JPWO2019077978A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JPWO2019077978A1
JPWO2019077978A1 JP2019549182A JP2019549182A JPWO2019077978A1 JP WO2019077978 A1 JPWO2019077978 A1 JP WO2019077978A1 JP 2019549182 A JP2019549182 A JP 2019549182A JP 2019549182 A JP2019549182 A JP 2019549182A JP WO2019077978 A1 JPWO2019077978 A1 JP WO2019077978A1
Authority
JP
Japan
Prior art keywords
suction
refrigerant
liner
suction hole
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019549182A
Other languages
Japanese (ja)
Inventor
大輔 船越
大輔 船越
昭徳 福田
昭徳 福田
秀人 岡
秀人 岡
渡邊 健司
健司 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2019077978A1 publication Critical patent/JPWO2019077978A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Abstract

圧縮機は、密閉容器(1)と、密閉容器(1)内に設けられた電動機部と、電動機部により駆動されて冷媒を圧縮する圧縮機構部と、圧縮機構部の冷媒吸入穴(12)に挿入された吸入ライナー(13)と、吸入ライナー(13)の過挿入を防止するように構成された過挿入防止機構(17)とを備える。吸入ライナー(13)は、冷媒吸入穴(12)と対向する密閉容器(1)の部分に設けられた吸入外管(15)を通して冷媒吸入穴(12)に挿入される。過挿入防止機構(17)は、吸入外管(15)の内周面に設けられた少なくとも一つの凸部(16)と、吸入ライナー(13)の入口部分に設けられた拡径部(13a)とで構成される。本態様によれば、コストアップを招くことなく、高い体積効率および圧縮機効率を有する圧縮機を提供することができる。The compressor includes a closed container (1), an electric motor unit provided in the closed container (1), a compression mechanism unit driven by the electric motor unit to compress the refrigerant, and a refrigerant suction hole (12) in the compression mechanism unit. A suction liner (13) inserted into the suction liner (13) and an over-insertion prevention mechanism (17) configured to prevent over-insertion of the suction liner (13) are provided. The suction liner (13) is inserted into the refrigerant suction hole (12) through a suction outer pipe (15) provided in a closed container (1) facing the refrigerant suction hole (12). The over-insertion prevention mechanism (17) includes at least one convex portion (16) provided on the inner peripheral surface of the suction outer pipe (15) and an enlarged diameter portion (13a) provided at the inlet portion of the suction liner (13). ) And. According to this aspect, it is possible to provide a compressor having high volumetric efficiency and compressor efficiency without causing an increase in cost.

Description

本開示は、空調機、冷凍機、ブロワ、給湯機などに使用される圧縮機に関する。 The present disclosure relates to compressors used in air conditioners, refrigerators, blowers, water heaters, and the like.

一般に、空調機や冷凍機などに使用される圧縮機は、電動機部とこの電動機部に連結した圧縮機構部とを密閉容器内に備え、圧縮機構部により冷媒を圧縮する。この冷媒は、圧縮機構部に吸入される際、密閉容器内の高温高圧の冷媒と、冷媒の圧縮で高温になった圧縮機構部とによって加熱される。これにより、冷媒密度が低下して、圧縮機の体積効率および圧縮機効率が低下する。 Generally, a compressor used in an air conditioner, a refrigerator, or the like is provided with an electric motor unit and a compression mechanism unit connected to the electric motor unit in a closed container, and the refrigerant is compressed by the compression mechanism unit. When this refrigerant is sucked into the compression mechanism, it is heated by the high-temperature and high-pressure refrigerant in the closed container and the compression mechanism that has become hot due to the compression of the refrigerant. As a result, the refrigerant density decreases, and the volumetric efficiency and compressor efficiency of the compressor decrease.

そのため、圧縮機構部の吸入部分に断熱構造を設けることで、密閉容器内の高温高圧の冷媒および高温の圧縮機構部による冷媒の加熱を抑制する(例えば、特許文献1参照)。 Therefore, by providing a heat insulating structure in the suction portion of the compression mechanism portion, heating of the high-temperature and high-pressure refrigerant in the closed container and the refrigerant by the high-temperature compression mechanism portion is suppressed (see, for example, Patent Document 1).

図9は、特許文献1記載の圧縮機を示す。この圧縮機では、圧縮機構部100を構成するシリンダ101の吸入室102に開口する冷媒吸入穴103に、吸入ライナー104が挿入される。吸入接続管105から冷媒吸入穴103へと流入する冷媒は、吸入ライナー104の管壁によって密閉容器107内の高温高圧の冷媒および高温の圧縮機構部100から断熱される。 FIG. 9 shows the compressor described in Patent Document 1. In this compressor, the suction liner 104 is inserted into the refrigerant suction hole 103 that opens in the suction chamber 102 of the cylinder 101 that constitutes the compression mechanism unit 100. The refrigerant flowing from the suction connection pipe 105 into the refrigerant suction hole 103 is insulated from the high-temperature and high-pressure refrigerant in the closed container 107 and the high-temperature compression mechanism 100 by the pipe wall of the suction liner 104.

さらにこの圧縮機では、吸入ライナー104の外周に段が設けられ、小径部104aと冷媒吸入穴103の内壁との間に断熱間隙106が形成される。断熱間隙106により、冷媒吸入穴103を流れる冷媒ガスの加熱がさらに抑制される。 Further, in this compressor, a step is provided on the outer periphery of the suction liner 104, and a heat insulating gap 106 is formed between the small diameter portion 104a and the inner wall of the refrigerant suction hole 103. The heat insulating gap 106 further suppresses the heating of the refrigerant gas flowing through the refrigerant suction hole 103.

