温度よりも高い場合に、前記1以上の光源への電流の供給を停止してもよい。
前記所定の基準温度は、前記光源部の動作保証温度の上限を基準に、前記動作保証温度の上限よりも低い温度に設定されてもよい。
前記第1の温度、前記第2の温度、及び前記第3の温度の各々は、前記光源部の動作保証温度の上限を基準に、前記動作保証温度の上限よりも低い温度に設定されてもよい。
前記画像表示装置は、さらに、第3のセンサ部と、生成部とを具備してもよい。
前記第3のセンサ部は、外部の温度を検出可能である。
前記生成部は、前記第1のセンサ部による第1の検出結果、前記第2のセンサ部による第2の検出結果、及び前記第3のセンサ部による第3の検出結果に基づいて、前記光源部の状態に関する状態情報を生成してもよい。
前記画像表示装置は、さらに、外部の空気を吸入する吸気口を有する筐体部を具備してもよい。この場合、前記第3のセンサ部は、前記吸気口の近傍に配置され前記吸気口から吸入される前記外部の空気の温度を、前記外部の温度として検出してもよい。
前記光源制御部は、前記生成された状態情報に基づいて、前記光源部を制御してもよい。
前記画像表示装置は、さらに、画像生成部と、投射部とを具備してもよい。
前記画像生成部は、前記光源部から出射された前記出射光に基づいて画像を生成する。
前記投射部は、前記画像生成部により生成された画像を投射する。
以上のように、本技術によれば、光源を高精度に制御することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
一実施形態に係る画像表示装置の構成例を示す概略図である。 画像生成部及び投射部の構成例を示す概略図である。 光源部の構成例を示す斜視図である。 光源部の内部の構成例を模式的に示す図である。 光源ユニットの構成例を示す斜視図である。 蛍光体ユニットによる白色光Wの生成を説明するための図である。 光源制御部による光源部の制御の概要を説明するための模式的なグラフである。 温度監視制御の一例を示すフローチャートである。 輝度一定制御の一例を示すフローチャートである。 温度監視付き輝度一定制御の一例を示す図である。 目標電流値の補正の一例を説明するための模式的な図である。
以下、本技術に係る実施形態を、図面を参照しながら説明する。
[画像表示装置]
図1は、本技術の一実施形態に係る画像表示装置の構成例を示す概略図である。以下の説明では、画像表示装置500の左右方向、前後方向、及び高さ方向を、X方向、Y方向及びZ方向として説明を行う。もちろんこのような方向の設定に限定される訳ではない。
画像表示装置500は、例えばプレゼンテーション用、もしくはデジタルシネマ用のプロジェクタとして用いられる。その他の用途に用いられる任意の画像表示装置に、以下に説明する本技術は適用可能である。
画像表示装置500は、光源部100と、画像生成部200と、投射部400と、筐体部450と、センサ機構470とを有する。
光源部100は、画像生成部200に向けて出射光を出射する。画像生成部200は、光源部100から出射された出射光に基づいて画像を生成する。投射部400は、画像生成部200により生成された画像をスクリーン等に投射する。
筐体部450は、外枠部451と、吸気口452と、排気口453とを有する。外枠部451は、光源部100、画像生成部200、及び投射部400を囲むように構成される。外枠部451は略直方体形状を有し、前面部454、背面部455、側面部456、底面部457、及び上面部を有する。なお図1では、上面部の図示が省略されている。
吸気口452は、外枠部451の2つの側面部456a及び456bのうち一方の側面部456aに形成され、外部の空気を吸入する。排気口453は、2つの側面部456a及び456bのうち他方の側面部456bに形成され、吸気口452から吸入された空気を排出する。本実施形態では、吸気口452及び排気口453は、前面部454から背面部455に向かう前後方向(Y方向)に延在する長方形状に形成される。
吸気口452から外部の空気が冷却風として吸入され、画像表示装置500の内部に供給される。画像表示装置500の内部を冷却して暖かくなった空気は、排気口453から外部に排出される。外部の空気が効率よく画像表示装置500内を流れるように、吸気口452の近傍や排気口453の近傍にファン機構等が設けられてもよい。
センサ機構470は、輝度センサ471と、光源温度センサ472と、環境温度センサ473とを有する。
輝度センサ471は、光源部100の近傍に配置され、出射光の状態として、出射光の強度(輝度)を検出することが可能である。輝度センサ471の具体的な構成は限定されず、任意の構成が採用されてよい。もちろん、複数のセンサにより構成されたアレイセンサや、CMOSセンサやCCDセンサ等のイメージセンサが用いられてもよい。
なお光の状態を検出するとは、検出対象となる光の状態を検出可能な任意の方法を含む。例えば検出対象となる光に含まれる一部の光の状態を検出する方法や、検出対象となる光の漏れ光や回折光等の状態を検出する方法等も含まれる。
光源温度センサ472は、光源部100内に配置され、光源部100の温度を検出することが可能である。環境温度センサ473は、吸気口452の近傍に配置され、外部の温度を検出することが可能である。本実施形態では、環境温度センサ473により、吸気口452から吸入される外部の空気の温度が、外部の温度として検出される。
光源温度センサ472及び環境温度センサ473の具体的な構成は限定されず、任意の構成が採用されてよい。本実施形態において、輝度センサ471、光源温度センサ472、及び環境温度センサ473は、第1のセンサ部、第2のセンサ部、及び第3のセンサ部としてそれぞれ機能する。
また画像表示装置500は、画像表示装置500の動作を包括的に制御するコントローラ(制御部)490を有する(図2参照)。コントローラ490は、例えばCPUやメモリ(RAM、ROM)等のコンピュータに必要なハードウェア構成を有する。CPUがメモリ等に記憶されている制御プログラム等をRAMにロードして実行することにより、種々の処理が実行される。
コントローラ490として、例えばFPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、その他ASIC(Application Specific IntegratedCircuit)等のデバイスが用いられてもよい。またコントローラ490が配置される箇所等も限定されず、適宜設計されてよい。
本実施形態では、コントローラ490のCPUが所定のプログラムを実行することにより、光源制御部491が実現される(図2参照)。光源制御部491を実現するために、IC(集積回路)等の専用のハードウェアが適宜用いられてもよい。また本実施形態では、コントローラ490のメモリ等により記憶部が実現される。もちろんコントローラ490とは別に、ROMやHDD等により記憶部が構成されてもよい。
図2は、画像生成部200及び投射部400の構成例を示す概略図である。図2に示すように、外枠部451の背面部455から前面部454にかけて光源部100、画像生成部200、及び投射部400が配置される。投射部400は、その出射面401が前面部454から外部側に突出するように配置される。
本実施形態では、光源部100により、出射光として、赤色光、緑色光、及び青色光を含む白色光Wが出射される。そして画像生成部200により、光源部100から出射された白色光Wに基づいて画像が生成される。
画像生成部200は、インテグレータ光学系210と、照明光学系220とを有する。インテグレータ光学系210は、インテグレータ素子211と、偏光変換素子212と、集光レンズ213とを有する。
インテグレータ素子211は、二次元に配列された複数のマイクロレンズを有する第1のフライアイレンズ211aと、その複数のマイクロレンズに一つずつ対応するように配列された複数のマイクロレンズを有する第2のフライアイレンズ211bとを有する。
