JPWO2019065774A1 - Radioactive drug - Google Patents

Radioactive drug Download PDF

Info

Publication number
JPWO2019065774A1
JPWO2019065774A1 JP2019545585A JP2019545585A JPWO2019065774A1 JP WO2019065774 A1 JPWO2019065774 A1 JP WO2019065774A1 JP 2019545585 A JP2019545585 A JP 2019545585A JP 2019545585 A JP2019545585 A JP 2019545585A JP WO2019065774 A1 JPWO2019065774 A1 JP WO2019065774A1
Authority
JP
Japan
Prior art keywords
compound
group
formula
fab
fgk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019545585A
Other languages
Japanese (ja)
Other versions
JP7207740B2 (en
Inventor
泰 荒野
泰 荒野
知也 上原
知也 上原
博元 鈴木
博元 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Publication of JPWO2019065774A1 publication Critical patent/JPWO2019065774A1/en
Application granted granted Critical
Publication of JP7207740B2 publication Critical patent/JP7207740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1093Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0482Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group chelates from cyclic ligands, e.g. DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

比較的大きな原子半径を有する原子を含め多様な原子による標識が可能であり、腎臓への集積を投与早期から低減できる放射性薬剤が得られる化合物等に関する。〔1〕式(1)で表される化合物等、〔2〕上記〔1〕に記載の化合物等に、標的分子認識素子を結合させてなる化合物等、〔3〕放射性金属及び放射性原子標識金属からなる群から選ばれる1種の金属と、前記金属に配位した〔1〕又は〔2〕に記載の化合物等と、を有する金属錯体化合物等、〔4〕上記〔1〕又は〔2〕に記載の化合物等を含む、放射性薬剤の調製用薬剤、〔5〕上記〔1〕又は〔2〕に記載の化合物等の放射性薬剤の製造のための使用、〔6〕上記〔3〕に記載の金属錯体化合物等を含む、放射性薬剤、〔7〕上記〔3〕に記載の金属錯体化合物等を含む放射線治療薬及び〔8〕上記〔3〕に記載の金属錯体化合物等を含む放射性画像診断薬。The present invention relates to compounds that can be labeled with various atoms including atoms having a relatively large atomic radius and can obtain a radiopharmaceutical that can reduce accumulation in the kidney from an early stage of administration. [1] Compounds represented by the formula (1), [2] Compounds obtained by binding a target molecule recognition element to the compounds described in the above [1], etc. [3] Radiometals and radioactive atom-labeled metals A metal complex compound or the like having one kind of metal selected from the group consisting of, and the compound or the like according to [1] or [2] coordinated to the metal, [4] the above [1] or [2]. [5] Use for producing a radiopharmaceutical such as the compound according to [1] or [2] above, [6] The above-mentioned [3]. Radiopharmaceutical containing the metal complex compound and the like according to [7] Radiotherapy agent containing the metal complex compound and the like according to [3] above and [8] Radioimaging diagnostic imaging containing the metal complex compound and the like according to [3] above. medicine.

Description

本発明は、新規化合物、それを含む放射性薬剤、及び当該放射性薬剤の調製用薬剤等に関する。 The present invention relates to a novel compound, a radiopharmaceutical containing the novel compound, a drug for preparing the radiopharmaceutical, and the like.

放射性同位元素(RI)標識抗体等の放射性薬剤は、抗体の高い特異性と親和性を利用して、RIを腫瘍選択的に集積することが可能である。このため、アイソトープ治療などの放射線治療や画像診断に利用されている(非特許文献1)。しかしながら放射性薬剤を生体に投与すると、標的組織への特異的な集積の他に腎臓への非特異的な集積が観察される。腎臓への放射活性の集積(以下「腎集積」ともいう)は、RI標識低分子ペプチドが腎臓に取り込まれた後、リソソームに運ばれ、代謝された後に生成する放射性代謝物が腎臓に残存することに基因する。
これに対して、特許文献1では、腎臓への集積を投与早期から低減できる放射性標識薬剤として、NOTA(1,4,7,10-テトラアザシクロドデカン-1,4,7,10-テトラ酢酸)等のキレート試薬と結合したポリペプチド部位を有する化合物及びそれを用いた放射性薬剤が報告されている。
Radiopharmaceuticals, such as radioisotope (RI) -labeled antibodies, are capable of tumor-selective accumulation of RI by taking advantage of the high specificity and affinity of the antibody. Therefore, it is used for radiotherapy such as isotope treatment and diagnostic imaging (Non-Patent Document 1). However, when a radiopharmaceutical is administered to a living body, non-specific accumulation in the kidney is observed in addition to specific accumulation in the target tissue. Accumulation of radioactivity in the kidney (hereinafter also referred to as "renal accumulation") is that after the RI-labeled small molecule peptide is taken up by the kidney, it is transported to the lysosome, and the radioactive metatransformate produced after the metabolism remains in the kidney. It is based on that.
On the other hand, in Patent Document 1, NOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) is used as a radiolabeling agent capable of reducing accumulation in the kidney from an early stage of administration. ) And other compounds having a polypeptide site bound to them, and radiopharmaceuticals using the same have been reported.

国際公開WO2017/150549号International release WO2017 / 150549

Molecular Oncology 8: 799-812, 2014Molecular Oncology 8: 799-812, 2014

特許文献1の放射性薬剤によれば、ガリウム-67や、テクネチウム-99mの放射性同位元素を使用できる。しかしながら、現在、治療用の放射性同位元素として汎用されているルテチウム-177、イットリウム-90への応用やそのコンパニオン薬剤となるインジウム-111等の比較的大きな原子半径を有する原子を含め多様な原子への応用が可能な標識薬剤は開発されていない。
そこで本発明は、比較的大きな原子半径を有する原子を含め多様な原子による標識が可能であり、腎臓への集積を低減できる放射性薬剤が得られる化合物等に関する。
According to the radiopharmaceutical of Patent Document 1, gallium-67 and technetium-99m radioisotope can be used. However, to various atoms including atoms with relatively large atomic radii such as lutetium-177 and yttrium-90, which are currently widely used as therapeutic radioisotopes, and indium-111, which is a companion drug thereof. No labeling drug has been developed that can be applied to.
Therefore, the present invention relates to a compound or the like that can be labeled with various atoms including an atom having a relatively large atomic radius and can obtain a radioactive agent capable of reducing accumulation in the kidney.

本発明は、以下の実施形態に関する。
〔1〕下記式(1)で表される化合物、又はその薬理学的に許容可能な塩。

Figure 2019065774

〔式中、
1、A2は、それぞれ独立にアミノ酸残基であり、
mは、0〜3の整数であり、
3は、側鎖にアミノ基又はカルボキシ基を有するアミノ酸残基であり、
4は、アミノ酸残基であり、
nは、0〜3の整数であり、
1は、A3の側鎖のアミノ基又はカルボキシ基と結合し、標的分子認識素子又はその連結基と結合可能な官能基を有する基、又は、A3の側鎖のアミノ基若しくはカルボキシ基の水素原子であり、ただし、R1は、環構成原子の一つとしてA3の側鎖のアミノ基の窒素原子を含む炭素数3〜10の複素環基を形成していてもよく、
Lは、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、水素原子、−CH2COOR10基、又は炭素数1〜8の炭化水素基であり、R10は、水素原子又は炭素数1〜8の炭化水素基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、少なくとも3以上は−CH2COOH基である。)で表される基、又は、式(L2):
Figure 2019065774

(式中、*は結合部位である。)で表される基である。〕
〔2〕上記〔1〕に記載の化合物、又はその薬理学的に許容可能な塩に、標的分子認識素子を結合させてなる化合物、又はその薬理学的に許容可能な塩。
〔3〕放射性金属及び放射性原子標識金属からなる群から選ばれる1種の金属と、前記金属に配位した〔1〕又は〔2〕に記載の化合物又はその薬理的に許容可能な塩と、を有する金属錯体化合物、又はその薬理学的に許容可能な塩。
〔4〕上記〔1〕又は〔2〕に記載の化合物、又はその薬理学的に許容可能な塩を含む、放射性薬剤の調製用薬剤。
〔5〕上記〔1〕又は〔2〕に記載の化合物、又はその薬理学的に許容可能な塩の放射性薬剤の製造のための使用。
〔6〕上記〔3〕に記載の金属錯体化合物、又はその薬理学的に許容可能な塩を含む、放射性薬剤。
〔7〕上記〔3〕に記載の金属錯体化合物、又はその薬理学的に許容可能な塩の放射線治療薬。
〔8〕上記〔3〕に記載の金属錯体化合物、又はその薬理学的に許容可能な塩の放射性画像診断薬。
〔9〕前記化合物、又はその薬理学的に許容可能な塩が、放射性薬剤の調製用である、上記〔1〕又は〔2〕に記載の化合物、又はその薬理学的に許容可能な塩。
〔10〕上記〔3〕に記載の金属錯体化合物、又はその薬理学的に許容可能な塩の放射性薬剤の製造のための使用。
〔11〕上記〔3〕に記載の金属錯体化合物、又はその薬理学的に許容可能な塩の放射線治療のための使用。
〔12〕上記〔3〕に記載の金属錯体化合物、又はその薬理学的に許容可能な塩の放射線画像診断のための使用。
〔13〕上記〔3〕に記載の金属錯体化合物、又はその薬理学的に許容可能な塩を投与する放射線治療方法。
〔14〕上記〔3〕に記載の金属錯体化合物、又はその薬理学的に許容可能な塩を投与する放射線画像診断方法。
〔15〕上記〔1〕に記載の化合物若しくはその薬理学的に許容可能な塩、又は、上記〔1〕に記載の化合物、又はその薬理学的に許容可能な塩に、標的分子認識素子を結合させてなる化合物、又はその薬理学的に許容可能な塩と、放射性金属及び放射性原子標識金属からなる群から選ばれる1種の金属を含む薬剤とを、別々の包装単位として含む、キット。The present invention relates to the following embodiments.
[1] A compound represented by the following formula (1) or a pharmacologically acceptable salt thereof.
Figure 2019065774

[In the formula,
A 1 and A 2 are independent amino acid residues, respectively.
m is an integer from 0 to 3 and
A 3 is an amino acid residue having an amino group or a carboxy group in the side chain.
A 4 is an amino acid residue
n is an integer from 0 to 3 and
R 1 is bound to the amino group or carboxy group of the side chain of A 3, group having a binding functional group as a target molecule recognition element or a linking group, or, an amino group or carboxy group of the side chain of A 3 However, R 1 may form a heterocyclic group having 3 to 10 carbon atoms including the nitrogen atom of the amino group of the side chain of A 3 as one of the ring-constituting atoms.
L is the formula (L1):
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, −CH 2 COOR 10 groups, or a hydrocarbon group having 1 to 8 carbon atoms, and R 10 is a hydrogen atom. Alternatively, it is a hydrocarbon group having 1 to 8 carbon atoms, and * is a bond site. However, at least 3 or more of R 3 , R 4 , R 5 , and R 6 are −CH 2 COOH groups). Group represented or formula (L2):
Figure 2019065774

(In the formula, * is a binding site.) Is a group represented by. ]
[2] A compound obtained by binding a target molecule recognition element to the compound according to the above [1] or a pharmacologically acceptable salt thereof, or a pharmacologically acceptable salt thereof.
[3] One metal selected from the group consisting of a radioactive metal and a radioactive atom-labeled metal, the compound according to [1] or [2] coordinated to the metal, or a pharmacologically acceptable salt thereof. A metal complex compound having, or a pharmacologically acceptable salt thereof.
[4] A drug for preparing a radiopharmaceutical, which comprises the compound according to the above [1] or [2], or a pharmacologically acceptable salt thereof.
[5] Use for producing a radiopharmaceutical of the compound according to the above [1] or [2], or a pharmacologically acceptable salt thereof.
[6] A radiopharmaceutical containing the metal complex compound according to the above [3] or a pharmacologically acceptable salt thereof.
[7] A radiotherapeutic agent for the metal complex compound according to the above [3] or a pharmacologically acceptable salt thereof.
[8] A radioactive diagnostic imaging agent for the metal complex compound according to the above [3] or a pharmacologically acceptable salt thereof.
[9] The compound according to the above [1] or [2], or a pharmacologically acceptable salt thereof, wherein the compound or a pharmacologically acceptable salt thereof is for preparation of a radiopharmaceutical.
[10] Use for producing a radioactive agent of the metal complex compound according to the above [3], or a pharmacologically acceptable salt thereof.
[11] Use of the metal complex compound according to [3] above, or a pharmacologically acceptable salt thereof for radiotherapy.
[12] Use of the metal complex compound according to the above [3] or a pharmacologically acceptable salt thereof for radiographic imaging.
[13] A radiotherapy method for administering the metal complex compound according to the above [3] or a pharmacologically acceptable salt thereof.
[14] A radiodiagnostic method for administering the metal complex compound according to the above [3] or a pharmacologically acceptable salt thereof.
[15] A target molecule recognizing element is added to the compound according to the above [1] or a pharmacologically acceptable salt thereof, or to the compound according to the above [1] or a pharmacologically acceptable salt thereof. A kit comprising, as separate packaging units, a compound to be attached, or a pharmacologically acceptable salt thereof, and a drug containing one metal selected from the group consisting of radioactive metals and radioactive atom-labeled metals.

本発明によれば、比較的大きな原子半径を有する原子を含め多様な原子による標識が可能であり、腎臓への集積を低減できる放射性薬剤が得られる化合物等が提供できる。 According to the present invention, it is possible to provide a compound or the like which can be labeled with various atoms including an atom having a relatively large atomic radius and can obtain a radioactive agent capable of reducing accumulation in the kidney.

図1は、111In-CDO3AEt-FGK(Boc)とBBMVsのインキュベートの実験結果を示す。FIG. 1 shows the experimental results of incubation of 111 In-CDO3AEt-FGK (Boc) and BBMVs. 図2は、111In-CDOTA-Bn-CO-FGK(Boc)溶液とBBMVsのインキュベートの実験結果を示す。FIG. 2 shows the experimental results of incubation of 111 In-CDOTA-Bn-CO-FGK (Boc) solution and BBMVs. 図3は、111In-DO3A-Bn-SCN-MVK(Bzo)とBBMVsのインキュベートの実験結果を示す。FIG. 3 shows the experimental results of incubation of 111 In-DO3A-Bn-SCN-MVK (Bzo) and BBMVs. 図4は、111In-DO3A-Bn-CO-FGK(Boc)とBBMVsのインキュベートの実験結果を示す。FIG. 4 shows the experimental results of incubation of 111 In-DO3A-Bn-CO-FGK (Boc) and BBMVs. 図5は、111In-CDO3AiBu-FGK(Boc)とBBMVsのインキュベートの実験結果を示す。FIG. 5 shows the experimental results of incubation of 111 In-CDO3AiBu-FGK (Boc) and BBMVs. 図6は、111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)と111In-DO3A-EDA-Fab(Rabbit serum IgG由来)との結果の比較を示す。FIG. 6 shows a comparison of the results between 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) and 111 In-DO3A-EDA-Fab (derived from Rabbit serum IgG). 図7は、111In-CDO3AiBu-FGK-Fab(抗c-kit IgG由来)、111In-DOTA-Bn-SCN-Fab(抗c-kit IgG由来)、及び111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)の結果の比較を示す。FIG. 7 shows 111 In-CDO3AiBu-FGK-Fab (derived from anti-c-kit IgG), 111 In-DOTA-Bn-SCN-Fab (derived from anti-c-kit IgG), and 111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG). A comparison of the results (derived from anti-c-kit IgG) is shown. 図8は、111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)をマウスに投与後24時間までに***された尿中放射活性の化学形の分析結果を示す。FIG. 8 shows the analysis results of the chemical form of urinary radioactivity excreted within 24 hours after administration of 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) to mice. 図9は、111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)をマウスに投与後6時間までに***された尿中放射活性の化学形の分析結果を示す。FIG. 9 shows the analysis results of the chemical form of urinary radioactivity excreted within 6 hours after administration of 111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG) to mice. 図10は、111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)をマウスに投与後24時間までに***された尿中放射活性の化学形の分析結果を示す。FIG. 10 shows the analysis results of the chemical form of urinary radioactivity excreted by 24 hours after administration of 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) to mice. 図11は、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)をマウスに投与後24時間までに***された尿中放射活性の化学形の分析結果を示す。FIG. 11 shows the analysis results of the chemical form of urinary radioactivity excreted by 24 hours after administration of 111 In-CDO3AiBu-FGK-Fab (derived from Rabbit serum IgG) to mice. 図12は、111In-DO3A-Bn-SCN-MVK-Fab (抗c-kit IgG由来)溶液を、又は111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)溶液をSY皮下腫瘍モデルマウスに投与後2.5時間のSPECT/CT画像である。Figure 12 shows 111 In-DO3A-Bn-SCN-MVK-Fab. SPECT / CT images 2.5 hours after administration of a solution (derived from anti-c-kit IgG) or a solution of 111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG) to SY subcutaneous tumor model mice.

[化合物等]
<化合物(1)等>
本発明の化合物、又はその薬理学的に許容可能な塩(以下、単に「化合物(1)等」ともいう)は、下記式(1)で表される。

Figure 2019065774

〔式中、
1、A2は、それぞれ独立にアミノ酸残基であり、
mは、0〜3の整数であり、
3は、側鎖にアミノ基又はカルボキシ基を有するアミノ酸残基であり、
4は、アミノ酸残基であり、
nは、0〜3の整数であり、
1は、A3の側鎖のアミノ基又はカルボキシ基と結合し、標的分子認識素子又はその連結基と結合可能な官能基を有する基、又は、A3の側鎖のアミノ基若しくはカルボキシ基の水素原子であり、ただし、R1は、環構成原子の一つとしてA3の側鎖のアミノ基の窒素原子を含む炭素数3〜10の複素環基を形成していてもよく、
Lは、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、水素原子、−CH2COOR10基、又は炭素数1〜8の炭化水素基であり、R10は、水素原子又は炭素数1〜8の炭化水素基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、少なくとも3以上は−CH2COOH基である。)で表される基、又は、式(L2):
Figure 2019065774

(式中、*は結合部位である。)で表される基である。〕
本発明によれば、インジウム-111による標識が可能であり、腎臓への集積を低減できる放射性薬剤が得られる化合物等が提供できる。更に、本発明の放射性薬剤は、標的分子認識素子を有するため、標的部位に特異的に結合することができ、そのため標的部位に効率的に集積する。このような性質のため、本発明の放射性薬剤は、放射線治療において腫瘍部位に特異的に集積し、放射線画像診断においては、その感度、精度を向上させることができる。[Compounds, etc.]
<Compound (1), etc.>
The compound of the present invention or a pharmacologically acceptable salt thereof (hereinafter, also simply referred to as “compound (1) or the like”) is represented by the following formula (1).
Figure 2019065774

[In the formula,
A 1 and A 2 are independent amino acid residues, respectively.
m is an integer from 0 to 3 and
A 3 is an amino acid residue having an amino group or a carboxy group in the side chain.
A 4 is an amino acid residue
n is an integer from 0 to 3 and
R 1 is bound to the amino group or carboxy group of the side chain of A 3, group having a binding functional group as a target molecule recognition element or a linking group, or, an amino group or carboxy group of the side chain of A 3 However, R 1 may form a heterocyclic group having 3 to 10 carbon atoms including the nitrogen atom of the amino group of the side chain of A 3 as one of the ring-constituting atoms.
L is the formula (L1):
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, −CH 2 COOR 10 groups, or a hydrocarbon group having 1 to 8 carbon atoms, and R 10 is a hydrogen atom. Alternatively, it is a hydrocarbon group having 1 to 8 carbon atoms, and * is a bond site. However, at least 3 or more of R 3 , R 4 , R 5 , and R 6 are −CH 2 COOH groups). Group represented or formula (L2):
Figure 2019065774

(In the formula, * is a binding site.) Is a group represented by. ]
According to the present invention, it is possible to provide a compound or the like which can be labeled with indium-111 and can obtain a radiopharmaceutical capable of reducing accumulation in the kidney. Furthermore, since the radiopharmaceutical of the present invention has a target molecule recognition element, it can specifically bind to the target site and therefore efficiently accumulate at the target site. Due to these properties, the radiopharmaceutical of the present invention can be specifically accumulated at a tumor site in radiotherapy, and its sensitivity and accuracy can be improved in radiological imaging.

本発明の効果が得られる理由は定かではないが、以下のように考えられる。
放射性薬剤の投与後、当該薬剤が腎細胞に取り込まれる際に、効率よく尿***性の放射性代謝物を遊離することができれば、腎臓への放射活性の集積を低減することができると考えられる。そのため、放射性薬剤が腎細胞に取り込まれる際に、効率よく放射性標識元素を包摂するキレート配位子部位を遊離できるように、ポリペプチドとキレート配位子部位との間に腎刷子縁膜酵素の基質配列を導入する。そうすることで、腎細胞に取り込まれる前に、ポリペプチドとキレート配位子部位がポリペプチドから遊離され、腎臓への放射性物質の取り込みを抑制し投与早期から腎臓への集積を低減することができるものと推測される。
インジウム-111による標識を可能とするため、式(L1)又は式(L2)で表される基を、キレート配位子部位として、導入することを検討した。この場合、例えば、特許文献1に記載された化合物のように、キレート薬剤部位と、ポリペプチド部位とを連結する構造として、チオウレア構造を導入することも考えられた。しかしながら、キレート薬剤として、式(L1)又は式(L2)で示される基を有する化合物を用いた場合には、当該チオウレア構造を有する連結基を導入すると、腎刷子縁膜酵素による分解が進行しないことが、発明者らの実験から明らかになった。これに対して、式(1)で示される化合物のように特定構造の連結基を導入することで、腎刷子縁膜酵素による分解が進行し、腎臓への放射活性の集積を低減することができることが明らかになった。
The reason why the effect of the present invention can be obtained is not clear, but it is considered as follows.
It is considered that the accumulation of radioactivity in the kidney can be reduced if the urinary excretory radiotransformer can be efficiently released when the drug is taken up by renal cells after administration of the radiopharmaceutical. Therefore, when the radiopharmaceutical is taken up by the renal cells, the renal brush border enzyme is used between the polypeptide and the chelate ligand site so that the chelate ligand site that contains the radiolabeling element can be efficiently released. Introduce the substrate sequence. By doing so, the polypeptide and the chelating ligand site are released from the polypeptide before being taken up by renal cells, suppressing the uptake of radioactive substances into the kidney and reducing the accumulation in the kidney from the early stage of administration. It is presumed that it can be done.
In order to enable labeling with indium-111, it was considered to introduce a group represented by the formula (L1) or the formula (L2) as a chelate ligand site. In this case, for example, it was considered to introduce a thiourea structure as a structure for connecting the chelating drug site and the polypeptide site, as in the compound described in Patent Document 1. However, when a compound having a group represented by the formula (L1) or the formula (L2) is used as the chelating agent, the decomposition by the renal brush border membrane enzyme does not proceed when the linking group having the thiourea structure is introduced. It became clear from the experiments of the inventors. On the other hand, by introducing a linking group having a specific structure like the compound represented by the formula (1), decomposition by the renal brush border membrane enzyme proceeds, and the accumulation of radioactivity in the kidney can be reduced. It became clear that it could be done.

本発明の化合物(1)等は、式(1)において、AからAのアミノ酸配列(ただし、n=0の場合、AからAのアミノ酸配列)は、腎臓への集積を投与早期から低減する観点から、好ましくは腎刷子縁膜酵素の基質配列の一部と同一の配列である。
1は、腎臓への集積を投与早期から低減する観点から、好ましくは、フェニルアラニン、メチオニン、バリン、ロイシン、イソロイシン、プロリン、チロシン、グリシン、アラニン又はトリプトファンの残基であり、より好ましくは、フェニルアラニン、グリシン、アラニン又はメチオニンの残基であり、腎臓への集積を投与早期から低減する効果をより顕著にする観点から、更に好ましくはフェニルアラニンの残基である。
The compounds of the present invention (1) or the like, in formula (1), the amino acid sequence from A 1 A 4 (provided that when the n = 0, the amino acid sequence from A 1 A 3) is administered integrated to the kidney From the viewpoint of reduction from an early stage, the sequence is preferably the same as a part of the substrate sequence of the renal brush border enzyme.
A 1 is preferably a residue of phenylalanine, methionine, valine, leucine, isoleucine, proline, tyrosine, glycine, alanine or tryptophan, and more preferably phenylalanine, from the viewpoint of reducing accumulation in the kidney from the early stage of administration. , Glycine, alanine or methionine, more preferably a phenylalanine residue from the viewpoint of making the effect of reducing accumulation in the kidney more remarkable from the early stage of administration.

2は、腎臓への集積を投与早期から低減する観点から、好ましくは、グリシン、フェニルアラニン、メチオニン、バリン、ロイシン、イソロイシン、プロリン、チロシン、アラニン又はトリプトファンの残基であり、より好ましくは、グリシン、フェニルアラニン、アラニン、バリン又はイソロイシンの残基であり、腎臓への集積を投与早期から低減する効果をより顕著にする観点から、更に好ましくはグリシンの残基である。
なお、mは、0〜3の整数であり、好ましくは1である。
A 2 is preferably a residue of glycine, phenylalanine, methionine, valine, leucine, isoleucine, proline, tyrosine, alanine or tryptophan, and more preferably glycine, from the viewpoint of reducing accumulation in the kidney from an early stage of administration. , Phenylalanine, alanine, valine or isoleucine, more preferably a glycine residue from the viewpoint of making the effect of reducing the accumulation in the kidney from the early stage of administration more remarkable.
In addition, m is an integer of 0 to 3, and is preferably 1.

3は、アミノ酸配列の側鎖に、ポリペプチド又はその連結基と結合可能な官能基を導入する観点から、側鎖にアミノ基又はカルボキシ基を有するアミノ酸残基であり、好ましくは、リシン、オルニチン、アルギニン、アスパラギン酸又はグルタミン酸の残基であり、より好ましくは、リシン、オルニチン又はアルギニンの残基であり、更に好ましくはリシンの残基である。
なお、A4として、他のアミノ酸残基を有していてもよい。A4としては、任意のアミノ酸が用いられる。
nは、0〜3の整数であり、好ましくは0である。
A 3 is an amino acid residue having an amino group or a carboxy group in the side chain from the viewpoint of introducing a functional group capable of binding to the polypeptide or its linking group into the side chain of the amino acid sequence, preferably lysine. It is a residue of ornithine, arginine, aspartic acid or glutamate, more preferably a residue of lysine, ornithine or arginine, and even more preferably a residue of lysine.
It should be noted that A 4 may have other amino acid residues. The A 4, any amino acids are used.
n is an integer of 0 to 3, preferably 0.

1は、標的分子認識素子又はその連結基と結合可能な官能基を有する基、又は、A2の側鎖のアミノ基若しくはカルボキシ基の水素原子であり、A3の側鎖のアミノ基又はカルボキシ基と結合する。ただし、R1は、環構成原子の一つとしてA3の側鎖のアミノ基の窒素原子を含む炭素数3〜10の複素環基を形成していてもよい。
1は、スペーサーとして機能し、官能基を介してポリペプチド等の標的分子認識素子を本発明の化合物に結合することができる。R1は、A3の側鎖のアミノ基又はカルボキシ基と結合することで、アミノ酸配列末端を化学修飾せず、本発明の化合物とポリペプチドとを結合することができる。
1は、側鎖のアミノ基の窒素原子と結合していてもよいし、側鎖のカルボキシ基とエステル結合を形成していてもよい。
1の標的分子認識素子又はその連結基と結合可能な官能基は、特に限定されないが、例えば、カルボキシ基又はその活性エステル;マレイミド基、アクリロイル基等のC=C結合を有する基;カルバモイル基、イソチオシアナート基、及びアミノ基からなる群から選ばれる少なくとも1種の官能基(以下「官能基a」ともいう)が挙げられる。カルボキシ基の活性エステルとしては、クロロアセチル基、ブロモアセチル基、ヨードアセチル基等が挙げられる。これらの中でも、官能基aは、C=C結合を有する基、カルバモイル基が好ましい。
1の総炭素数は、特に限定されないが、例えば、好ましくは1以上、より好ましくは2以上、更に好ましくは3以上であり、そして、好ましくは20以下、より好ましくは10以下、更に好ましくは8以下である。
1としては、例えば、官能基aを有する総炭素数2〜20のアシル基、官能基aを有する総炭素数2〜20のアルキル基、官能基aを有する総炭素数2〜20のアルキルカルバモイル基、官能基aを有する総炭素数2〜20のアルキルチオカルバモイル基が挙げられる。
1が複素環基を形成する場合、複素環基はマレイミド基が好ましい。
1が複素環基を形成する場合、複素環基の炭素数は、好ましくは3〜10、より好ましくは3〜5、更に好ましくは4又は5である。
1は、A3の側鎖のアミノ基若しくはカルボキシ基の水素原子であってもよい。つまり、A3のアミノ基若しくはカルボキシ基は、修飾されていなくてもよい。
1の中でも、環構成原子の一つとしてA3の側鎖のアミノ基の窒素原子を含む炭素数3〜10の複素環基が好ましく、環構成原子の一つとしてA3の側鎖のアミノ基の窒素原子を含むマレイミド基がより好ましい。
R 1 is a group having a functional group capable of binding to the target molecule recognition element or its linking group, or a hydrogen atom of the amino group or carboxy group of the side chain of A 2 , and the amino group of the side chain of A 3 or Bonds with a carboxy group. However, R 1 may form a heterocyclic group having 3 to 10 carbon atoms including a nitrogen atom of the amino group of the side chain of A 3 as one of the ring-constituting atoms.
R 1 functions as a spacer and can bind a target molecule recognition device such as a polypeptide to the compound of the present invention via a functional group. By binding to the amino group or carboxy group of the side chain of A 3 , R 1 can bind the compound of the present invention to the polypeptide without chemically modifying the end of the amino acid sequence.
R 1 may be bonded to the nitrogen atom of the amino group of the side chain, or may form an ester bond with the carboxy group of the side chain.
The functional group that can bind to the target molecule recognition element of R 1 or its linking group is not particularly limited, but is, for example, a carboxy group or an active ester thereof; a group having a C = C bond such as a maleimide group or an acryloyl group; a carbamoyl group. , At least one functional group (hereinafter, also referred to as “functional group a”) selected from the group consisting of an isothiocyanate group and an amino group. Examples of the active ester of the carboxy group include a chloroacetyl group, a bromoacetyl group, an iodoacetyl group and the like. Among these, the functional group a is preferably a group having a C = C bond or a carbamoyl group.
The total number of carbon atoms of R 1 is not particularly limited, but is, for example, preferably 1 or more, more preferably 2 or more, still more preferably 3 or more, and preferably 20 or less, more preferably 10 or less, still more preferably. It is 8 or less.
As R 1 , for example, an acyl group having a total carbon number of 2 to 20 having a functional group a, an alkyl group having a total carbon number of 2 to 20 having a functional group a, and an alkyl having a total carbon number of 2 to 20 having a functional group a. Examples thereof include an alkylthiocarbamoyl group having a carbamoyl group and a functional group a and having a total carbon number of 2 to 20.
When R 1 forms a heterocyclic group, the heterocyclic group is preferably a maleimide group.
When R 1 forms a heterocyclic group, the number of carbon atoms of the heterocyclic group is preferably 3 to 10, more preferably 3 to 5, and even more preferably 4 or 5.
R 1 may be a hydrogen atom of an amino group or a carboxy group in the side chain of A 3 . That is, the amino group or carboxy group of A 3 does not have to be modified.
Among R 1 , a heterocyclic group having 3 to 10 carbon atoms containing the nitrogen atom of the amino group of the side chain of A 3 is preferable as one of the ring-constituting atoms, and the side chain of A 3 is used as one of the ring-constituting atoms. A maleimide group containing a nitrogen atom of an amino group is more preferable.