上記圧縮機は、冷媒吸入穴103の吸入室102側の部分に、吸入ライナー104の内径と略同等まで縮小された径を有する縮径部103aを備え、吸入ライナー104から冷媒吸入穴103に吸入される冷媒ガスが急激に膨張することにより生じる圧力損失を抑制する。 The compressor is provided with a reduced diameter portion 103a having a diameter reduced to substantially the same as the inner diameter of the suction liner 104 in a portion of the refrigerant suction hole 103 on the suction chamber 102 side, and sucks from the suction liner 104 into the refrigerant suction hole 103. The pressure loss caused by the rapid expansion of the refrigerant gas to be generated is suppressed.

特許第6112489号公報Japanese Patent No. 611489

特許文献1に記載の圧縮機によれば、冷媒吸入穴103を流れる冷媒ガスの加熱を抑制することで、体積効率および圧縮機効率を高くすることができる。この圧縮機によれば、冷媒吸入穴103に吸入される冷媒ガスが急激に膨張することにより生じる圧力損失を抑制できるので、体積効率および圧縮機効率をさらに高くすることができる。 According to the compressor described in Patent Document 1, the volumetric efficiency and the compressor efficiency can be increased by suppressing the heating of the refrigerant gas flowing through the refrigerant suction hole 103. According to this compressor, the pressure loss caused by the rapid expansion of the refrigerant gas sucked into the refrigerant suction hole 103 can be suppressed, so that the volumetric efficiency and the compressor efficiency can be further increased.

しかしながら、特許文献1に記載の構成では、吸入ライナー104を冷媒吸入穴103に挿入する際、吸入ライナー104の先端が冷媒吸入穴103の縮径部103aに当たる。このため、冷媒吸入穴103が設けられたシリンダ101、すなわち圧縮機構部の中心にずれが生じる。その結果、歩留まりが低下し、コストアップを招く。 However, in the configuration described in Patent Document 1, when the suction liner 104 is inserted into the refrigerant suction hole 103, the tip of the suction liner 104 hits the reduced diameter portion 103a of the refrigerant suction hole 103. Therefore, the cylinder 101 provided with the refrigerant suction hole 103, that is, the center of the compression mechanism portion is displaced. As a result, the yield is lowered and the cost is increased.

圧縮機構部がスクロール圧縮機構である場合には、吸入ライナー104の先端が圧縮機構部を構成する旋回スクロールに当たるため、回転が妨げられる。その結果、歩留まりが低下し、コストアップを招く。 When the compression mechanism unit is a scroll compression mechanism, the tip of the suction liner 104 hits the swivel scroll constituting the compression mechanism unit, so that rotation is hindered. As a result, the yield is lowered and the cost is increased.

これを防止するために、冷媒吸入穴103に挿入される吸入ライナー104の部分が短くされる。この場合、挿入される吸入ライナー104の部分が短いため、冷媒ガスに対する加熱抑制効果が低下する。加えて、断熱間隙106も短くなり、冷媒ガスに対する加熱抑制効果がさらに低下し、体積効率および圧縮機効率を十分に向上させることができない。 In order to prevent this, the portion of the suction liner 104 inserted into the refrigerant suction hole 103 is shortened. In this case, since the portion of the suction liner 104 to be inserted is short, the effect of suppressing heating on the refrigerant gas is reduced. In addition, the heat insulating gap 106 is also shortened, the effect of suppressing heating on the refrigerant gas is further reduced, and the volumetric efficiency and the compressor efficiency cannot be sufficiently improved.

上記従来の問題を解決するため、本開示は、コストアップを招くことなく、高い体積効率および圧縮機効率を有する圧縮機を提供することを目的とする。 In order to solve the above-mentioned conventional problems, it is an object of the present disclosure to provide a compressor having high volumetric efficiency and compressor efficiency without causing an increase in cost.

本開示の一態様の圧縮機は、密閉容器と、密閉容器内に設けられた電動機部と、電動機部により駆動されて冷媒を圧縮するように構成された圧縮機構部と、圧縮機構部の冷媒吸入穴に挿入された吸入ライナーと、吸入ライナーの過挿入を防止するように構成された過挿入防止機構とを備える。 The compressor of one aspect of the present disclosure includes a closed container, an electric motor unit provided in the closed container, a compression mechanism unit driven by the electric motor unit to compress the refrigerant, and a refrigerant in the compression mechanism unit. It includes a suction liner inserted into the suction hole and an over-insertion prevention mechanism configured to prevent over-insertion of the suction liner.

本態様によれば、高い体積効率および圧縮機効率を有し、かつ、安価な圧縮機を提供することができる。 According to this aspect, it is possible to provide an inexpensive compressor having high volumetric efficiency and compressor efficiency.

図1は、本開示の実施の形態1に係る圧縮機の縦断面図である。FIG. 1 is a vertical cross-sectional view of the compressor according to the first embodiment of the present disclosure. 図2は、実施の形態1に係る圧縮機の要部を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing a main part of the compressor according to the first embodiment. 図3は、実施の形態1に係る圧縮機における吸入ライナーの挿入部分を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing an insertion portion of the suction liner in the compressor according to the first embodiment. 図4は、吸入ライナーの挿入部分の他の例を示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing another example of the insertion portion of the suction liner. 図5は、吸入ライナーの挿入部分の他の例を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing another example of the insertion portion of the suction liner. 図6は、吸入ライナーの挿入部分の他の例を示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing another example of the insertion portion of the suction liner. 図7は、本開示の実施の形態2に係る圧縮機の要部を示す拡大断面図である。FIG. 7 is an enlarged cross-sectional view showing a main part of the compressor according to the second embodiment of the present disclosure. 図8は、実施の形態2に係る圧縮機における吸入ライナーの挿入部分を示す拡大断面図である。FIG. 8 is an enlarged cross-sectional view showing an insertion portion of the suction liner in the compressor according to the second embodiment. 図9は、従来の圧縮機の要部を示す断面図である。FIG. 9 is a cross-sectional view showing a main part of a conventional compressor.