インテグレータ素子211に入射した白色光Wは、第1のフライアイレンズ211aのマイクロレンズによって複数の光束に分割され、第2のフライアイレンズ211bに設けられた対応するマイクロレンズにそれぞれ結像される。第2のフライアイレンズ211bのマイクロレンズのそれぞれが二次光源として機能し、輝度がった複数の平行光を、後段の偏光変換素子212に出射する。
偏光変換素子212は、インテグレータ素子211を介して入射する入射光の偏光状態を揃える機能を有する。偏光変換素子212を通った光は、集光レンズ213を介して照明光学系220に出射される。
インテグレータ光学系210は、全体として、照明光学系220へ向かう白色光Wを均一な輝度分布に整え、偏光状態の揃った光に調整する機能を有する。インテグレータ光学系210の具体的な構成は限定されない。
照明光学系220は、ダイクロイックミラー230、240、250、260及び270、フィールドレンズ280R、280G及び280B、リレーレンズ290及び300、画像生成素子としての液晶ライトバルブ310R、310G及び310B、ダイクロイックプリズム320を含んでいる。
ダイクロイックミラー230〜270は、所定の波長域の色光を選択的に反射し、それ以外の波長域の光を透過させる性質を有する。ダイクロイックミラー230は、白色光Wに含まれる緑色光G1及び青色光B1を選択的に反射し、白色光Wに含まれる赤色光R1を透過させる。
ダイクロイックミラー240は、ダイクロイックミラー230により反射された緑色光G1を選択的に反射し、青色光B1を透過させる。これにより異なる色光は、それぞれ異なる光路に分離される。なおRGBの各色光を分離するための構成や、用いられるデバイス等は限定されない。
分離された赤色光R1は、ダイクロイックミラー250により反射され、フィールドレンズ280Rにより平行化された後、赤色光の変調用の液晶ライトバルブ310Rに入射する。緑色光G1は、フィールドレンズ280Gにより平行化された後、緑色光の変調用の液晶ライトバルブ310Gに入射する。
青色光B1はリレーレンズ290を通ってダイクロイックミラー260によって反射され、さらにリレーレンズ300を通ってダイクロイックミラー270によって反射される。ダイクロイックミラー270により反射された青色光B1は、フィールドレンズ280Bにより平行化された後、青色光の変調用の液晶ライトバルブ310Bに入射する。
液晶ライトバルブ310R、310G及び310Bは、画像情報を含んだ画像信号を供給する図示しない信号源(例えばPC等)と電気的に接続されている。液晶ライトバルブ310R、310G及び310Bは、供給される各色の画像信号に基づき、入射光を画素毎に変調し、それぞれ赤色画像、緑色画像及び青色画像を生成する。変調された各色の光(形成された画像)は、ダイクロイックプリズム320に入射して合成される。ダイクロイックプリズム320は、3つの方向から入射した各色の光を重ね合わせて合成し、投射部400に向けて出射する。
投射部400は、画像生成部200により生成された画像を投射する。投射部400は、複数のレンズ410等を有し、ダイクロイックプリズム320によって合成された光を図示しないスクリーン等に投射する。これによりフルカラーの画像が表示される。投射部400の具体的な構成は限定されない。
図3は、光源部100の構成例を示す斜視図である。図4は、光源部100の内部の構成例を模式的に示す図である。光源部100は、光源ユニット10と、光学系ユニット20と、蛍光体ユニット30と、これらを支持するベース部50とを有する。
白色光Wが出射される側を前方側とし、その反対側を後方側とする。光源ユニット10、光学系ユニット20、及び蛍光体ユニット30は、後方側から前方側にかけて、この順で並ぶようにベース部50に支持される。なお図4では、ベース部50の図示は省略されている。
ベース部50は、左右方向(X方向)に延在する細長い形状を有する。ベース部50には、光源ユニット10、光学系ユニット20、及び蛍光体ユニット30を支持するための支持機構が構成される。支持機構の具体的な構成は限定されず、任意に設計されてよい。
図5は、光源ユニット10の構成例を示す斜視図である。図4及び図5に示すように、光源ユニット10は、X方向に並ぶ2つの光源ブロック11と、その後方側に配置されたヒートシンク12とを有し、これらが1つのユニットとして構成されている。
各光源ブロック11は、電流が供給されることにより駆動する複数のレーザ光源(レーザダイオード)13を有する。複数のレーザ光源13は、前後方向を光軸方向として、前方側に向けてレーザ光が出射されるように配置される。
本実施形態では、複数のレーザ光源13として、例えば400nm−500nmの波長範囲内に発光強度のピーク波長を有する青色レーザ光B2を発振可能な青色レーザ光源が用いられる。本実施形態において、複数のレーザ光源13は、1以上の光源に相当する。
1以上の光源として、LED等の他の固体光源が用いられてもよい。また水銀ランプ、キセノンランプ等が用いられる場合でも、本技術は適用可能である。また出射される光の波長域も限定されず、任意に設定されてよい。
なお図5では、光源温度センサ472の位置を説明するために、各光源ブロック11において、1つのレーザ光源13の図示が省略されている。図中左側の光源ブロック11では、右端の列の上から4個目のレーザ光源13の図示が省略されている。図中右側の光源ブロック11では、左端の列の上から4個目のレーザ光源13の図示が省略されている。当然のことながら、この位置にも、レーザ光源13が配置される。
図4に示すように、光学系ユニット20は、密閉空間S1を形成する筐体部21と、密閉空間S1内に収容される集光光学系22とを有する。筐体部21の後方側の面の、光源ブロック11に対向する位置には、青色レーザ光B2が入射する2つの入射口23が形成される。筐体部21の前方側の面には、集光光学系22により集光された青色レーザ光B2が出射される出射口24が形成される。
2つの入射口23、及び出射口24は、ガラスやプラスチック等からなる任意の透明部材により密閉されている。なお入射口23、及び出射口24が開口しており、光源ユニット10及び蛍光体ユニット30と接続されることで、密閉空間S1が実現されてもよい。
集光光学系22は、2つの非球面ミラー25(図中では板状に図示されている)と、2つの平面ミラー26とを有する。非球面ミラー25は、前後方向に沿って入射口23に入射する青色レーザ光B2を折り返すように反射して集光する。平面ミラー26は、非球面ミラー25により反射された光を、出射口24に向けて反射する。集光光学系22の構成は限定されず、任意の構成が採用されてよい。
蛍光体ユニット30は、密閉空間S2を形成する筐体部31と、密閉空間S2内に収容されるホイール部33と、出射レンズ34とを有する。筐体部31の後方側の面には、光学系ユニット20の出射口24から出射された青色レーザ光B2が入射する入射口35が形成される。筐体部31の前方側の面には、白色光Wが出射される出射口36が形成される。出射口36は、出射レンズ34により密閉されている。
また筐体部31の前方側の面には、窓部37が形成されている。入射口35、及び窓部37は、ガラスやプラスチック等からなる透明部材により密閉されている。本実施形態において、筐体部31は、窓部を有し内部に密閉された空間を形成する密閉部として機能する。なお入射口35が開口しており、光学系ユニット20と接続されることで、密閉空間S2が実現されてもよい。この場合、筐体部31及び21により、密閉部が実現される。
ホイール部33は、蛍光体ホイール38と、モータ39とを有する。蛍光体ホイール38は、入射口35に入射する青色レーザ光B2が所定のポイントに集光する位置に配置される。モータ39は、フレキシブル基板等を介して供給される電力により駆動し、蛍光体ホイール38を回転させる。
図6は、蛍光体ユニット30による白色光Wの生成を説明するための図である。蛍光体ホイール38は、青色レーザ光B2を透過させる円盤形状の基板41と、その基板41上に設けられた蛍光体層42とを有する。基板41としては、例えば水晶やサファイア等の結晶性部材が用いられる。