Lは、式(L1):

Figure 2019065774

で表される基、又は、式(L2):
Figure 2019065774

で表される基である。
式(L1)で表される基に関して、R3,R4,R5,R6のうち、好ましくは3個以上4個以下が−CH2COOH基であり、より好ましくは3個が−CH2COOH基である。
−CH2COOR10基として、R10は、水素原子又は炭素数1〜8の炭化水素基である。
3,R4,R5,R6のうち、−CH2COOH基以外の基は、好ましくは炭素数1〜8の炭化水素基であり、より好ましくは炭素数1〜4の炭化水素基である。
3,R4,R5,R6のうち、少なくとも1つの基は、腎臓への集積を低減する観点から、好ましくは炭素数3〜8の炭化水素基であり、より好ましくは炭素数4〜6の炭化水素基である。
当該炭化水素基は、好ましくは、脂肪族炭化水素基であり、より好ましくは分岐鎖脂肪族炭化水素基である。
当該炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基が挙げられる。
これらの中でも、腎臓への集積を低減する観点から、エチル基、n-ブチル基、sec-ブチル基、イソブチル基が好ましく、n-ブチル基、sec-ブチル基、イソブチル基がより好ましく、イソブチル基が更に好ましい。
これらの中でも、Lは、好ましくは、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、−CH2COOH基、又は炭素数1〜8の炭化水素基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、3個は−CH2COOH基である。)で表される基である。
Lとしては、式(L1−1),式(L1−2),式(L1−3),式(L1−4),式(L1−5),式(L1−6),式(L1−7),式(L1−8),式(L1−9)及び式(L2)からなる群から選ばれる少なくとも1種が好ましい。
Figure 2019065774

Figure 2019065774

(以上、式中、*は結合部位である。)L is the formula (L1):
Figure 2019065774

Group represented by, or formula (L2):
Figure 2019065774

It is a group represented by.
Regarding the group represented by the formula (L1), among R 3 , R 4 , R 5 , and R 6 , preferably 3 or more and 4 or less are -CH 2 COOH groups, and more preferably 3 are -CH. 2 COOH groups.
-CH 2 COOR As 10 groups, R 10 is a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
Of R 3 , R 4 , R 5 , and R 6 , the groups other than the −CH 2 COOH group are preferably hydrocarbon groups having 1 to 8 carbon atoms, and more preferably hydrocarbon groups having 1 to 4 carbon atoms. Is.
At least one group among R 3 , R 4 , R 5 , and R 6 is preferably a hydrocarbon group having 3 to 8 carbon atoms, and more preferably 4 carbon atoms, from the viewpoint of reducing accumulation in the kidney. ~ 6 hydrocarbon groups.
The hydrocarbon group is preferably an aliphatic hydrocarbon group, and more preferably a branched chain aliphatic hydrocarbon group.
Examples of the hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and an isobutyl group.
Among these, from the viewpoint of reducing accumulation in the kidney, an ethyl group, an n-butyl group, a sec-butyl group and an isobutyl group are preferable, an n-butyl group, a sec-butyl group and an isobutyl group are more preferable, and an isobutyl group is preferable. Is more preferable.
Among these, L is preferably the formula (L1) :.
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are -CH 2 COOH groups or hydrocarbon groups having 1 to 8 carbon atoms, and * is a binding site. However, R 3 , R 4 , R 5 and R 6 are three groups represented by −CH 2 COOH groups.).
As L, the formula (L1-1), the formula (L1-2), the formula (L1-3), the formula (L1-4), the formula (L1-5), the formula (L1-6), the formula (L1- 7), at least one selected from the group consisting of the formula (L1-8), the formula (L1-9) and the formula (L2) is preferable.
Figure 2019065774

Figure 2019065774

(As mentioned above, * in the formula is the binding site.)

以上の本発明の化合物(1)の中でも、下記式(1a)で表される化合物が好ましい。

Figure 2019065774

〔式中、
Lは、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、水素原子、−CH2COOR10基、又は炭素数1〜8の炭化水素基であり、R10は、水素原子又は炭素数1〜8の炭化水素基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、少なくとも3個以上は−CH2COOH基である。)で表される基、又は、式(L2):
Figure 2019065774

(式中、*は結合部位である。)で表される基であり、
7は、水素原子又はメチル基であり、
8,R9は、それぞれ独立に、水素原子、又は、官能基aを有する総炭素数2〜20のアシル基、官能基aを有する総炭素数2〜20のアルキル基、官能基aを有する総炭素数2〜20のアルキルカルバモイル基、若しくは官能基aを有する総炭素数2〜20のアルキルチオカルバモイル基である。ただし、R8及びR9は、隣接する窒素原子を含む複素環を形成していてもよく、その場合、式:
Figure 2019065774

で表される基は、式:
Figure 2019065774

で表される基である。〕
8,R9は、好ましくは官能基aを有する総炭素数2〜20のアシル基であり、より好ましくはカルバモイル基を有する総炭素数3〜6のアシル基である。カルバモイル基を有する総炭素数3〜6のアシル基としては、例えば、式:―C(=O)(CH2(=O)NH〔式中、aは1〜4の整数である。〕で表される基が挙げられる。Among the above compounds (1) of the present invention, the compound represented by the following formula (1a) is preferable.
Figure 2019065774

[In the formula,
L is the formula (L1):
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, −CH 2 COOR 10 groups, or a hydrocarbon group having 1 to 8 carbon atoms, and R 10 is a hydrogen atom. Alternatively, it is a hydrocarbon group having 1 to 8 carbon atoms, and * is a bond site. However, at least 3 or more of R 3 , R 4 , R 5 , and R 6 are -CH 2 COOH groups.) Group represented by, or formula (L2):
Figure 2019065774

(In the formula, * is a binding site.)
R 7 is a hydrogen atom or a methyl group
R 8 and R 9 independently form a hydrogen atom, an acyl group having a total carbon number of 2 to 20 having a functional group a, an alkyl group having a total carbon number of 2 to 20 having a functional group a, and a functional group a. It is an alkylcarbamoyl group having a total carbon number of 2 to 20 or an alkylthiocarbamoyl group having a functional group a and a total carbon number of 2 to 20. However, R 8 and R 9 may form a heterocycle containing adjacent nitrogen atoms, in which case the equation:
Figure 2019065774

The group represented by the formula:
Figure 2019065774

It is a group represented by. ]
R 8 and R 9 are preferably acyl groups having a total carbon number of 2 to 20 having a functional group a, and more preferably acyl groups having a total carbon number of 3 to 6 having a carbamoyl group. Examples of the acyl group having a carbamoyl group having a total carbon number of 3 to 6 include the formula: -C (= O) (CH 2 ) a (= O) NH 2 [In the formula, a is an integer of 1 to 4 .. ] Is mentioned.

上記式(1a)で表される化合物は、好ましくは、式中、Lが、式(L1):

Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、−CH2COOH基、又は炭素数1〜8の炭化水素基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、3個が−CH2COOH基であり、1個が炭素数1〜8の炭化水素基である。)で表される基であり、
より好ましくは、式中、Lが、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、−CH2COOH基、エチル基、又はブチル基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、3個が−CH2COOH基であり、1個がエチル基、又はブチル基である。)で表される基であり、
更に好ましくは、式中、Lが、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、−CH2COOH基、イソブチル基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、3個が−CH2COOH基であり、1個がイソブチル基である。)で表される基である。The compound represented by the above formula (1a) preferably has L in the formula (L1):
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are independently -CH 2 COOH groups or hydrocarbon groups having 1 to 8 carbon atoms, and * is a binding site, where R is. Of 3 , R 4 , R 5 , and R 6 , three are -CH 2 COOH groups and one is a hydrocarbon group having 1 to 8 carbon atoms.)
More preferably, in the formula, L is the formula (L1):
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are independently −CH 2 COOH groups, ethyl groups, or butyl groups, and * is a binding site, where R 3 , R 4 , R 5 and R 6 (3 are -CH 2 COOH groups and 1 is an ethyl group or a butyl group).
More preferably, in the formula, L is the formula (L1) :.
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are independently -CH 2 COOH groups and isobutyl groups, respectively, and * is a binding site. However, R 3 , R 4 , R 5 , Of R 6 , three are -CH 2 COOH groups and one is an isobutyl group).

上記本発明の化合物(1)の好ましい具体例として、下記の化合物1−1〜化合物1−6が挙げられる。 Preferred specific examples of the compound (1) of the present invention include the following compounds 1-1 to 1-6.

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

本発明の化合物(1)等は、上記化合物の薬理学的に許容可能な塩であってもよい。
薬理学的に許容可能な塩としては、例えば、酸付加塩、塩基付加塩が挙げられる。
酸付加塩としては、無機酸塩、有機酸塩のいずれであってもよい。
無機酸塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、ヨウ化水素酸塩、硝酸塩、リン酸塩が挙げられる。
有機酸塩としては、例えば、クエン酸塩、シュウ酸塩、酢酸塩、ギ酸塩、プロピオン酸塩、安息香酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩が挙げられる。
塩基付加塩としては、無機塩基塩、有機塩基塩のいずれであってもよい。
無機塩基塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩が挙げられる。
有機塩基塩としては、例えば、トリエチルアンモニウム塩、トリエタノールアンモニウム塩、ピリジニウム塩、ジイソプロピルアンモニウム塩が挙げられる。
The compound (1) and the like of the present invention may be a pharmacologically acceptable salt of the above compound.
Pharmacologically acceptable salts include, for example, acid addition salts and base addition salts.
The acid addition salt may be either an inorganic acid salt or an organic acid salt.
Examples of the inorganic acid salt include hydrochloride, hydrobromide, sulfate, hydroiodide, nitrate and phosphate.
Examples of the organic acid salt include citrate, oxalate, acetate, formate, propionate, benzoate, trifluoroacetate, maleate, tartrate, methanesulfonate, and benzenesulfonic acid. Examples include salts and paratoluene sulfonates.
The base addition salt may be either an inorganic base salt or an organic base salt.
Examples of the inorganic base salt include sodium salt, potassium salt, calcium salt, magnesium salt and ammonium salt.
Examples of the organic base salt include triethylammonium salt, triethanolammonium salt, pyridinium salt, and diisopropylammonium salt.

<化合物(2)等>
本発明の化合物(2)等は、化合物(1)、又はその薬理学的に許容可能な塩に、標的分子認識素子を結合させてなる化合物、又はその薬理学的に許容可能な塩である。標的分子認識素子は、化合物(1)、又はその薬理学的に許容可能な塩に、連結基を介して結合していてもよいし、直接結合していてもよい。連結基としては、2-イミノチオランから誘導されるイミノチオールが挙げられる。
<Compound (2), etc.>
The compound (2) and the like of the present invention are a compound obtained by binding a target molecule recognition element to the compound (1) or a pharmacologically acceptable salt thereof, or a pharmacologically acceptable salt thereof. .. The target molecule recognition element may be attached to compound (1) or a pharmacologically acceptable salt thereof via a linking group, or may be directly attached to the compound (1). Linking groups include iminothiols derived from 2-iminothiolan.

〔標的分子認識素子〕
「標的分子認識素子」とは、生体内において、標的分子に結合する等の標的分子を認識可能な分子、置換基、官能基又は原子団である。
標的分子認識素子としては、例えば、ポリペプチド、その他、標的分子に結合するリガンドが挙げられる。
ポリペプチドは、通常、標的分子に結合するポリペプチドであり、好ましくは標的分子に特異的に結合するポリペプチドである。特異的に結合するとは、標的分子に結合するが、標的分子以外の分子には結合しないか、弱い結合であることをいう。
標的分子とは、放射性薬剤による診断の対象となる標的部位、例えば、組織や細胞に存在する分子、好ましくは特異的に発現する分子をいう。「特異的に発現する」とは、標的部位に発現するが、標的部位以外の部位には発現しないか、低い発現であることをいう。
[Target molecule recognition element]
The "target molecule recognition element" is a molecule, substituent, functional group or atomic group capable of recognizing a target molecule such as one that binds to the target molecule in the living body.
Examples of the target molecule recognition element include polypeptides and other ligands that bind to the target molecule.
The polypeptide is usually a polypeptide that binds to a target molecule, preferably a polypeptide that specifically binds to a target molecule. Specific binding means that it binds to a target molecule, but does not bind to a molecule other than the target molecule, or is a weak bond.
The target molecule refers to a target site to be diagnosed by a radiopharmaceutical, for example, a molecule existing in a tissue or a cell, preferably a molecule specifically expressed. "Specifically expressed" means that it is expressed at a target site, but is not expressed at a site other than the target site, or is expressed at a low level.

標的分子認識素子としては、例えば、炎症や腫瘍細胞浸潤等に伴う組織構築において高い発現が認められるタンパク質や腫瘍細胞に特異的に発現するタンパク質に結合するリガンド、並びに、抗体及び抗体の抗原結合領域断片が挙げられる。 Target molecule recognition elements include, for example, proteins that are highly expressed in tissue construction associated with inflammation, tumor cell invasion, etc., ligands that bind to proteins that are specifically expressed in tumor cells, and antibodies and antigen-binding regions of antibodies. Fragments are mentioned.

抗体としては、例えば、抗CD25抗体、抗CD20抗体等のモノクローナル抗体が挙げられる。
抗体の抗原結合領域断片としては、例えば、Fab断片(以下単に「Fab」ともいう)、F(ab')2断片、F(ab)2断片、可変領域断片(以下、「Fv断片」ともいう)が挙げられる。
Fab断片とは、抗体のパパイン分解により生ずるN末端側の産物及びこれと同様のドメイン構造を有する断片を意味する。
F(ab')2断片とは、抗体のF(ab')2のヒンジ領域のジスルフィド結合を還元することにより得られる断片及びこれと同様のドメイン構造を有する断片を意味する。
F(ab)2断片とは、2分子のFab断片が互いにジスルフィド結合で結合した二量体を意味する。
Fv断片とは、抗体の断片であって抗原との結合活性を有する最小の断片を意味する。
抗体の抗原結合領域断片としては、より具体的には、特定のがん細胞に特異的に発現するタンパク質に対する抗体、及び、そのFab断片若しくはFv断片が挙げられる。
Examples of the antibody include monoclonal antibodies such as anti-CD25 antibody and anti-CD20 antibody.
Examples of the antigen-binding region fragment of an antibody include a Fab fragment (hereinafter, also simply referred to as “Fab”), an F (ab') 2 fragment, an F (ab) 2 fragment, and a variable region fragment (hereinafter, also referred to as “Fv fragment”). ).
The Fab fragment means a product on the N-terminal side produced by papain degradation of an antibody and a fragment having a similar domain structure.
The F (ab') 2 fragment means a fragment obtained by reducing the disulfide bond in the hinge region of F (ab') 2 of an antibody and a fragment having a similar domain structure.
The F (ab) 2 fragments, Fab fragments of two molecules means a dimer linked by disulfide bonds to each other.
The Fv fragment means a fragment of an antibody and the smallest fragment having an antigen-binding activity.
More specific examples of the antigen-binding region fragment of an antibody include an antibody against a protein specifically expressed in a specific cancer cell, and a Fab fragment or Fv fragment thereof.

その他の標的分子認識素子としては、がんの新生血管に高発現が認められるインテグリンに親和性を有する環状ペンタペプチド、例えばシクロ-Arg-Gly-Asp-D-Phe-Lys(以下、「c(RGDfK)」ともいう)が挙げられる。その他、造骨性のがん(骨転移)に多く存在するヒドロキシアパタイトへの親和性を有するビスフォスフォン酸やオリゴアスパラギン酸、オリゴグルタミン酸、マクロファージの表面に存在する走査因子の受容体と親和性があるペプチドであるfMet-Leu-Phe(fMLP)、がん細胞に発現が認められる葉酸受容体と結合する葉酸とその誘導体等が挙げられる。
なお、標的分子認識素子は、これら例示されたポリペプチドに限定されず、標的分子に結合するポリペプチドであればいずれを使用することもできる。
As another target molecular recognition element, a cyclic pentapeptide having an affinity for integrin, which is highly expressed in new blood vessels of cancer, for example, cyclo-Arg-Gly-Asp-D-Phe-Lys (hereinafter, “c (hereinafter,” c ( RGDfK) ”). In addition, it has an affinity for bisphosphonic acid, oligoaspartic acid, oligoglutamic acid, and macrophage receptors, which have an affinity for hydroxyapatite, which is abundant in osteogenic cancer (bone metastasis). Examples thereof include fMet-Leu-Phe (fMLP), which is a peptide, folic acid that binds to a folic acid receptor that is expressed in cancer cells, and its derivatives.
The target molecule recognition element is not limited to these exemplified polypeptides, and any polypeptide that binds to the target molecule can be used.

標的分子認識素子は、例えば、2-イミノチオラン等のチオール化試薬を用いて、化合物の官能基と反応する連結基を導入して結合させてもよい。Fab断片への当該連結基の導入は、上記チオール化試薬をpH7-9の条件で反応させることによって、Fab断面のアミノ基に対してするスルフヒドリル基を付加させることができる。 The target molecule recognition element may be bound by introducing a linking group that reacts with the functional group of the compound using, for example, a thiolation reagent such as 2-iminothiolane. Introducing the linking group into the Fab fragment can add a sulfhydryl group to the amino group in the Fab cross section by reacting the thiolation reagent under the condition of pH 7-9.

標的分子認識素子としては、例えば、Asn-urea-Lys 部位又はGlu-urea-Lys 部位を有するリガンドを用いてもよい。当該リガンドによれば、前立腺がんにおいて発現が著しく上昇する前立腺特異的膜抗原(prostate specific membrane antigen)のレセプターに選択的に結合する。
Asn-urea-Lys 部位とは、式:

Figure 2019065774

〔式中、*は結合部位である。〕で表される部位である。
Glu-urea-Lys 部位とは、式:
Figure 2019065774

〔式中、*は結合部位である。〕で表される部位である。As the target molecule recognition element, for example, a ligand having an Asn-urea-Lys site or a Glu-urea-Lys site may be used. According to the ligand, it selectively binds to a receptor for a prostate specific membrane antigen whose expression is significantly increased in prostate cancer.
What is the Asn-urea-Lys site?
Figure 2019065774

[In the formula, * is the binding site. ] Is the part represented by.
What is the Glu-urea-Lys site?
Figure 2019065774

[In the formula, * is the binding site. ] Is the part represented by.

上述の他、例えば、特定の官能基fを導入した上述のポリペプチド、その他、標的分子に結合するリガンドを、炎症や腫瘍細胞浸潤等に伴う組織構築において高い発現が認められるタンパク質や腫瘍細胞に特異的に発現するタンパク質等の標的分子に結合させ、標的分子認識素子として、官能基fと反応し結合を形成する官能基fを有する化合物(2)等を投与し、標的分子を認識する方法が挙げられる[Chemical Society Reviews 45: 6409-6658, 2016, Chemical Society Reviews 42: 5131-5142, 2013]。Other described above, for example, said polypeptide obtained by introducing a specific functional group f 1, Other, ligand, inflammation or a tumor high expression is observed protein or tumor cells in tissue construction due to cell infiltration, etc. which bind to a target molecule bind specifically to the target molecule such as a protein expressed in, as a target molecule recognition element, a compound having a functional group f 2 to form the reacting with the functional groups f 1 binding (2) or the like is administered to the target molecule There is a method of recognition [Chemical Society Reviews 45: 6409-6658, 2016, Chemical Society Reviews 42: 5131-5142, 2013].

官能基fとしては、例えば、下記の式(f−1),式(f−2),又は式(f−3)で表される基が挙げられる。

Figure 2019065774

〔式中、*は結合部位である。〕The functional groups f 1, for example, the following formula (f 1 -1), formula (f 1 -2), or a group represented by the formula (f 1 -3).
Figure 2019065774

[In the formula, * is the binding site. ]

官能基fとしては、例えば、下記の式(f−1),式(f−2),式(f−3),式(f−4),又は式(f−5)で表される基が挙げられる。

Figure 2019065774

〔式中、*は結合部位である。〕The functional group f 2, for example, the following formula (f 2 -1), formula (f 2 -2), formula (f 2 -3), Formula (f 2 -4), or Formula (f 2 -5 ) Can be mentioned.
Figure 2019065774

[In the formula, * is the binding site. ]

本発明の化合物(2)等を使用して、当該化合物を含む放射性薬剤の調製用薬剤を提供できる。
放射性薬剤の調製用薬剤は、当該化合物の他に、水性緩衝液などのpH調節剤、アスコルビン酸、p-アミノ安息香酸等の安定化剤等を含んでいてもよい。
The compound (2) and the like of the present invention can be used to provide a drug for preparing a radiopharmaceutical containing the compound.
In addition to the compound, the agent for preparing a radiopharmaceutical may contain a pH regulator such as an aqueous buffer solution, a stabilizer such as ascorbic acid and p-aminobenzoic acid, and the like.

本発明の化合物(2)等としては、例えば、以下の式(2)で表される化合物、又はその薬理学的に許容可能な塩が挙げられる。 Examples of the compound (2) and the like of the present invention include a compound represented by the following formula (2) or a pharmacologically acceptable salt thereof.

Figure 2019065774

〔式中、A1,A2,m,A3,A4,n,R1,Lは式(1)と同様であり、
1は、R1とP1を連結する連結基であり、
pは0又は1であり、
1は、標的分子認識素子である。〕
1は、R1の連結基と連結可能な官能基により結合を形成し、標的分子認識素子とも結合を形成する。L1は、好ましくは、2-イミノチオランから誘導されるイミノチオール等である。
pは、好ましくは1である。
P1は、例えば、上述の標的分子認識素子であり、好ましくはポリペプチド、その他標的分子に結合するリガンド、又は、式(f−1),式(f−2),式(f−3),式(f−4),又は式(f−5)で表される官能基fである。
Figure 2019065774

[In the equation, A 1 , A 2 , m, A 3 , A 4 , n, R 1 , L are the same as in equation (1).
L 1 is a linking group that connects R 1 and P 1 .
p is 0 or 1,
P 1 is a target molecule recognition element. ]
L 1 forms a bond with a functional group that can be linked to the linking group of R 1 , and also forms a bond with the target molecule recognition element. L 1 is preferably iminothiol or the like derived from 2-iminothiolan.
p is preferably 1.
P 1 is, for example, a target molecule recognition elements described above, preferably a polypeptide, other ligands that bind to a target molecule, or the formula (f 2 -1), formula (f 2 -2), formula (f 2 -3), formula (f 2 -4), or a functional group f 2 represented by the formula (f 2 -5).

上記本発明の化合物(2)の好ましい具体例として、下記の化合物2−1〜化合物2−4が挙げられる。ただし、下記の式中Fabは、Fab断片部位を意味する。 Preferred specific examples of the compound (2) of the present invention include the following compounds 2-1 to 2-4. However, Fab in the following formula means a Fab fragment site.

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

<金属錯体化合物(3)等>
本発明の金属錯体化合物、又はその薬理学的に許容可能な塩(以下「金属錯体化合物(3)等」ともいう)は、放射性金属及び放射性原子標識金属からなる群から選ばれる1種の金属と、前記金属に配位した本発明の化合物又はその薬理的に許容可能な塩と、を有する。
<Metal complex compound (3), etc.>
The metal complex compound of the present invention, or a pharmacologically acceptable salt thereof (hereinafter, also referred to as “metal complex compound (3), etc.”) is a metal selected from the group consisting of radioactive metals and radioactive atom-labeled metals. And a compound of the present invention coordinated to the metal or a pharmaceutically acceptable salt thereof.

本発明の金属錯体化合物(3)等を含む、放射性薬剤は、金属錯体化合物(3)等の他に未反応物や不純物を含んでいてもよいし、製造後に高速液体クロマトグラフィ(HPLC)法等により精製された金属錯体化合物(3)等を含むものであってもよい。 The radiopharmaceutical containing the metal complex compound (3) and the like of the present invention may contain unreacted substances and impurities in addition to the metal complex compound (3) and the like, and may contain unreacted substances and impurities. It may contain the metal complex compound (3) purified by the above.

用語「錯体」とは、金属及び金属類似元素の原子又はイオンを中心にして、配位子が配位した物質を意味し、配位化合物ともいう。配位とは、配位子が中心の金属と配位結合を形成して中心金属の周囲に配列することをいう。錯体は、配位子と金属との配位結合により形成される。配位子と金属による錯体の形成を、錯形成と称することがある。配位結合とは、1本の結合にあずかる2個の原子価電子が、一方の原子のみから提供されている結合をいう。 The term "complex" means a substance in which a ligand is coordinated around an atom or ion of a metal or a metal-like element, and is also referred to as a coordination compound. Coordination means that the ligand forms a coordination bond with the central metal and is arranged around the central metal. The complex is formed by a coordinate bond between a ligand and a metal. The formation of a complex between a ligand and a metal is sometimes referred to as complex formation. A coordinate bond is a bond in which two valence electrons participating in one bond are provided by only one atom.

〔金属〕
金属としては、例えば、111In、223Ra、67Ga、68Ga、44Sc、90Y、177Lu、225Ac、212Bi、213Bi、212Pb、227Th、64Cu、67Cuが挙げられる。
金属は、好ましくは111In、223Ra、67Ga、68Ga、90Y、177Lu、225Ac、212Bi、213Bi、212Pb、及び227Thからなる群から選ばれる少なくとも1種であり、より好ましくは111In、90Y、177Lu、225Ac、212Bi、213Bi及び212Pbからなる群から選ばれる少なくとも1種であり、更に好ましくは111In、90Y、177Lu及び225Acである。
〔metal〕
Examples of the metal include 111 In, 223 Ra, 67 Ga, 68 Ga, 44 Sc, 90 Y, 177 Lu, 225 Ac, 212 Bi, 213 Bi, 212 Pb, 227 Th, 64 Cu, 67 Cu. ..
The metal is preferably at least one selected from the group consisting of 111 In, 223 Ra, 67 Ga, 68 Ga, 90 Y, 177 Lu, 225 Ac, 212 Bi, 213 Bi, 212 Pb, and 227 Th. More preferably at least one selected from the group consisting of 111 In, 90 Y, 177 Lu, 225 Ac, 212 Bi, 213 Bi and 212 Pb, still more preferably 111 In, 90 Y, 177 Lu and 225 Ac. is there.

金属は、これら具体例に限定されず、放射性薬剤を用いた診断等の目的に適当な放射線、放射線量、半減期を有する限りにおいていずれも使用することができる。放射線画像診断において正常な組織や細胞への影響を少なくするという観点から、短半減期金属放射性同位体が好ましく使用される。 The metal is not limited to these specific examples, and any metal can be used as long as it has appropriate radiation, radiation amount, and half-life for the purpose of diagnosis using a radiopharmaceutical. Short half-life metal radioisotopes are preferably used from the perspective of reducing the effects on normal tissues and cells in radiographic imaging.

金属錯体化合物(3)等の製造は、標的分子認識素子と結合させた上記化合物を配位子として用い、金属放射性同位体とインビトロで錯形成させることにより実施できる。錯形成は、従来知られている錯形成反応を利用する簡便な操作で実施できる。 The production of the metal complex compound (3) or the like can be carried out by using the above compound bonded to the target molecule recognition element as a ligand and complexing it with a metal radioisotope in vitro. The complex formation can be carried out by a simple operation utilizing a conventionally known complex formation reaction.

本発明の金属錯体化合物(3)としては、例えば、化合物(1)のLが、式(L1−4)、式(L1−5)、式(L1−9)又は式(L2)で表される基である場合を例にとれば、以下の式(3−1)で表される金属錯体化合物が挙げられる。 As the metal complex compound (3) of the present invention, for example, L of the compound (1) is represented by the formula (L1-4), the formula (L1-5), the formula (L1-9) or the formula (L2). For example, a metal complex compound represented by the following formula (3-1) can be mentioned.