本開示の第1の態様の圧縮機は、密閉容器と、密閉容器内に設けられた電動機部と、電動機部により駆動されて冷媒を圧縮するように構成された圧縮機構部と、圧縮機構部の冷媒吸入穴に挿入された吸入ライナーと、吸入ライナーの過挿入防止機構とを備えた構成としてある。 The compressor of the first aspect of the present disclosure includes a closed container, an electric motor unit provided in the airtight container, a compression mechanism unit driven by the electric motor unit to compress the refrigerant, and a compression mechanism unit. The configuration is provided with a suction liner inserted into the refrigerant suction hole of the above and an over-insertion prevention mechanism for the suction liner.

本開示の第2の態様の圧縮機は、第1の態様に加えて、冷媒吸入穴と対向する密閉容器の部分に設けられた吸入外管をさらに備える。 In addition to the first aspect, the compressor of the second aspect of the present disclosure further includes a suction outer pipe provided in a portion of a closed container facing the refrigerant suction hole.

吸入ライナーは、吸入外管を通して冷媒吸入穴に挿入される。過挿入防止機構は、吸入外管の内周面に設けられた少なくとも一つの凸部と、吸入ライナーの入口部分に設けられた拡径部とで構成される。 The suction liner is inserted into the refrigerant suction hole through the suction outer pipe. The over-insertion prevention mechanism is composed of at least one convex portion provided on the inner peripheral surface of the suction outer pipe and a diameter-expanded portion provided at the inlet portion of the suction liner.

本開示の第3の態様の圧縮機では、第2の態様に加えて、少なくとも一つの凸部が複数の凸部を備える。 In the compressor of the third aspect of the present disclosure, in addition to the second aspect, at least one convex portion includes a plurality of convex portions.

本開示の第4の態様の圧縮機では、第1の態様に加えて、冷媒吸入穴と吸入ライナーとの間に断熱間隙が形成される。 In the compressor of the fourth aspect of the present disclosure, in addition to the first aspect, a heat insulating gap is formed between the refrigerant suction hole and the suction liner.

本開示の第5の態様の圧縮機では、第4の態様に加えて、吸入ライナーがシールパッキンを介して冷媒吸入穴に挿入されることにより、冷媒吸入穴と吸入ライナーとの間に断熱間隙が形成される。 In the compressor of the fifth aspect of the present disclosure, in addition to the fourth aspect, the suction liner is inserted into the refrigerant suction hole via the seal packing, so that a heat insulating gap is provided between the refrigerant suction hole and the suction liner. Is formed.

以下、本開示の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.

(実施の形態1)
図1は、本開示の実施の形態1に係る圧縮機の縦断面図である。図2は、図1における圧縮機構部を示す拡大断面図である。図3は、吸入ライナーが挿入された冷媒吸入穴の付近を示す拡大断面図である。
(Embodiment 1)
FIG. 1 is a vertical cross-sectional view of the compressor according to the first embodiment of the present disclosure. FIG. 2 is an enlarged cross-sectional view showing the compression mechanism portion in FIG. FIG. 3 is an enlarged cross-sectional view showing the vicinity of the refrigerant suction hole into which the suction liner is inserted.

図1に示すように、本実施の形態の圧縮機は、電動機部2と圧縮機構部4とを密閉容器1内に有する。 As shown in FIG. 1, the compressor of the present embodiment has an electric motor unit 2 and a compression mechanism unit 4 in a closed container 1.

電動機部2は、駆動軸3により圧縮機構部4に連結される。圧縮機構部4は、シリンダ5とローリングピストン6とを上軸受7と下軸受8で挟み込んで形成される。図示しないベーンでシリンダ5内を区切ることにより、吸入室9と圧縮室10とが形成される。ベーンは、常にローリングピストン6に当接することで、吸入室9と圧縮室10とを仕切る。 The electric motor unit 2 is connected to the compression mechanism unit 4 by the drive shaft 3. The compression mechanism portion 4 is formed by sandwiching the cylinder 5 and the rolling piston 6 between the upper bearing 7 and the lower bearing 8. The suction chamber 9 and the compression chamber 10 are formed by partitioning the inside of the cylinder 5 with a vane (not shown). The vane always abuts on the rolling piston 6 to partition the suction chamber 9 and the compression chamber 10.

シリンダ5内には、駆動軸3と一体に構成されたクランク軸偏芯部11が収納される。クランク軸偏芯部11には、ローリングピストン6が回転自在に装着される。シリンダ5には、吸入室9につながる冷媒吸入穴12(図3参照)が設けられる。 A crankshaft eccentric portion 11 integrally formed with the drive shaft 3 is housed in the cylinder 5. A rolling piston 6 is rotatably mounted on the crankshaft eccentric portion 11. The cylinder 5 is provided with a refrigerant suction hole 12 (see FIG. 3) connected to the suction chamber 9.

図3に示すように、冷媒吸入穴12は円柱状空間を有する。冷媒吸入穴12の一端はシリンダ5の外周面に開口する。冷媒吸入穴12の他端には、縮径して吸入室9に開口する縮径部12aが設けられる。冷媒吸入穴12は、縮径部12aを介して密閉容器1の外部から冷媒ガスを吸入室9に導く。 As shown in FIG. 3, the refrigerant suction hole 12 has a columnar space. One end of the refrigerant suction hole 12 opens on the outer peripheral surface of the cylinder 5. At the other end of the refrigerant suction hole 12, a reduced diameter portion 12a that is reduced in diameter and opens into the suction chamber 9 is provided. The refrigerant suction hole 12 guides the refrigerant gas from the outside of the closed container 1 to the suction chamber 9 via the reduced diameter portion 12a.