蛍光体層42は、複数のレーザ光源13により出射される青色レーザ光B2によって励起されて可視光を発する蛍光物質を含んでいる。本実施形態では、蛍光体層42により、青色レーザ光B2の一部が、赤色波長域から緑色波長域までを含む波長域の光(すなわち黄色光)に変換される。また蛍光体層42は、青色レーザ光B2の一部をそのまま透過させる。従って蛍光体層42からは、青色の励起光と黄色の蛍光とを含む光が出射される。
蛍光体層42に含まれる蛍光物質としては、例えばYAG(イットリウム・アルミニウム・ガーネット)系蛍光体が用いられる。なお、蛍光物質の種類、励起光の波長域、及び励起により発生される可視光の波長域は限定されない。
本実施形態において、蛍光体層42は、複数のレーザ光源13から出射される青色レーザ光B2により励起されて可視光を発する発光体に相当する。発光体として、蛍光体とは異なる他の任意の物質が用いられてもよい。
モータ39は、基板41の中心に接続される。モータ39が駆動することで、蛍光体ホイール38が、回転軸Mを中心として回転する。
モータ39により基板41が回転されている状態で、光源ユニット10から青色レーザ光B2が出射される。青色レーザ光B2は、光学系ユニット20により集光され、入射口35を介して蛍光体層42に照射される。青色レーザ光B2は、基板41の回転に合わせて、相対的に円を描くように蛍光体層42に照射される。
これにより図6に示すように、蛍光体層42を透過した青色レーザ光B3と、蛍光体層42からの可視光である緑色光G3及び赤色光R3とを含む白色光Wが出射される。白色光Wは、出射レンズ34(出射口36)を介して、図3及び図4に示す光軸Lに沿って出射される。本実施形態において、白色光Wは、複数のレーザ光源13からの光と蛍光体層42からの可視光とを含む光に相当する。
なお各ユニットのベース部50への接続するための構成や方法、各ユニット同士を接続するための構成や方法は限定されず、嵌合、接着、ネジ/ビス留め等、任意の構成及び方法が採用されてよい。
[センサ機構]
図3、図4、及び図6に示すように、輝度センサ471は、蛍光体ユニット30の筐体部31に形成された窓部37に対向する位置に配置される。そして窓部37から出射される漏れ光W'の強度が検出される。漏れ光W'は、青色レーザ光B3、緑色光G3及び赤色光R3を含む、白色光Wの漏れ光である。すなわち本実施形態では、輝度センサ471により、検出対象である白色光Wの漏れ光W'の強度が検出される。輝度センサ471により検出される白色光Wの漏れ光W'の強度は、第1の検出結果に相当する。
なお輝度センサ471が配置される位置は限定されず、白色光Wの強度を検出可能な任意の位置に輝度センサ471を配置することが可能である。例えば画像生成部200内のダイクロイックミラー250や270の背面側(反射面とは反対側の面)に輝度センサ471が配置されてもよい。そして白色光Wに含まれる赤色光R1や青色光B1の強度が検出されてもよい。またインテグレータ光学系210の近傍に輝度センサ471が配置され、偏光変換素子212から出射される白色光Wの漏れ光等の強度が検出されてもよい。
図5に示すように、光源温度センサ472は、2つの光源ブロック11に、1つずつ配置される。本実施形態では、各光源ブロック11の1つのレーザ光源13の背面側に、光源温度センサ472が配置される。
図中左側の光源ブロック11では、右端の列の上から4個目のレーザ光源13の背面側に、光源温度センサ472が配置される。図中右側の光源ブロック11では、左端の列の上から4個目のレーザ光源13の背面側に、光源温度センサ472が配置される。例えばレーザ光源13を実装する実装基板の裏側の面に、光源温度センサ472を、それを駆動させる回路とともに実装することが可能である。
本実施形態では、光源温度センサ472により、光源部100の温度として、複数のレーザ光源13の温度が検出される。なお光源温度センサ472を配置する位置は限定されず、任意に設計されてよい。例えば密閉空間S1やS2内に光源温度センサ472が配置され、密閉空間S1やS2内の温度が、光源部100の温度として検出されてもよい。光源温度センサ472により検出される光源温度は、第2の検出結果に相当する。
図1に示すように、環境温度センサ473は、吸気口452の近傍に配置される。画像表示装置500の内部には、外部の空気の外部の空気の流路を適正に形成するための冷却構造が構成されている。例えば冷却構造は、ダクト等の空気を誘導するための任意の部材を用いることで実現される。また各機構の位置や、各機構に空気を通す開口や孔等を形成すること等により、任意の冷却構造を実現することが可能である。
環境温度センサ473は、吸気口452の近傍の、冷却構造により形成された外部の空気の流路上に配置される。これにより外部の温度を高い精度で検出することが可能である。もちろん環境温度センサ473が配置される位置は限定されず、外部の温度を検出可能な任意の位置が選択されてよい。例えば筐体部450の外側に環境温度センサ473が配置され、外部の温度が検出されてもよい。環境温度センサ473により検出される外部温度は、第3の検出結果に相当する。
[光源部の制御]
図7は、光源制御部491による光源部100の制御の概要を説明するための模式的なグラフである。図7Aに示すように、複数のレーザ光源13に供給される光源電流を一定に維持する。そうすると、レーザ光源13の経年劣化により、光源輝度が低下するとともに、光源温度が上昇する。例えば光源輝度の低下分、及び光源温度の上昇分を、光源劣化分と見做すことが可能である。
そこで本実施形態では、図7Bに示すように、光源電流を増加させることで、光源輝度を一定に維持させる。そうすると図7Cに示すように、光源劣化分に加えて電流増加に応じた光源温度の上昇が発生する。光源温度が定格温度の上限(図中では定格温度と記載)を超えてしまうと、急激な輝度低下や素子の破壊等を招く恐れがある。
本実施形態では、以下に説明するように、光源制御部491により、輝度センサ471による第1の検出結果である白色光Wの漏れ光W'の強度(以下、単に光源輝度と記載する)、及び光源温度センサ472による第2の検出結果である光源温度に基づいて、光源部100が制御される。すなわち光源輝度及び光源温度に基づいて、複数のレーザ光源13に供給されるLD電流値が制御される。
これにより光源温度を監視しつつ光源電流を制御することが可能となるので、光源温度が定格温度の上限を超えてしまうことを防止することが可能となり、レーザ光源13の早期劣化や破壊を防止することが可能となる。なお定格温度の上限は、本実施形態において、動作保証温度の上限の一例である。定格温度とは異なる温度が、動作保証温度の上限として設定されてもよい。
また図7に示すグラフは、模式的なグラフである。例えば光源の素子劣化を原因とする光源輝度の低下や光源温度の上昇等は、1次関数的な挙動を示す場合に限定されない。例えば光源の特性や温度等に応じて、様々な態様で輝度低下や温度上昇が発生し得る。
図8は、温度監視制御の一例を示すフローチャートである。光源温度センサ472により検出される光源温度が取得される(ステップ101)。光源温度が所定の基準温度よりも高いか否かが判定される(ステップ102)。
光源温度が基準温度よりも低い場合(ステップ102のNo)、輝度一定制御が実行される(ステップ103)。光源温度が基準温度よりも高い場合(ステップ102のYes)、温度抑制制御が実行される(ステップ104)。
図9は、輝度一定制御の一例を示すフローチャートである。輝度一定制御とは、光源部100から出射される白色光Wの強度が一定に維持されるように、光源部100を制御することである。まず輝度調整時の輝度/温度/LD電流値の初期値がコントローラ490のメモリ等に保存される(ステップ201)。
なお本開示において、「一定」とは、「実質的に一定」を含む概念とする。すなわち「一定」とは、完全に一定な状態に限定されず、実質的に一定な状態(例えば変化の割合が±10%の範囲に含まれる状態等)も含まれる。