Figure 2019065774

〔式中、A1,A2,m,A3,A4,n,R1は、式(1)と同様であり、
L’は、式(L1’−4)、式(L1’−5)、式(L1’−9)、又は式(L2’):
Figure 2019065774
(式中、Mは、111In、223Ra、67Ga、68Ga、44Sc、90Y、177Lu、225Ac、212Bi、213Bi、212Pb、227Th、64Cu、又は67Cuである。)で表される基である。〕
Figure 2019065774

[In the equation, A 1 , A 2 , m, A 3 , A 4 , n, R 1 are the same as in equation (1).
L'is an equation (L1'-4), an equation (L1'-5), an equation (L1'-9), or an equation (L2'):
Figure 2019065774
(In the formula, M is 111 In, 223 Ra, 67 Ga, 68 Ga, 44 Sc, 90 Y, 177 Lu, 225 Ac, 212 Bi, 213 Bi, 212 Pb, 227 Th, 64 Cu, or 67 Cu. It is a group represented by). ]

本発明の金属錯体化合物(3)としては、例えば、化合物(2)のLが、式(L1−4)、式(L1−5)、式(L1−9)、又は式(L2)で表される基である場合を例にとれば、以下の式(3−2)で表される金属錯体化合物が挙げられる。 As the metal complex compound (3) of the present invention, for example, L of the compound (2) is represented by the formula (L1-4), the formula (L1-5), the formula (L1-9), or the formula (L2). For example, a metal complex compound represented by the following formula (3-2) can be mentioned.

Figure 2019065774

〔式中、A1,A2,m,A3,A4,n,R1は、式(1)と同様であり、
1,p,P1は、式(2)と同様であり、
L’は、式(L1’−4)、式(L1’−5)、式(L1’−9)又は式(L2’):
Figure 2019065774
(式中、Mは、111In、223Ra、67Ga、68Ga、44Sc、90Y、177Lu、225Ac、212Bi、213Bi、212Pb、227Th、64Cu、又は67Cuである。)で表される基である。〕
Figure 2019065774

[In the equation, A 1 , A 2 , m, A 3 , A 4 , n, R 1 are the same as in equation (1).
L 1 , p, and P 1 are the same as in Eq. (2).
L'is an equation (L1'-4), an equation (L1'-5), an equation (L1'-9) or an equation (L2'):
Figure 2019065774
(In the formula, M is 111 In, 223 Ra, 67 Ga, 68 Ga, 44 Sc, 90 Y, 177 Lu, 225 Ac, 212 Bi, 213 Bi, 212 Pb, 227 Th, 64 Cu, or 67 Cu. It is a group represented by). ]

本発明の放射性薬剤は、上記放射性標識ポリペプチドを有効成分として含む他、必要に応じて、1種類又は2種類以上の医薬的に許容される担体(医薬用担体)を含む医薬組成物として調製できる。医薬用担体として、水性緩衝液、酸、及び塩基などのpH調節剤、アスコルビン酸やp-アミノ安息香酸などの安定化剤、D-マンニトールなどの賦形剤、等張化剤、並びに保存剤などを例示できる。また、放射化学的純度を改良するのに役立つクエン酸、酒石酸、マロン酸、グルコン酸ナトリウム、グルコヘプトン酸ナトリウムなどの化合物を添加してもよい。本発明の放射性薬剤は、水溶液の形態、凍結溶液の形態、及び凍結乾燥品のいずれでも提供が可能である。 The radiopharmaceutical of the present invention is prepared as a pharmaceutical composition containing the above-mentioned radiolabeled polypeptide as an active ingredient and, if necessary, one or more pharmaceutically acceptable carriers (medicinal carriers). it can. Pharmaceutical carriers include acidity regulators such as aqueous buffers, acids and bases, stabilizers such as ascorbic acid and p-aminobenzoic acid, excipients such as D-mannitol, isotonic agents, and preservatives. Etc. can be exemplified. In addition, compounds such as citric acid, tartaric acid, malonic acid, sodium gluconate, and sodium gluconate, which help improve the radiochemical purity, may be added. The radioactive agent of the present invention can be provided in the form of an aqueous solution, a frozen solution, or a lyophilized product.

本発明のキットは、上記化合物と、上記金属を含む薬剤とを、別々の包装単位として含む。
本発明のキットは、例えば、化合物(1)等と、標的分子認識素子を含む薬剤と、放射性金属及び放射性原子標識金属からなる群から選ばれる1種の金属を含む薬剤とを、別々の包装単位として含むキット;化合物(1)等に標的分子認識素子を結合させてなる化合物(2)等と、放射性金属及び放射性原子標識金属からなる群から選ばれる1種の金属を含む薬剤とを、別々の包装単位として含むキットが挙げられる。
キットに含まれる化合物及び薬剤はいずれも、必要に応じて、上記のような1種類又は2種類以上の医薬的に許容される担体(医薬用担体)を含むことができる。
The kit of the present invention contains the compound and the drug containing the metal as separate packaging units.
In the kit of the present invention, for example, compound (1) and the like, a drug containing a target molecule recognition element, and a drug containing one kind of metal selected from the group consisting of a radioactive metal and a radioactive atom-labeled metal are packaged separately. A kit containing as a unit; a compound (2) or the like obtained by binding a target molecule recognition element to the compound (1) or the like, and a drug containing one kind of metal selected from the group consisting of a radioactive metal and a radioactive atom-labeled metal. Examples include kits that are included as separate packaging units.
All of the compounds and agents included in the kit can contain one or more pharmaceutically acceptable carriers (medicinal carriers) as described above, if necessary.

[製造方法]
本発明の化合物(1)等、及び、当該化合物(1)等に標的分子認識素子を結合させてなる化合物(2)等は、公知の方法を用いて合成することができ、例えば、本明細書の実施例に記載された方法により製造することができる。
本発明の金属錯体化合物(3)等は、化合物(2)等を配位子として用い、金属放射性金属又は放射性原子標識金属とインビトロで錯形成させることにより、製造することができる。錯形成は、公知の方法を用いて行うことができる。
[Production method]
The compound (1) and the like of the present invention and the compound (2) and the like obtained by binding the target molecule recognition element to the compound (1) and the like can be synthesized by using a known method, for example, the present specification. It can be produced by the method described in the examples of the book.
The metal complex compound (3) or the like of the present invention can be produced by using the compound (2) or the like as a ligand and complex-forming it with a metal radioactive metal or a radioactive atom-labeled metal in vitro. Complex formation can be performed using a known method.

[用法容量]
本発明の金属錯体化合物等は、例えば、放射線治療又は放射線画像診断に用いられる放射性薬剤として使用される。
[Usage capacity]
The metal complex compound and the like of the present invention are used, for example, as a radiopharmaceutical used for radiotherapy or radiographic image diagnosis.

本発明の金属錯体化合物等は、その有効量をヒトを含む哺乳動物に投与することによって癌を抑制する放射線治療に使用することができる。抗癌剤として使用する場合、例えば、癌の発生、又は転移・着床、再発を防止するという予防的作用、並びに癌細胞の増殖を抑制したり、癌を縮小することによって癌の進行を阻止したり、症状を改善させるという治療的作用の両方を含む最も広い意味を有し、いかなる場合においても限定的に解釈されるものではない。
放射線治療薬として用いられる、放射性金属及び放射性原子標識金属からなる群から選ばれる1種の金属は、例えば、アルファ線放出核種、ベータ線放出核種、ガンマ線放出核種、ポジトロン放出核種が挙げられる。これらの中でも、放射線治療の用途では、ベータ線放出核種(即ち、β線を放出する核種)が好ましい。
The metal complex compound and the like of the present invention can be used for radiotherapy that suppresses cancer by administering an effective amount thereof to mammals including humans. When used as an anticancer agent, for example, it has a preventive effect of preventing the development, metastasis / implantation, and recurrence of cancer, as well as suppressing the growth of cancer cells and preventing the progression of cancer by shrinking the cancer. It has the broadest meaning including both the therapeutic effect of improving symptoms, and is not construed in a limited manner in any case.
One type of metal selected from the group consisting of radiometals and radioatom-labeled metals used as a radiotherapy agent includes, for example, alpha ray emitting nuclides, beta ray emitting nuclides, gamma ray emitting nuclides, and positron emitting nuclides. Among these, beta-ray emitting nuclides (that is, β-ray emitting nuclides) are preferable for radiotherapy applications.

放射線画像診断としては、例えば、単一光子放射断層撮影(Single Photon Emission Computed Tomography, 以下単に「SPECT」ともいう)、陽電子放射断層撮影(Positron Emission Tomography, 以下単に「PET」ともいう)等が挙げられる。
診断としては、特に限定されず、腫瘍、炎症、感染症、心循環器疾患、脳・中枢系疾患等の各種疾患及び臓器・組織の放射線画像診断等に用いられ、好ましくは、がんの放射線画像診断に使用される。
診断の対象となる標的の特性にしたがって、標的分子認識素子を選択することにより、多種類多様な標的の診断や治療が可能であり、本発明の放射性薬剤は診断の分野で放射性画像診断薬として広く使用できる。
Examples of radiographic diagnostic imaging include Single Photon Emission Computed Tomography (hereinafter simply referred to as "SPECT") and Positron Emission Tomography (hereinafter simply referred to as "PET"). Be done.
The diagnosis is not particularly limited, and is used for various diseases such as tumors, inflammations, infectious diseases, cardiovascular diseases, brain / central system diseases, and radiographic image diagnosis of organs / tissues, and is preferably radiation for cancer. Used for diagnostic imaging.
By selecting a target molecule recognition element according to the characteristics of the target to be diagnosed, it is possible to diagnose and treat a wide variety of targets, and the radiopharmaceutical of the present invention can be used as a radioimaging diagnostic agent in the field of diagnosis. Can be widely used.

本発明の放射性薬剤の投与経路としては、例えば、静脈内投与若しくは動脈内投与などの非経口投与、経口投与が挙げられ、静脈内投与が好ましい。
投与経路はこれら経路に限定されず、放射性薬剤の投与後に、その作用が有効に発現し得る経路であればいずれも利用できる。
Examples of the route of administration of the radiopharmaceutical of the present invention include parenteral administration such as intravenous administration or intraarterial administration, and oral administration, and intravenous administration is preferable.
The route of administration is not limited to these routes, and any route that can effectively exert its action after administration of the radiopharmaceutical can be used.

本発明の放射性薬剤の放射活性強度は、本薬剤を投与することにより目的を達成し得る強度であり、且つ、被験者の放射線被爆が可能な限り低い臨床投与量である限りにおいて任意である。
放射性強度は、放射性薬剤を使用する一般的な診断方法や治療方法で使用されている放射活性強度を参考にして決定できる。その投与量は患者の年齢、体重、適当な放射線イメージング装置、及び対象疾患の状態等の諸条件を考慮し、イメージングが可能と考えられる放射能及び投与量が決定される。
The radioactivity intensity of the radiopharmaceutical of the present invention is arbitrary as long as the intensity that can achieve the object by administering the drug and the radiation exposure of the subject is as low as possible in the clinical dose.
The radioactivity intensity can be determined with reference to the radioactivity intensity used in general diagnostic and therapeutic methods using radiopharmaceuticals. The dose is determined by considering various conditions such as the age and weight of the patient, an appropriate radiation imaging device, and the condition of the target disease, and the radioactivity and dose that can be imaged.

ヒトを対象とする場合、放射性薬剤における放射能量は、以下のとおりである。
通常、放射線治療に使用されることが想定され、その診断薬剤の投与量は、特に限定されないが、例えば、放射性金属(例えば111In)の放射能量として1.0MBq/kg〜3.0MBq/kgである。
When targeting humans, the amount of radioactivity in the radiopharmaceutical is as follows.
It is usually assumed to be used for radiotherapy, and the dose of the diagnostic agent is not particularly limited, but for example, the radioactivity amount of a radioactive metal (for example, 111 In) is 1.0 MBq / kg to 3.0 MBq / kg. ..

以上、本発明によれば、腎臓への集積を投与早期から低減できる放射性薬剤が得られる化合物が提供できる。 As described above, according to the present invention, it is possible to provide a compound capable of obtaining a radiopharmaceutical capable of reducing accumulation in the kidney from an early stage of administration.

以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。なお、以下の実験は、千葉大学の動物倫理委員会によって承認された後に実施された。 The examples of the present invention described below are for purposes of illustration only and do not limit the technical scope of the present invention. The following experiments were conducted after being approved by the Animal Ethics Committee of Chiba University.

下記実施例及び比較例で、置換基、化合物、及び有機溶媒について、下記の略号を使用した。
Fmoc:フルオレニルメトキシカルボニル基
Boc:tert-ブトキシカルボニル基
THF:テトラヒドロフラン
NMM:N-メチルモルフォリン
DMF:ジメチルホルムアミド
Tfa:トリフルオロアセテイト基
DCC: N,N'-ジシクロヘキシルカルボジイミド
Trt(2-Cl):2-クロロトリチル基
Cl-Trt(2-Cl)Resin:2‐クロロトリチルクロライドレジン(2-Chlorotrityl chloride resin)
Fmoc-Lys(Dde)-OH:N-α-(9-フルオレニルメトキシカルボニル)-N-ε-[1-(4,4-ジメチル-2,6-ジオキソシクロヘキシリデン)エチル]-L-リシン
TFA:トリフルオロ酢酸
MeCN:アセトニトリル
DIPEA:N,N-ジイソプロピルエチルアミン
DIC:N,N'-ジイソプロピルカルボジイミド
HOBt:1-ヒドロキシベンゾトリアゾール
NMCM:N-メトキシカルボニルマレイミド
EDTA:エチレンジアミン四酢酸
DPS:2,2'-ジピリジルジスルフィド
EtOH:エタノール
FBS:ウシ胎児血清
D-PBS:ダルベッコリン酸緩衝生理食塩液
EGTA:グリコールエーテルジアミン四酢酸
In the examples and comparative examples below, the following abbreviations were used for substituents, compounds, and organic solvents.
Fmoc: Fluolenyl methoxycarbonyl group
Boc: tert-butoxycarbonyl group
THF: tetrahydrofuran
NMM: N-methylmorpholin
DMF: Dimethylformamide
Tfa: Trifluoroacetate group
DCC: N, N'-dicyclohexylcarbodiimide
Trt (2-Cl): 2-chlorotrityl group
Cl-Trt (2-Cl) Resin: 2-Chlorotrityl chloride resin
Fmoc-Lys (Dde) -OH: N-α- (9-fluorenylmethoxycarbonyl) -N-ε- [1- (4,4-dimethyl-2,6-dioxocyclohexylidene) ethyl]- L-lysine
TFA: Trifluoroacetic acid
MeCN: acetonitrile
DIPEA: N, N-diisopropylethylamine
DIC: N, N'-diisopropylcarbodiimide
HOBt: 1-Hydroxybenzotriazole
NMCM: N-methoxycarbonylmaleimide
EDTA: ethylenediaminetetraacetic acid
DPS: 2,2'-dipyridyl disulfide
EtOH: Ethanol
FBS: Fetal bovine serum
D-PBS: Dulbeccoline Phosphate Buffered Saline
EGTA: Glycol ether diamine tetraacetic acid

[測定方法、実験動物]
下記実施例及び比較例において、各種物性等の測定方法は下記の方法で行った。
[Measurement method, experimental animals]
In the following Examples and Comparative Examples, various physical properties and the like were measured by the following methods.

〔NMR(核磁気共鳴)〕
1H-NMRによる分析はJEOL ECS - 400 spectrometer (日本電子株式会社)を使用した。
〔ESI-MS(エレクトロスプレーイオン化質量分析)〕
ESI-MSによる分析はHPLC1200 series-6130 quadrupole LC/MS mass spectrometer (アジレント・テクノロジー株式会社)を使用した。
[NMR (Nuclear Magnetic Resonance)]
1 JEOL ECS-400 spectrometer (JEOL Ltd.) was used for the analysis by 1 H-NMR.
[ESI-MS (Electrospray Ionization Mass Spectrometry)]
An HPLC 1200 series-6130 quadrupole LC / MS mass spectrometer (Agilent Technologies, Inc.) was used for analysis by ESI-MS.

〔薄層クロマトグラフィ(TLC)〕
薄層クロマトグラフィ(TLC)による分析にはシリカプレート (TLC aluminium sheets Silica gel 60 RP-18 F254s, メルク株式会社)を使用し、0.1 M 酢酸アンモニウム水溶液:メタノール= 1 : 1の展開溶媒で10 cm展開したものを5 mmずつ切断し、オートウェルガンマシステム(WIZARD3, パーキンエルマー社)によりそれぞれの画分の放射活性を測定した。
[Thin Layer Chromatography (TLC)]
A silica plate (TLC aluminum sheets Silica gel 60 RP-18 F 254 s, Merck Co., Ltd.) was used for analysis by thin layer chromatography (TLC), and 0.1 M aqueous ammonium acetate solution: methanol = 1: 1 in a developing solvent 10 The cm unfolded was cut by 5 mm, and the radioactivity of each fraction was measured by the Autowell gamma system (WIZARD3, Perkin Elmer).

〔セルロースアセテート膜電気泳動(CAE)〕
セルロースアセテート膜電気泳動(以下「CAE」ともいう)では泳動膜に11 cm x 1 cmの大きさに切ったセルロースアセテート膜(ADVANTEC SELECA-V, 東洋濾紙株式会社), 緩衝液に(veronal buffer, pH 8.6, I=0.06)又はsolvent 2 (20 mM P.B. (pH 6.0))を用いて、一定電流(1 mA/cm)にて泳動した。泳動後のセルロースアセテート膜を5 mmずつ切断し、オートウェルガンマシステムによりそれぞれの画分の放射活性を測定した。
[Cellulose Acetate Membrane Electrophoresis (CAE)]
In cellulose acetate membrane electrophoresis (hereinafter also referred to as "CAE"), the electrophoresis membrane is cut into 11 cm x 1 cm size cellulose acetate membrane (ADVANTEC SELECA-V, Toyo Filter Paper Co., Ltd.), and the buffer solution (veronal buffer, Electrophoresis was performed at a constant current (1 mA / cm) using pH 8.6, I = 0.06) or solve 2 (20 mM PB (pH 6.0)). The cellulose acetate membrane after electrophoresis was cut by 5 mm, and the radioactivity of each fraction was measured by the autowell gamma system.

〔逆相高速液体クロマトグラフィ(RP-HPLC)及び分子ふるい高速液体クロマトグラフィ(SE-HPLC)〕
(分析)
逆相高速液体クロマトグラフィ(以下「RP-HPLC」ともいう)による分析はUV検出器としてL-7405 (株式会社日立製作所)、送液ポンプとしてL-7100(株式会社日立製作所)、分析用カラムとしてCosmosil 5C18-AR-300 column (4.6 x 150 mm,ナカライテスク株式会社)を使用した。
移動相には0.1% (v/v) TFA/H2O (A相)と0.1% (v/v) TFA/MeCN (B相)を用い、0-20 minまでA相95% (v/v)、B相5%(v/v)からA相70%(v/v)、B相30%(v/v)まで変化させ、20-40 minでA相70%(v/v)、B相30%(v/v)からA相0%(v/v)、B相100%(v/v)まで変化させる直線グラジエント法により流速1.0 mL/minで溶出した。
[Reverse Phase High Performance Liquid Chromatography (RP-HPLC) and Molecular Sieve High Performance Liquid Chromatography (SE-HPLC)]
(analysis)
For analysis by reverse phase high performance liquid chromatography (hereinafter also referred to as "RP-HPLC"), L-7405 (Hitachi, Ltd.) as a UV detector, L-7100 (Hitachi, Ltd.) as a liquid feed pump, and an analysis column. A Cosmosil 5C 18 -AR-300 column (4.6 x 150 mm, Nacalai Tesque, Inc.) was used.
0.1% (v / v) TFA / H 2 O (A phase) and 0.1% (v / v) TFA / MeCN (B phase) are used for the mobile phase, and A phase 95% (v / v / Change from v), B phase 5% (v / v) to A phase 70% (v / v), B phase 30% (v / v), and A phase 70% (v / v) at 20-40 min. , Elution was carried out at a flow rate of 1.0 mL / min by a linear gradient method in which phase B was changed from 30% (v / v) to phase A 0% (v / v) and phase B 100% (v / v).

(分取)
RP-HPLCによる分取にはガードカラムCadenza 5CD-C18 guard column (10 x 8 mm,インタクト株式会社)を連結したCadenza 5CD-C18 column (20 x 150 mm,インタクト株式会社)を使用した。
移動相には0.1%(v/v) TFA/H2O (A相)と0.1%(v/v) TFA/MeCN (B相)を用い、0-30 minまでA相90%(v/v)、B相10%(v/v)からA相20%(v/v)、B相80%(v/v)まで変化させ、30-40 minでA相20%(v/v)、B相80%(v/v)からA相0%(v/v)、B相100%(v/v)まで変化させる直線グラジエント法により流速5.0 mL/minで溶出した。
(Distribution)
For preparative by RP-HPLC, a Cadenza 5CD-C18 column (20 x 150 mm, Intact Co., Ltd.) connected with a guard column Cadenza 5CD-C18 guard column (10 x 8 mm, Intact Co., Ltd.) was used.
0.1% (v / v) TFA / H 2 O (A phase) and 0.1% (v / v) TFA / MeCN (B phase) are used for the mobile phase, and A phase 90% (v / v / Change from v), B phase 10% (v / v) to A phase 20% (v / v), B phase 80% (v / v), and A phase 20% (v / v) at 30-40 min. , B phase 80% (v / v) to A phase 0% (v / v), B phase 100% (v / v) elution at a flow rate of 5.0 mL / min by the linear gradient method.

分子ふるいHPLC (以下「SE-HPLC」ともいう)による分析はCosmosil 5 Diol-300II (7.5×600 mm, ナカライテスク株式会社)にCosmosil 5 Diol-300II ガードカラム (7.5×50mm, ナカライテスク株式会社) を接続し、移動相に0.1 M リン酸緩衝液 (pH 6.8) を使用して流速1.0 mL/minで溶出した。 Analysis by molecular sieving HPLC (hereinafter also referred to as "SE-HPLC") is performed on Cosmosil 5 Diol-300II (7.5 x 600 mm, Nacalai Tesque Co., Ltd.) and Cosmosil 5 Diol-300II guard column (7.5 x 50 mm, Nacalai Tesque Co., Ltd.). The mobile phase was eluted with 0.1 M phosphate buffer (pH 6.8) at a flow rate of 1.0 mL / min.

溶出液はRP-HPLCでは254 nm、SE-HPLCでは280 nmの吸光度を計測し、67Ga標識化合物の分析にはγ線検出器 Gabi star (Raytest社) をオンラインで接続、若しくは溶出液をフラクションコレクター (Frac-920, GEヘルスケア・ジャパン株式会社) により0.5分間隔で分取後、オートウェルガンマシステムにより放射活性を測定することで分析した。The eluate measures absorbance at 254 nm for RP-HPLC and 280 nm for SE-HPLC. For analysis of 67 Ga-labeled compounds, connect a gamma-ray detector Gabi star (Raytest) online or fractionate the eluate. After sorting by a collector (Frac-920, GE Healthcare Japan Co., Ltd.) at 0.5 minute intervals, the radioactivity was measured by the autowell gamma system for analysis.

〔試薬〕
下記合成例における、「DO3A-EDA (Mal)」は、下記の式で表される化合物であり、Macrocyclics社製の商品名「B-272」を使用した。

Figure 2019065774
〔reagent〕
In the following synthetic example, "DO3A-EDA (Mal)" is a compound represented by the following formula, and the trade name "B-272" manufactured by Macrocyclics was used.
Figure 2019065774

〔実験動物〕
動物実験は、雄性のddY系SPFマウス6週齢 及び雄性のBALB/c-nu/nuマウス(日本エスエルシー株式会社)を使用した。
[Experimental animals]
For animal experiments, male ddY SPF mice 6 weeks old and male BALB / c-nu / nu mice (Nippon SLC Co., Ltd.) were used.

[CDO3AEt-FGK, CDO3AEt-FGK(Mal), CDO3AEt-FGK(Boc)の合成]
合成例L1:化合物(a13)の合成

Figure 2019065774
[Synthesis of CDO3AEt-FGK, CDO3AEt-FGK (Mal), CDO3AEt-FGK (Boc)]
Synthesis example L1: Synthesis of compound (a13)
Figure 2019065774

合成例L1(a): 化合物(a3)の合成
化合物(a1)(7.97 g、20.4 mmol)をTHF 40 mLに溶解し-15°Cに冷却後、アルゴン雰囲気下、 N-メチルモルフォリン(NMM, 3.36 mL、30.5 mmol)及びクロロギ酸イソブチル(4.01 mL、30.5 mmol)を順に加えた。5分間攪拌した後、化合物(a2)(5.87 g、30.5 mmol)とNMM (3.36 mL、30.5 mmol)のDMF溶液24 mLを滴下し、冷却下で30分、室温で1 時間攪拌した。溶媒を減圧留去後、残渣を酢酸エチル100 mL及び5質量%炭酸水素ナトリウム水溶液100 mLにて溶解し、5質量%炭酸水素ナトリム水溶液(50 mL × 3)、5質量%クエン酸水溶液(50 mL × 3)で洗浄した。有機層に無水硫酸マグネシウムを加えて乾燥した後、溶媒を除去して得られた結晶を減圧乾燥することで化合物(a3)(10.6 g、20.0 mmol、収率98.0%)を淡黄色結晶として得た。
1H NMR (CDCl3) : δ 1.42 [9H, s, Boc], 2.96-3.03 [2H, m, CHCH 2 ], 3.39-3.51 [4H, CH2CH 2 ], 4.22-4.24 [1H, dd, NHCH], 4.85, 6.42, 7.74 [3H, t, NH], 6.93-6.95 [2H, d, CCH], 7.62-7.66 [2H, d, ICCH].
ESI-MS (M+Na)+: m/z 552.07. found 552.09.
Synthesis example L1 (a): Synthesis of compound (a3) Compound (a1) (7.97 g, 20.4 mmol) was dissolved in 40 mL of THF, cooled to -15 ° C, and then N-methylmorpholin (NMM) under an argon atmosphere. , 3.36 mL, 30.5 mmol) and isobutyl chloroformate (4.01 mL, 30.5 mmol) were added in that order. After stirring for 5 minutes, 24 mL of a DMF solution of compound (a2) (5.87 g, 30.5 mmol) and NMM (3.36 mL, 30.5 mmol) was added dropwise, and the mixture was stirred under cooling for 30 minutes and at room temperature for 1 hour. After distilling off the solvent under reduced pressure, the residue was dissolved in 100 mL of ethyl acetate and 100 mL of 5 mass% sodium hydrogen carbonate aqueous solution, and 5 mass% sodium hydrogen carbonate aqueous solution (50 mL x 3) and 5 mass% citric acid aqueous solution (50). Washed with mL x 3). Anhydrous magnesium sulfate was added to the organic layer and dried, and then the solvent was removed and the obtained crystals were dried under reduced pressure to obtain compound (a3) (10.6 g, 20.0 mmol, yield 98.0%) as pale yellow crystals. It was.
1 1 H NMR (CDCl 3 ): δ 1.42 [9H, s, Boc ], 2.96-3.03 [2H, m, CHC H 2 ], 3.39-3.51 [4H, CH 2 C H 2 ], 4.22-4.24 [1H, dd, NHC H ], 4.85, 6.42, 7.74 [3H, t, N H ], 6.93-6.95 [2H, d, CC H ], 7.62-7.66 [2H, d, ICC H ].
ESI-MS (M + Na) + : m / z 552.07. Found 552.09.

合成例L1(b): 化合物(a4)
化合物(a3)(10.6 g、20.0 mmol)を4 N塩酸/酢酸エチル50 mLに溶解し、室温で3 時間攪拌した。溶媒を減圧留去し、減圧乾燥することで化合物(a4)(8.08 g、20.0 mmol、収率99.8%)を淡黄色結晶として得た。
1H NMR (CDCl3) : δ 3.42-3.55 [6H, overlapped, CH 2 ], 3.86-3.88 [1H, dd, CH2CH], 7.04-7.06 [2H, d, CCH], 7.62-7.64 [2H, d, ICCH].
ESI-MS (M+Na)+: m/z 452.02. found 452.03.
Synthesis example L1 (b): Compound (a4)
Compound (a3) (10.6 g, 20.0 mmol) was dissolved in 50 mL of 4 N hydrochloric acid / ethyl acetate and stirred at room temperature for 3 hours. The solvent was evaporated under reduced pressure and dried under reduced pressure to give compound (a4) (8.08 g, 20.0 mmol, yield 99.8%) as pale yellow crystals.
1 1 H NMR (CDCl 3 ): δ 3.42-3.55 [6H, overlapped, C H 2 ], 3.86-3.88 [1H, dd, CH 2 C H ], 7.04-7.06 [2H, d, CC H ], 7.62- 7.64 [2H, d, ICC H ].
ESI-MS (M + Na) + : m / z 452.02. Found 452.03.