冷媒吸入穴12と対向する密閉容器1の部分に、吸入外管15がロー付けまたは溶接によって固定される。冷媒吸入穴12には、吸入ライナー13が圧入される。吸入ライナー13の上流側の入口部分に、アキュームレータ14aからの吸入接続管14が挿入される。 The suction outer pipe 15 is fixed to the portion of the closed container 1 facing the refrigerant suction hole 12 by brazing or welding. The suction liner 13 is press-fitted into the refrigerant suction hole 12. The suction connection pipe 14 from the accumulator 14a is inserted into the inlet portion on the upstream side of the suction liner 13.

吸入ライナー13は、吸入外管15を通して冷媒吸入穴12の縮径部12aまで達するように冷媒吸入穴12に圧入される。吸入ライナー13の入口側の端部は、吸入外管15の端部とともに吸入接続管14に、ロー付けまたは溶接によって接続される。 The suction liner 13 is press-fitted into the refrigerant suction hole 12 through the suction outer pipe 15 so as to reach the reduced diameter portion 12a of the refrigerant suction hole 12. The inlet-side end of the suction liner 13 is brazed or welded to the suction connection pipe 14 together with the end of the suction outer pipe 15.

吸入外管15と吸入ライナー13とには、吸入ライナー13を冷媒吸入穴12に挿入しすぎないようにするための過挿入防止機構が設けられる。 The suction outer pipe 15 and the suction liner 13 are provided with an over-insertion prevention mechanism for preventing the suction liner 13 from being inserted too much into the refrigerant suction hole 12.

図3に示すように、冷媒吸入穴12に圧入された吸入ライナー13の入口部分に、拡径部13aが設けられる。吸入外管15の内周面には、吸入ライナー13の拡径部13aに係当する少なくとも一つの凸部16が設けられる。拡径部13aと凸部16とが、過挿入防止機構17を構成する。本実施の形態では、吸入外管15に二つの凸部16が設けられる。 As shown in FIG. 3, a diameter-expanded portion 13a is provided at the inlet portion of the suction liner 13 press-fitted into the refrigerant suction hole 12. At least one convex portion 16 engaged with the enlarged diameter portion 13a of the suction liner 13 is provided on the inner peripheral surface of the suction outer pipe 15. The enlarged diameter portion 13a and the convex portion 16 form the over-insertion prevention mechanism 17. In the present embodiment, the suction outer tube 15 is provided with two convex portions 16.

吸入ライナー13の下流側には、外径の小さい小径部13bが形成される。小径部13bの外周面と冷媒吸入穴12の内周面との間には、断熱間隙18が形成される。断熱間隙18は、低圧の吸入冷媒ガスで満たされる。 A small diameter portion 13b having a small outer diameter is formed on the downstream side of the suction liner 13. A heat insulating gap 18 is formed between the outer peripheral surface of the small diameter portion 13b and the inner peripheral surface of the refrigerant suction hole 12. The adiabatic gap 18 is filled with a low-pressure intake refrigerant gas.

以上のように構成された圧縮機について、以下その動作、作用を説明する。 The operation and operation of the compressor configured as described above will be described below.

本実施の形態の圧縮機は、吸入接続管14から吸引された冷媒ガスを、吸入ライナー13を介して吸入室9に導く。 The compressor of the present embodiment guides the refrigerant gas sucked from the suction connecting pipe 14 to the suction chamber 9 via the suction liner 13.

吸入ライナー13は、冷媒吸入穴12に圧入されて冷媒吸入穴12に装着される。本実施の形態では、吸入ライナー13の過挿入を防止する過挿入防止機構17が設けられる。吸入ライナー13を冷媒吸入穴12に圧入すると、吸入ライナー13の拡径部13aが吸入外管15の凸部16に係当する。その結果、それ以上の吸入ライナー13の挿入が防止される。 The suction liner 13 is press-fitted into the refrigerant suction hole 12 and mounted in the refrigerant suction hole 12. In the present embodiment, an over-insertion prevention mechanism 17 for preventing over-insertion of the suction liner 13 is provided. When the suction liner 13 is press-fitted into the refrigerant suction hole 12, the enlarged diameter portion 13a of the suction liner 13 engages with the convex portion 16 of the suction outer pipe 15. As a result, further insertion of the suction liner 13 is prevented.

従って、吸入ライナー13の冷媒吸入穴12への過挿入により、吸入ライナー13の先端が、冷媒吸入穴12の縮径部12aに当たり、シリンダ5を押圧してしまうのを防止することができる。すなわち、吸入ライナー13の過挿入により生じる圧縮機構部4の中心のずれを防止することができる。これにより、歩留まりを向上させコストアップを抑制することができる。 Therefore, it is possible to prevent the tip of the suction liner 13 from hitting the reduced diameter portion 12a of the refrigerant suction hole 12 and pressing the cylinder 5 due to over-insertion of the suction liner 13 into the refrigerant suction hole 12. That is, it is possible to prevent the center of the compression mechanism portion 4 from shifting due to over-insertion of the suction liner 13. As a result, the yield can be improved and the cost increase can be suppressed.