例えば画像表示装置500の工場出荷時等に、輝度調整が実行される。例えば目標となる輝度にて画像が表示されるように、LD電流値が制御される。目標となる輝度にて画像が表示されている場合に、輝度センサ471及び光源温度センサ472により検出される光源輝度及び光源温度が初期値としてメモリ等に保存される。またその時のLD電流値も初期値として保存される。
またはユーザにより輝度調整が実行されてもよい。例えば輝度調整モードが選択され、ボタン操作等により画像の輝度が制御される。所望の輝度の画像が表示されている状態で、調整完了の旨の操作が入力される。その際に検出される光源輝度、光源温度、及びLD電流値が、初期値としてメモリ等に保存される。
あるいは輝度調整等が実行されず、予め定められた輝度値、温度、及び電流値が、光源輝度、光源温度、及びLD電流値の初期値として、メモリ等に保存されていてもよい。
輝度センサ471により検出される光源輝度が取得される(ステップ202)。取得された光源輝度が、メモリ等に保存されている初期値と比較される(ステップ203)。
初期値と検出値との間に一定以上のズレがある場合には、LD電流値が調整される(ステップ204)。例えば初期値に比べて検出値が低い場合には、LD電流値が増加される。これにより複数のレーザ光源13から出射される青色レーザ光B2の強度が増加され、光源部100から出射される白色光Wの輝度が増加する。
初期値に比べて検出値が高い場合には、LD電流値が減少される。これにより複数のレーザ光源13から出射される青色レーザ光B2の強度が減少され、光源部100から出射される白色光Wの輝度が減少する。LD電流値の制御が完了すると、ステップ202に戻る。
初期値と検出値との間に一定以上のズレがない場合には、LD電流値は調整されず、ステップ202に戻る。ステップ202、203及び204のループを、所定の間隔で繰り返すことにより、輝度一定制御が実現される。
一定以上のズレを規定するための具体的な閾値等は限定されず、任意に設定されてよい。またズレに対するLD電流値の増減量(増減率)も限定されず、任意に設定されてよい。典型的には、例えば1回のループで調整されるLD電流値の増減量が固定されていてもよい。あるいはズレの大きさに応じて、ループごとに増減量が適宜制御されてもよい。
図7のステップ104に示す温度抑制制御は、光源部100の温度の上昇が抑制されるように、光源部100を制御することである。温度抑制制御の具体的な方法は限定されず、光源部100の温度の上昇を抑制可能な任意の方法が採用されてよい。
例えば、複数のレーザ光源13に供給されるLD電流値を増加させるための増加率(増加量)を制御することで、光源温度の上昇を抑制することが可能である。例えば増加率をゼロに設定しLD電流値の増加を禁止することで、光源温度の上昇を抑制することが可能である。
またLD電流値を減少させるための減少率を制御することでも、光源温度の上昇を抑制することが可能である。例えば減少率を高く設定し、LD電流値を大きく低下させることで、光源温度の上昇を抑制することが可能である。もちろんLD電流値の供給を停止することでも、光源温度の上昇を抑制することが可能である。
図10は、温度監視付き輝度一定制御の一例を示す図である。温度監視付き輝度一定制御は、光源温度が定格温度の上限を超えないように監視しつつ、白色光Wの輝度を一定に維持する制御である。
本実施形態では、光源輝度が基準温度を超えない場合は、通常の輝度一定制御が実行される。光源輝度が基準温度を超える場合は、光源部100の温度の上昇を抑制しつつ、光源部100から出射される白色光Wの強度が一定に維持されるように、光源部100が制御される。なおこの制御は、温度抑制制御に含まれる。
まず輝度調整時の輝度/温度/LD電流値の初期値がコントローラ490のメモリ等に保存される(ステップ301)。輝度センサ471により検出される光源輝度が取得される(ステップ302)。取得された光源輝度が、メモリ等に保存されている初期値と比較される(ステップ303)。
初期値と検出値との間に一定以上のズレがない場合には、現在のLD電流値が目標電流値に設定される(ステップ304)。目標電流値は、LD電流値を変更する場合に目標となる電流値である。従ってステップ304は、現状のLD電流値を維持することに相当する。
初期値と検出値との間に一定以上のズレがある場合には、現在のLD電流値を補正した値が、目標電流値に設定される(ステップ305)。例えば初期値に比べて検出値が低い場合には、現在のLD電流値に所定の補正分ΔIを加えた値が、目標電流値に設定される。初期値に比べて検出値が高い場合には、現在のLD電流値から所定の補正分ΔIを引いた値が、目標電流値に設定される。
補正分ΔIの具体的な値は限定されず、任意に設定されてよい。また増加させるための補正分ΔI、及び減少させるための補正分ΔIは、互いに同じ値でもよいし異なる値でもよい。
光源温度センサ472により検出される光源温度が取得される(ステップ306)。光源温度が所定の基準温度よりも高いか否かが判定される(ステップ307)。
光源温度が基準温度よりも低い場合(ステップ307のNo)、ステップ304又は305にて設定された目標電流値となるように、レーザ光源13に供給されるLD電流値が制御される(ステップ308)。これにより通常の輝度一定制御が実行される。
光源温度が基準温度よりも高い場合(ステップ302のYes)、ステップ304又は305にて設定された目標電流値が補正される。そして補正された目標電流値となるように、レーザ光源13に供給されるLD電流値が制御される(ステップ309)。目標電流値の補正は、光源部100の温度の上昇を抑制しつつ、光源部100から出射される白色光Wの強度が一定に維持されるように実行される。
図11は、目標電流値の補正の一例を説明するための模式的な図である。本実施形態では、光源温度に対して、「TL_SaturationLow」「TL_SaturationCenter」「TL_SaturationUp」「TL_MaxLimit」の4つの閾値が設定される。
「TL_SaturationLow」は、図8〜図10を参照して説明した所定の基準温度に相当する。「TL_SaturationCenter」は、所定の基準温度よりも高い第1の温度に相当する。「TL_SaturationUp」は、第1の温度よりも高い第2の温度に相当する。「TL_MaxLimit」は、第2の温度よりも高い第3の温度に相当する。
「TL_SaturationLow」「TL_SaturationCenter」「TL_SaturationUp」「TL_MaxLimit」をどの温度に設定するかは限定されない。例えば4つの閾値は、定格温度の上限(動作保証温度の上限)を基準に、定格温度の上限(動作保証温度の上限)よりも低い値にそれぞぞれ設定される。
例えば以下のような設定の方法が挙げられる。
定格温度×95%=「TL_MaxLimit」
定格温度×90%=「TL_SaturationUp」
定格温度×85%=「TL_SaturationCenter」
定格温度×80%=「TL_SaturationLow」
その他、任意の設定方法が採用されてよい。
光源温度が「TL_SaturationLow」よりも低い場合は、ステップ307にてNoとなり、通常の輝度一定制御が実行される。ここで、通常の輝度一定制御において、初期値に比べて光源輝度が低い場合にLD電流値を増加させるために設定される増加率を、第1の増加率とする。本実施形態では、ループごとに現在のLD電流値に所定の補正分ΔIを加えることにより算出される増加率が、第1の増加率となる。
なお増加率は、所定の時間におけるLD電流値の増加率と定義する。すなわち所定の時間の間にLD電流値がどのくらい増加したかにより、増加率は定義される。
例えば本実施形態のように、ループを繰り返してLD電流値を制御する場合には、例えば2以上の所定の回数のループが経過する間におけるLD電流値の増加率と定義することが可能である。本実施形態においては、増加率を、例えば2以上の所定の回数のループにて連続して初期値に比べて光源輝度が低くなった場合のLD電流値の増加率と定義することも可能である。