合成例L1(c): 化合物(a6)
化合物(a5)(4.45 g、19.1 mmol)をTHF 70 mLに溶解し、溶液を氷冷した後、アルゴン雰囲気下でDCC(4.30 g、20.8 mmol)のTHF 溶液20 mLを滴下した。滴下完了後、室温で1時間攪拌し、反応液をろ過することでジシクロヘキシル尿素(以下、「DC-urea」ともいう)を除去し、ろ液を化合物(a5)の無水物溶液として次の反応に用いた。化合物(a4)(8.08 g、17.4 mmol)を酢酸エチル80 mLに懸濁し、Et3N(3.63 mL、26.0 mmol)を加えて冷却、10分間攪拌した後、アルゴン雰囲気下、先に調製した化合物(a5)の無水物溶液を滴下した。滴下完了後、室温にて1 時間攪拌し、反応液を5質量%クエン酸水溶液(50 mL × 3)で洗浄した。有機層に無水硫酸マグネシウムを加えて乾燥した後、溶媒を減圧留去して得られた残渣を、酢酸エチルを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製を行うことで化合物(a6)(10.2 g、15.8 mmol、収率91.2%)を淡黄色結晶として得た。
1H NMR (CDCl3) : δ 1.37 [9H, s, Boc], 3.00-3.19 [2H, m, CHCH 2 ], 3.42-3.52 [5H, overlapped, NCH 2 , NHCH 2 ], 3.77-4.03 [2H, m, COCH 2 ], 4.11-4.16 [1H, dd, NCH 2 ], 4.60-4.62 [1H, t, CH2CH], 6.96-7.01 [2H, d, CCH], 7.58-7.60 [2H, d, ICCH].
ESI-MS (M+Na)+: m/z 667.09. found 667.02.
Synthesis example L1 (c): Compound (a6)
Compound (a5) (4.45 g, 19.1 mmol) was dissolved in 70 mL of THF, the solution was ice-cooled, and then 20 mL of a solution of DCC (4.30 g, 20.8 mmol) in THF was added dropwise under an argon atmosphere. After the dropping is completed, the mixture is stirred at room temperature for 1 hour, the reaction solution is filtered to remove dicyclohexylurea (hereinafter, also referred to as "DC-urea"), and the filtrate is used as an anhydride solution of the compound (a5) for the next reaction. Used for. Compound (a4) (8.08 g, 17.4 mmol) was suspended in 80 mL of ethyl acetate, Et 3 N (3.63 mL, 26.0 mmol) was added, the mixture was cooled, stirred for 10 minutes, and then the compound prepared above under an argon atmosphere. The anhydride solution of (a5) was added dropwise. After the dropping was completed, the mixture was stirred at room temperature for 1 hour, and the reaction solution was washed with a 5 mass% citric acid aqueous solution (50 mL × 3). After adding anhydrous magnesium sulfate to the organic layer and drying, the solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography using ethyl acetate as an elution solvent to purify compound (a6) (10.2 g). , 15.8 mmol, yield 91.2%) was obtained as pale yellow crystals.
1 1 H NMR (CDCl 3 ): δ 1.37 [9H, s, Boc ], 3.00-3.19 [2H, m, CHC H 2 ], 3.42-3.52 [5H, overlapped, NC H 2 , NHC H 2 ] , 3.77- 4.03 [2H, m, COC H 2 ], 4.11-4.16 [1H, dd, NC H 2 ], 4.60-4.62 [1H, t, CH 2 C H ], 6.96-7.01 [2H, d, CC H ], 7.58-7.60 [2H, d, ICC H ].
ESI-MS (M + Na) + : m / z 667.09. Found 667.02.

合成例L1(d): 化合物(a7)
化合物(a6)(3.52 g、5.46 mmol)を25質量%アンモニア水50 mLに溶解し、室温で3 時間攪拌した。溶媒を減圧留去後、減圧乾燥して得られた油状物をDMF 90 mLに溶解したものをA液とした。O-(7-アザ-1H-ベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスフェート(HATU, 3.12 g、8.21 mmol)をDMF 90 mLに溶解したものをB液とした。DMF 1600 mLにDIEA(3.81 mL、21.9 mmol)、1-ヒドロキシ-7-アザベンゾトリアゾール(1.12 g、8.22 mmol)を溶解し、A液及びB液を、シリンジポンプを用いて1.2 mL/hにて低速同時滴下し、滴下終了後24 時間攪拌した。溶媒を減圧留去して得られた残渣を酢酸エチル及びヘキサンで洗浄することで化合物(a7)(1.57 g、2.96 mmol、収率54.2%)を白色結晶として得た。
1H NMR (CD3OD) : δ 1.46 [9H, s, Boc], 2.82-2.89 [1H, m, CH 2 ], 2.91-2.96 [2H, m, CH 2 ], 3.03-3.14 [1H, m, CH 2 ], 3.56-3.64 [2H, m, CH 2 ], 3.82-4.02 [3H, m, CH 2 ], 4.10-4.18 [1H, m, CH 2 ], 4.46-4.50 [1H, dd, CH], 7.02-7.04 [2H, d, CH], 7.60-7.62 [2H, d, CH].
ESI-MS (M+Na)+: m/z 553.09. found 553.10.
Synthesis example L1 (d): Compound (a7)
Compound (a6) (3.52 g, 5.46 mmol) was dissolved in 50 mL of 25 mass% aqueous ammonia and stirred at room temperature for 3 hours. After distilling off the solvent under reduced pressure, the oil obtained by drying under reduced pressure was dissolved in 90 mL of DMF to prepare Solution A. O- (7-aza-1H-benzotriazole-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate (HATU, 3.12 g, 8.21 mmol) was dissolved in 90 mL of DMF. The one was designated as solution B. Dissolve DIEA (3.81 mL, 21.9 mmol) and 1-hydroxy-7-azabenzotriazole (1.12 g, 8.22 mmol) in 1600 mL of DMF, and add solutions A and B to 1.2 mL / h using a syringe pump. The mixture was simultaneously added dropwise at low speed, and the mixture was stirred for 24 hours after the addition was completed. The solvent was evaporated under reduced pressure and the obtained residue was washed with ethyl acetate and hexane to give compound (a7) (1.57 g, 2.96 mmol, yield 54.2%) as white crystals.
1 1 H NMR (CD 3 OD): δ 1.46 [9H, s, Boc ], 2.82-2.89 [1H, m, C H 2 ], 2.91-2.96 [2H, m, C H 2 ], 3.03-3.14 [1H , m, C H 2 ], 3.56-3.64 [2H, m, C H 2 ], 3.82-4.02 [3H, m, C H 2 ], 4.10-4.18 [1H, m, C H 2 ], 4.46-4.50 [1H, dd, C H ], 7.02-7.04 [2H, d, C H ], 7.60-7.62 [2H, d, C H ].
ESI-MS (M + Na) + : m / z 553.09. Found 553.10.

合成例L1(e): 化合物(a8)
化合物(a7)(1.57 g、2.96 mmol)を4 N塩酸/酢酸エチル40 mLに懸濁し、室温にて4 時間攪拌した。溶媒を減圧留去して得られた結晶をヘキサンで洗浄し、減圧乾燥することで化合物(a8)(1.36 g、2.92 mmol、収率98.4%)を白色結晶として得た。
1H NMR (CDCl3) : δ 2.83-2.89 [1H, m, CH 2 ], 2.96 [1H, s, CH 2 ], 3.12-3.19 [1H, m, CH 2 ], 3.40-3.52 [2H, m, CH 2 ], 3.62-3.59 [2H, m, CH 2 ], 4.07-4.13 [1H, m, CH 2 ], 4.19-4.42 [1H, m, CH 2 ], 4.60-4.62 [1H, dd, CH], 6.11 [1H, s, NH], 6.54 [1H, s, NH], 6.96-7.01 [2H, d, CH], 7.58-7.60 [2H, d, CH].
ESI-MS (M+H)+: m/z 431.06. found 431.03.
Synthesis example L1 (e): Compound (a8)
Compound (a7) (1.57 g, 2.96 mmol) was suspended in 40 mL of 4 N hydrochloric acid / ethyl acetate and stirred at room temperature for 4 hours. The solvent was evaporated under reduced pressure, and the obtained crystals were washed with hexane and dried under reduced pressure to give compound (a8) (1.36 g, 2.92 mmol, yield 98.4%) as white crystals.
1 1 H NMR (CDCl 3 ): δ 2.83-2.89 [1 H, m, C H 2 ], 2.96 [1 H, s, C H 2 ], 3.12-3.19 [1 H, m, C H 2 ], 3.40-3.52 [ 2H, m, C H 2 ], 3.62-3.59 [2H, m, C H 2 ], 4.07-4.13 [1H, m, C H 2 ], 4.19-4.42 [1H, m, C H 2 ], 4.60- 4.62 [1H, dd, C H ], 6.11 [1H, s, N H], 6.54 [1H, s, N H], 6.96-7.01 [2H, d, C H], 7.58-7.60 [2H, d, C H ].
ESI-MS (M + H) + : m / z 431.06. Found 431.03.

合成例L1(f): 化合物(a9)
化合物(a8)(880 mg、2.04 mmol)をDMF13.5mLに懸濁し、さらに炭酸カリウム(424 mg、 3.06 mmol)を加えて懸濁させた。溶液を氷冷し、アルゴン雰囲気下ヨードエタン(327 μL、 4.08 mmol)を滴下した。滴下完了後、80℃で四日間攪拌した。溶媒を減圧留去して得られた残渣を酢酸エチルに懸濁しろ過を行った。ろ液を5質量%炭酸水素ナトリウム水溶液で洗浄した。有機層に硫酸ナトリウムを加えて乾燥した後、溶媒を減圧留去して得られた残渣をクロロホルムとメタノールを用いたフラッシュクロマトシステムにより生成を行うことで化合物(a9)(340 mg、 0.742 mmol、収率36.3%)を白色結晶として得た。
1H NMR (CDCl3) : δ 1.10 [3H, t, CH 3 ], 2.76-2.84 [2H, q, CH 2 ], 2.85-2.89 [1H, m, CH 2 ], 3.08-3.25 [6H, m, CH 2 ], 3.37-3.43 [1H, m, CH 2 ], 3.53-3.57 [1H, m, CH 2 ], 3.69-3.75 [1H, m, CH 2 ], 4.61-4.66 [1H, dd, CH], 6.59 [1H, s, NH], 6.84 [1H, s, NH], 6.97-6.99 [2H, d, CH], 7.16 [1H, s, NH], 7.58-7.60 [2H, d, CH].
ESI-MS (M+H)+: m/z 459.09. found 459.17.
Synthesis example L1 (f): Compound (a9)
Compound (a8) (880 mg, 2.04 mmol) was suspended in 13.5 mL of DMF, and potassium carbonate (424 mg, 3.06 mmol) was further added and suspended. The solution was ice-cooled and iodoethane (327 μL, 4.08 mmol) was added dropwise under an argon atmosphere. After the dropping was completed, the mixture was stirred at 80 ° C. for 4 days. The solvent was distilled off under reduced pressure, and the obtained residue was suspended in ethyl acetate and filtered. The filtrate was washed with 5 mass% aqueous sodium hydrogen carbonate solution. After adding sodium sulfate to the organic layer and drying, the solvent was distilled off under reduced pressure, and the obtained residue was produced by a flash chromatographic system using chloroform and methanol to produce compound (a9) (340 mg, 0.742 mmol, Yield 36.3%) was obtained as white crystals.
1 1 H NMR (CDCl 3 ): δ 1.10 [3H, t, C H 3 ], 2.76-2.84 [2H, q, C H 2 ], 2.85-2.89 [1H, m, C H 2 ], 3.08-3.25 [ 6H, m, C H 2 ], 3.37-3.43 [1H, m, C H 2 ], 3.53-3.57 [1H, m, C H 2 ], 3.69-3.75 [1H, m, C H 2 ], 4.61- 4.66 [1H, dd, C H ], 6.59 [1H, s, N H], 6.84 [1H, s, N H], 6.97-6.99 [2H, d, C H], 7.16 [1H, s, N H ], 7.58-7.60 [2H, d, C H].
ESI-MS (M + H) + : m / z 459.09. Found 459.17.

合成例L1(g): 化合物(a10)
化合物(a9)(340 mg、0.742 mmol)をTHF 1.4 mLに懸濁し、溶液を氷冷した後、アルゴン雰囲気下、0.95 Mのボラン-THF錯体/THF溶液13.5 mLを緩徐に加え、1時間攪拌した後、24時間還流した。溶液を氷冷し、メタノール13.5 mLを加えた後、1時間攪拌し、溶媒を減圧留去した。その後、残渣に再度メタノール13.5 mLを加え、溶媒を減圧留去した。残渣に濃塩酸13.5 mLを加え、24 時間室温で攪拌した後、1 時間還流した。溶液を氷冷し、12.5 N水酸化ナトリウム水溶液を加えて塩基性とした後、クロロホルムで抽出した。有機層に硫酸ナトリウムを加えて乾燥した後、溶媒を減圧留去して得られた残渣をクロロホルム:メタノール:25質量%アンモニア水(10:1:0.1)を溶出溶媒とするフラッシュクロマトシステムにより精製を行うことで化合物(a10)(163 mg、0.391 mmol、収率52.7%)を黄色油状物として得た。
Synthesis example L1 (g): Compound (a10)
Compound (a9) (340 mg, 0.742 mmol) was suspended in 1.4 mL of THF, the solution was ice-cooled, and then 13.5 mL of 0.95 M borane-THF complex / THF solution was slowly added under an argon atmosphere and stirred for 1 hour. After that, reflux was performed for 24 hours. The solution was ice-cooled, 13.5 mL of methanol was added, and the mixture was stirred for 1 hour, and the solvent was evaporated under reduced pressure. Then, 13.5 mL of methanol was added to the residue again, and the solvent was distilled off under reduced pressure. 13.5 mL of concentrated hydrochloric acid was added to the residue, and the mixture was stirred at room temperature for 24 hours and then refluxed for 1 hour. The solution was ice-cooled, 12.5 N aqueous sodium hydroxide solution was added to make it basic, and then the solution was extracted with chloroform. After adding sodium sulfate to the organic layer and drying it, the solvent was distilled off under reduced pressure, and the obtained residue was purified by a flash chromatography system using chloroform: methanol: 25% by mass aqueous ammonia (10: 1: 0.1) as an elution solvent. The compound (a10) (163 mg, 0.391 mmol, yield 52.7%) was obtained as a yellow oil.

合成例L1(h): 化合物(a11)
化合物(a10)(197 mg、0.401 mmol)をアセトニトリル2.75 mLとDMF 0.55 mLの混液に溶解し、さらに炭酸カリウム(229 mg、1.65 mmol)を加えて懸濁させた。溶液を氷冷し、アルゴン雰囲気下、ブロモ酢酸tert-ブチル(229 μL、1.40 mmol)を滴下した。滴下完了後、室温で48時間攪拌し、懸濁液をろ過した後、ろ液から溶媒を減圧留去した。残渣を少量のクロロホルムに溶解し、厚さ1 mmの分取用TLCにアプライし、クロロホルム:メタノール=8:1を展開溶媒とすることで精製し、化合物(a11)(306 mg、 0.403 mmol、100%)を赤褐色油状物として得た。
1H NMR (CDCl3) : δ 0.98-1.03 [3H, t, CH 3 ], 1.41-1.48 [27H, m, t Bu], 1.90-4.90 [27H, m, CH 2 , DOTA], 6.89-7.07 [2H, m, CH], 7.50-7.61 [2H, m, CH].
ESI-MS (M+H)+: m/z 759.36. found 759.24.
Synthesis example L1 (h): Compound (a11)
Compound (a10) (197 mg, 0.401 mmol) was dissolved in a mixed solution of 2.75 mL of acetonitrile and 0.55 mL of DMF, and potassium carbonate (229 mg, 1.65 mmol) was further added and suspended. The solution was ice-cooled and tert-butyl bromoacetate (229 μL, 1.40 mmol) was added dropwise under an argon atmosphere. After the dropping was completed, the mixture was stirred at room temperature for 48 hours, the suspension was filtered, and the solvent was distilled off under reduced pressure from the filtrate. The residue was dissolved in a small amount of chloroform, applied to a 1 mm thick preparative TLC, purified by using chloroform: methanol = 8: 1 as a developing solvent, and compound (a11) (306 mg, 0.403 mmol, 100%) was obtained as a reddish brown oil.
1 1 H NMR (CDCl 3 ): δ 0.98-1.03 [3H, t, C H 3 ], 1.41-1.48 [27H, m, t Bu ], 1.90-4.90 [27H, m, C H 2 , DOTA], 6.89 -7.07 [2H, m, C H ], 7.50-7.61 [2H, m, C H ].
ESI-MS (M + H) + : m / z 759.36. Found 759.24.

合成例L1(i): 化合物(a12)
化合物(a11)(306 mg、0.403 mmol)をDMF 2.8 mLに懸濁し、Pd(OAc)2(9.1 mg、0.0403 mmol)、1,2-ビス(ジフェニルホスフィノ)エタン(24.12 mg、0.0604 mmol)、Et3N(168 μL、1.21 mmol)、ベンジルアルコール(840 μL、8.06 mmol)を加え、一酸化炭素雰囲気下、24時間還流した。反応後、溶媒を減圧留去し、酢酸エチルに溶解後、ろ過を行い、ろ液を5質量%炭酸水素ナトリウム水溶液で洗浄した。有機層に硫酸ナトリウムを加え乾燥した後、溶媒を減圧留去して得られた残渣をクロロホルムとメタノールを用いたフラッシュクロマトシステムにより精製することで化合物(a12)(113 mg、 0.166 mmol、収率41.4%)を黄色油状物として得た。
ESI-MS (M+H)+: m/z 767.50. found 767.60.
Synthesis example L1 (i): Compound (a12)
Compound (a11) (306 mg, 0.403 mmol) was suspended in 2.8 mL of DMF and Pd (OAc) 2 (9.1 mg, 0.0403 mmol), 1,2-bis (diphenylphosphino) ethane (24.12 mg, 0.0604 mmol). , Et 3 N (168 μL, 1.21 mmol) and benzyl alcohol (840 μL, 8.06 mmol) were added, and the mixture was refluxed for 24 hours under a carbon monoxide atmosphere. After the reaction, the solvent was evaporated under reduced pressure, dissolved in ethyl acetate, filtered, and the filtrate was washed with a 5 mass% aqueous sodium hydrogen carbonate solution. After adding sodium sulfate to the organic layer and drying, the solvent was distilled off under reduced pressure, and the obtained residue was purified by a flash chromatographic system using chloroform and methanol to purify compound (a12) (113 mg, 0.166 mmol, yield). 41.4%) was obtained as a yellow oil.
ESI-MS (M + H) + : m / z 767.50. Found 767.60.

合成例L1(j): 化合物(a13)
化合物(a12)(46 mg、0.0600 mmol)をメタノール1 mLに溶解した後、10質量% Pd/Cを100mg加えて水素雰囲気下、室温で2時間攪拌した。反応溶液をろ過後、溶媒を減圧留去することで化合物(a13)(25.5mg、0.0377 mmol、収率62.8%)を黄色油状物として得た。
ESI-MS (M+H)+: m/z 677.45. found 677.62.
Synthesis example L1 (j): Compound (a13)
After dissolving compound (a12) (46 mg, 0.0600 mmol) in 1 mL of methanol, 100 mg of 10 mass% Pd / C was added, and the mixture was stirred at room temperature for 2 hours under a hydrogen atmosphere. After filtering the reaction solution, the solvent was distilled off under reduced pressure to obtain compound (a13) (25.5 mg, 0.0377 mmol, yield 62.8%) as a yellow oil.
ESI-MS (M + H) + : m / z 677.45. Found 677.62.

合成例L2:CDO3AEt-FGK(化合物(a16)(上述の化合物1−1と同じ)), CDO3AEt-FGK-Boc (化合物(a17)), CDO3AEt-FGK(Mal) (化合物(a18) (上述の化合物1−2と同じ))の合成

Figure 2019065774
Synthesis example L2: CDO3AEt-FGK (Compound (a16) (same as compound 1-1 above)), CDO3AEt-FGK-Boc (compound (a17)), CDO3AEt-FGK (Mal) (compound (a18) (above above) Synthesis of compound 1-2))
Figure 2019065774

合成例L2(I)及び(II): 化合物(a16)
Fmoc固相合成法を用いてペプチドを伸長した樹脂(a14) (22 μmol)、1-ヒドロキシ-7-アザベンゾトリアゾール(15.1 mg、110 μmol)、化合物(a13) (15 mg、22 μmol)をDMF溶解し、N,N'-ジイソプロピルカルボジイミド(17.2 μL、110 μmol)を加えて室温で16時間緩やかに攪拌した。反応終了後DMF及びCH2Cl2を用いて樹脂を洗浄した。
得られた樹脂(a15)をトリフルオロ酢酸: トリイソプロピルシラン: 水= 95 : 2.5 : 2.5を組成とする溶液に懸濁し2時間緩やかに攪拌した。反応終了後、ろ過にて樹脂を除去し、ろ液を減圧留去することで白色結晶を得た。さらにHPLCにてImtakt Cadenza 5CD-C18 150×20 mmを用い移動相にはA相に0.1%TFA/MilliQ、B相に0.1% TFA/MeCNを使用し、0-35分でA相95%、B相5%からA相70%、B相30%まで変化させ、35-40分でA相70%、B相30%からA相0%、B相100%まで変化させる直線gradient法により流速5 mL/minで精製することで目的とする化合物(a16)(以下、「CDO3AEt-FGK」ともいう)(5.7 mg、6.78 μmol、収率30.8%)を得た。
ESI-MS (M-H)-: m/z 839.4, found: 839.3
Synthesis Examples L2 (I) and (II): Compound (a16)
Peptide-extended resin (a14) (22 μmol), 1-hydroxy-7-azabenzotriazole (15.1 mg, 110 μmol), compound (a13) (15 mg, 22 μmol) using Fmoc solid-phase synthesis method DMF was dissolved, N, N'-diisopropylcarbodiimide (17.2 μL, 110 μmol) was added, and the mixture was gently stirred at room temperature for 16 hours. After completion of the reaction, the resin was washed with DMF and CH 2 Cl 2 .
The obtained resin (a15) was suspended in a solution having a composition of trifluoroacetic acid: triisopropylsilane: water = 95: 2.5: 2.5, and the mixture was gently stirred for 2 hours. After completion of the reaction, the resin was removed by filtration, and the filtrate was distilled off under reduced pressure to obtain white crystals. Furthermore, by HPLC, Imtakt Cadenza 5CD-C18 150 × 20 mm was used, 0.1% TFA / MilliQ was used for the A phase, 0.1% TFA / MeCN was used for the B phase, and 95% of the A phase was used in 0-35 minutes. Flow velocity by linear gradient method that changes from B phase 5% to A phase 70%, B phase 30%, and changes from A phase 70%, B phase 30% to A phase 0%, B phase 100% in 35-40 minutes. Purification at 5 mL / min gave the desired compound (a16) (hereinafter, also referred to as "CDO3AEt-FGK") (5.7 mg, 6.78 μmol, yield 30.8%).
ESI-MS (MH) - : m / z 839.4, found: 839.3

合成例L2(III): 化合物(a17)
化合物(a16)を飽和炭酸水素ナトリウム水溶液100 μLに溶解し、1.5当量の(Boc)2Oを溶解したジオキサン100 μLを加え、室温で二時間激しく攪拌した。減圧留去によりジオキサンを除去後、水層をクロロホルムにより洗浄を行った。さらに水層をHPLCにてImtakt Cadenza 5CD-C18 150×20 mmを用い移動相にはA相に0.1%TFA/MilliQ、B相に0.1% TFA/MeCNを使用し、2分までA相 100%に保った後に、2-5分でA相 100%、B相 0%からA相 95%、B相 5%まで変化させ、5-40分でA相 95%、B相 5%からA相 70%、B相 30%まで変化させ、40-45分でA相 70%、B相 30%からA相 0%、B相 100%まで変化させる直線gradient法により流速5 mL/minで精製することで目的とする化合物(a17)(以下、「CDO3AEt-FGK-Boc」ともいう)を得た。
ESI-MS (M-H)-: m/z 939.5, found: 940.49
Synthesis example L2 (III): Compound (a17)
Compound (a16) was dissolved in 100 μL of saturated aqueous sodium hydrogen carbonate solution, 100 μL of dioxane in which 1.5 equivalents of (Boc) 2 O was dissolved was added, and the mixture was vigorously stirred at room temperature for 2 hours. After removing dioxane by distillation under reduced pressure, the aqueous layer was washed with chloroform. Furthermore, the aqueous layer was made by HPLC using Imtakt Cadenza 5CD-C18 150 × 20 mm, 0.1% TFA / MilliQ was used for the A phase, 0.1% TFA / MeCN was used for the B phase, and A phase 100% was used for up to 2 minutes. After keeping at, change from phase A 100%, phase B 0% to phase A 95%, phase B 5% in 2-5 minutes, phase A 95%, phase B 5% to phase A in 5-40 minutes. Purify at a flow rate of 5 mL / min by a linear gradient method that changes from 70% to 30% for B phase and changes from 70% for A phase and 30% for B phase to 0% for A phase and 100% for B phase in 40-45 minutes. As a result, the target compound (a17) (hereinafter, also referred to as "CDO3AEt-FGK-Boc") was obtained.
ESI-MS (MH) - : m / z 939.5, found: 940.49

合成例L2(IV): 化合物(a18) CDO3AEt-FGK(Mal)
化合物(a16)(2.2 mg、 2.6 μmol)を飽和炭酸水素ナトリウム水溶液200 μLに溶解し、氷冷下N-メトキシカルボニルマレイミド(0.8 mg、 5.2 μmol)を加え、氷冷下で二時間攪拌した。反応終了後、10質量%クエン酸水溶液で酸性に調整した。さらにHPLCにてImtakt Cadenza 5CD-C18 150×20 mmを用い移動相にはA相に0.1%TFA/MilliQ、B相に0.1% TFA/MeCNを使用し、5分までA相 100%に保った後に、5-35分でA相 100%、B相 0%からA相 55%、B相 45%まで変化させ、35-50分でA相 55%、B相 45%からA相 0%、B相 100%まで変化させる直線gradient法により流速5 mL/minで精製することで目的とする化合物(a18) (以下、「CDO3AEt-FGK(Mal)」ともいう)(0.8 mg、 0.870 μmol、収率33.4%)を得た。
ESI-MS (M-H)-: m/z 919.42, found: 919.45.
Synthesis Example L2 (IV): Compound (a18) CDO3AEt-FGK (Mal)
Compound (a16) (2.2 mg, 2.6 μmol) was dissolved in 200 μL of saturated aqueous sodium hydrogen carbonate solution, N-methoxycarbonylmaleimide (0.8 mg, 5.2 μmol) was added under ice-cooling, and the mixture was stirred under ice-cooling for 2 hours. After completion of the reaction, the acidity was adjusted with a 10 mass% citric acid aqueous solution. Furthermore, by HPLC, Imtakt Cadenza 5CD-C18 150 × 20 mm was used, 0.1% TFA / MilliQ was used for the A phase, and 0.1% TFA / MeCN was used for the B phase, and the A phase was maintained at 100% for up to 5 minutes. Later, in 5-35 minutes, change from A phase 100%, B phase 0% to A phase 55%, B phase 45%, and in 35-50 minutes, A phase 55%, B phase 45% to A phase 0%, The target compound (a18) (hereinafter, also referred to as "CDO3AEt-FGK (Mal)") (0.8 mg, 0.870 μmol, yield) by purifying at a flow rate of 5 mL / min by the linear gradient method in which the B phase is changed to 100%. The rate was 33.4%).
ESI-MS (MH) - : m / z 919.42, found: 919.45.

[DO3A-Bn-SCN-MVK(Bzo)及びDO3A-Bn-SCN-Met-OH, DO3A-Bn-SCN-MVK(Mal)の合成]
合成例L3:化合物(b5)及び化合物(b7)の合成

Figure 2019065774
[Synthesis of DO3A-Bn-SCN-MVK (Bzo) and DO3A-Bn-SCN-Met-OH, DO3A-Bn-SCN-MVK (Mal)]
Synthesis example L3: Synthesis of compound (b5) and compound (b7)
Figure 2019065774

合成例L3(a): 化合物(b1)の合成
サイクレン(523.6 mg, 3.04 mmol)をアセトニトリル(25 mL)に溶解し、NaHCO3 (893.6 mg, 10.6 mmol)を加え、Ar雰囲気下、氷冷した後、ブロモ酢酸tert-ブチル(1.39 mL, 3.34 mmol)を滴下した。室温で48時間攪拌した後、反応液をろ過し、ろ液を減圧留去した。残渣をトルエンを用いた再結晶により精製することで化合物(b1) (672.4 mg, 収率43.1%)を白色結晶として得た。
1H NMR (CDCl3): δ 1.44 (27H, s, t Bu), 2.86-3.35 (22H, overlapped, CH 2 ).
ESI-MS (M+H)+: m/z 515.3, found: 515.3.
Synthesis Example L3 (a): Synthesis of compound (b1) Cyclen (523.6 mg, 3.04 mmol) was dissolved in acetonitrile (25 mL), LVDS 3 (893.6 mg, 10.6 mmol) was added, and the mixture was ice-cooled in an Ar atmosphere. Then, tert-butyl bromoacetate (1.39 mL, 3.34 mmol) was added dropwise. After stirring at room temperature for 48 hours, the reaction solution was filtered, and the filtrate was distilled off under reduced pressure. The residue was purified by recrystallization using toluene to obtain compound (b1) (672.4 mg, yield 43.1%) as white crystals.
1 1 H NMR (CDCl 3 ): δ 1.44 (27H, s, t Bu ), 2.86-3.35 (22H, overlapped, C H 2 ).
ESI-MS (M + H) + : m / z 515.3, found: 515.3.

合成例L3(b): 化合物(b2)の合成
化合物(b1) (212.9 mg, 413.6 μmol)をアセトニトリル(4.0 mL)に溶解し、Na2CO3 (87.7 mg, 827.4 μmol)を加え、Ar雰囲気下、氷冷した後、アセトニトリル(1.0 mL)に溶解した4-ニトロベンジルブロミド(134.1 mg, 620.7 μmol)を滴下した。60 ℃で18時間攪拌した後、反応液をろ過し、溶媒を減圧留去した。残渣をクロロホルム:メタノール=10:1を溶出溶媒とするシリカゲルクロマトグラフィーにより精製することで化合物(b2) (263.4 mg, 収率98.0%)を黄色油状物質として得た。
1H NMR (CDCl3): δ 1.36 (27H, s, t Bu), 2.06-3.58 (24H, overlapped, CH 2 ), 7.61-7.63 (2H, d, aromatic), 8.07-8.09 (2H, d, aromatic).
ESI-MS (M+Na)+: m/z 672.4, found: 672.3.
Synthesis example L3 (b): Synthesis of compound (b2) Compound (b1) (212.9 mg, 413.6 μmol) was dissolved in acetonitrile (4.0 mL), Na 2 CO 3 (87.7 mg, 827.4 μmol) was added, and Ar atmosphere was added. After cooling with ice, 4-nitrobenzyl bromide (134.1 mg, 620.7 μmol) dissolved in acetonitrile (1.0 mL) was added dropwise. After stirring at 60 ° C. for 18 hours, the reaction solution was filtered and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography using chloroform: methanol = 10: 1 as an elution solvent to obtain compound (b2) (263.4 mg, yield 98.0%) as a yellow oily substance.
1 1 H NMR (CDCl 3 ): δ 1.36 (27H, s, t Bu ), 2.06-3.58 (24H, overlapped, C H 2 ), 7.61-7.63 (2H, d, aromatic ), 8.07-8.09 (2H, d) , aromatic ).
ESI-MS (M + Na) + : m / z 672.4, found: 672.3.