過挿入を防止できるので、吸入ライナー13の先端を冷媒吸入穴12の縮径部12aの近傍まで圧入することができ、冷媒吸入穴12に挿入される吸入ライナー13の部分を長くすることができる。従って、吸入ライナー13の管壁による冷媒の加熱抑制効果が高められ、体積効率および圧縮機効率を向上させることができる。 Since over-insertion can be prevented, the tip of the suction liner 13 can be press-fitted to the vicinity of the reduced diameter portion 12a of the refrigerant suction hole 12, and the portion of the suction liner 13 inserted into the refrigerant suction hole 12 can be lengthened. .. Therefore, the effect of suppressing the heating of the refrigerant by the pipe wall of the suction liner 13 is enhanced, and the volumetric efficiency and the compressor efficiency can be improved.

本実施の形態では、吸入ライナー13は、密閉容器1に設けられた吸入外管15を通して冷媒吸入穴12に挿入される。吸入外管15に設けられた凸部16により、吸入ライナー13の入口側部分で吸入ライナー13の過挿入が防止される。これにより、圧縮機構部4の中心のずれを確実に防止することができる。 In the present embodiment, the suction liner 13 is inserted into the refrigerant suction hole 12 through the suction outer pipe 15 provided in the closed container 1. The convex portion 16 provided on the suction outer pipe 15 prevents the suction liner 13 from being over-inserted at the inlet side portion of the suction liner 13. As a result, the deviation of the center of the compression mechanism portion 4 can be reliably prevented.

すなわち、吸入ライナー13の拡径部13aが吸入外管15の凸部16に当たったときの応力は、吸入外管15のみに加わり、冷媒吸入穴12の縮径部12aには全く加わらない。従って、冷媒吸入穴12を介して、シリンダ5すなわち圧縮機構部4に外力が加わるのを防止することができ、圧縮機構部4の中心のずれを確実に防止することができる。 That is, the stress when the enlarged diameter portion 13a of the suction liner 13 hits the convex portion 16 of the suction outer pipe 15 is applied only to the suction outer pipe 15 and not to the reduced diameter portion 12a of the refrigerant suction hole 12. Therefore, it is possible to prevent an external force from being applied to the cylinder 5, that is, the compression mechanism portion 4 through the refrigerant suction hole 12, and it is possible to reliably prevent the center of the compression mechanism portion 4 from being displaced.

上述のように、吸入外管15の内周面に、二つの凸部16が設けられる。このため、吸入ライナー13が冷媒吸入穴12に挿入されると、二つの凸部16が拡径部13aに当接する。これにより、一つの凸部16を拡径部13aに当接させた場合に生じる吸入ライナー13の傾きを防止することができる。 As described above, two convex portions 16 are provided on the inner peripheral surface of the suction outer pipe 15. Therefore, when the suction liner 13 is inserted into the refrigerant suction hole 12, the two convex portions 16 come into contact with the enlarged diameter portion 13a. This makes it possible to prevent the suction liner 13 from tilting when one convex portion 16 is brought into contact with the enlarged diameter portion 13a.

本実施の形態では、冷媒吸入穴12と吸入ライナー13との間に断熱間隙18が形成される。このため、吸入ライナー13の管壁による冷媒の加熱抑制効果に加えて、断熱間隙18による加熱抑制効果が追加される。 In the present embodiment, a heat insulating gap 18 is formed between the refrigerant suction hole 12 and the suction liner 13. Therefore, in addition to the effect of suppressing the heating of the refrigerant by the pipe wall of the suction liner 13, the effect of suppressing the heating by the heat insulating gap 18 is added.

冷媒吸入穴12に挿入される吸入ライナー13の部分を長くしたことにより、断熱間隙18も長くなる。これにより、冷媒に対する加熱抑制効果をさらに得ることができる。その結果、体積効率および圧縮機効率をさらに向上させることができる。 By lengthening the portion of the suction liner 13 inserted into the refrigerant suction hole 12, the heat insulating gap 18 is also lengthened. Thereby, the heating suppressing effect on the refrigerant can be further obtained. As a result, volumetric efficiency and compressor efficiency can be further improved.

過挿入防止機構17によって、吸入ライナー13の過挿入を防止することができる。すなわち、冷媒吸入穴12に設けられた縮径部12aの近傍まで、吸入ライナー13の先端を挿入することができる。これにより、吸入ライナー13から冷媒吸入穴12に吸入される冷媒ガスが冷媒吸入穴12内で急激に膨張して圧力損失が生じるのを抑制することができ、圧縮機効率をさらに向上させることができる。 The over-insertion prevention mechanism 17 can prevent the suction liner 13 from being over-inserted. That is, the tip of the suction liner 13 can be inserted up to the vicinity of the reduced diameter portion 12a provided in the refrigerant suction hole 12. As a result, it is possible to prevent the refrigerant gas sucked from the suction liner 13 into the refrigerant suction hole 12 from rapidly expanding in the refrigerant suction hole 12 to cause a pressure loss, and further improve the compressor efficiency. it can.

図4は、吸入ライナー13の挿入部分の他の例を示す拡大断面図である。図4に示すように、吸入ライナー13に設けられた小径部13bの代わりに、冷媒吸入穴12の内径を拡大した拡大部12bを冷媒吸入穴12に形成することで、断熱間隙18を形成してもよい。 FIG. 4 is an enlarged cross-sectional view showing another example of the insertion portion of the suction liner 13. As shown in FIG. 4, instead of the small diameter portion 13b provided in the suction liner 13, an enlarged portion 12b having an enlarged inner diameter of the refrigerant suction hole 12 is formed in the refrigerant suction hole 12 to form a heat insulating gap 18. You may.