例えばループにより段階的にLD電流値を制御するのではなく、連続してLD電流値を制御する場合にも、所定の時間を適宜設定して、増加率を定義することが可能である。
光源温度が「TL_SaturationLow」から「TL_SaturationCenter」までの範囲に含まれる場合には、LD電流値を増加させるための増加率として、第1の増加率よりも低い第2の増加率が設定される。すなわちループごとに現在のLD電流値に所定の補正分ΔIを加えることにより算出される第1の増加率よりも低い増加率となるように、目標温度が適宜補正される。
LD電流値の増加率を低くする方法、例えば2以上の所定の回数のループにて連続して初期値に比べて光源輝度が低くなった場合の、LD電流値の増加率を低くする方法としては、以下のような方法が挙げられる。
例えば通常の輝度一定制御にて加えられる補正分ΔIよりも小さい値を現在のLD電流値に加え、あらためて目標電流値とする方法が挙げられる。すなわちループごとに補正分ΔIよりも小さい値を、現在のLD電流値に加える方法である。
また複数のループごとに1回だけ補正分ΔIを現在のLD電流値に加え目標電流値として、他のループでは現在のLD電流値を目標電流値とする方法が挙げられる。このように現在のLD電流値に対して、増加させる分の値を小さくする方法や、増加させる回数を少なくする方法等が挙げられる。もちろん、これらの方法が組み合わされてもよく、増加勾配を緩やかにするような他の任意の方法が採用されてよい。
本実施形態では、光源温度が「TL_SaturationLow」から「TL_SaturationCenter」までの範囲に含まれた場合には、まず現在のLD電流値が目標電流値に設定され、レーザ光源13に供給される。従って初期値に比べて光源輝度が低くなっていても、まずはLD電流値を維持した状態にし、輝度の向上は基本的には禁止とする。
ただし、5回連続して、光源温度が「TL_SaturationLow」から「TL_SaturationCenter」までの範囲に含まれる場合には、その際にステップ305にて設定された目標電流値をそのまま採用して、レーザ光源13に電流を供給する。すなわち5回に1回は、輝度を向上させる。これにより温度を監視しつつ輝度の維持を図ることが可能となる。もちろん5回に限定されず、他の回数が採用されてもよい。
なお、初期値に比べて光源輝度が高くなっている場合は、通常の輝度一定制御と同様に、現在のLD電流値から所定の補正分ΔIを引いた値が、目標電流値に設定される。そして目標電流値となるように、LD電流値が制御される。これにより輝度の維持を図ることが可能となる。
光源温度が「TL_SaturationCenter」から「TL_SaturationUp」までの範囲に含まれる場合には、複数のレーザ光源13に供給されるLD電流値の増加が禁止される。本実施形態では、現在のLD電流値が目標電流値に設定され、レーザ光源13に供給される。
そのまま3回連続して、光源温度が「TL_SaturationCenter」から「TL_SaturationUp」までの範囲に含まれるとする。その場合には、現在のLD電流値から所定の補正分ΔIを引いた値が、目標電流値に設定される。この所定の補正分ΔIは、ステップ305にて、初期値に比べて光源輝度が高い場合に用いられる補正分ΔIと同様であってもよいし、異なっていてもよい。
このように本実施形態では、「TL_SaturationCenter」から「TL_SaturationUp」までの範囲に含まれる場合には、LD電流値を落とさず様子を見て温度が下がらない場合には、3回に1回LD電流値が下げられる。これにより温度を監視しつつ輝度の一定を図ることが可能となる。もちろん3回に限定されず、他の回数が採用されてもよい。
ここで、LD電流値を落とさず様子を見て温度が下がらない場合には、3回に1回LD電流値を下げることにより算出されるLD電流値の減少率を、第1の減少率とする。なお減少率は、所定の時間におけるLD電流値の減少率と定義する。すなわち所定の時間の間にLD電流値がどのくらい減少したかにより、減少率は定義される。
例えば本実施形態のように、ループを繰り返してLD電流値を制御する場合には、例えば2以上の所定の回数のループが経過する間におけるLD電流値の減少率と定義することが可能である。例えばループにより段階的にLD電流値を制御するのではなく、連続してLD電流値を制御する場合にも、所定の時間を適宜設定して、減少率を定義することが可能である。
光源温度が「TL_SaturationUp」から「TL_MaxLimit」までの範囲に含まれる場合には、第1の減少率よりも高い第2の減少率にて、LD電流値が減少される。減少率を高くする方法としては、例えば現在のLD電流値に対して、減少させる分の値を大きくする方法や、減少させる回数を多くする方法等が挙げられる。
本実施形態では、ループごとに、現在のLD電流値から所定の補正分ΔIを引いた値が目標電流値に設定され、レーザ光源13に電流が供給される。すなわち毎ターン強制的にLD電流値が減少される。所定の補正分ΔIは、適宜設定されてよい。
光源温度が「TL_MaxLimit」よりも高い場合には、複数のレーザ光源13に供給されるLD電流値が停止され、レーザ光源13の駆動が停止される。すなわち「TL_MaxLimit」を超える場合には、レーザ光源13は即止められる。
このように本実施形態では、現在の光源温度が、4つの閾値で区分けされるどの温度帯に含まれるかにより、適宜目標温度の補正が実行される。光源温度が「TL_SaturationLow」よりも高くなる場合には、「TL_SaturationCenter」に温度が収束するように、輝度一定を図りながら、LD電流値が制御される。これにより光源温度を監視しつつ光源電流を制御することが可能となるので、光源温度が定格温度の上限を超えてしまうことを防止することが可能となり、レーザ光源13の早期劣化や破壊を十分に防止することが可能である。
以上、本実施形態に係る画像表示装置500では、輝度センサ471及び光源温度センサ472により、白色光Wの輝度及び光源部100の温度がそれぞれ検出される。これらの検出結果を利用することで、光源部100を高精度に制御することが可能となる。
本技術により、光源輝度と光源温度とのバランスを考慮した光源部100の制御が可能となり、例えば許容される光源温度の範囲内で、光源輝度を高く維持することも可能となる。また画像表示装置500の長寿命化が実現され、非常に高い品質を発揮することが可能となる。
また光源劣化分及び電流増加分の光源温度上昇のみならず、環境温度(外部の温度)の上昇により光源温度が上昇する場合もあり得る。例えば夏場での使用と冬場での使用とでは、同様にLD電流値を制御した場合でも、光源温度に差異が発生し得る。本技術では、光源温度を監視するので、環境温度の上昇や低下等にも対応することが可能であり、非常に高精度に光源部100を制御することが可能となる。すなわち季節ごとに最適な光源部100の制御を実現することが可能となる。
なお光源輝度及び光源温度に基づいた目標電流値の生成や補正を実行するために、例えばDNN(Deep NeuralNetwork:深層ニューラルネットワーク)等を用いた任意の機械学習アルゴリズムが用いられてもよい。例えばディープラーニング(深層学習)を行うAI(人工知能)等を用いることで、温度監視付き輝度一定制御の精度を向上させることが可能となる。
また輝度センサ471により検出される光源輝度、光源温度センサ472により検出される光源温度、及び環境温度センサ473により検出される環境温度(外部の温度)に基づいて、光源部100の状態に関する状態情報が生成されてもよい。
例えば環境温度に対する光源温度の変動に基づいて、光源部100の状態情報として、経年劣化の状態を推定することがが可能である。例えばメモリ等に保存された初期値のLD電流値にてレーザ光源13を駆動させる。その状態で光源温度と環境温度とを検出する。光源温度の初期値と現在の光源温度の差から、環境温度分を引くことで、図7Aに例示するような光源劣化分の温度上昇分を検出することが可能となる。その温度上昇分に基づいて、経年劣化の状態を推定することが可能である。もちろん環境温度の初期値がメモリ等に保存され、適宜利用されてもよい。