合成例L3(c): 化合物(b3)の合成
化合物(b2) (150 mg, 231 μmol)をメタノール(3.5 mL)に溶解した後、1 N NaOH (0.5 mL)、10%Pd/C (15.4 mg)を加えた。水素雰囲気下、室温で1.5時間攪拌した。溶液をろ過した後、ろ液からメタノールを減圧留去し、クロロホルム(5 mL×3)により抽出した。有機層にNa2SO4を加えて乾燥した後、溶媒を減圧留去することで化合物(b3) (124.6 mg, 収率87.2%)を黄色油状物質として得た。
1H NMR (CDCl3): δ 1.43 (27H, s, t Bu), 2.85-3.35 (24H, overlapped, CH 2 ), 6.59-6.61 (2H, d, aromatic), 6.93-6.95 (2H, d, aromatic).
ESI-MS (M+H)+: m/z 620.4, found: 620.5.
Synthesis example L3 (c): Synthesis of compound (b3) After dissolving compound (b2) (150 mg, 231 μmol) in methanol (3.5 mL), 1 N NaOH (0.5 mL), 10% Pd / C (15.4) mg) was added. The mixture was stirred at room temperature for 1.5 hours under a hydrogen atmosphere. After filtering the solution, methanol was distilled off from the filtrate under reduced pressure, and the mixture was extracted with chloroform (5 mL × 3). After adding Na 2 SO 4 to the organic layer and drying, the solvent was distilled off under reduced pressure to obtain compound (b3) (124.6 mg, yield 87.2%) as a yellow oily substance.
1 1 H NMR (CDCl 3 ): δ 1.43 (27H, s, t Bu ), 2.85-3.35 (24H, overlapped, C H 2 ), 6.59-6.61 (2H, d, aromatic ), 6.93-6.95 (2H, d) , aromatic ).
ESI-MS (M + H) + : m / z 620.4, found: 620.5.

合成例L3(d): 化合物(b4)の合成
化合物(b3) (124.6 mg, 201 μmol)を10% アニソール/トリフルオロ酢酸(TFA) (2 mL)に溶解し、室温で4時間攪拌した。溶媒を減圧留去し、ジエチルエーテル(5 mL)を加えることで結晶化させた。結晶をろ取し、ジエチルエーテルで洗浄した後、減圧乾燥することで化合物(b4)のTFA塩(118.4 mg, 収率64.9%)を赤褐色結晶として得た。
1H NMR (D2O): δ 2.50-3.50 (24H, overlapped, CH 2 ), 6.78-6.81 (2H, d, aromatic), 7.36-7.38 (2H, d, aromatic).
Synthesis Example L3 (d): Synthesis of compound (b4) Compound (b3) (124.6 mg, 201 μmol) was dissolved in 10% anisole / trifluoroacetic acid (TFA) (2 mL) and stirred at room temperature for 4 hours. The solvent was evaporated under reduced pressure, and diethyl ether (5 mL) was added for crystallization. The crystals were collected by filtration, washed with diethyl ether, and dried under reduced pressure to give the TFA salt of compound (b4) (118.4 mg, yield 64.9%) as reddish brown crystals.
1 1 H NMR (D 2 O): δ 2.50-3.50 (24H, overlapped, C H 2 ), 6.78-6.81 (2H, d, aromatic ), 7.36-7.38 (2H, d, aromatic ).

合成例L3(e): 化合物(b5)の合成
化合物(b4) (82.5 mg, 80.8 μmol)をmilliQ水(1 mL)に溶解し、1 M チオホスゲン/クロロホルム (1 mL)を加えた。室温で2時間攪拌した後、クロロホルム(5 mL×4)で洗浄した。水層を凍結乾燥することで化合物(b5) (57.4 mg, 収率74.9%)を淡黄色結晶として得た。
1H NMR (D2O): δ 2.50-3.65 (24H, overlapped, CH 2 ), 7.18-7.22 (2H, d, aromatic), 7.38-7.41 (2H, d, aromatic).
Synthesis Example L3 (e): Synthesis of compound (b5) Compound (b4) (82.5 mg, 80.8 μmol) was dissolved in milliQ water (1 mL), and 1 M thiophosgene / chloroform (1 mL) was added. After stirring at room temperature for 2 hours, the cells were washed with chloroform (5 mL × 4). The aqueous layer was freeze-dried to give compound (b5) (57.4 mg, yield 74.9%) as pale yellow crystals.
1 1 H NMR (D 2 O): δ 2.50-3.65 (24H, overlapped, C H 2 ), 7.18-7.22 (2H, d, aromatic ), 7.38-7.41 (2H, d, aromatic ).

合成例L3(f): 化合物(b6)の合成
化合物(b1) (100.0 mg, 194.4 μmol)をアセトニトリル(2.0 mL)に溶解し、Na2CO3 (26.5 mg, 252.9 μmol)を加え、Ar雰囲気下、氷冷した後、アセトニトリル(0.5 mL)に溶解したメチル-4-(ブロモメチル)ベンゾエート(58.0 mg, 253.0 μmol)を滴下した。60 ℃で18時間攪拌した後、ろ過し、溶媒を減圧留去した。残渣をクロロホルム:メタノール=10:1を溶出溶媒とするシリカゲルクロマトグラフィーにより精製することで化合物(b6) (106.1 mg, 収率82.6%)を黄色油状物質として得た。
1H NMR (CDCl3): δ 1.46 (27H, s, t Bu), 2.01-3.58 (24H, overlapped, CH 2 ), 3.88 (3H, s, OCH 3 ), 7.53-7.55 (2H, d, aromatic), 7.95-7.97 (2H, d, aromatic).
ESI-MS (M+H)+: m/z 663.4, found: 663.4
Synthesis example L3 (f): Synthesis of compound (b6) Compound (b1) (100.0 mg, 194.4 μmol) was dissolved in acetonitrile (2.0 mL), Na 2 CO 3 (26.5 mg, 252.9 μmol) was added, and Ar atmosphere was added. After cooling with ice, methyl-4- (bromomethyl) benzoate (58.0 mg, 253.0 μmol) dissolved in acetonitrile (0.5 mL) was added dropwise. After stirring at 60 ° C. for 18 hours, the mixture was filtered and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography using chloroform: methanol = 10: 1 as an elution solvent to obtain compound (b6) (106.1 mg, yield 82.6%) as a yellow oily substance.
1 1 H NMR (CDCl 3 ): δ 1.46 (27H, s, t Bu ), 2.01-3.58 (24H, overlapped, C H 2 ), 3.88 (3H, s, OC H 3 ), 7.53-7.55 (2H, d) , aromatic ), 7.95-7.97 (2H, d, aromatic ).
ESI-MS (M + H) + : m / z 663.4, found: 663.4

合成例L3(g): 化合物(b7)の合成
化合物(b6) (106.1 mg, 160.0 μmol)をメタノール(1 mL)に溶解した後、1 N NaOH (1 mL)を加えて室温で2時間攪拌した。溶液からメタノールを減圧留去した後、クロロホルム(5 mL×3)により抽出した。有機層にNa2SO4を加えて乾燥した後、溶媒を減圧留去することで化合物(b7) (50.5 mg, 収率48.6%)を黄色油状物質として得た。
1H NMR (CDCl3): δ 1.44 (27H, s, t Bu), 2.13-3.58 (24H, overlapped, CH 2 ), 7.31-7.33 (2H, d, aromatic), 8.09-8.11 (2H, d, aromatic). ESI-MS (M+Na)+: m/z 671.4, found: 671.5
Synthesis example L3 (g): Synthesis of compound (b7) After dissolving compound (b6) (106.1 mg, 160.0 μmol) in methanol (1 mL), add 1 N NaOH (1 mL) and stir at room temperature for 2 hours. did. Methanol was distilled off from the solution under reduced pressure, and then the mixture was extracted with chloroform (5 mL × 3). After adding Na 2 SO 4 to the organic layer and drying, the solvent was distilled off under reduced pressure to obtain compound (b7) (50.5 mg, yield 48.6%) as a yellow oily substance.
1 1 H NMR (CDCl 3 ): δ 1.44 (27H, s, t Bu ), 2.13-3.58 (24H, overlapped, C H 2 ), 7.31-7.33 (2H, d, aromatic ), 8.09-8.11 (2H, d) , aromatic ). ESI-MS (M + Na) + : m / z 671.4, found: 671.5

合成例L4:DO3A-Bn-SCN-MVK(Bzo)(化合物(b13))及びDO3A-Bn-SCN-Met-OH(化合物(b14))の合成

Figure 2019065774
Synthesis example L4: Synthesis of DO3A-Bn-SCN-MVK (Bzo) (compound (b13)) and DO3A-Bn-SCN-Met-OH (compound (b14))
Figure 2019065774

合成例L4(a): 化合物(b8)の合成
安息香酸 (560 mg, 4.59 mmol)とN-ヒドロキシスクシンイミド(NHS, 581 mg, 5.05 mmol)をCH2Cl2 (15 mL)に溶解し、氷冷した後、CH2Cl2 (8 mL)に溶解したN,N’-ジシクロヘキシルカルボジイミド (DCC, 1.05 g, 5.05 mmol)を滴下した。室温で3時間攪拌した後、ろ過し、溶媒を減圧留去した。残渣を酢酸エチル(10 mL)に溶解し、sat. NaHCO3 (10 mL×3)で洗浄した。有機層にMgSO4を加えて乾燥した後、溶媒を減圧留去することで化合物(b8) (749.7 mg, 収率74.7%)を白色結晶として得た。
1H NMR (CDCl3): δ 2.89 (4H, s, succinimide), 7.47-7.51 (2H, m, aromatic), 7.64-7.68 (1H, m, aromatic), 8.11-8.13 (2H, m, aromatic)
Synthesis Example L4 (a): Synthesis of compound (b8) Dichloromethane (560 mg, 4.59 mmol) and N-hydroxysuccinimide (NHS, 581 mg, 5.05 mmol) were dissolved in CH 2 Cl 2 (15 mL) and iced. After cooling, N, N'-dicyclohexylcarbodiimide (DCC, 1.05 g, 5.05 mmol) dissolved in CH 2 Cl 2 (8 mL) was added dropwise. After stirring at room temperature for 3 hours, the mixture was filtered and the solvent was evaporated under reduced pressure. The residue was dissolved in ethyl acetate (10 mL) and washed with sat. LVDS 3 (10 mL x 3). After adding DDL 4 to the organic layer and drying, the solvent was distilled off under reduced pressure to obtain compound (b8) (749.7 mg, yield 74.7%) as white crystals.
1 1 H NMR (CDCl 3 ): δ 2.89 (4H, s, succinimide ), 7.47-7.51 (2H, m, aromatic ), 7.64-7.68 (1H, m, aromatic ), 8.11-8.13 (2H, m, aromatic )

合成例L4(b): 化合物(b9)の合成
Fmoc-Lys-OH (86.7 mg, 100 μmol)をDMF (1.5 mL)に溶解し、N,N-ジイソプロピルエチルアミン(DIPEA, 40 μL, 246 μmol)を加え、Ar雰囲気下、氷冷したのち、DMF (0.5 mL)に溶解した化合物(b8)を滴下した。室温で3時間攪拌した後、溶媒を減圧留去した。残渣を酢酸エチル(5 mL)に溶解し、10質量% クエン酸(5 mL×3)で洗浄した。有機層にNa2SO4を加え乾燥した後、溶媒を減圧留去し、クロロホルム:メタノール=5:1を展開溶媒とするTLC分取により精製することで、化合物(b9) (82.0 mg, 収率82.0%)を白色結晶として得た。
ESI-MS (M+Na)+: m/z 473.2, found: 473.2
Synthesis example L4 (b): Synthesis of compound (b9)
Dissolve Fmoc-Lys-OH (86.7 mg, 100 μmol) in DMF (1.5 mL), add N, N-diisopropylethylamine (DIPEA, 40 μL, 246 μmol), cool with ice in an Ar atmosphere, and then DMF. The compound (b8) dissolved in (0.5 mL) was added dropwise. After stirring at room temperature for 3 hours, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate (5 mL) and washed with 10% by weight citric acid (5 mL x 3). After adding Na 2 SO 4 to the organic layer and drying, the solvent was distilled off under reduced pressure, and purification was performed by TLC fractionation using chloroform: methanol = 5: 1 as a developing solvent to obtain compound (b9) (82.0 mg, yield). A rate of 82.0%) was obtained as white crystals.
ESI-MS (M + Na) + : m / z 473.2, found: 473.2

合成例L4(c): 化合物(b10)の合成
Cl-Trt(2-Cl)Resin (62.5 mg, 100 μmol、渡辺化学工業株式会社)を出発物質として、Fmoc-Lys(Bzo)-OH (47.2 mg, 100 μmol)及びDIPEA (65 μL, 400 μmol)をジクロロメタン(1.5 mL)中1.5時間反応させた。メタノール(1.5 mL)及びDIPEA (65 μL)を加えて反応を停止させた。樹脂をDMF次いでジクロロメタンで洗浄した。樹脂を乾燥させた後、ピペリジン処理の際に生成するN-(9-フルオレニルメチル)ピペリジンのA301における吸光度を測定することによりFmoc-Lys(Bzo)-OHの樹脂への導入量を定量(0.96 mmol/g)した。20% ピペリジン/DMF (mL)を加え、室温で20分間攪拌することで、化合物(b10)を作製した。樹脂の一部を採取してkaiser testを行い、Nα-Fmoc基の脱保護を確認した。
Synthesis example L4 (c): Synthesis of compound (b10)
Starting with Cl-Trt (2-Cl) Resin (62.5 mg, 100 μmol, Watanabe Chemical Industry Co., Ltd.), Fmoc-Lys (Bzo) -OH (47.2 mg, 100 μmol) and DIPEA (65 μL, 400 μmol) ) Was reacted in dichloromethane (1.5 mL) for 1.5 hours. Methanol (1.5 mL) and DIPEA (65 μL) were added to terminate the reaction. The resin was washed with DMF and then dichloromethane. After the resin is dried, the amount of Fmoc-Lys (Bzo) -OH introduced into the resin is quantified by measuring the absorbance of N- (9-fluorenylmethyl) piperidine produced during the piperidine treatment at A301. (0.96 mmol / g). Compound (b10) was prepared by adding 20% piperidine / DMF (mL) and stirring at room temperature for 20 minutes. A part of the resin was sampled and a kaiser test was performed to confirm deprotection of the Nα-Fmoc group.

合成例L4(d): 化合物(b11)の合成
化合物(b10) (22.9 mg, 22.0 μmol)を出発物質として、Fmoc固相合成法により2.5等量のFmoc-Met-OH (55.0 μmol)、N,N’-ジイソプロピルカルボジイミド(DIC, 8.5 μL, 55.0 μmol)、1-ヒドロキシベンゾトリアゾール一水和物(HOBt, 8.43 mg, 55.0 μmol)をDMF中、室温で2時間攪拌した。樹脂の一部を採取してKaiser testを行うことで、縮合反応の終了を確認した後、20% ピペリジン/DMF (2 mL)を加え、20分間室温で攪拌した。樹脂の一部を採取してKaiser testを行いNα-Fmoc基の脱保護を確認した。さらに、保護アミノ酸Boc-Met-OHを用いて同様の操作を行うことで、化合物(b11)を作製した。
Synthesis example L4 (d): Synthesis of compound (b11) Using compound (b10) (22.9 mg, 22.0 μmol) as a starting material, 2.5 equal amounts of Fmoc-Met-OH (55.0 μmol), N by Fmoc solid-phase synthesis method , N'-diisopropylcarbodiimide (DIC, 8.5 μL, 55.0 μmol) and 1-hydroxybenzotriazole monohydrate (HOBt, 8.43 mg, 55.0 μmol) were stirred in DMF at room temperature for 2 hours. After confirming the completion of the condensation reaction by collecting a part of the resin and performing a Kaiser test, 20% piperidine / DMF (2 mL) was added, and the mixture was stirred at room temperature for 20 minutes. A part of the resin was sampled and Kaiser test was performed to confirm the deprotection of the Nα-Fmoc group. Furthermore, the compound (b11) was prepared by performing the same operation using the protected amino acid Boc-Met-OH.

合成例L4(e): 化合物(b12)の合成
化合物(b11)をTFA:トリイソプロピルシラン(TIS):H2O=95:2.5:2.5 (1 mL)の混液中室温で2時間攪拌した。樹脂をろ去した後、ろ液を減圧留去して得られた残渣にジエチルエーテルを加えることで結晶化させた。結晶をろ取し、ジエチルエーテルで洗浄した後、減圧乾燥することで化合物(b12)のTFA塩(9.7 mg, 収率69.0%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 481.2, found: 481.2.
Synthesis Example L4 (e): Synthesis of compound (b12) Compound (b11) was stirred in a mixed solution of TFA: triisopropylsilane (TIS): H 2 O = 95: 2.5: 2.5 (1 mL) at room temperature for 2 hours. After the resin was removed by filtration, the filtrate was distilled off under reduced pressure, and diethyl ether was added to the obtained residue for crystallization. The crystals were collected by filtration, washed with diethyl ether, and dried under reduced pressure to give the TFA salt (9.7 mg, yield 69.0%) of compound (b12) as white crystals.
ESI-MS (M + H) + : m / z 481.2, found: 481.2.

合成例L4(f): 化合物(b13)の合成
化合物(b5) (1.0 mg, 1.05 μmol)と化合物(b12) (1.58 μmol)を0.16 M ホウ酸緩衝液 pH 11.0 (100 μL)に溶解した後、1 N NaOHでpH 9.0に調整した。室温で2時間攪拌した後、分取用RP-HPLCにより精製し、化合物(b13)(以下、「DO3A-Bn-SCN-MVK(Bzo)」ともいう)のTFA塩(0.8 mg, 収率53.3%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 974.4, found: 974.4.
Synthesis example L4 (f): Synthesis of compound (b13) After dissolving compound (b5) (1.0 mg, 1.05 μmol) and compound (b12) (1.58 μmol) in 0.16 M borate buffer pH 11.0 (100 μL) The pH was adjusted to 9.0 with 1 N NaOH. After stirring at room temperature for 2 hours, the mixture was purified by preparative RP-HPLC, and the TFA salt (0.8 mg, yield 53.3) of compound (b13) (hereinafter, also referred to as “DO3A-Bn-SCN-MVK (Bzo)”) was used. %) Was obtained as white crystals.
ESI-MS (M + H) + : m / z 974.4, found: 974.4.

合成例L4(g): 化合物(b14)の合成
化合物(b5) (5.5 mg, 5.78 μmol)とメチオニン(1.29 mg, 8.67 μmol)を出発物質として、合成例L4(f)と同様の操作を行うことで、化合物(b14)(以下、「DO3A-Bn-SCN-Met-OH」ともいう)のTFA塩(2.3 mg, 収率36.2%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 643.2, found: .643.2
Synthesis Example L4 (g): Synthesis of compound (b14) Using compound (b5) (5.5 mg, 5.78 μmol) and methionine (1.29 mg, 8.67 μmol) as starting materials, perform the same operation as in Synthesis Example L4 (f). As a result, a TFA salt (2.3 mg, yield 36.2%) of compound (b14) (hereinafter, also referred to as “DO3A-Bn-SCN-Met-OH”) was obtained as white crystals.
ESI-MS (M + H) + : m / z 643.2, found: .643.2

合成例L5:DO3A-Bn-SCN-MVK(Mal)(化合物(b21))の合成

Figure 2019065774
Synthesis example L5: Synthesis of DO3A-Bn-SCN-MVK (Mal) (compound (b21))
Figure 2019065774

合成例L5(a): 化合物(b15)の合成
Cl-Trt(2-Cl)Resin (104.4 mg, 114.8 μmol、渡辺化学工業株式会社)を出発物質として、Fmoc-Lys(Dde)-OH (61.2 mg, 114.8 μmol)及びDIPEA (81 μL, 459.2 μmol)をジクロロメタン(2 mL)中1.5時間反応させた。メタノール及びDIPEAを加えて反応を停止させた。樹脂をDMF次いでジクロロメタンで洗浄した。合成例L4(c)と同様の方法でFmoc-Lys(Bzo)-OHの樹脂への導入量を定量(0.769 mmol/g)した。20% ピペリジン/DMF (2 mL)を加え、室温で20分間攪拌することで、化合物(b15)を作製した。樹脂の一部を採取してkaiser testを行い、Nα-Fmoc基の脱保護を確認した。
Synthesis example L5 (a): Synthesis of compound (b15)
Starting with Cl-Trt (2-Cl) Resin (104.4 mg, 114.8 μmol, Watanabe Chemical Industry Co., Ltd.), Fmoc-Lys (Dde) -OH (61.2 mg, 114.8 μmol) and DIPEA (81 μL, 459.2 μmol) ) Was reacted in dichloromethane (2 mL) for 1.5 hours. Methanol and DIPEA were added to terminate the reaction. The resin was washed with DMF and then dichloromethane. The amount of Fmoc-Lys (Bzo) -OH introduced into the resin was quantified (0.769 mmol / g) in the same manner as in Synthesis Example L4 (c). Compound (b15) was prepared by adding 20% piperidine / DMF (2 mL) and stirring at room temperature for 20 minutes. A part of the resin was sampled and a kaiser test was performed to confirm deprotection of the Nα-Fmoc group.

合成例L5(b): 化合物(b16)の合成
化合物(b15) (153.4 mg, 114.8 μmol)を出発物質として、保護アミノ酸を順次Fmoc-Val-OH、Boc-Met-OHと変えて、合成例L4(d)と同様の操作を行うことで、化合物(b16)を得た。
Synthesis example L5 (b): Synthesis of compound (b16) Synthesis example using compound (b15) (153.4 mg, 114.8 μmol) as a starting material and sequentially changing the protected amino acids to Fmoc-Val-OH and Boc-Met-OH. Compound (b16) was obtained by performing the same operation as in L4 (d).

合成例L5(c): 化合物(b17)の合成
化合物(b16) (117. 9 μmol)を2% ヒドラジン/DMF (2 mL)中室温で1時間攪拌した後、樹脂の一部を採取しKaiser testを行い、反応の終了を確認した。樹脂をDMF次いでジクロロメタンで洗浄した後、減圧乾燥することで化合物(b17)を得た。
Synthesis example L5 (c): Synthesis of compound (b17) After stirring compound (b16) (117.9 μmol) in 2% hydrazine / DMF (2 mL) at room temperature for 1 hour, a part of the resin was collected and Kaiser A test was performed to confirm the completion of the reaction. The resin was washed with DMF and then dichloromethane, and then dried under reduced pressure to obtain compound (b17).

合成例L5(d): 化合物(b18)の合成
化合物(b17)を酢酸:2,2,2-トリフルオロエタノール(TFE):ジクロロメタン=3:1:6 (2 mL)の混液中室温で2時間攪拌した。樹脂をろ去した後、ろ液を減圧留去して得られた残渣にジエチルエーテルを加えることで結晶化させた。結晶をろ取し、ジエチルエーテルで洗浄した後、減圧乾燥することで化合物(b18)の酢酸塩(51.4 mg, 収率93.9 %)を白色結晶として得た。
ESI-MS (M+H)+: m/z 477.2, found: 477.2.
Synthesis example L5 (d): Synthesis of compound (b18) Compound (b17) is mixed with acetic acid: 2,2,2-trifluoroethanol (TFE): dichloromethane = 3: 1: 6 (2 mL) at room temperature 2 Stirred for hours. After the resin was removed by filtration, the filtrate was distilled off under reduced pressure, and diethyl ether was added to the obtained residue for crystallization. The crystals were collected by filtration, washed with diethyl ether, and dried under reduced pressure to give the acetate of compound (b18) (51.4 mg, yield 93.9%) as white crystals.
ESI-MS (M + H) + : m / z 477.2, found: 477.2.

合成例L5(e): 化合物(b19)の合成
化合物(b18) (6.60 mg, 13.9 μmol)を氷冷化でsat.NaHCO3 (100 μL)に溶解し、N-メトキシカルボニルマレイミド(NMCM, 3.22 mg, 20.8 μmol)を加えた。氷冷下2時間攪拌した後、5質量% クエン酸を加え中和し、クロロホルム (5 mL×3)により抽出した。Na2SO4を加えて乾燥した後、溶媒を減圧留去することで、化合物(b19) (7.26 mg, 収率94.1 %)を白色結晶として得た。
ESI-MS (M+H)+: m/z 557.2, found: 557.2.
Synthesis example L5 (e): Synthesis of compound (b19) Compound (b18) (6.60 mg, 13.9 μmol) was dissolved in sat. У 3 (100 μL) by ice cooling and N-methoxycarbonylmaleimide (NMCM, 3.22). mg, 20.8 μmol) was added. After stirring for 2 hours under ice-cooling, 5% by mass citric acid was added for neutralization, and the mixture was extracted with chloroform (5 mL × 3). After adding Na 2 SO 4 and drying, the solvent was distilled off under reduced pressure to obtain compound (b19) (7.26 mg, yield 94.1%) as white crystals.
ESI-MS (M + H) + : m / z 557.2, found: 557.2.

合成例L5(f): 化合物(b20)の合成
化合物(b19) (7.26 mg, 13.1μmol)を4 M HCl/酢酸エチル(1 mL)に溶解し、室温で1時間攪拌した。溶媒を減圧留去し、ヘキサンで共沸することにより、化合物(b20)の塩酸塩(5.92 mg, 収率92.4%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 457.2, found: 457.2.
Synthesis Example L5 (f): Synthesis of compound (b20) Compound (b19) (7.26 mg, 13.1 μmol) was dissolved in 4 M HCl / ethyl acetate (1 mL) and stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure and azeotropically distilled with hexane to obtain a hydrochloride of compound (b20) (5.92 mg, yield 92.4%) as white crystals.
ESI-MS (M + H) + : m / z 457.2, found: 457.2.

合成例L5(g): 化合物(b21)の合成
化合物(b20)の塩酸塩(3.38 mg, 4.74 μmol)をDMF(100 μL)に溶解し、トリエチルアミン (TEA, 6 μL, 43.3 μmol)を加えた。化合物(b5) (3.0 mg, 3.16 μmol)を加え、室温で2時間攪拌した後、H2Oで10倍に希釈し、分取用RP-HPLCにより精製することで化合物(b21)(以下「DO3A-Bn-SCN-MVK(Mal)」ともいう)のTFA塩(1.5 mg, 収率33.2%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 972.5, found: 972.5.
Synthesis example L5 (g): Synthesis of compound (b21) Hydrochloride (3.38 mg, 4.74 μmol) of compound (b20) was dissolved in DMF (100 μL), and triethylamine (TEA, 6 μL, 43.3 μmol) was added. .. Compound (b5) (3.0 mg, 3.16 μmol) was added, stirred at room temperature for 2 hours, diluted 10-fold with H 2 O, and purified by preparative RP-HPLC to obtain compound (b21) (hereinafter, "" A TFA salt (1.5 mg, yield 33.2%) of (also referred to as "DO3A-Bn-SCN-MVK (Mal)") was obtained as white crystals.
ESI-MS (M + H) + : m / z 972.5, found: 972.5.

[DO3A-Bn-CO-FGK、DO3A-Bn-CO-FGK(Boc)、DO3A-Bn-CO-FGK(Mal)、DO3A-Bn-CO-Phe-OHの合成]
合成例L6:DO3A-Bn-CO-FGK(化合物(b24)(上述の化合物1−3と同じ))、DO3A-Bn-CO-FGK(Boc)(化合物(b25))、DO3A-Bn-CO-FGK(Mal)(化合物(b26) (上述の化合物1−4と同じ))、DO3A-Bn-CO-Phe-OH(化合物(b28))の合成

Figure 2019065774
[Synthesis of DO3A-Bn-CO-FGK, DO3A-Bn-CO-FGK (Boc), DO3A-Bn-CO-FGK (Mal), DO3A-Bn-CO-Phe-OH]
Synthesis Example L6: DO3A-Bn-CO-FGK (Compound (b24) (same as Compound 1-3 above)), DO3A-Bn-CO-FGK (Boc) (Compound (b25)), DO3A-Bn-CO -Synthesis of FGK (Mal) (Compound (b26) (same as Compound 1-4 above)), DO3A-Bn-CO-Phe-OH (Compound (b28))
Figure 2019065774

合成例L6(a): 化合物(b22)の合成
Cl-Trt(2-Cl)Resin (22.1 mg, 24.3 μmol、渡辺化学工業株式会社)を出発物質として、Fmoc-Lys(Boc)-OH (17.1 mg, 36.5 μmol)及びDIPEA (16.5 μL, 97.2 μmol)をジクロロメタン (1 mL)中1.5時間反応させた。メタノール及びDIPEAを加えて反応を停止させた。樹脂をDMF次いでジクロロメタンで洗浄した。合成例L4(c)と同様の方法でFmoc-Lys(Boc)-OHの樹脂への導入量を定量(0.884 mmol/g)した。20% ピペリジン/DMF (2 mL)を加え、室温で20分間攪拌することで、化合物(b22)を作製した。樹脂の一部を採取してkaiser testを行い、Nα-Fmoc基の脱保護を確認した。
Synthesis example L6 (a): Synthesis of compound (b22)
Starting with Cl-Trt (2-Cl) Resin (22.1 mg, 24.3 μmol, Watanabe Chemical Industry Co., Ltd.), Fmoc-Lys (Boc) -OH (17.1 mg, 36.5 μmol) and DIPEA (16.5 μL, 97.2 μmol) ) Was reacted in dichloromethane (1 mL) for 1.5 hours. Methanol and DIPEA were added to terminate the reaction. The resin was washed with DMF and then dichloromethane. The amount of Fmoc-Lys (Boc) -OH introduced into the resin was quantified (0.884 mmol / g) in the same manner as in Synthesis Example L4 (c). Compound (b22) was prepared by adding 20% piperidine / DMF (2 mL) and stirring at room temperature for 20 minutes. A part of the resin was sampled and a kaiser test was performed to confirm deprotection of the Nα-Fmoc group.