図5も、吸入ライナー13の挿入部分の他の例を示す拡大断面図である。図5に示すように、吸入ライナー13の外径を冷媒吸入穴12の内径より若干小さくするとともに、吸入ライナー13を冷媒吸入穴12にシールパッキン19を介して挿入する。これにより、吸入ライナー13の外径と冷媒吸入穴12の内径との差を利用して、断熱間隙18を形成するようにしてもよい。 FIG. 5 is also an enlarged cross-sectional view showing another example of the insertion portion of the suction liner 13. As shown in FIG. 5, the outer diameter of the suction liner 13 is slightly smaller than the inner diameter of the refrigerant suction hole 12, and the suction liner 13 is inserted into the refrigerant suction hole 12 via the seal packing 19. As a result, the heat insulating gap 18 may be formed by utilizing the difference between the outer diameter of the suction liner 13 and the inner diameter of the refrigerant suction hole 12.

この構成により、吸入ライナー13を冷媒吸入穴12に挿入するのに強い力を必要としない。これにより、作業性が向上する。シールパッキン19により、吸入ライナー13と冷媒吸入穴12との間のシール性を高めることもできる。 With this configuration, a strong force is not required to insert the suction liner 13 into the refrigerant suction hole 12. This improves workability. The seal packing 19 can also improve the sealing property between the suction liner 13 and the refrigerant suction hole 12.

図6も、吸入ライナー13の挿入部分の他の例を示す拡大断面図である。図6に示すように、縮径部12aを設けることなく、冷媒吸入穴12を吸入室9に開口させ、吸入ライナー13の先端が吸入室9の近傍に達するまで、吸入ライナー13を挿入するようにしてもよい。 FIG. 6 is also an enlarged cross-sectional view showing another example of the insertion portion of the suction liner 13. As shown in FIG. 6, the refrigerant suction hole 12 is opened in the suction chamber 9 without providing the reduced diameter portion 12a, and the suction liner 13 is inserted until the tip of the suction liner 13 reaches the vicinity of the suction chamber 9. It may be.

この構成により、吸入ライナー13からの冷媒が冷媒吸入穴12の端部で急激に膨張するのを防止することができ、圧縮機効率をさらに向上させることができる。 With this configuration, it is possible to prevent the refrigerant from the suction liner 13 from rapidly expanding at the end of the refrigerant suction hole 12, and the compressor efficiency can be further improved.

過挿入防止機構17によって吸入ライナー13の過挿入が防止されているので、吸入ライナー13の先端がローリングピストン6に接触することもなく、信頼性を確保することもできる。 Since the over-insertion prevention mechanism 17 prevents the suction liner 13 from being over-inserted, the tip of the suction liner 13 does not come into contact with the rolling piston 6, and reliability can be ensured.

(実施の形態2)
以下、本開示の実施の形態2に係る圧縮機について説明する。図7は、本実施の形態に係る圧縮機の要部を示す拡大断面図である。図8は、本実施の形態に係る圧縮機における吸入ライナーの挿入部分を示す拡大断面図である。図7、図8において、図1〜図6と同一または相当する部分には同一の符号を付し、その詳細な説明を省略する。
(Embodiment 2)
Hereinafter, the compressor according to the second embodiment of the present disclosure will be described. FIG. 7 is an enlarged cross-sectional view showing a main part of the compressor according to the present embodiment. FIG. 8 is an enlarged cross-sectional view showing an insertion portion of the suction liner in the compressor according to the present embodiment. In FIGS. 7 and 8, the same or corresponding parts as those in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted.

図7に示すように、本実施の形態に係る圧縮機では、圧縮機構部4がスクロール圧縮機構である。圧縮機構部4は、互いに噛み合う固定スクロール20と旋回スクロール21とにより構成される。圧縮機構部4では、固定スクロール20と旋回スクロール21との間に形成された圧縮室10の容積を旋回スクロール21の旋回により縮小させることで、冷媒が圧縮される。 As shown in FIG. 7, in the compressor according to the present embodiment, the compression mechanism unit 4 is a scroll compression mechanism. The compression mechanism unit 4 is composed of a fixed scroll 20 and a swivel scroll 21 that mesh with each other. In the compression mechanism unit 4, the refrigerant is compressed by reducing the volume of the compression chamber 10 formed between the fixed scroll 20 and the swivel scroll 21 by the swivel of the swivel scroll 21.

冷媒吸入穴12は円柱状空間を有する。冷媒吸入穴12一端は、固定スクロール20の外周面に開口する。冷媒吸入穴12の他端は、固定スクロール20と旋回スクロール21とで形成される圧縮室10への吸入口部22に開口する。冷媒吸入穴12は、吸入接続管14からの冷媒ガスを圧縮室10に導く。 The refrigerant suction hole 12 has a columnar space. One end of the refrigerant suction hole 12 opens on the outer peripheral surface of the fixed scroll 20. The other end of the refrigerant suction hole 12 opens to the suction port 22 to the compression chamber 10 formed by the fixed scroll 20 and the swivel scroll 21. The refrigerant suction hole 12 guides the refrigerant gas from the suction connection pipe 14 to the compression chamber 10.

図5に示す例と同様、冷媒吸入穴12には、吸入ライナー13がシールパッキン19を介して挿入される。吸入ライナー13の外径を冷媒吸入穴12の内径より小さくすることで、両者間に断熱間隙18が形成される。 Similar to the example shown in FIG. 5, the suction liner 13 is inserted into the refrigerant suction hole 12 via the seal packing 19. By making the outer diameter of the suction liner 13 smaller than the inner diameter of the refrigerant suction hole 12, a heat insulating gap 18 is formed between the two.