このように光源温度に基づいて経年劣化の状態を推定することで、例えばメンテナンスの情報、装置の使用状態に関する情報、使用環境に関する情報等を、ユーザに報知することが可能となる。
また推定された経年劣化の状態に基づいて、光源部100を制御することも可能である。例えば経年劣化の状態に応じて、図10のステップ305で用いられる補正分ΔIが適宜変更されてもよい。また経年劣化の状態に応じて、図11を参照して説明した「TL_SaturationLow」「TL_SaturationCenter」「TL_SaturationUp」「TL_MaxLimit」や補正分ΔIを適宜変更することも可能である。これにより経年劣化の状態に応じた、精度の高い光源部100の制御が実現される。
例えば図2に示す光源制御部491が生成部として機能し、光源部100の状態に関する状態情報が生成されてもよい。あるいはントローラ490のCPUが所定のプログラムを実行することにより、光源制御部491とは別に、光源部100の状態に関する状態情報を生成する生成部が実現されてもよい。また光源部100の状態として、経年劣化の状態とは異なる情報が生成されてもよい。
光源部100の状態情報の生成、及び状態情報に基づいた光源部100の制御に、所定の機械学習アルゴリズムが用いられてもよい。
<その他の実施形態>
本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
上記では、出射光の状態として、出射光の強度(輝度)が検出された。これに限定されず、出射光の状態として、色度や光束の形状(光束の大きさ(断面積)を含む)等の他のパラメータが検出されてもよい。そして光源部の制御として、光源温度を監視しつつ、色度の制御や光束の制御等が実行されてもよい。当然のことながら、光源の状態として取得したいパラメータに対応するセンサ部(例えば色度センサ等)が用いられればよい。
各図面を参照して説明した画像表示装置、光源部、画像生成部、投射部等の各構成、光源部の制御フロー等はあくまで一実施形態であり、本技術の趣旨を逸脱しない範囲で、任意に変形可能である。すなわち本技術を実施するための他の任意の構成やアルゴリズム等が採用されてよい。
また、以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を任意に組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。
なお、本技術は以下のような構成も採ることができる。
(1)出射光を出射可能な光源部と、
前記出射光の状態を検出可能な第1のセンサ部と、
前記光源部の温度を検出可能な第2のセンサ部と、
前記第1のセンサ部による第1の検出結果、及び前記第2のセンサ部による第2の検出結果に基づいて、前記光源部を制御可能な光源制御部と
を具備する画像表示装置。
(2)(1)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも低い場合に、前記光源部から出射される前記出射光の強度が一定に維持されるように、前記光源部を制御する
画像表示装置。
(3)(2)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記光源部の温度の上昇が抑制されるように、前記光源部を制御する
画像表示装置。
(4)(2)又は(3)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記光源部の温度の上昇を抑制しつつ、前記光源部から出射される前記出射光の強度が一定に維持されるように、前記光源部を制御する
画像表示装置。
(5)(1)から(4)のうちいずれか1つに記載の画像表示装置であって、
前記光源部は、電流が供給されることにより駆動する1以上の光源を有し、
前記第2のセンサ部は、前記1以上の光源の温度を前記光源部の温度として検出し、
前記光源制御部は、前記1以上の光源に供給される電流を制御する
画像表示装置。
(6)(5)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記1以上の光源に供給される電流を増加させるための増加率を制御する
画像表示装置。
(7)(6)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が前記所定の基準温度よりも高い第1の温度よりも高い場合に、前記1以上の光源に供給される電流の増加を禁止する
画像表示装置。
(8)(7)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が所定の基準温度よりも低い場合に、前記1以上の光源に供給される電流を増加させるための増加率として、第1の増加率を設定する
画像表示装置。
(9)(8)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が所定の基準温度から前記第1の温度までの範囲に含まれる場合に、前記1以上の光源に供給される電流を増加させるための増加率として、前記第1の増加率よりも低い第2の増加率を設定する
画像表示装置。
(10)(7)から(9)のうちいずれか1つに記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が前記第1の温度から前記第1の温度よりも高い第2の温度までの範囲に含まれる場合に、第1の減少率により前記1以上の光源に供給される電流を減少させる
画像表示装置。
(11)(10)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が前記第2の温度から前記第2の温度よりも高い第3の温度までの範囲に含まれる場合に、前記第1の減少率よりも高い第2の減少率により前記1以上の光源に供給される電流を減少させる
画像表示装置。
(12)(11)に記載の画像表示装置であって、
前記光源制御部は、前記第2の検出結果が前記第3の温度よりも高い場合に、前記1以上の光源への電流の供給を停止する
画像表示装置。
(13)(1)から(12)のうちいずれか1つに記載の画像表示装置であって、
前記所定の基準温度は、前記光源部の動作保証温度の上限を基準に、前記動作保証温度の上限よりも低い温度に設定される
画像表示装置。
(14)(12)に記載の画像表示装置であって、
前記第1の温度、前記第2の温度、及び前記第3の温度の各々は、前記光源部の動作保証温度の上限を基準に、前記動作保証温度の上限よりも低い温度に設定される
画像表示装置。
(15)(1)から(14)のうちいずれか1つに記載の画像表示装置であって、さらに、
外部の温度を検出可能な第3のセンサ部と、
前記第1のセンサ部による第1の検出結果、前記第2のセンサ部による第2の検出結果、及び前記第3のセンサ部による第3の検出結果に基づいて、前記光源部の状態に関する状態情報を生成する生成部と
を具備する画像表示装置。
(16)(15)に記載の画像表示装置であって、さらに、
外部の空気を吸入する吸気口を有する筐体部を具備し、
前記第3のセンサ部は、前記吸気口の近傍に配置され前記吸気口から吸入される前記外部の空気の温度を、前記外部の温度として検出する
画像表示装置。
(17)(15)又は(16)に記載の画像表示装置であって、
前記光源制御部は、前記生成された状態情報に基づいて、前記光源部を制御する
画像表示装置。
(18)(1)から(17)のうちいずれか1つに記載の画像表示装置であって、さらに、
前記光源部から出射された前記出射光に基づいて画像を生成する画像生成部と、
前記画像生成部により生成された画像を投射する投射部と
を具備する画像表示装置。
W…白色光
W'…白色光の漏れ光
13…レーザ光源
100…光源部
200…画像生成部
400…投射部
450…筐体部
452…吸気口
470…センサ機構
471…輝度センサ
472…光源温度センサ