合成例L6(b): 化合物(b23)の合成
化合物(b22) (12.1 μmol)を出発物質として、保護アミノ酸を順次Fmoc-Gly-OH、Fmoc-Phe-OHと変えて、合成例L4(d)と同様の操作を行うことで、化合物(b23)を得た。
Synthesis Example L6 (b): Synthesis of compound (b23) Using compound (b22) (12.1 μmol) as a starting material, the protected amino acids are sequentially changed to Fmoc-Gly-OH and Fmoc-Phe-OH, and Synthesis Example L4 (d). ) Was carried out to obtain compound (b23).

合成例L6(c): 化合物(b24)の合成
化合物(b23) (12.1 μmol)に対して、化合物(b7) (15.7 mg, 24.2 μmol)、DIC (3.7 μL, 24.2 μmol)、HOAt (3.29 mg, 24.2 μmol)をDMF中、室温で一晩攪拌した。樹脂の一部を採取しKaiser testを行うことで、縮合反応の終了を確認した後、TFA:TIS:H2O=95:2.5:2.5 (1 mL)の混液中室温で2時間攪拌した。樹脂をろ去した後、ろ液を減圧留去してえられた残渣にジエチルエーテルを加えることで結晶化した。結晶をろ取し、ジエチルエーテルで洗浄した後、減圧乾燥することで化合物(b24) (以下、「DO3A-Bn-CO-FGK」ともいう)のTFA塩(9.0 mg, 収率53.7%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 813.4, found: 813.4.
Synthesis example L6 (c): Synthesis of compound (b24) Compared to compound (b23) (12.1 μmol), compound (b7) (15.7 mg, 24.2 μmol), DIC (3.7 μL, 24.2 μmol), HOAt (3.29 mg) , 24.2 μmol) was stirred in DMF overnight at room temperature. After confirming the completion of the condensation reaction by collecting a part of the resin and performing a Kaiser test, the mixture was stirred at room temperature for 2 hours in a mixed solution of TFA: TIS: H 2 O = 95: 2.5: 2.5 (1 mL). After the resin was removed by filtration, the filtrate was distilled off under reduced pressure and diethyl ether was added to the obtained residue for crystallization. The crystals are collected by filtration, washed with diethyl ether, and dried under reduced pressure to give the TFA salt (9.0 mg, yield 53.7%) of compound (b24) (hereinafter, also referred to as "DO3A-Bn-CO-FGK"). Obtained as white crystals.
ESI-MS (M + H) + : m / z 813.4, found: 813.4.

合成例L6(d): 化合物(b25)の合成
化合物(b24) (2.17 μmol)をsat.NaHCO3 (100 μL)に溶解した後、ジオキサン(100 μL)に溶解した(Boc)2O (7.1 mg, 3.26 μmol)を加え室温で2時間激しく攪拌した。ジオキサンを減圧留去した後、クロロホルム(3 mL×3)で洗浄した。水層を分取用RP-HPLCにより精製することで化合物(b25)(以下、「DO3A-Bn-CO-FGK(Boc)」ともいう)のTFA塩(0.8 mg, 収率26.9%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 913.5, found: 913.5.
Synthesis example L6 (d): Synthesis of compound (b25) Compound (b24) (2.17 μmol) was dissolved in sat. LVDS 3 (100 μL) and then dissolved in dioxane (100 μL) (Boc) 2 O (7.1). mg, 3.26 μmol) was added, and the mixture was vigorously stirred at room temperature for 2 hours. After dioxane was distilled off under reduced pressure, it was washed with chloroform (3 mL × 3). By purifying the aqueous layer by preparative RP-HPLC, the TFA salt (0.8 mg, yield 26.9%) of compound (b25) (hereinafter, also referred to as “DO3A-Bn-CO-FGK (Boc)”) is white. Obtained as crystals.
ESI-MS (M + H) + : m / z 913.5, found: 913.5.

合成例L6(e): 化合物(b26)の合成
化合物(b24) (2.17 μmol)をsat.NaHCO3 (100 μL)に溶解した後、氷冷しNMCM (0.5 mg, 3.26 μmol)を加えた。氷冷下2時間攪拌した後、分取用RP-HPLCにより精製することで化合物(b26)(以下、「DO3A-Bn-CO-FGK(mal)」ともいう)のTFA塩(1.3 mg, 収率44.4%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 893.4, found: 893.4.
Synthesis Example L6 (e): Synthesis of compound (b26) After dissolving compound (b24) (2.17 μmol) in sat. LVDS 3 (100 μL), ice-cooled NMCM (0.5 mg, 3.26 μmol) was added. After stirring for 2 hours under ice-cooling, the compound (b26) (hereinafter, also referred to as "DO3A-Bn-CO-FGK (mal)") is purified by RP-HPLC for preparative use to obtain the TFA salt (1.3 mg, yield). A rate of 44.4%) was obtained as white crystals.
ESI-MS (M + H) + : m / z 893.4, found: 893.4.

合成例L6(f): 化合物(b27)の合成
Cl-Trt(2-Cl)Resin (5 mg, 5.50 μmol、渡辺化学工業株式会社)を出発物質として、Fmoc-Phe-OH (6.01 μmol)及びDIPEA (3.73 μL, 21.9 μmol)をジクロロメタン (0.5 mL)中1.5時間反応させた。メタノール及びDIPEAを加えて反応を停止させた。樹脂をDMF次いでジクロロメタンで洗浄した。合成例L4(c)と同様の方法でFmoc-A.A.-OHの樹脂への導入量を定量した(0.917 mmol/g)。20% ピペリジン/DMF (2 mL)を加え、室温で20分間攪拌することで、化合物(b27)を作製した。樹脂の一部を採取してkaiser testを行い、Nα-Fmoc基の脱保護を確認した。
Synthesis example L6 (f): Synthesis of compound (b27)
Using Cl-Trt (2-Cl) Resin (5 mg, 5.50 μmol, Watanabe Chemical Industry Co., Ltd.) as a starting material, Fmoc-Phe-OH (6.01 μmol) and DIPEA (3.73 μL, 21.9 μmol) in dichloromethane (0.5 mL) ) Medium 1.5 hours reaction. Methanol and DIPEA were added to terminate the reaction. The resin was washed with DMF and then dichloromethane. The amount of Fmoc-AA-OH introduced into the resin was quantified by the same method as in Synthesis Example L4 (c) (0.917 mmol / g). Compound (b27) was prepared by adding 20% piperidine / DMF (2 mL) and stirring at room temperature for 20 minutes. A part of the resin was sampled and a kaiser test was performed to confirm deprotection of the N α- Fmoc group.

合成例L6(g): 化合物(b28)の合成
化合物(b27) (5.5 μmol)を出発物質として、合成例L6(c)と同様の操作をすることで化合物(b28) (以下、「DO3A-Bn-CO-Phe-OH」ともいう)のTFA塩(4.5 mg, 収率59.1%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 628.3, found: 628.3.
Synthesis Example L6 (g): Synthesis of compound (b28) Using compound (b27) (5.5 μmol) as a starting material, compound (b28) (hereinafter, “DO3A-”) can be operated in the same manner as in Synthesis Example L6 (c). A TFA salt (4.5 mg, yield 59.1%) of (also referred to as "Bn-CO-Phe-OH") was obtained as white crystals.
ESI-MS (M + H) + : m / z 628.3, found: 628.3.

[CDOTA-Bn-CO-FGK、CDOTA-Bn-CO-FGK(Boc)、CDOTA-Bn-CO-FGK(Mal)の合成]
合成例L7:CDOTA-Bn-CO-FGK(化合物(b29))、CDOTA-Bn-CO-FGK(Boc)(化合物(b30))、CDOTA-Bn-CO-FGK(Mal)(化合物(b31))の合成

Figure 2019065774
[Synthesis of CDOTA-Bn-CO-FGK, CDOTA-Bn-CO-FGK (Boc), CDOTA-Bn-CO-FGK (Mal)]
Synthesis example L7: CDOTA-Bn-CO-FGK (Compound (b29)), CDOTA-Bn-CO-FGK (Boc) (Compound (b30)), CDOTA-Bn-CO-FGK (Mal) (Compound (b31)) ) Synthesis
Figure 2019065774

合成例L7(a): 化合物(b29)の合成
p-COOH-Bn-DOTA(tBu)4(52.4 μmol)を出発物質として、合成例L6(c)と同様の操作をすることで化合物(b29)(以下、「CDOTA-Bn-CO-FGK」ともいう)のTFA塩(2.4 mg, 収率1.3%)を白色結晶として得た。
ESI-MS ([M+K]-H)-: m/z 907.36, found: 907.31.
Synthesis example L7 (a): Synthesis of compound (b29)
Using p-COOH-Bn-DOTA (tBu) 4 (52.4 μmol) as a starting material, compound (b29) (hereinafter, "CDOTA-Bn-CO-FGK") can be operated in the same manner as in Synthesis Example L6 (c). A TFA salt (also referred to as) (2.4 mg, yield 1.3%) was obtained as white crystals.
ESI-MS ([M + K] -H) - : m / z 907.36, found: 907.31.

合成例L7(b): 化合物(b30)の合成
化合物(b29) (5.75 μmol)を出発物質として、合成例L6(d)と同様の操作をすることで化合物(b30) (以下、「CDOTA-Bn-CO-FGK(Boc)」ともいう)のTFA塩(0.4 mg, 収率71.8%)を白色結晶として得た。
ESI-MS ([M+K]-H)-: m/z 1007.41, found: 1007.31.
Synthesis example L7 (b): Synthesis of compound (b30) Using compound (b29) (5.75 μmol) as a starting material, compound (b30) (hereinafter, “CDOTA-”) can be operated in the same manner as in synthesis example L6 (d). A TFA salt (0.4 mg, yield 71.8%) of (also referred to as "Bn-CO-FGK (Boc)") was obtained as white crystals.
ESI-MS ([M + K] -H) - : m / z 1007.41, found: 1007.31.

合成例L7(c): 化合物(b31)の合成
化合物(b29) (0.694 μmol)を出発物質として、合成例L6(e)と同様の操作をすることで化合物(b31) (以下、「CDOTA-Bn-CO-FGK(mal)」ともいう)のTFA塩(0.6 mg, 収率61.4%)を白色結晶として得た。
ESI-MS (M-H)-: m/z 949.39, found: 949.43.
Synthesis example L7 (c): Synthesis of compound (b31) Using compound (b29) (0.694 μmol) as a starting material, compound (b31) (hereinafter, “CDOTA-”) can be operated in the same manner as in synthesis example L6 (e). A TFA salt (0.6 mg, yield 61.4%) of (also referred to as "Bn-CO-FGK (mal)") was obtained as white crystals.
ESI-MS (MH) - : m / z 949.39, found: 949.43.

[CDO3AiBu-FGK(Boc), CDO3AiBu-FGK(mal),CDO3AiBu-Pheの合成]
合成例L8:化合物(a23)の合成

Figure 2019065774
[Synthesis of CDO3AiBu-FGK (Boc), CDO3AiBu-FGK (mal), CDO3AiBu-Phe]
Synthesis example L8: Synthesis of compound (a23)
Figure 2019065774

合成例L8(a):化合物(a19)の合成
化合物(a8) (913 mg、1.96 mmol)をTHF (20 mL)に溶解し、isobutylaldehyde (357 μL、3.91 mmol) 、sodium triacetoxyborohidride (498 mg、2.35 mmol)を加え、Ar雰囲気下、室温で一晩拌した。Isobutylaldehyde (179 μL、1.96 mmol) 、sodium triacetoxyborohidride (249 mg、1.18 mmol)を加えた後、さらに室温で2時間攪拌した。反応液を氷冷し、水を加えた後、THFを減圧留去して得られた水溶液からクロロホルムで三回抽出した。有機層に硫酸ナトリウムを加えて乾燥した後、溶媒を減圧留去して得られた残渣をクロロホルムとメタノールを用いたフラッシュクロマトシステムにより生成を行うことで化合物(a19) (403 mg、829 μmol, 42.4%)を白色結晶として得た。
1H NMR (CDCl3): δ 0.92-0.95 (6H, m, CH 3 ), 1.68-1.71 (1H, m, CH), 2.40-2.44 (2H, m, CH 2 ), 2.82-3.30 (8H, overlapped, CH 2 ), 3.61-3.74 (2H, m, CH 2 ), 4.58-4.62 (1H, m, CH), 6.48 (1H, s, NH), 6.66 (1H, s, NH), 6.96-6.98 (2H, d, CH 2 ), 7.56-7.58 (2H, d, CH 2 ), 8.00 (1H, s, NH). ESI-MS (M+H)+: m/z 487.12, found: 487.18.
Synthesis Example L8 (a): Synthesis of compound (a19) Compound (a8) (913 mg, 1.96 mmol) was dissolved in THF (20 mL), isobutylaldehyde (357 μL, 3.91 mmol), sodium triacetoxyborohidride (498 mg, 2.35). mmol) was added, and the mixture was stirred overnight at room temperature in an Ar atmosphere. After adding Isobutylaldehyde (179 μL, 1.96 mmol) and sodium triacetoxyborohidride (249 mg, 1.18 mmol), the mixture was further stirred at room temperature for 2 hours. The reaction mixture was ice-cooled, water was added, and THF was distilled off under reduced pressure, and the obtained aqueous solution was extracted three times with chloroform. After adding sodium sulfate to the organic layer and drying, the solvent was distilled off under reduced pressure, and the obtained residue was produced by a flash chromatography system using chloroform and methanol to produce compound (a19) (403 mg, 829 μmol, 42.4%) was obtained as white crystals.
1 1 H NMR (CDCl 3 ): δ 0.92-0.95 (6H, m, C H 3 ), 1.68-1.71 (1H, m, C H ), 2.40-2.44 (2H, m, C H 2 ), 2.82-3.30 (8H, overlapped, C H 2 ), 3.61-3.74 (2H, m, C H 2 ), 4.58-4.62 (1H, m, C H ), 6.48 (1H, s, N H ), 6.66 (1H, s) , N H ), 6.96-6.98 (2H, d, C H 2 ), 7.56-7.58 (2H, d, C H 2 ), 8.00 (1H, s, N H ). ESI-MS (M + H) + : m / z 487.12, found: 487.18.

合成例L8(b):化合物(a20)の合成
化合物(a19) (403 mg、829 μmol)をTHF 2 mLに懸濁し、溶液を氷冷した後、アルゴン雰囲気下、0.95 Mのボラン-THF錯体/THF溶液13 mLを緩徐に加え、1時間攪拌した後、22時間還流した。溶液を氷冷し、メタノール13 mLを加えた後、1時間攪拌し、溶媒を減圧留去した。その後、残渣に再度メタノール13 mLを加え、溶媒を減圧留去した。残渣に濃塩酸13 mLを加え、24 時間室温で攪拌した後、1 時間還流した。溶液を氷冷し、12.5 N水酸化ナトリウム水溶液を加えて塩基性とした後、クロロホルムで抽出した。有機層に硫酸ナトリウムを加えて乾燥した後、溶媒を減圧留去して得られた残渣をクロロホルム:メタノール:25質量%アンモニア水(10:1:0.1)を溶出溶媒とするフラッシュクロマトシステムにより精製を行うことで化合物(a20)(275 mg、619 μmol、収率74.7%)を黄色油状物として得た。
1H NMR (CDCl3): δ 0.89-0.92 (6H, m, CH 3 ), 1.80-1.84 (1H, m, CH), 2.06-2.89 (19H, overlapped, CH, CH 2 ), 6.92-6.94 (2H, d, CH 2 ), 7.58-7.60 (2H, d, CH 2 ).
Synthesis Example L8 (b): Synthesis of compound (a20) Compound (a19) (403 mg, 829 μmol) was suspended in 2 mL of THF, the solution was ice-cooled, and then a 0.95 M borane-THF complex was prepared under an argon atmosphere. 13 mL of / THF solution was added slowly, stirred for 1 hour, and then refluxed for 22 hours. The solution was ice-cooled, 13 mL of methanol was added, and the mixture was stirred for 1 hour, and the solvent was evaporated under reduced pressure. Then, 13 mL of methanol was added to the residue again, and the solvent was evaporated under reduced pressure. 13 mL of concentrated hydrochloric acid was added to the residue, and the mixture was stirred at room temperature for 24 hours and then refluxed for 1 hour. The solution was ice-cooled, 12.5 N aqueous sodium hydroxide solution was added to make it basic, and then the solution was extracted with chloroform. After adding sodium sulfate to the organic layer and drying it, the solvent was distilled off under reduced pressure, and the obtained residue was purified by a flash chromatography system using chloroform: methanol: 25% by mass aqueous ammonia (10: 1: 0.1) as an elution solvent. The compound (a20) (275 mg, 619 μmol, yield 74.7%) was obtained as a yellow oil.
1 1 H NMR (CDCl 3 ): δ 0.89-0.92 (6H, m, C H 3 ), 1.80-1.84 (1H, m, C H ), 2.06-2.89 (19H, overlapped, C H , C H 2 ), 6.92-6.94 (2H, d, C H 2 ), 7.58-7.60 (2H, d, C H 2 ).

合成例L8(c):化合物(a21)の合成
化合物(a20) (275 mg、619 μmol)をアセトニトリル 2 mLに懸濁し、炭酸ナトリウム(428 mg、3.10 mmol)を加えた。溶液を氷冷し、アルゴン雰囲気下、ブロモ酢酸tert-ブチル(272 μL、1.86 mmol)を滴下した。滴下完了後、室温で24時間攪拌し、懸濁液をろ過した後、ろ液から溶媒を減圧留去した。残渣をクロロホルムとメタノールを用いたフラッシュクロマトシステムにより生成を行うことで化合物(a21) (286 mg、364 μmol、58.8%)を黄色油状物として得た。
1H NMR (CDCl3): δ 0.86-0.89 (6H, m, CH 3 ), 1.41-1.50 (27H, m, tBu), 1.86-3.90 (26H, overlapped, CH, CH 2 ), 6.99-7.01 (2H, d, CH 2 ), 7.59-7.61 (2H, d, CH 2 ). ESI-MS (M+H)+: m/z 787.39, found: 787.45.
Synthesis Example L8 (c): Synthesis of compound (a21) Compound (a20) (275 mg, 619 μmol) was suspended in 2 mL of acetonitrile, and sodium carbonate (428 mg, 3.10 mmol) was added. The solution was ice-cooled and tert-butyl bromoacetate (272 μL, 1.86 mmol) was added dropwise under an argon atmosphere. After the dropping was completed, the mixture was stirred at room temperature for 24 hours, the suspension was filtered, and the solvent was distilled off under reduced pressure from the filtrate. The residue was produced by a flash chromatographic system using chloroform and methanol to obtain compound (a21) (286 mg, 364 μmol, 58.8%) as a yellow oil.
1 1 H NMR (CDCl 3 ): δ 0.86-0.89 (6H, m, C H 3 ), 1.41-1.50 (27H, m, tBu ), 1.86-3.90 (26H, overlapped, C H , C H 2 ), 6.99 -7.01 (2H, d, C H 2 ), 7.59-7.61 (2H, d, C H 2 ). ESI-MS (M + H) + : m / z 787.39, found: 787.45.

合成例L8(d):化合物(a22)の合成
化合物(a21) (286 mg、364 μmol)をDMF 3.0 mLに懸濁し、Pd(OAc)2(16.3 mg、0.0728 mmol)、1,2-ビス(ジフェニルホスフィノ)エタン(58.0 mg、0.146 mmol)、Et3N(156 μL、1.12 mmol)、ベンジルアルコール(753 μL、7.28 mmol)を加え、一酸化炭素雰囲気下、一晩還流した。反応後、溶媒を減圧留去して得られた残渣をクロロホルムとメタノールを用いたフラッシュクロマトシステムにより精製することで化合物(a22)(73.8 mg、92.8 μmol、収率25.5%)を黄色油状物として得た。
ESI-MS (M+H)+: m/z 795.53, found: 795.40.
Synthesis Example L8 (d): Synthesis of compound (a22) Compound (a21) (286 mg, 364 μmol) was suspended in 3.0 mL of DMF, and Pd (OAc) 2 (16.3 mg, 0.0728 mmol), 1,2-bis. (Diphenylphosphino) ethane (58.0 mg, 0.146 mmol), Et 3 N (156 μL, 1.12 mmol) and benzyl alcohol (753 μL, 7.28 mmol) were added, and the mixture was refluxed overnight under a carbon monoxide atmosphere. After the reaction, the solvent was distilled off under reduced pressure and the obtained residue was purified by a flash chromatographic system using chloroform and methanol to obtain compound (a22) (73.8 mg, 92.8 μmol, yield 25.5%) as a yellow oil. Obtained.
ESI-MS (M + H) + : m / z 795.53, found: 795.40.

合成例L8(e):化合物(a23)の合成
化合物(a22) (73.8 mg、92.8 μmol) をメタノール1.5 mLに溶解した後、10質量% Pd/Cを150 mg加えて水素雰囲気下、室温で5時間攪拌した。反応溶液をろ過後、溶媒を減圧留去することで化合物(a23)(31.9 mg、45.3 μmol、収率48.8%)を白色結晶として得た。
ESI-MS (M+H)+: m/z 705.48, found: 705.40.
Synthesis example L8 (e): Synthesis of compound (a23) After dissolving compound (a22) (73.8 mg, 92.8 μmol) in 1.5 mL of methanol, add 150 mg of 10% by mass Pd / C at room temperature under a hydrogen atmosphere. Stirred for 5 hours. After filtering the reaction solution, the solvent was distilled off under reduced pressure to obtain compound (a23) (31.9 mg, 45.3 μmol, yield 48.8%) as white crystals.
ESI-MS (M + H) + : m / z 705.48, found: 705.40.

合成例L9:化合物(a28)の合成

Figure 2019065774
Synthesis example L9: Synthesis of compound (a28)
Figure 2019065774

合成例L9(a):化合物(a24)の合成
化合物(a23) (23.7 mg、33.6 μmol) をDMF 0.9 mLに溶解した後、2,3,5,6-テトラフルオロフェノール (8.4 mg、50.6 μmol)、トリエチルアミン (9.3 μL、66.9 μmol)を加えた。溶液を氷冷し、EDC (9.6 mg、50.6 μmol)を加えた後、室温に戻し、4時間攪拌した。溶媒を減圧留去した後、残渣を酢酸エチルに溶解し、飽和塩化アンモニウム水溶液で三回洗浄した。有機層に硫酸ナトリウムを加えて乾燥した後、溶媒を減圧留去することで化合物(a24)(18.3 mg、23.2 μmol、収率68.9%)を黄色油状物として得た。
Synthesis example L9 (a): Synthesis of compound (a24) After dissolving compound (a23) (23.7 mg, 33.6 μmol) in 0.9 mL of DMF, 2,3,5,6-tetrafluorophenol (8.4 mg, 50.6 μmol) ), Triethylamine (9.3 μL, 66.9 μmol) was added. The solution was ice-cooled, EDC (9.6 mg, 50.6 μmol) was added, the mixture was returned to room temperature, and the mixture was stirred for 4 hours. After distilling off the solvent under reduced pressure, the residue was dissolved in ethyl acetate and washed with saturated aqueous ammonium chloride solution three times. Sodium sulfate was added to the organic layer and dried, and then the solvent was distilled off under reduced pressure to obtain compound (a24) (18.3 mg, 23.2 μmol, yield 68.9%) as a yellow oil.

合成例L9(b)及び(c): 化合物 (a26)の合成
Fmoc固相合成法を用いてペプチドを伸長した樹脂(64.0 mg、57.6 μmol)、N,N-ジイソプロピルエチルアミン(23.6 μL、135 μmol)、化合物(a24) (18.3 mg、23.2 μmol)をDMFに溶解し、室温で16時間緩やかに攪拌した。反応終了後DMF及びCH2Cl2を用いて樹脂を洗浄した。
得られた樹脂(a25)を酢酸: 2,2,2-トリフルオロエタノール: ジクロロメタン= 3 :1 : 6を組成とする溶液に懸濁し2時間緩やかに攪拌した。反応終了後、ろ過にて樹脂を除去し、ろ液を減圧留去し、さらにトルエンで三回共沸した。残渣をHPLCにてImtakt Cadenza 5CD-C18 150×20 mmを用い移動相にはA相に0.1%TFA/MilliQ、B相に0.1% TFA/MeCNを使用し、0-35分でA相95%、B相5%からA相50%、B相50%まで変化させ、35-45分でA相50%、B相50%からA相0%、B相100%まで変化させる直線gradient法により流速5 mL/minで精製(保持時間 34.7分)することで目的とする化合物(a26)(以下、「CDO3AiBu-FGK(Boc)」ともいう) (1.0 mg、0.70 μmol、収率2.1%)を得た。
ESI-MS (M+H)+: m/z 969.53, found: 969.51.
Synthesis Examples L9 (b) and (c): Synthesis of compound (a26)
Dissolve the peptide-extended resin (64.0 mg, 57.6 μmol), N, N-diisopropylethylamine (23.6 μL, 135 μmol), and compound (a24) (18.3 mg, 23.2 μmol) in DMF using the Fmoc solid-phase synthesis method. Then, the mixture was gently stirred at room temperature for 16 hours. After completion of the reaction, the resin was washed with DMF and CH 2 Cl 2 .
The obtained resin (a25) was suspended in a solution having a composition of acetic acid: 2,2,2-trifluoroethanol: dichloromethane = 3: 1: 6, and the mixture was gently stirred for 2 hours. After completion of the reaction, the resin was removed by filtration, the filtrate was distilled off under reduced pressure, and the mixture was azeotropically distilled with toluene three times. The residue was used by HPLC using Imtakt Cadenza 5CD-C18 150 × 20 mm, 0.1% TFA / MilliQ was used for the A phase, 0.1% TFA / MeCN was used for the B phase, and 95% of the A phase was used in 0-35 minutes. By the linear gradient method, which changes from B phase 5% to A phase 50%, B phase 50%, and changes from A phase 50%, B phase 50% to A phase 0%, B phase 100% in 35-45 minutes. Purify the target compound (a26) (hereinafter also referred to as "CDO3AiBu-FGK (Boc)") (1.0 mg, 0.70 μmol, yield 2.1%) by purifying at a flow rate of 5 mL / min (retention time 34.7 minutes). Obtained.
ESI-MS (M + H) + : m / z 969.53, found: 969.51.

合成例L9(d): 化合物(a27)の合成
Fmoc固相合成法を用いてペプチドを伸長した樹脂(48.3 mg、43.4 μmol)、N,N-ジイソプロピルエチルアミン(17.8 μL、102 μmol)、化合物(a24) (18.3 mg、17.5 μmol)を用いて作製した上記と同様の方法で作製した樹脂(a25)をトリフルオロ酢酸: トリイソプロピルシラン: 水= 95 : 2.5 : 2.5を組成とする溶液に懸濁し2時間緩やかに攪拌した。反応終了後、ろ過にて樹脂を除去し、ろ液を減圧留去し、さらにトルエンで三回共沸した。残渣を水に溶解し、ジエチルエーテルで三回洗浄して得られた水溶液を凍結乾燥させて得られた白色結晶をHPLCにてImtakt Cadenza 5CD-C18 150×20 mmを用い移動相にはA相に0.1%TFA/MilliQ、B相に0.1% TFA/MeCNを使用し、0-35分でA相95%、B相5%からA相50%、B相50%まで変化させ、35-45分でA相50%、B相50%からA相0%、B相100%まで変化させる直線gradient法により流速5 mL/minで精製(保持時間 24.8分)することで目的とする化合物(a27)(以下、「CDO3AiBu-FGK」ともいう)(1.8 mg、1.25 μmol、収率6.4%)を得た。ESI-MS (M+H)+: m/z 869.48, found: 869.38.
Synthesis example L9 (d): Synthesis of compound (a27)
Prepared using resin (48.3 mg, 43.4 μmol) in which the peptide was extended using the Fmoc solid-phase synthesis method, N, N-diisopropylethylamine (17.8 μL, 102 μmol), and compound (a24) (18.3 mg, 17.5 μmol). The resin (a25) prepared in the same manner as above was suspended in a solution having a composition of trifluoroacetic acid: triisopropylsilane: water = 95: 2.5: 2.5 and gently stirred for 2 hours. After completion of the reaction, the resin was removed by filtration, the filtrate was distilled off under reduced pressure, and the mixture was azeotropically distilled with toluene three times. The residue was dissolved in water, washed three times with diethyl ether, and the obtained aqueous solution was freeze-dried. The white crystals obtained were obtained by HPLC using Imtakt Cadenza 5CD-C18 150 × 20 mm, and the mobile phase was phase A. Using 0.1% TFA / MilliQ for phase B and 0.1% TFA / MeCN for phase B, change from phase A 95%, phase B 5% to phase A 50%, phase B 50% in 0-35 minutes, 35-45 The target compound (a27) is purified by a linear gradient method that changes from 50% A phase and 50% B phase to 0% A phase and 100% B phase at a flow rate of 5 mL / min (retention time 24.8 minutes). ) (Hereinafter, also referred to as "CDO3AiBu-FGK") (1.8 mg, 1.25 μmol, yield 6.4%) was obtained. ESI-MS (M + H) + : m / z 869.48, found: 869.38.