図8に示すように、実施の形態1と同様、吸入ライナー13の入口部分には、拡径部13aが設けられる。吸入外管15の内周面には、吸入ライナー13の拡径部13aに係当する二つの凸部16が設けられる。拡径部13aと凸部16とが、過挿入防止機構17を構成する。本実施の形態では、吸入外管15に二つの凸部16が設けられる。 As shown in FIG. 8, as in the first embodiment, the diameter-expanded portion 13a is provided at the inlet portion of the suction liner 13. Two convex portions 16 engaged with the enlarged diameter portion 13a of the suction liner 13 are provided on the inner peripheral surface of the suction outer pipe 15. The enlarged diameter portion 13a and the convex portion 16 form the over-insertion prevention mechanism 17. In the present embodiment, the suction outer tube 15 is provided with two convex portions 16.

本実施の形態の圧縮機によれば、実施の形態1と同様の効果に加えて、次のような効果も得られる。 According to the compressor of the present embodiment, in addition to the same effect as that of the first embodiment, the following effects can be obtained.

すなわち、本実施の形態では、シールパッキン19を介して吸入ライナー13を冷媒吸入穴12に挿入することにより、吸入ライナー13と冷媒吸入穴12との間に、断熱間隙18が形成される。 That is, in the present embodiment, by inserting the suction liner 13 into the refrigerant suction hole 12 via the seal packing 19, a heat insulating gap 18 is formed between the suction liner 13 and the refrigerant suction hole 12.

従って、冷媒吸入穴12の内径または吸入ライナー13の外径を増減することなく、断熱間隙18を形成することができる。これにより、生産性を向上させることができる。 Therefore, the heat insulating gap 18 can be formed without increasing or decreasing the inner diameter of the refrigerant suction hole 12 or the outer diameter of the suction liner 13. This makes it possible to improve productivity.

吸入ライナー13を冷媒吸入穴12に強い力で圧入する必要がないため、冷媒吸入穴12が設けられる固定スクロール20に大きな力がかかない。従って、固定スクロール20が押圧されることにより生じる不具合、たとえば、固定スクロール20と旋回スクロール21との噛み合い状態の悪化などを防止することができる。これにより、歩留まりを向上させることができる。 Since it is not necessary to press the suction liner 13 into the refrigerant suction hole 12 with a strong force, a large force is not applied to the fixed scroll 20 provided with the refrigerant suction hole 12. Therefore, it is possible to prevent a problem caused by pressing the fixed scroll 20, for example, deterioration of the meshing state between the fixed scroll 20 and the swivel scroll 21. As a result, the yield can be improved.

以上、本実施の形態に係る圧縮機について説明したが、本開示は、これに限定されるものではない。 Although the compressor according to the present embodiment has been described above, the present disclosure is not limited to this.

例えば、本実施の形態に係る圧縮機は、ロータリまたはスクロール方式の圧縮機構を有する。しかし、本実施の形態に係る圧縮機は、レシプロ方式、スクリュー方式などの圧縮機であってもよい。本開示は、各種の圧縮方式の圧縮機に適用可能である。 For example, the compressor according to the present embodiment has a rotary or scroll type compression mechanism. However, the compressor according to the present embodiment may be a compressor of a reciprocating type, a screw type, or the like. The present disclosure is applicable to compressors of various compression methods.

本実施の形態に係る圧縮機は、密閉容器1の内部が高温高圧の冷媒ガスで満たされる高圧型圧縮機である。しかし、本実施の形態に係る圧縮機は、密閉容器の内部が低圧の冷媒ガスで満たされる低圧型圧縮機であってもよい。この場合、圧縮室で圧縮された高温高圧の冷媒ガスにより圧縮機構部も高温になって冷媒を加熱するので、高圧型圧縮機と同様の断熱構成が必要となる。 The compressor according to the present embodiment is a high-pressure compressor in which the inside of the closed container 1 is filled with a high-temperature and high-pressure refrigerant gas. However, the compressor according to the present embodiment may be a low-pressure compressor in which the inside of the closed container is filled with a low-pressure refrigerant gas. In this case, the high-temperature and high-pressure refrigerant gas compressed in the compression chamber also raises the temperature of the compression mechanism to heat the refrigerant, so that a heat insulating configuration similar to that of the high-pressure compressor is required.

吸入ライナーは、吸入接続管と一体的に構成されてもよい。 The suction liner may be configured integrally with the suction connecting pipe.

以上のように、本開示によれば、吸入ライナーの過挿入防止機構を設けることにより、高い体積効率および圧縮機効率を有し、安価な圧縮機を提供することができる。本開示は、空調機、冷凍機、ブロワ、給湯機などの冷凍システムにおける圧縮機に適用可能である。 As described above, according to the present disclosure, by providing the suction liner over-insertion prevention mechanism, it is possible to provide an inexpensive compressor having high volumetric efficiency and compressor efficiency. The present disclosure is applicable to compressors in refrigeration systems such as air conditioners, refrigerators, blowers, and water heaters.

1、107 密閉容器
2 電動機部
3 駆動軸
4、100 圧縮機構部
5、101 シリンダ
6 ローリングピストン
7 上軸受
8 下軸受
9、102 吸入室
10 圧縮室
11 クランク軸偏芯部
12、103 冷媒吸入穴
12a、103a 縮径部
12b 拡大部
13、104 吸入ライナー
13a 拡径部
13b、104a 小径部
14、105 吸入接続管
14a アキュームレータ
15 吸入外管
16 凸部
17 過挿入防止機構
18、106 断熱間隙
19 シールパッキン
20 固定スクロール
21 旋回スクロール
22 吸入口部
1,107 Sealed container 2 Electric motor part 3 Drive shaft 4,100 Compression mechanism part 5,101 Cylinder 6 Rolling piston 7 Upper bearing 8 Lower bearing 9,102 Suction chamber 10 Compression chamber 11 Crankshaft eccentric part 12,103 Refrigerant suction hole 12a, 103a Reduced diameter part 12b Enlarged part 13,104 Suction liner 13a Expanded part 13b, 104a Small diameter part 14,105 Suction connection pipe 14a Accumulator 15 Suction outer pipe 16 Convex part 17 Over-insertion prevention mechanism 18, 106 Insulation gap 19 seal Packing 20 Fixed scroll 21 Swing scroll 22 Suction port