473…環境温度センサ
490…コントローラ
491…光源制御部
500…画像表示装置

Claims (18)

  1. 出射光を出射可能な光源部と、
    前記出射光の状態を検出可能な第1のセンサ部と、
    前記光源部の温度を検出可能な第2のセンサ部と、
    前記第1のセンサ部による第1の検出結果、及び前記第2のセンサ部による第2の検出結果に基づいて、前記光源部を制御可能な光源制御部と
    を具備する画像表示装置。
  2. 請求項1に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が所定の基準温度よりも低い場合に、前記光源部から出射される前記出射光の強度が一定に維持されるように、前記光源部を制御する
    画像表示装置。
  3. 請求項2に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記光源部の温度の上昇が抑制されるように、前記光源部を制御する
    画像表示装置。
  4. 請求項2に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記光源部の温度の上昇を抑制しつつ、前記光源部から出射される前記出射光の強度が一定に維持されるように、前記光源部を制御する
    画像表示装置。
  5. 請求項1に記載の画像表示装置であって、
    前記光源部は、電流が供給されることにより駆動する1以上の光源を有し、
    前記第2のセンサ部は、前記1以上の光源の温度を前記光源部の温度として検出し、
    前記光源制御部は、前記1以上の光源に供給される電流を制御する
    画像表示装置。
  6. 請求項5に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が所定の基準温度よりも高い場合に、前記1以上の光源に供給される電流を増加させるための増加率を制御する
    画像表示装置。
  7. 請求項6に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が前記所定の基準温度よりも高い第1の温度よりも高い場合に、前記1以上の光源に供給される電流の増加を禁止する
    画像表示装置。
  8. 請求項7に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が所定の基準温度よりも低い場合に、前記1以上の光源に供給される電流を増加させるための増加率として、第1の増加率を設定する
    画像表示装置。
  9. 請求項8に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が所定の基準温度から前記第1の温度までの範囲に含まれる場合に、前記1以上の光源に供給される電流を増加させるための増加率として、前記第1の増加率よりも低い第2の増加率を設定する
    画像表示装置。
  10. 請求項7に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が前記第1の温度から前記第1の温度よりも高い第2の温度までの範囲に含まれる場合に、第1の減少率により前記1以上の光源に供給される電流を減少させる
    画像表示装置。
  11. 請求項10に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が前記第2の温度から前記第2の温度よりも高い第3の温度までの範囲に含まれる場合に、前記第1の減少率よりも高い第2の減少率により前記1以上の光源に供給される電流を減少させる
    画像表示装置。
  12. 請求項11に記載の画像表示装置であって、
    前記光源制御部は、前記第2の検出結果が前記第3の温度よりも高い場合に、前記1以上の光源への電流の供給を停止する
    画像表示装置。
  13. 請求項1に記載の画像表示装置であって、
    前記所定の基準温度は、前記光源部の動作保証温度の上限を基準に、前記動作保証温度の上限よりも低い温度に設定される
    画像表示装置。
  14. 請求項12に記載の画像表示装置であって、
    前記第1の温度、前記第2の温度、及び前記第3の温度の各々は、前記光源部の動作保証温度の上限を基準に、前記動作保証温度の上限よりも低い温度に設定される
    画像表示装置。
  15. 請求項1に記載の画像表示装置であって、さらに、
    外部の温度を検出可能な第3のセンサ部と、
    前記第1のセンサ部による第1の検出結果、前記第2のセンサ部による第2の検出結果、及び前記第3のセンサ部による第3の検出結果に基づいて、前記光源部の状態に関する状態情報を生成する生成部と
    を具備する画像表示装置。
  16. 請求項15に記載の画像表示装置であって、さらに、
    外部の空気を吸入する吸気口を有する筐体部を具備し、
    前記第3のセンサ部は、前記吸気口の近傍に配置され前記吸気口から吸入される前記外部の空気の温度を、前記外部の温度として検出する
    画像表示装置。
  17. 請求項15に記載の画像表示装置であって、
    前記光源制御部は、前記生成された状態情報に基づいて、前記光源部を制御する
    画像表示装置。
  18. 請求項1に記載の画像表示装置であって、さらに、
    前記光源部から出射された前記出射光に基づいて画像を生成する画像生成部と、
    前記画像生成部により生成された画像を投射する投射部と
    を具備する画像表示装置。
JP2019558048A 2017-12-04 2018-10-17 画像表示装置 Active JP7264063B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017232585 2017-12-04
JP2017232585 2017-12-04
PCT/JP2018/038632 WO2019111548A1 (ja) 2017-12-04 2018-10-17 画像表示装置

Publications (2)

Publication Number Publication Date
JPWO2019111548A1 true JPWO2019111548A1 (ja) 2020-12-10
JP7264063B2 JP7264063B2 (ja) 2023-04-25

Family

ID=66750445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019558048A Active JP7264063B2 (ja) 2017-12-04 2018-10-17 画像表示装置

Country Status (3)

Country Link
US (1) US11877101B2 (ja)
JP (1) JP7264063B2 (ja)
WO (1) WO2019111548A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220171262A1 (en) * 2020-12-02 2022-06-02 Casio Computer Co., Ltd. Projector, temperature control method of projector, and storage medium
JP7439811B2 (ja) * 2021-11-11 2024-02-28 セイコーエプソン株式会社 光源装置およびプロジェクター

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193029A (ja) * 2002-12-13 2004-07-08 Advanced Display Inc 光源装置及び表示装置
JP2007011163A (ja) * 2005-07-04 2007-01-18 Sony Corp 液晶表示装置および液晶表示システムならびに液晶プロジェクタ