合成例L9(e): 化合物(a28)の合成例
化合物 (a27)(1.8 mg、2.6 μmol)を飽和炭酸水素ナトリウム水溶液150 μLに溶解し、氷冷下N-メトキシカルボニルマレイミド(1.0 mg、 6.5 μmol)を加え、氷冷下で二時間攪拌した。反応終了後、5質量%クエン酸水溶液で酸性に調整した。さらにHPLCにてImtakt Cadenza 5CD-C18 150×20 mmを用い移動相にはA相に0.1%TFA/MilliQ、B相に0.1% TFA/MeCNを使用し、5分までA相 100%に保った後に、5-35分でA相 100%、B相 0%からA相 40%、B相 60%まで変化させ、35-50分でA相 40%、B相 60%からA相 0%、B相 100%まで変化させる直線gradient法により流速5 mL/minで精製(保持時間 30.7分)することで目的とする化合物(a28) (以下、「CDO3AiBu-FGK(Mal)」ともいう)(0.8 mg、0.57 μmol、収率45.5%)を得た。
ESI-MS (M+H)+: m/z 949.47, found: 949.36.
Synthesis example L9 (e): Synthesis example of compound (a28)
Compound (a27) (1.8 mg, 2.6 μmol) was dissolved in 150 μL of saturated aqueous sodium hydrogen carbonate solution, N-methoxycarbonylmaleimide (1.0 mg, 6.5 μmol) was added under ice-cooling, and the mixture was stirred under ice-cooling for 2 hours. After completion of the reaction, the acidity was adjusted with a 5 mass% citric acid aqueous solution. Furthermore, by HPLC, Imtakt Cadenza 5CD-C18 150 × 20 mm was used, 0.1% TFA / MilliQ was used for the A phase, and 0.1% TFA / MeCN was used for the B phase, and the A phase was maintained at 100% for up to 5 minutes. Later, in 5-35 minutes, change from A phase 100%, B phase 0% to A phase 40%, B phase 60%, and in 35-50 minutes, A phase 40%, B phase 60% to A phase 0%, The target compound (a28) (hereinafter, also referred to as "CDO3AiBu-FGK (Mal)") (0.8) by purification (retention time 30.7 minutes) at a flow rate of 5 mL / min by the linear gradient method in which the B phase is changed to 100%. mg, 0.57 μmol, yield 45.5%) was obtained.
ESI-MS (M + H) + : m / z 949.47, found: 949.36.

合成例L9(f): 化合物(a29)の合成
化合物 (a23)(2.7 mg、3.83 μmol)をDMF(0.3 mL)に溶解し、H-Phe-OtBu・HCl(1.5 mg、5.75 μmol)、N,N-ジイソプロピルエチルアミン(2.9 μL、17.2 μmol)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩(4.9 mg、11.5 μmol)を添加し、室温で一晩攪拌した。溶媒を減圧留去した後、残渣を酢酸エチルに再溶解し、5質量%炭酸水素ナトリウム水溶液で三回、5質量%クエン酸水溶液で三回洗浄した。有機層に硫酸ナトリウムを加えて乾燥した後、溶媒を減圧留去することで得られた残渣に10質量%アニソール/TFA溶液(2.0 mL)を加えて、室温で2時間攪拌した。溶媒を減圧留去した後、トルエンで三回共沸した。残渣を水に溶解し、ジエチルエーテルで三回洗浄して得られた水溶液から溶媒を減圧留去して得られた白色結晶をHPLCにてImtakt Cadenza 5CD-C18 150×20 mmを用い移動相にはA相に0.1%TFA/MilliQ、B相に0.1% TFA/MeCNを使用し、0-30分でA相100%、B相0%からA相40%、B相60%まで変化させ、30-35分でA相40%、B相60%からA相0%、B相100%まで変化させる直線gradient法により流速5 mL/minで精製(保持時間 25.2分)することで目的とする化合物(a29)(以下、「CDO3AiBu-Phe」ともいう) (0.1 mg、8.8 μmol、収率2.3%)を得た。
ESI-MS (M+H)+: m/z 684.36ound: 684.27
Synthesis example L9 (f): Synthesis of compound (a29) Compound (a23) (2.7 mg, 3.83 μmol) was dissolved in DMF (0.3 mL), and H-Phe-OtBu · HCl (1.5 mg, 5.75 μmol), N. , N-diisopropylethylamine (2.9 μL, 17.2 μmol), (1-cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylamino-morpholino-carbenium hexafluorophosphate (4.9 mg, 11.5 μmol) added And stirred at room temperature overnight. After distilling off the solvent under reduced pressure, the residue was redissolved in ethyl acetate and washed three times with a 5 mass% aqueous sodium hydrogen carbonate solution and three times with a 5 mass% aqueous citric acid solution. After adding sodium sulfate to the organic layer and drying, 10 mass% anisole / TFA solution (2.0 mL) was added to the residue obtained by distilling off the solvent under reduced pressure, and the mixture was stirred at room temperature for 2 hours. The solvent was evaporated under reduced pressure and then azeotropically distilled with toluene three times. The residue was dissolved in water, washed three times with diethyl ether, and the solvent was distilled off under reduced pressure from the obtained aqueous solution. The white crystals obtained by HPLC were used as a mobile phase using Imtakt Cadenza 5CD-C18 150 × 20 mm. Uses 0.1% TFA / MilliQ for A phase and 0.1% TFA / MeCN for B phase, changing from A phase 100%, B phase 0% to A phase 40%, B phase 60% in 0-30 minutes. The purpose is to purify at a flow rate of 5 mL / min (retention time 25.2 minutes) by the linear gradient method that changes from A phase 40%, B phase 60% to A phase 0%, B phase 100% in 30-35 minutes. Compound (a29) (hereinafter, also referred to as “CDO3AiBu-Phe”) (0.1 mg, 8.8 μmol, yield 2.3%) was obtained.
ESI-MS (M + H) + : m / z 684.36ound: 684.27

[二官能性キレート試薬結合Fabの作製]
合成例F1: Fab(Rabbit serum IgG由来)及びIT-Fab(Rabbit serum IgG由来)の作製
(Fab(Rabbit serum IgG由来)の作製)
Rabbit serum IgG (9 mg)を10 mM Na2EDTA及び20 mM cysteineを含む20 mMリン酸緩衝液(pH 7.0) 1.5 mLに溶解し、immobilized papain 50% slurry (Thermo Scientific, Yokohama, Japan) 500 μLを加え、37°Cで42時間インキュベートした。反応終了後、10 mMトリス塩酸緩衝液(pH 7.5)を2 mL加え、0.45 μmのフィルターでろ過し、ろ液を回収した。ろ液を10 kDaの限外ろ過膜を用いて20 mMリン酸緩衝液(pH 7.0)に置換し、1 mLに濃縮した。その後、protein Aカラムを用いて精製を行い、Fabを得た。得られたFabは、0.1 Mリン酸緩衝液(pH 6.8)を溶出溶媒とした流速1.0 mL/minで溶出するSE-HPLCにより生成を確認し、A280を測定することで濃度を算出した。
[Preparation of bifunctional chelating reagent-bound Fab]
Synthesis example F1: Fabrication of Fab (derived from Rabbit serum IgG) and IT-Fab (derived from Rabbit serum IgG)
(Preparation of Fab (derived from Rabbit serum IgG))
Rabbit serum IgG (9 mg) was dissolved in 1.5 mL of 20 mM phosphate buffer (pH 7.0) containing 10 mM Na 2 EDTA and 20 mM cysteine, and immobilized papain 50% slurry (Thermo Scientific, Yokohama, Japan) 500 μL. Was added and incubated at 37 ° C for 42 hours. After completion of the reaction, 2 mL of 10 mM Tris-hydrochloric acid buffer (pH 7.5) was added, and the mixture was filtered through a 0.45 μm filter to recover the filtrate. The filtrate was replaced with 20 mM phosphate buffer (pH 7.0) using a 10 kDa ultrafiltration membrane and concentrated to 1 mL. Then, purification was carried out using a protein A column to obtain Fab. The concentration of the obtained Fab was confirmed by SE-HPLC, which elutes at a flow rate of 1.0 mL / min using 0.1 M phosphate buffer (pH 6.8) as an elution solvent, and the concentration was calculated by measuring A280.

(IT-Fab(Rabbit serum IgG由来)の作製)
十分に脱気した2 mM EDTA含有0.16 Mホウ酸緩衝液(pH 8.0)を用いてFab溶液(100 μL, 5 mg/mL)を調製し、同じ緩衝液に溶解した2-イミノチオラン(2-IT) (5 μL, 2.88 mg/mL)を1 μLずつ攪拌しながら加え、37 ℃で静かに30分間攪拌した。反応後、十分脱気した2 mM EDTA含有0.1 Mリン酸緩衝液(pH 6.0)で平衡化したSephadex G-50 Fineを用いるスピンカラム法[Analytical Biochemistry, 1984, 142, 68-78]により反応溶液中の過剰の2-ITを除去し、IT-Fab(Rabbit serum IgG由来)溶液を得た。Fab一分子あたりに導入されたチオール基の数は2,2’-ジピリジルジスルフィドを用いて測定した[Archives of Biochemistry and Biophysics, 1967, 119, 41-49]。
(Preparation of IT-Fab (derived from Rabbit serum IgG))
Fab solution (100 μL, 5 mg / mL) was prepared using a fully degassed 0.16 M borate buffer (pH 8.0) containing 2 mM EDTA and dissolved in the same buffer 2-iminothiolane (2-IT). ) (5 μL, 2.88 mg / mL) was added in 1 μL increments with stirring, and the mixture was gently stirred at 37 ° C. for 30 minutes. After the reaction, the reaction solution was prepared by a spin column method [Analytical Biochemistry, 1984, 142, 68-78] using Sephadex G-50 Fine equilibrated with a sufficiently degassed 0.1 M phosphate buffer (pH 6.0) containing 2 mM EDTA. The excess 2-IT in the solution was removed to obtain an IT-Fab (derived from Rabbit serum IgG) solution. The number of thiol groups introduced per Fab molecule was measured using 2,2'-dipyridyl disulfide [Archives of Biochemistry and Biophysics, 1967, 119, 41-49].

合成例F2: Fab(抗c-kit IgG由来)及びIT-Fab(抗c-kit IgG由来)の作製
Rabbit serum IgG (9 mg)を、抗c-kit IgG (9 mg)とした以外は、合成例F1と同様の方法で、Fab(抗c-kit IgG由来)及びIT-Fab(抗c-kit IgG由来)を作製した。
Synthesis example F2: Preparation of Fab (derived from anti-c-kit IgG) and IT-Fab (derived from anti-c-kit IgG)
Fab (derived from anti-c-kit IgG) and IT-Fab (anti-c-kit) in the same manner as in Synthesis Example F1 except that Rabbit serum IgG (9 mg) was used as anti-c-kit IgG (9 mg). IgG derived) was prepared.

[Fabが結合した配位子の作製]
合成例:CDO3AEt-FGK-Fab(Rabbit serum IgG由来)、CDO3AEt-FGK-Fab(抗c-kit IgG由来)、DO3A-EDA-Fab(Rabbit serum IgG由来)、CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)、DO3A-Bn-SCN-MVK-Fab(Rabbit serum IgG由来)、DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)、CDO3AiBu-FGK-Fab(Rabbit serum IgG由来) 及びCDO3AiBu-FGK-Fab(抗c-kit IgG由来)の作製
IT-Fab(Rabbit serum IgG由来)溶液(100 μL)にH2Oに溶解したCDO3AEt-FGK(Mal) (5 μL, チオール基に対して20等量)を1 μLずつ加え、37 ℃で2時間反応した。次いで、0.1 Mリン酸緩衝液(pH 6.0)を用いてヨードアセトアミド溶液を調製し、これを残存チオール基に対して500等量加えた後、37 ℃で1時間反応を行い、未反応のチオール基をアルキル化した。その後、0.25 M酢酸緩衝液(pH 5.5)で平衡化したSephadex G-50 Fineを用いるスピンカラム法で精製し、CDO3AEt-FGK-Fab(Rabbit serum IgG由来)溶液を得た。Fab一分子あたりに導入されたCDO3AEt-FGK(Mal)由来の単位数は、ヨードアセトアミドを加える前にDPSを用いて測定した[Archives of Biochemistry and Biophysics, 1967, 119, 41-49]チオール数を先に求めたチオール数を差し引くことにより求めた。
CDO3AEt-FGK(Mal)を、DO3A-EDA (Mal)、DO3A-Bn-SCN-MVK(Mal)、DO3A-Bn-CO-FGK(Mal)、及びCDO3AiBu-FGK(Mal)にそれぞれ変更し、その他は上記と同様の方法で、DO3A-EDA-Fab(Rabbit serum IgG由来)溶液、DO3A-Bn-SCN-MVK-Fab(Rabbit serum IgG由来)溶液、DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)溶液、及びCDO3AiBu-FGK-Fab(Rabbit serum IgG由来)溶液を得た。
IT-Fab(Rabbit serum IgG由来)溶液を、IT-Fab(抗c-kit IgG由来)溶液に変更し、その他は上記と同様の方法で、CDO3AEt-FGK-Fab(抗c-kit IgG由来)溶液を得た。
IT-Fab(Rabbit serum IgG由来)溶液を、IT-Fab(抗c-kit IgG由来)溶液に変更し、CDO3AEt-FGK(Mal)を、CDOTA-Bn-CO-FGK(Mal)に変更し、その他は上記と同様の方法で、CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)溶液を得た。
IT-Fab(Rabbit serum IgG由来)溶液を、IT-Fab(抗c-kit IgG由来)溶液に変更し、CDO3AEt-FGK(Mal)を、CDO3AiBu-FGK(Mal)に変更し、その他は上記と同様の方法で、CDO3AiBu-FGK-Fab(抗c-kit IgG由来)溶液を得た。
[Preparation of a ligand bound to Fab]
Synthesis example: CDO3AEt-FGK-Fab (derived from Rabbit serum IgG), CDO3AEt-FGK-Fab (derived from anti-c-kit IgG), DO3A-EDA-Fab (derived from Rabbit serum IgG), CDOTA-Bn-CO-FGK-Fab (Derived from anti-c-kit IgG), DO3A-Bn-SCN-MVK-Fab (derived from Rabbit serum IgG), DO3A-Bn-CO-FGK-Fab (derived from Rabbit serum IgG), CDO3AiBu-FGK-Fab (derived from Rabbit serum IgG) Origin) and CDO3AiBu-FGK-Fab (derived from anti-c-kit IgG)
Add 1 μL each of CDO3AEt-FGK (Mal) (5 μL, 20 equal volumes to thiol group) dissolved in H 2 O to IT-Fab (Rabbit serum IgG-derived) solution (100 μL), and add 2 at 37 ° C. Time reacted. Next, an iodoacetamide solution was prepared using 0.1 M phosphate buffer (pH 6.0), 500 equivalents of this was added to the remaining thiol groups, and then the reaction was carried out at 37 ° C. for 1 hour to obtain unreacted thiols. The group was alkylated. Then, purification was performed by a spin column method using Sephadex G-50 Fine equilibrated with 0.25 M acetate buffer (pH 5.5) to obtain a CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) solution. The number of units derived from CDO3AEt-FGK (Mal) introduced per molecule of Fab was measured using DPS before adding iodoacetamide [Archives of Biochemistry and Biophysics, 1967, 119, 41-49]. It was obtained by subtracting the number of thiols obtained earlier.
Change CDO3AEt-FGK (Mal) to DO3A-EDA (Mal), DO3A-Bn-SCN-MVK (Mal), DO3A-Bn-CO-FGK (Mal), and CDO3AiBu-FGK (Mal), respectively, and others. Is the same method as above, DO3A-EDA-Fab (derived from Rabbit serum IgG) solution, DO3A-Bn-SCN-MVK-Fab (derived from Rabbit serum IgG) solution, DO3A-Bn-CO-FGK-Fab (derived from Rabbit serum). An IgG-derived) solution and a CDO3AiBu-FGK-Fab (Rabbit serum IgG-derived) solution were obtained.
Change the IT-Fab (Rabbit serum IgG-derived) solution to an IT-Fab (anti-c-kit IgG-derived) solution, and use the same method as above for CDO3AEt-FGK-Fab (anti-c-kit IgG-derived). A solution was obtained.
Change the IT-Fab (Rabbit serum IgG-derived) solution to the IT-Fab (anti-c-kit IgG-derived) solution, and change CDO3AEt-FGK (Mal) to CDOTA-Bn-CO-FGK (Mal). A CDOTA-Bn-CO-FGK-Fab (anti-c-kit IgG-derived) solution was obtained in the same manner as described above.
Change the IT-Fab (Rabbit serum IgG-derived) solution to the IT-Fab (anti-c-kit IgG-derived) solution, change CDO3AEt-FGK (Mal) to CDO3AiBu-FGK (Mal), and the others as above. A CDO3AiBu-FGK-Fab (anti-c-kit IgG-derived) solution was obtained in the same manner.

合成例:DOTA-Bn-SCN-Fab(抗c-kit IgG由来)の作製
0.16 Mホウ酸緩衝液(pH 8.5)を用いてFab溶液(100 μL, 5.0 mg/mL)を調整し、同じ緩衝液に溶解したDOTA-Bn-SCN (Macrocyclics, USA) (14 μL, 10mg/mL)を加え、4℃で一晩静置した。反応後、十分に脱気した0.25 M酢酸緩衝液 (pH 5.5)で平衡化したSephadex G-50 Fineを用いるスピンカラム法により過剰のDOTA-Bn-SCNを除去し、DOTA-Bn-SCN-Fab(抗c-kit IgG由来)を得た。
なお、上述のCDO3AEt-FGK-Fab、DO3A-Bn-CO-FGK-Fab、CDOTA-Bn-CO-FGK-Fab、CDO3AiBu-FGK-Fabの化学構造は上述のとおりである。また、DO3A-EDA-Fab、DO3A-Bn-SCN-MVK-Fab、及びDOTA-Bn-SCN-Fabの化学構造は以下のとおりである。
Synthesis example: Preparation of DOTA-Bn-SCN-Fab (derived from anti-c-kit IgG)
DOTA-Bn-SCN (Macrocyclics, USA) (14 μL, 10 mg / mL) prepared in Fab solution (100 μL, 5.0 mg / mL) with 0.16 M borate buffer (pH 8.5) and dissolved in the same buffer. mL) was added, and the mixture was allowed to stand overnight at 4 ° C. After the reaction, excess DOTA-Bn-SCN was removed by spin column method using Sephadex G-50 Fine equilibrated with sufficiently degassed 0.25 M acetate buffer (pH 5.5), and DOTA-Bn-SCN-Fab was removed. (Derived from anti-c-kit IgG) was obtained.
The chemical structures of the above-mentioned CDO3AEt-FGK-Fab, DO3A-Bn-CO-FGK-Fab, CDOTA-Bn-CO-FGK-Fab, and CDO3AiBu-FGK-Fab are as described above. The chemical structures of DO3A-EDA-Fab, DO3A-Bn-SCN-MVK-Fab, and DOTA-Bn-SCN-Fab are as follows.

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

[金属錯体化合物の作製]
合成例:111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)、111In- CDO3AEt-FGK-Fab(抗c-kit IgG由来)、111In-DO3A-EDA-Fab(Rabbit serum IgG由来)、111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)、111In-DO3A-Bn-SCN-MVK-Fab(Rabbit serum IgG由来)、111In-DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)、111In-CDO3AiBu-FGK-Fab(抗c-kit IgG由来)、111In-DOTA-Bn-SCN-Fab(抗c-kit IgG由来)、111In-CDO3AEt-FGK(Boc)、111In-CDOTA-Bn-CO-FGK(Boc)、111In-DO3A-Bn-SCN-MVK(Bzo)、及び111In-DO3A-Bn-CO-FGK(Boc)の作製
111InCl3(45 μL)を1 M酢酸緩衝液(pH 5.5, 5 μL)に混和し、室温で5分間静置した。CDO3AEt-FGK-Fab(Rabbit serum IgG由来)溶液(30 μL)を混合した後、40 oCで90分間インキュベートした。最終濃度が10 mMとなるようにDTPAを加えた後、室温で18時間静置した。0.1 M D-PBS (pH 7.4)で平衡化したSephadex G-50 Fineを用いるスピンカラム法で精製することで、111In-CDO3AEt-FGK-Fabを作製した。CDO3AEt-FGK-Fab(Rabbit serum IgG由来)溶液を、CDO3AEt-FGK-Fab(抗c-kit IgG由来)溶液、DO3A- EDA -Fab(Rabbit serum IgG由来)溶液、CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)溶液、DO3A-Bn-SCN-MVK-Fab溶液(Rabbit serum IgG由来)、DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)溶液、CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)溶液、DOTA-Bn-SCN-Fab(抗c-kit IgG由来)溶液、CDO3AEt-FGK(Boc)溶液、CDOTA-Bn-CO-FGK(Boc)溶液、DO3A-Bn-SCN-MVK(Bzo)溶液、及びDO3A-Bn-CO-FGK(Boc)溶液にそれぞれ変更し、その他は上記と同様の方法で、111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)、111In-DO3A-EDA-Fab(Rabbit serum IgG由来)、111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)、111In-DO3A-Bn-SCN-MVK-Fab(Rabbit serum IgG由来)、111In-DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)、111In-DOTA-Bn-SCN-Fab(抗c-kit IgG由来)、111In-CDO3AEt-FGK(Boc)、111In-CDOTA-Bn-CO-FGK(Boc)、111In-DO3A-Bn-SCN-MVK(Bzo)、及び111In-DO3A-Bn-CO-FGK(Boc)、を作製した。
[Preparation of metal complex compounds]
Synthesis example: 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG), 111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG), 111 In-DO3A-EDA-Fab (derived from Rabbit serum IgG), 111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG), 111 In-DO3A-Bn-SCN-MVK-Fab (derived from Rabbit serum IgG), 111 In-DO3A-Bn-CO-FGK -Fab (derived from Rabbit serum IgG), 111 In-CDO3AiBu-FGK-Fab (derived from Rabbit serum IgG), 111 In-CDO3AiBu-FGK-Fab (derived from anti-c-kit IgG), 111 In-DOTA-Bn-SCN- Fab (derived from anti-c-kit IgG), 111 In-CDO3AEt-FGK (Boc), 111 In-CDOTA-Bn-CO-FGK (Boc), 111 In-DO3A-Bn-SCN-MVK (Bzo), and 111 Fabrication of In-DO3A-Bn-CO-FGK (Boc)
111 InCl 3 (45 μL) was mixed with 1 M acetate buffer (pH 5.5, 5 μL) and allowed to stand at room temperature for 5 minutes. After mixing CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) solution (30 μL), it was incubated at 40 o C for 90 minutes. After adding DTPA to a final concentration of 10 mM, the mixture was allowed to stand at room temperature for 18 hours. 111 In-CDO3AEt-FGK-Fab was prepared by purification by spin column method using Sephadex G-50 Fine equilibrated with 0.1 M D-PBS (pH 7.4). CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) solution, CDO3AEt-FGK-Fab (derived from anti-c-kit IgG) solution, DO3A- EDA -Fab (derived from Rabbit serum IgG) solution, CDOTA-Bn-CO-FGK- Fab (anti-c-kit IgG derived) solution, DO3A-Bn-SCN-MVK-Fab solution (derived from Rabbit serum IgG), DO3A-Bn-CO-FGK-Fab (derived from Rabbit serum IgG) solution, CDO3AiBu-FGK-Fab (Rabbit serum IgG-derived) solution, DOTA-Bn-SCN-Fab (anti-c-kit IgG-derived) solution, CDO3AEt-FGK (Boc) solution, CDOTA-Bn-CO-FGK (Boc) solution, DO3A-Bn-SCN -Change to MVK (Bzo) solution and DO3A-Bn-CO-FGK (Boc) solution, respectively, and use the same method as above for 111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG), 111 In-DO3A-EDA-Fab (derived from Rabbit serum IgG), 111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG), 111 In-DO3A-Bn-SCN-MVK-Fab (derived from Rabbit) (Derived from serum IgG), 111 In-DO3A-Bn-CO-FGK-Fab (derived from Rabbit serum IgG), 111 In-CDO3AiBu-FGK-Fab (derived from Rabbit serum IgG), 111 In-DOTA-Bn-SCN-Fab (derived from Rabbit serum IgG) Anti-c-kit IgG derived), 111 In-CDO3AEt-FGK (Boc), 111 In-CDOTA-Bn-CO-FGK (Boc), 111 In-DO3A-Bn-SCN-MVK (Bzo), and 111 In- DO3A-Bn-CO-FGK (Boc) was prepared.

[特性の検討]
〔BBMVsとのインキュベート試験〕
(腎刷子縁膜小胞)
腎刷子縁膜小胞(BBMVs)はWistar系雄性ラット (200-250 g) の腎臓からHoriらの方法に従って作製した[Biochemical Pharmacology 45: 1763-1768, 1993]。全ての操作は氷上で行った。皮質に重量で4-5倍の300 mM mannitol、及び5 mM EGTA を含む12 mM トリス-塩酸緩衝液 (pH 7.1) を加え、ポリトロンホモジナイザー(PT-3100 Kinematica GmgH Littau, Switzerland)で2分間ホモジナイズし,同じ緩衝液で希釈することで10%ホモジネートとした。次いで、蒸留水で2倍に希釈した後,最終濃度が10 mM となるよう、1.0 Mに調整したMgCl2水溶液を加え、15分間放置した。その後、ホモジネートを1,900 gで遠心し、上清をさらに30分間24,000 gで遠心した。沈殿を皮質重量の20倍に相当する150 mM mannitol、及び2.5 mM EGTA を含む6 mM トリス-塩酸緩衝液 (pH 7.1) に再懸濁し、テフロン(登録商標)ホモジナイザー (1,000 rpm, 10 strokes) によりホモジナイズした。次いで、最終濃度が10 mMとなるように1.0 M MgCl2水溶液を加え、懸濁液を15分間放置し、その後、ホモジネートを1,900 gで遠心し、上清をさらに30分間24,000 gで遠心した。得られた沈殿を皮質重量の10倍に相当する0.1 M リン酸緩衝液 (pH 7.0) に懸濁し、再度テフロン(登録商標)ホモジナイザー (1,000 rpm, 10 strokes) によりホモジナイズした。次いで。ホモジネートを30分間24,000 gで遠心し、BBMVsを沈殿として得た。次いで、BBMVsの沈殿を0.1 Mリン酸緩衝液 (pH 7.0) に再懸濁し、0.4 x 19 mmの針に10回通すことで小胞の大きさを一定にした。インキュベート実験にはタンパク質濃度が10 mg/mLとなるように希釈して用いた。調製したBBMVsについて、リソソームマーカー酵素であるβ-galactosidase活性をp-nitrophenyl-β-D-galacto- pyranosideを用いて測定することにより、リソソーム酵素の混入を評価した[Plant Physiology 55: 94-98, 1975]。また、γ-glutamyl transferase、aminopeptidaseの活性を、Glossmannら[FEBS Letters 19: 340-344, 1972]、Kramersら[European Journal of Biochemistry 99: 345-351, 1979]の方法に従い、L-γ-glutamyl- p-nitroanilide、L-leucine-p-nitroanilideを用いて測定した。
[Examination of characteristics]
[Incubation test with BBMVs]
(Kidney brush border membrane vesicle)
Renal brush border membrane vesicles (BBMVs) were produced from the kidneys of Wistar male rats (200-250 g) according to the method of Hori et al. [Biochemical Pharmacology 45: 1763-1768, 1993]. All operations were performed on ice. Add 4-5 times by weight 300 mM mannitol and 12 mM Tris-hydrochloric acid buffer (pH 7.1) containing 5 mM EGTA to the cortex and homogenize with a polytron homogenizer (PT-3100 Kinematica GmgH Littau, Switzerland) for 2 minutes. , 10% homogenate was obtained by diluting with the same buffer. Then, after diluting 2-fold with distilled water, an aqueous MgCl 2 solution adjusted to 1.0 M was added so that the final concentration was 10 mM, and the mixture was left for 15 minutes. The homogenate was then centrifuged at 1,900 g and the supernatant was centrifuged at 24,000 g for an additional 30 minutes. The precipitate was resuspended in 6 mM Tris-hydrochloric acid buffer (pH 7.1) containing 150 mM mannitol, which is 20 times the cortical weight, and 2.5 mM EGTA, and by Teflon® homogenizer (1,000 rpm, 10 strokes). Homogenized. Then, 1.0 M MgCl 2 aqueous solution was added to a final concentration of 10 mM, the suspension was left for 15 minutes, then the homogenate was centrifuged at 1,900 g, and the supernatant was centrifuged at 24,000 g for an additional 30 minutes. The resulting precipitate was suspended in 0.1 M phosphate buffer (pH 7.0), which corresponds to 10 times the weight of the cortex, and homogenized again with a Teflon® homogenizer (1,000 rpm, 10 strokes). Then. The homogenate was centrifuged at 24,000 g for 30 minutes to give BBMVs as a precipitate. The BBMVs precipitate was then resuspended in 0.1 M phosphate buffer (pH 7.0) and passed 10 times through a 0.4 x 19 mm needle to keep the vesicle size constant. In the incubation experiment, it was diluted to a protein concentration of 10 mg / mL. For the prepared BBMVs, the contamination of the lysosomal enzyme was evaluated by measuring the β-galactosidase activity, which is a lysosomal marker enzyme, using p-nitrophenyl-β-D-galacto-pyranoside [Plant Physiology 55: 94-98, 1975]. In addition, the activity of γ-glutamyl transferase and aminopeptidase was determined according to the method of Glossmann et al. [FEBS Letters 19: 340-344, 1972] and Kramers et al. [European Journal of Biochemistry 99: 345-351, 1979]. --Measurement was performed using p-nitroanilide and L-leucine-p-nitroanilide.