Claims (5)

密閉容器と、前記密閉容器内に設けられた電動機部と、前記電動機部により駆動されて冷媒を圧縮するように構成された圧縮機構部と、前記圧縮機構部の冷媒吸入穴に挿入された吸入ライナーと、前記吸入ライナーの過挿入を防止するように構成された過挿入防止機構とを備えた、圧縮機。 A closed container, an electric motor unit provided in the closed container, a compression mechanism unit driven by the electric motor unit to compress the refrigerant, and suction inserted into the refrigerant suction hole of the compression mechanism unit. A compressor comprising a liner and an over-insertion prevention mechanism configured to prevent over-insertion of the suction liner. 前記冷媒吸入穴と対向する前記密閉容器の部分に設けられた吸入外管をさらに備え、
前記吸入ライナーが、前記吸入外管を通して前記冷媒吸入穴に挿入され、前記過挿入防止機構が、前記吸入外管の内周面に設けられた少なくとも一つの凸部と、前記吸入ライナーの入口部分に設けられた拡径部とで構成された、請求項1に記載の圧縮機。
Further provided with a suction outer pipe provided in a portion of the closed container facing the refrigerant suction hole.
The suction liner is inserted into the refrigerant suction hole through the suction outer pipe, and the over-insertion prevention mechanism is provided at least one convex portion provided on the inner peripheral surface of the suction outer pipe and an inlet portion of the suction liner. The compressor according to claim 1, which is composed of an enlarged diameter portion provided in the above.
前記少なくとも一つの凸部が複数の凸部を備えた、請求項2に記載の圧縮機。 The compressor according to claim 2, wherein the at least one convex portion includes a plurality of convex portions. 前記冷媒吸入穴と前記吸入ライナーとの間に断熱間隙が形成された、請求項1に記載の圧縮機。 The compressor according to claim 1, wherein a heat insulating gap is formed between the refrigerant suction hole and the suction liner. 前記吸入ライナーがシールパッキンを介して前記冷媒吸入穴に挿入されることにより、前記冷媒吸入穴と前記吸入ライナーとの間に前記断熱間隙が形成された、請求項4に記載の圧縮機。 The compressor according to claim 4, wherein a heat insulating gap is formed between the refrigerant suction hole and the suction liner by inserting the suction liner into the refrigerant suction hole via a seal packing.
JP2019549182A 2017-10-20 2018-10-01 Compressor Pending JPWO2019077978A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017203072 2017-10-20
JP2017203072 2017-10-20
PCT/JP2018/036624 WO2019077978A1 (en) 2017-10-20 2018-10-01 Compressor

Publications (1)

Publication Number Publication Date
JPWO2019077978A1 true JPWO2019077978A1 (en) 2020-11-05

Family

ID=66172957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019549182A Pending JPWO2019077978A1 (en) 2017-10-20 2018-10-01 Compressor

Country Status (3)

Country Link
JP (1) JPWO2019077978A1 (en)
CN (1) CN111226037A (en)
WO (1) WO2019077978A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729631A (en) * 2019-12-06 2022-07-08 大金工业株式会社 Compressor and compressor unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56171683U (en) * 1980-05-22 1981-12-18
JPS56167892A (en) * 1980-05-28 1981-12-23 Hitachi Ltd Air tight joint structure for enclosed compressor
JP3812252B2 (en) * 1999-11-30 2006-08-23 松下電器産業株式会社 Hermetic electric compressor
JP2003113789A (en) * 2001-10-03 2003-04-18 Mitsubishi Electric Corp Piping connection structure of sealed container and sealed-type compressor using it
CN103782039B (en) * 2011-11-08 2016-07-06 松下电器产业株式会社 Compressor
WO2016039042A1 (en) * 2014-09-08 2016-03-17 三菱電機株式会社 Compressor and method for manufacturing compressor

Also Published As

Publication number Publication date
CN111226037A (en) 2020-06-02
WO2019077978A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
CN103782036B (en) There is the rotary compressor of two cylinders
US11905953B2 (en) Air injection enthalpy-increasing scroll compressor and refrigeration system
JPWO2007000815A1 (en) Lubricating method for two-stage screw compressor, device and operating method for refrigerating device
WO2011148453A1 (en) Two-stage rotary compressor and heat pump apparatus
WO2015198539A1 (en) Rotary compressor having two cylinders
JPWO2019077978A1 (en) Compressor
CN100408859C (en) Double cylinder closed rotary compressor and refrigerating air-conditioning device
EP1830069B1 (en) Rotary compressor
JP6743407B2 (en) Scroll compressor and air conditioner including the same
JP6088916B2 (en) Hermetic electric compressor
WO2013027237A1 (en) Two-stage compressor, and heat pump device
JP5511769B2 (en) Compressor
JP2014240626A5 (en)
JP4948557B2 (en) Multistage compressor and refrigeration air conditioner
JP2017172346A (en) Scroll compressor and air conditioner
KR102461067B1 (en) Scroll compressor and air conditioner having this
JP5595324B2 (en) Compressor
JP2014125914A (en) Scroll compressor
JPWO2010013375A1 (en) Rotary compressor
JP6749183B2 (en) Scroll compressor
KR101294670B1 (en) Compressor and refrigeration cycle having the same
JPWO2019186800A1 (en) Hermetic compressor and refrigeration cycle device
JP2013024194A (en) Refrigerator
JP2021076072A (en) Scroll compressor
KR200153997Y1 (en) Separate typed discharging valve