JP2007219008A (ja) * 2006-02-14 2007-08-30 Seiko Epson Corp 情報処理装置
JP2008193054A (ja) * 2007-01-09 2008-08-21 Seiko Epson Corp 光源装置、プロジェクタ装置、モニタ装置、照明装置
JP2010117613A (ja) * 2008-11-14 2010-05-27 Tecnart:Kk バックライトの駆動装置
WO2011148507A1 (ja) * 2010-05-28 2011-12-01 Necディスプレイソリューションズ株式会社 投写型表示装置
JP2014081585A (ja) * 2012-10-18 2014-05-08 Canon Inc 発光装置及びその制御方法
WO2014196124A1 (ja) * 2013-06-06 2014-12-11 ソニー株式会社 画像表示装置、光源装置、及び光学ユニット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539492B2 (ja) * 2004-11-19 2010-09-08 ソニー株式会社 バックライト装置、バックライト駆動方法及び液晶表示装置
US7733931B2 (en) * 2007-01-09 2010-06-08 Seiko Epson Corporation Light source device, projector device, monitor device, and lighting device
US8727539B2 (en) * 2010-10-28 2014-05-20 Seiko Epson Corporation Projector and method of controlling projector
JP2015022096A (ja) * 2013-07-18 2015-02-02 株式会社日立エルジーデータストレージ 画像表示装置
JP6285145B2 (ja) * 2013-10-29 2018-02-28 浜松ホトニクス株式会社 表示装置
WO2016047464A1 (ja) * 2014-09-25 2016-03-31 ソニー株式会社 照明装置および光源制御方法、ならびに投射型表示装置
EP3398500B1 (en) * 2015-12-28 2020-06-17 Sony Corporation Light source device and image pickup system
JP6801186B2 (ja) * 2016-01-20 2020-12-16 セイコーエプソン株式会社 プロジェクターおよび制御方法
JP6883221B2 (ja) * 2016-07-07 2021-06-09 ソニーグループ株式会社 プロジェクタ装置、制御方法
JP6827733B2 (ja) * 2016-08-04 2021-02-10 キヤノン株式会社 発光装置および表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193029A (ja) * 2002-12-13 2004-07-08 Advanced Display Inc 光源装置及び表示装置
JP2007011163A (ja) * 2005-07-04 2007-01-18 Sony Corp 液晶表示装置および液晶表示システムならびに液晶プロジェクタ
JP2007219008A (ja) * 2006-02-14 2007-08-30 Seiko Epson Corp 情報処理装置
JP2008193054A (ja) * 2007-01-09 2008-08-21 Seiko Epson Corp 光源装置、プロジェクタ装置、モニタ装置、照明装置
JP2010117613A (ja) * 2008-11-14 2010-05-27 Tecnart:Kk バックライトの駆動装置
WO2011148507A1 (ja) * 2010-05-28 2011-12-01 Necディスプレイソリューションズ株式会社 投写型表示装置
JP2014081585A (ja) * 2012-10-18 2014-05-08 Canon Inc 発光装置及びその制御方法
WO2014196124A1 (ja) * 2013-06-06 2014-12-11 ソニー株式会社 画像表示装置、光源装置、及び光学ユニット

Also Published As

Publication number Publication date
US20200404230A1 (en) 2020-12-24
US11877101B2 (en) 2024-01-16
JP7264063B2 (ja) 2023-04-25
WO2019111548A1 (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
JP5750572B2 (ja) 投写型画像表示装置
JP4107266B2 (ja) 表示装置及びその調光方法
US8405014B2 (en) Light source unit and projector having a light source control device for controlling the emission of excitation light and rotating speed of a luminescent wheel
US8684537B2 (en) Light source unit and projector for controlling illumination cycles of respective light sources and rotation of a luminescent wheel
TWI420225B (zh) 光源單元及投影機
US20160170293A1 (en) Projector and control method thereof
US20090244405A1 (en) Laser projection device and liquid crystal display television
US9046753B2 (en) Projector having plural light source boxes each having associated solid-state light source, photodetector, and drive unit
JP7264063B2 (ja) 画像表示装置
JP2013258357A (ja) 半導体光源装置
JP2005208231A (ja) 光源装置、光源装置用制御装置、光源装置の制御方法及びプロジェクタ
JP7238784B2 (ja) 画像表示装置
JPWO2018083895A1 (ja) 投射型表示装置および投射型表示装置の制御方法
JP6883221B2 (ja) プロジェクタ装置、制御方法
US10798348B2 (en) Light source apparatus, projection type display device and light source control method
JP2005149943A (ja) 光源装置及びこれを用いたプロジェクタ
JP6472194B2 (ja) 光源ユニット、光源ユニットの制御方法および投射型表示装置
JP6988613B2 (ja) 画像形成ユニット、画像投射装置、及び画像形成ユニットの制御方法
TW202207702A (zh) 照明裝置及照明裝置之控制方法以及投射型顯示裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R151 Written notification of patent or utility model registration

Ref document number: 7264063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151