(インキュベート試験)
BBMVsと111In標識低分子モデル基質のインキュベート実験は以下の方法で行った。タンパク質濃度を10 mg/mLとなるように調製したBBMVs (10 μL)を、37 ℃で10分間プレインキュベートした。その後、逆相HPLCによって過剰の配位子を除去してPBSに溶解した111In-CDO3AEt-FGK(Boc)溶液(10 μL)を加え、37 ℃で二時間インキュベートした。BBMVs溶液に対してエタノール濃度が60%となるようにエタノールを加え、5000rpmで10分間遠心した。上清を回収後、沈殿に60%エタノールを加え再度同様の方法で遠心した後に、上清を回収した。得られた上清を、HPLCにてImtakt Unison US-C18 150×4.6 mmを用い移動相にはA相に0.1%TFA/MilliQ、B相に0.1% TFA/MeCNを使用し、0-30分でA相 100%、B相 0%からA相 55%、B相 45%まで変化させる直線gradient法により流速1 mL/minで分析を行った。
図1は、111In-CDO3AEt-FGK(Boc)とBBMVsのインキュベートの実験結果を示す。
111In-CDO3AEt-FGK(Boc)溶液を、111In-CDOTA-Bn-CO-FGK(Boc)溶液、111In-DO3A-Bn-CO-FGK(Boc)溶液、111In-DO3A-Bn-SCN-MVK(Bzo)溶液、111In-CDO3AiBu-FGK(Boc)溶液に代えて同様のインキュベート実験及びBBMVsを使用せずコントロール実験を行った。
図2は、111In-CDOTA-Bn-CO-FGK(Boc)溶液とBBMVsのインキュベートの実験結果を示す。
図3は、111In-DO3A-Bn-SCN-MVK(Bzo)とBBMVsのインキュベートの実験結果を示す。
図4は、111In-DO3A-Bn-CO-FGK(Boc)とBBMVsのインキュベートの実験結果を示す。
図5は、111In-CDO3AiBu-FGK(Boc)とBBMVsのインキュベートの実験結果を示す。
上記の実験結果から、連結基として、本願発明の化合物と同様に、ベンジルアミド構造を有する、111In-CDO3AEt-FGK(Boc)、111In-CDOTA-Bn-CO-FGK(Boc)、111In-DO3A-Bn-CO-FGK(Boc)、111In-CDO3AiBu-FGK(Boc)では、BBMVsのインキュベートにより、キレート配位子部位が遊離されることが理解できる。これに対して、連結基としてチオウレア構造を有する化合物111In-DO3A-Bn-SCN-MVK(Bzo)では、遊離物が観測されない。
(Incubation test)
Incubation experiments of BBMVs and 111 In labeled small molecular model substrates were performed by the following methods. BBMVs (10 μL) adjusted to a protein concentration of 10 mg / mL were pre-incubated at 37 ° C. for 10 minutes. Then, 111 In-CDO3AEt-FGK (Boc) solution (10 μL) dissolved in PBS by removing excess ligand by reverse phase HPLC was added, and the mixture was incubated at 37 ° C. for 2 hours. Ethanol was added to the BBMVs solution so that the ethanol concentration was 60%, and the mixture was centrifuged at 5000 rpm for 10 minutes. After collecting the supernatant, 60% ethanol was added to the precipitate and centrifuged again in the same manner, and then the supernatant was collected. The obtained supernatant was used by HPLC using Imtakt Unison US-C18 150 × 4.6 mm, 0.1% TFA / MilliQ for the A phase and 0.1% TFA / MeCN for the B phase, and 0-30 minutes. The analysis was performed at a flow rate of 1 mL / min by the linear gradient method in which A phase was changed from 100% and B phase was 0% to A phase was 55% and B phase was 45%.
FIG. 1 shows the experimental results of incubation of 111 In-CDO3AEt-FGK (Boc) and BBMVs.
111 In-CDO3AEt-FGK (Boc) solution, 111 In-CDOTA-Bn-CO-FGK (Boc) solution, 111 In-DO3A-Bn-CO-FGK (Boc) solution, 111 In-DO3A-Bn-SCN A similar incubation experiment was performed in place of the -MVK (Bzo) solution and 111 In-CDO3AiBu-FGK (Boc) solution, and a control experiment was performed without using BBMVs.
FIG. 2 shows the experimental results of incubation of 111 In-CDOTA-Bn-CO-FGK (Boc) solution and BBMVs.
FIG. 3 shows the experimental results of incubation of 111 In-DO3A-Bn-SCN-MVK (Bzo) and BBMVs.
FIG. 4 shows the experimental results of incubation of 111 In-DO3A-Bn-CO-FGK (Boc) and BBMVs.
FIG. 5 shows the experimental results of incubation of 111 In-CDO3AiBu-FGK (Boc) and BBMVs.
From the above experimental results, 111 In-CDO3AEt-FGK (Boc), 111 In-CDOTA-Bn-CO-FGK (Boc), 111 In, which have a benzylamide structure as a linking group as in the compound of the present invention. In -DO3A-Bn-CO-FGK (Boc) and 111 In-CDO3AiBu-FGK (Boc), it can be seen that incubation of BBMVs releases the chelating ligand site. On the other hand, no free substance was observed in compound 111 In-DO3A-Bn-SCN-MVK (Bzo) having a thiourea structure as a linking group.

〔金属錯体化合物のマウス血漿中安定性の検討〕
PBSに溶解した111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来) (10 μL)をマウス血漿(90 μL)に加え、37 ℃でインキュベートした。1、3、6、24時間後に溶液の一部を採取しメタノール:10質量% 酢酸アンモニウム水溶液=3:2を展開溶媒とするRP-TLCにより分析することで、未変化体(111In-CDO3AEt-FGK-Fab)の放射活性の割合を算出し、表1に示した。
[Examination of mouse plasma stability of metal complex compounds]
111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) (10 μL) dissolved in PBS was added to mouse plasma (90 μL) and incubated at 37 ° C. After 1, 3, 6 and 24 hours, a part of the solution was sampled and analyzed by RP-TLC using methanol: 10% by mass ammonium acetate aqueous solution = 3: 2 as the developing solvent, and the unchanged form ( 111 In-CDO3AEt). The ratio of radioactivity of -FGK-Fab) was calculated and shown in Table 1.

Figure 2019065774
Figure 2019065774

111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)を、111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)に変更し、その他は上記と同様の方法で、マウス血漿中安定性試験を行った。インキュベート2時間後、未変化体(111In-CDO3AEt-FGK-Fab)の放射活性の割合は、95.2±0.3%であった。
111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)を、111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)に変更し、その他は上記と同様の方法で、マウス血漿中安定性試験を行った。インキュベート2時間後、未変化体(111In-CDOTA- Bn-CO-FGK-Fab)の放射活性の割合は、95.2±0.3%であった。
Change 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) to 111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG), and otherwise, in the same manner as above, stability in mouse plasma. The test was performed. After 2 hours of incubation, the rate of radioactivity of the unchanged form ( 111 In-CDO3AEt-FGK-Fab) was 95.2 ± 0.3%.
Change 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) to 111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG), and use the same method as above for mice. A plasma stability test was performed. After 2 hours of incubation, the rate of radioactivity of the unchanged form ( 111 In-CDOTA- Bn-CO-FGK-Fab) was 95.2 ± 0.3%.

111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)を、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)に変更し、その他は上記と同様の方法で、マウス血漿中安定性試験を行った。表2に実験結果を示す。Change 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) to 111 In-CDO3AiBu-FGK-Fab (derived from Rabbit serum IgG), and perform the mouse plasma stability test in the same manner as above. went. Table 2 shows the experimental results.

Figure 2019065774
Figure 2019065774

〔金属錯体化合物のマウス体内動態の検討〕
実施例及び比較例で作製した金属錯体化合物をD-PBS(-) (pH 7.4)を用いて希釈した。6週齢のddY系雄性マウス尾静注により、未修飾Fab濃度を5 μg/100 μLに調整した111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)溶液(0.3 μCi/100 μL/匹)を投与した。投与後10、30分、1、3、6、24時間後に各群3匹のマウスを屠殺し、関心臓器を採取、重量を測定後、オートウェルガンマシステムにより放射活性を測定した。また、6、24時間後までの糞尿をそれぞれ採取し、放射活性を測定した。同様の方法にて111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)溶液を用いて、6週齢のddY系雄性マウス尾静注により、関心臓器、糞尿について、放射活性を測定した。対照化合物として同様の方法にて調製した111In-DO3A-EDA-Fab(Rabbit serum IgG由来)を用いた。
表3は、111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)によるマウス体内の放射活性の測定結果を示す。
表4は、111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)によるマウス体内の放射活性の測定結果を示す。
表5は、111In-DO3A-EDA-Fab(Rabbit serum IgG由来)によるマウス体内の放射活性の測定結果を示す。
上記と同様の方法にて111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)溶液、111In-DO3A-Bn-SCN-MVK-Fab(Rabbit serum IgG由来)溶液、111In-DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)溶液、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)溶液、111In-CDO3AiBu-FGK-Fab(抗c-kit IgG由来)溶液、111In-DOTA-Bn-SCN-Fab(抗c-kit IgG由来)溶液を用いて、6週齢のddY系雄性マウス尾静注により、関心臓器、糞尿について、放射活性を測定した。
表6は、111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)によるマウス体内の放射活性の測定結果を示す。
表7は、111In-DO3A-Bn-SCN-MVK-Fab(Rabbit serum IgG由来)によるマウス体内の放射活性の測定結果を示す。
表8は、111In-DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)によるマウス体内の放射活性の測定結果を示す。
表9は、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)によるマウス体内の放射活性の測定結果を示す。
表10は、111In-CDO3AiBu-FGK-Fab(抗c-kit IgG由来)によるマウス体内の放射活性の測定結果を示す。
表11は、111In-DOTA-Bn-SCN-Fab(抗c-kit IgG由来)によるマウス体内の放射活性の測定結果を示す。
図6A〜Cに、111In-CDO3AEt-FGK-Fabと111In-DO3A-EDA-Fabとの結果の比較を示した。
これら本発明の化合物である111In-CDO3AEt-FGK-Fabと比較化合物である111In-DO3A-EDA-Fabとの結果から、111In-CDO3AEt-FGK-Fabは、111In-DO3A-EDA-Fabと同程度の血中濃度を示しながら、腎臓への蓄積が抑制され、低い腎臓-血液比が得られることがわかる。
上記の実験結果から、連結基として、ベンジルアミド構造を有する本願発明の化合物111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)、111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)、111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)、111In-DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)では、腎臓での放射活性が顕著に抑えられているのに対して、連結基としてチオウレア構造を有する比較化合物111In-DO3A-Bn-SCN-MVK-Fab、及びエチレン構造を有する111In-DO3A-EDA-Fab(Rabbit serum IgG由来)では、腎臓での放射活性が高い値を示す。上記結果及びBBMVsとのインキュベート試験の試験結果から、ベンジルアミド構造を有する本願発明の化合物では、酵素による代謝が行われ、腎臓に取り込まれる前に、放射性金属部位が遊離されたものと考えられ、一方で、チオウレア構造を有する比較化合物では、酵素認識されず、代謝物の遊離がなかったと考えられる。
図7A〜Cに、111In-CDO3AiBu-FGK-Fab(抗c-kit IgG由来)、111In-DOTA-Bn-SCN-Fab(抗c-kit IgG由来)、及び111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)の結果の比較を示した。
これらの結果から、111In-CDO3AiBu-FGK-Fabは、111In-CDO3AEt-FGK-Fabよりも、更に腎臓への蓄積が抑制され、より低い腎臓-血液比が得られることがわかる。
[Examination of the pharmacokinetics of metal complex compounds in mice]
The metal complex compounds prepared in Examples and Comparative Examples were diluted with D-PBS (-) (pH 7.4). 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) solution (0.3 μCi / 100 μL / animal) adjusted to 5 μg / 100 μL of unmodified Fab concentration by intravenous infusion of 6-week-old ddY male mice. Was administered. Three mice in each group were sacrificed 10, 30 minutes, 1, 3, 6, and 24 hours after administration, the organs of interest were collected, weighed, and then the radioactivity was measured by the Autowell gamma system. In addition, manure was collected up to 6 and 24 hours later, and the radioactivity was measured. In the same manner, the radioactivity of the organ of interest and manure was measured by intravenous infusion of a 6-week-old ddY male mouse using a 111 In-CDO3AEt-FGK-Fab (anti-c-kit IgG-derived) solution. .. As a control compound, 111 In-DO3A-EDA-Fab (derived from Rabbit serum IgG) prepared by the same method was used.
Table 3 shows the measurement results of radioactivity in mice by 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG).
Table 4 shows the measurement results of radioactivity in mice by 111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG).
Table 5 shows the measurement results of radioactivity in mice by 111 In-DO3A-EDA-Fab (derived from Rabbit serum IgG).
111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG) solution, 111 In-DO3A-Bn-SCN-MVK-Fab (derived from Rabbit serum IgG) solution, 111 in the same manner as above. In-DO3A-Bn-CO-FGK-Fab (derived from Rabbit serum IgG) solution, 111 In-CDO3AiBu-FGK-Fab (derived from Rabbit serum IgG) solution, 111 In-CDO3AiBu-FGK-Fab (derived from anti-c-kit IgG) ) Solution, 111 In-DOTA-Bn-SCN-Fab (derived from anti-c-kit IgG) solution was used to measure the radioactivity of the organ of interest and manure by tail intravenous injection of a 6-week-old ddY male mouse. ..
Table 6 shows the measurement results of radioactivity in mice by 111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG).
Table 7 shows the measurement results of radioactivity in mice by 111 In-DO3A-Bn-SCN-MVK-Fab (derived from Rabbit serum IgG).
Table 8 shows the measurement results of radioactivity in mice by 111 In-DO3A-Bn-CO-FGK-Fab (derived from Rabbit serum IgG).
Table 9 shows the measurement results of radioactivity in mice by 111 In-CDO3AiBu-FGK-Fab (derived from Rabbit serum IgG).
Table 10 shows the measurement results of radioactivity in mice by 111 In-CDO3AiBu-FGK-Fab (derived from anti-c-kit IgG).
Table 11 shows the measurement results of radioactivity in mice by 111 In-DOTA-Bn-SCN-Fab (derived from anti-c-kit IgG).
Figures 6A to 6C show a comparison of the results between 111 In-CDO3AEt-FGK-Fab and 111 In-DO3A-EDA-Fab.
From the results of 111 In-CDO3AEt-FGK-Fab, which is the compound of the present invention, and 111 In-DO3A-EDA-Fab, which is the comparative compound, 111 In-CDO3AEt-FGK-Fab is 111 In-DO3A-EDA-. It can be seen that while showing the same blood concentration as Fab, accumulation in the kidney is suppressed and a low kidney-blood ratio can be obtained.
From the above experimental results, the compounds of the present invention having a benzylamide structure 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) and 111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG) as linking groups. , 111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG), 111 In-DO3A-Bn-CO-FGK-Fab (derived from Rabbit serum IgG), the radioactivity in the kidney is remarkable. While suppressed, the comparative compound 111 In-DO3A-Bn-SCN-MVK-Fab having a thiourea structure as a linking group and 111 In-DO3A-EDA-Fab having an ethylene structure (derived from Rabbit serum IgG). Shows a high value of radioactivity in the kidney. From the above results and the test results of the incubation test with BBMVs, it is considered that the compound of the present invention having a benzylamide structure was metabolized by an enzyme and the radioactive metal site was released before being taken up by the kidney. On the other hand, in the comparative compound having a thiourea structure, the enzyme was not recognized and it is considered that the metabolite was not released.
Figures 7A-C show 111 In-CDO3AiBu-FGK-Fab (derived from anti-c-kit IgG), 111 In-DOTA-Bn-SCN-Fab (derived from anti-c-kit IgG), and 111 In-CDO3AEt-FGK-. A comparison of the results of Fab (derived from anti-c-kit IgG) is shown.
These results, 111 In-CDO3AiBu-FGK- Fab is 111 than In-CDO3AEt-FGK-Fab, it is suppressed further accumulation in the kidney, lower kidney - it can be seen that blood ratio.

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

Figure 2019065774
Figure 2019065774

〔尿中放射活性の分析〕
111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)をD-PBS (-)で希釈した。マウス尾静脈より、Fab濃度を5 μg/100 μLに調整した111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)溶液(4 μCi/100 μL/匹)を投与し、24時間後までに集積した尿を0.45 μmのフィルターで濾過した後、SE-HPLCにて化学形を分析した。また、回収した尿に2倍量のEtOHを加えることでタンパクを沈殿させ、15,000 gで5分間遠心した後に上清を回収した。上清を回収した後に66% EtOH溶液100 μLを用いてペレットを洗浄し、再度遠心して上清を回収する作業を2回行い、放射活性の上清への回収率を算出した。その後、EtOH濃度が15%以下になるよう上清をD-PBS (-)で希釈し、RP-HPLCによる分析を行った。
図8は、111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)をマウスに投与後24時間までに***された尿中放射活性の化学形の分析結果を示す。以上、尿中の放射活性の分析により図8Aに示すSE-HPLCによる分析で、大部分の放射活性が低分子画分で***され、図8Bに示すRP-HPLCの結果から、111In-CDO3AEt-FGK-Fabでは、低分子画分における主たる放射活性111In-CDO3AEt-Phe(111In-CDO3AEt-FGK-Fabがフェニルアラニン−グリシン間で切断された化合物)であることがわかる。
111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)を、111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)に変更し、投与後6時間後までに***された尿を集積し分析した以外は、上記と同様の方法で、尿中放射活性の分析を行った。
図9は、111In-CDOTA-Bn-CO-FGK-Fab(抗c-kit IgG由来)をマウスに投与後6時間までに***された尿中放射活性の化学形の分析結果を示す。RP-HPLCの結果から、111In-CDOTA-Bn-CO-FGK-Fabでは、低分子画分における主たる放射活性111In-CDOTA-Phe (111In-CDOTA-Bn-CO-FGK-Fabがフェニルアラニン−グリシン間で切断された化合物)であることがわかる。
111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)を、111In-DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)に変更した以外は、上記と同様の方法で、尿中放射活性の分析を行った。
図10は、111In-DO3A-Bn-CO-FGK-Fab(Rabbit serum IgG由来)をマウスに投与後24時間までに***された尿中放射活性の化学形の分析結果を示す。RP-HPLCの結果から、111In-DO3A-Bn-CO-FGK-Fabでは、低分子画分における主たる放射活性111In-DO3A-Phe (111In-DO3A-Bn-CO-FGK-Fabがフェニルアラニン−グリシン間で切断された化合物)であることがわかる。
111In-CDO3AEt-FGK-Fab(Rabbit serum IgG由来)を、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)に変更した以外は、上記と同様の方法で、尿中放射活性の分析を行った。
図11は、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)をマウスに投与後24時間までに***された尿中放射活性の化学形の分析結果を示す。以上、尿中の放射活性の分析により図11Aに示すSE-HPLCによる分析で、大部分の放射活性が低分子画分として***され、図11Bに示すRP-HPLCの結果から、111In-CDO3AiBu-FGK-Fab(Rabbit serum IgG由来)では、低分子画分における主たる放射活性が111In-CDO3AiBu-Phe (111In-CDO3AiBu-FGK-Fabがフェニルアラニン−グリシン間で切断された化合物)であることがわかる。
[Analysis of urinary radioactivity]
111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) was diluted with D-PBS (-). 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) solution (4 μCi / 100 μL / animal) with Fab concentration adjusted to 5 μg / 100 μL was administered from the mouse tail vein and accumulated by 24 hours. The urine was filtered through a 0.45 μm filter, and then the chemical form was analyzed by SE-HPLC. In addition, the protein was precipitated by adding twice the amount of EtOH to the collected urine, and the supernatant was collected after centrifugation at 15,000 g for 5 minutes. After collecting the supernatant, the pellet was washed with 100 μL of 66% EtOH solution, centrifuged again, and the supernatant was collected twice, and the recovery rate of the radioactivity to the supernatant was calculated. Then, the supernatant was diluted with D-PBS (-) so that the EtOH concentration was 15% or less, and the analysis was performed by RP-HPLC.
FIG. 8 shows the analysis results of the chemical form of urinary radioactivity excreted within 24 hours after administration of 111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) to mice. As described above, in the analysis by SE-HPLC shown in FIG. 8A by the analysis of the radioactivity in urine, most of the radioactivity was excreted in the low molecular weight fraction, and from the result of RP-HPLC shown in FIG. 8B, 111 In-CDO3AEt In -FGK-Fab, it can be seen that the main radioactivity in the low molecular weight fraction is 111 In-CDO3AEt-Phe (a compound in which 111 In-CDO3AEt-FGK-Fab is cleaved between phenylalanine and glycine).
111 In-CDO3AEt-FGK-Fab (derived from Rabbit serum IgG) was changed to 111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG) and excreted within 6 hours after administration. The urinary radioactivity was analyzed by the same method as above except that urine was collected and analyzed.
FIG. 9 shows the analysis results of the chemical form of urinary radioactivity excreted within 6 hours after administration of 111 In-CDOTA-Bn-CO-FGK-Fab (derived from anti-c-kit IgG) to mice. From the results of RP-HPLC, in 111 In-CDOTA-Bn-CO-FGK-Fab, the main radioactivity in the low molecular weight fraction 111 In-CDOTA-Phe ( 111 In-CDOTA-Bn-CO-FGK-Fab is phenylalanine). -It turns out that it is a compound cleaved between glycine).
The 111 In-CDO3AEt-FGK-Fab ( derived by Rabbit serum IgG), except for changing the 111 In-DO3A-Bn-CO -FGK-Fab ( derived by Rabbit serum IgG), in the same manner as described above, urinary radiation The activity was analyzed.
FIG. 10 shows the analysis results of the chemical form of urinary radioactivity excreted within 24 hours after administration of 111 In-DO3A-Bn-CO-FGK-Fab (derived from Rabbit serum IgG) to mice. From the results of RP-HPLC, in 111 In-DO3A-Bn-CO-FGK-Fab, the main radioactivity in the low molecular weight fraction 111 In-DO3A-Phe ( 111 In-DO3A-Bn-CO-FGK-Fab is phenylalanine). -It turns out that it is a compound cleaved between glycine).
The 111 In-CDO3AEt-FGK-Fab ( derived by Rabbit serum IgG), except for changing the 111 In-CDO3AiBu-FGK-Fab ( derived by Rabbit serum IgG), in the same manner as described above, the analysis of the urine radioactivity went.
FIG. 11 shows the analysis results of the chemical form of urinary radioactivity excreted by 24 hours after administration of 111 In-CDO3AiBu-FGK-Fab (derived from Rabbit serum IgG) to mice. As described above, in the analysis by SE-HPLC shown in FIG. 11A by the analysis of the radioactivity in urine, most of the radioactivity was excreted as a low molecular weight fraction, and from the result of RP-HPLC shown in FIG. 11B, 111 In-CDO3AiBu -In FGK-Fab (derived from Rabbit serum IgG), the main radioactivity in the low molecular weight fraction is 111 In-CDO3AiBu-Phe (a compound in which 111 In-CDO3AiBu-FGK-Fab is cleaved between phenylalanine and glycine). I understand.

〔SPECT/CT撮像〕
上述の方法により調製した111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)をD-PBS (-)で希釈した。上記SY皮下腫瘍モデルマウスの尾静脈より、Fab濃度を25 μg/100 μLに調整した111In- CDO3AEt-FGK-Fab溶液(45 μCi/100 μL/匹)を投与した。各群2匹のマウスをSPECT/CT装置(SPECT4CT, Trifoil Imaging, CA)を用いて、開口径1 mm、5穴ピンホールコリメータを360度収集、16プロジョエクション、14分/プロジェクションの条件にて、投与後2.5時間から撮像した。
111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)溶液(45 μCi/100 μL/匹)を111In-DO3A-Bn-SCN-MVK-Fab(抗c-kit IgG由来)溶液(14 μCi/100 μL/匹)に変更した以外は、同様にして、SY皮下腫瘍モデルマウスの尾静脈より投与して、投与後2.5時間から撮像した。
図12は、111In-DO3A-Bn-SCN-MVK-Fab(抗c-kit IgG由来)溶液を、又は111In-CDO3AEt-FGK-Fab(抗c-kit IgG由来)溶液をSY皮下腫瘍モデルマウスに投与後2.5時間のSPECT/CT画像である。
投与2.5時間後において、111In-CDO3AEt-FGK-Fabは腎臓への集積が低く、腫瘍を明瞭に画像化した。一方で、111In-DO3A-Bn-SCN-MVK-Fabでは、腫瘍を画像化したが、腎臓にも高い放射活性が観察された。
以上、放射性標識薬剤は、腎臓への集積が低く、放射線画像診断の感度、精度を向上させることができる。
[SPECT / CT imaging]
111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG) prepared by the above method was diluted with D-PBS (-). A 111 In-CDO3AEt-FGK-Fab solution (45 μCi / 100 μL / animal) having a Fab concentration adjusted to 25 μg / 100 μL was administered from the tail vein of the above SY subcutaneous tumor model mouse. Two mice in each group were collected using a SPECT / CT device (SPECT4CT, Trifoil Imaging, CA) with an opening diameter of 1 mm and a 5-hole pinhole collimator at 360 degrees, under the conditions of 16 projections and 14 minutes / projection. Then, images were taken from 2.5 hours after administration.
111 In-CDO3AEt-FGK-Fab (derived from anti-c-kit IgG) solution (45 μCi / 100 μL / animal) to 111 In-DO3A-Bn-SCN-MVK-Fab (derived from anti-c-kit IgG) solution (14) Except for the change to μCi / 100 μL / animal), administration was performed from the tail vein of SY subcutaneous tumor model mice in the same manner, and imaging was performed from 2.5 hours after administration.
FIG. 12 shows a SY subcutaneous tumor model using 111 In-DO3A-Bn-SCN-MVK-Fab (anti-c-kit IgG-derived) solution or 111 In-CDO3AEt-FGK-Fab (anti-c-kit IgG-derived) solution. It is a SPECT / CT image 2.5 hours after administration to mice.
At 2.5 hours after dosing, 111 In-CDO3AEt-FGK-Fab had low renal accumulation and clearly imaged the tumor. On the other hand, in 111 In-DO3A-Bn-SCN-MVK-Fab, the tumor was imaged, but high radioactivity was also observed in the kidney.
As described above, the radiolabeled drug has low accumulation in the kidney and can improve the sensitivity and accuracy of radiographic image diagnosis.

Claims (16)

下記式(1)で表される化合物、又はその薬理学的に許容可能な塩。
Figure 2019065774

〔式中、
1、A2は、それぞれ独立にアミノ酸残基であり、
mは、0〜3の整数であり、
3は、側鎖にアミノ基又はカルボキシ基を有するアミノ酸残基であり、
4は、アミノ酸残基であり、
nは、0〜3の整数であり、
1は、A3の側鎖のアミノ基又はカルボキシ基と結合し、標的分子認識素子又はその連結基と結合可能な官能基を有する基、又は、A3の側鎖のアミノ基若しくはカルボキシ基の水素原子であり、ただし、R1は、環構成原子の一つとしてA3の側鎖のアミノ基の窒素原子を含む炭素数3〜10の複素環基を形成していてもよく、
Lは、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、水素原子、−CH2COOR10基、又は炭素数1〜8の炭化水素基であり、R10は、水素原子又は炭素数1〜8の炭化水素基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、少なくとも3個以上は−CH2COOH基である。)で表される基、又は、式(L2):
Figure 2019065774

(式中、*は結合部位である。)で表される基である。〕
A compound represented by the following formula (1) or a pharmacologically acceptable salt thereof.
Figure 2019065774

[In the formula,
A 1 and A 2 are independent amino acid residues, respectively.
m is an integer from 0 to 3 and
A 3 is an amino acid residue having an amino group or a carboxy group in the side chain.
A 4 is an amino acid residue
n is an integer from 0 to 3 and
R 1 is bound to the amino group or carboxy group of the side chain of A 3, group having a binding functional group as a target molecule recognition element or a linking group, or, an amino group or carboxy group of the side chain of A 3 However, R 1 may form a heterocyclic group having 3 to 10 carbon atoms including the nitrogen atom of the amino group of the side chain of A 3 as one of the ring-constituting atoms.
L is the formula (L1):
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, −CH 2 COOR 10 groups, or a hydrocarbon group having 1 to 8 carbon atoms, and R 10 is a hydrogen atom. Alternatively, it is a hydrocarbon group having 1 to 8 carbon atoms, and * is a bond site. However, at least 3 or more of R 3 , R 4 , R 5 , and R 6 are -CH 2 COOH groups.) Group represented by, or formula (L2):
Figure 2019065774

(In the formula, * is a binding site.) Is a group represented by. ]
からAのアミノ酸配列(ただし、n=0の場合、AからAのアミノ酸配列)が、腎刷子縁膜酵素の基質配列の一部と同一の配列である、請求項1に記載の化合物、又はその薬理学的に許容可能な塩。According to claim 1, the amino acid sequences of A 1 to A 4 (where n = 0, the amino acid sequences of A 1 to A 3 ) are the same sequences as a part of the substrate sequence of the renal brush border enzyme. The compound described, or a pharmaceutically acceptable salt thereof. 3,R4,R5,R6のうち、3個が−CH2COOH基である、請求項1又は2に記載の化合物、又はその薬理学的に許容可能な塩。The compound according to claim 1 or 2, or a pharmacologically acceptable salt thereof, wherein 3 of R 3 , R 4 , R 5 and R 6 are −CH 2 COOH groups. 3が、リシン、オルニチン又はアルギニンの残基である、請求項1〜3のいずれか1項に記載の化合物、又はその薬理学的に許容可能な塩。The compound according to any one of claims 1 to 3, or a pharmacologically acceptable salt thereof, wherein A 3 is a residue of lysine, ornithine or arginine. mが、1である、請求項1〜4のいずれか1項に記載の化合物、又はその薬理学的に許容可能な塩。 The compound according to any one of claims 1 to 4, wherein m is 1, or a pharmacologically acceptable salt thereof. nが、0である、請求項1〜5のいずれか1項に記載の化合物、又はその薬理学的に許容可能な塩。 The compound according to any one of claims 1 to 5, wherein n is 0, or a pharmacologically acceptable salt thereof. 前記化合物が、下記式(1a)で表される、請求項1〜6のいずれか1項に記載の化合物、又はその薬理学的に許容可能な塩。
Figure 2019065774

〔式中、
Lは、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、水素原子、−CH2COOR10基、又は炭素数1〜8の炭化水素基であり、R10は、水素原子又は炭素数1〜8の炭化水素基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、少なくとも3以上は−CHCOOH基である。)で表される基、又は、式(L2):
Figure 2019065774

(式中、*は結合部位である。)で表される基であり、
7は、水素原子又はメチル基であり、
8,R9は、それぞれ独立に、水素原子、又は、官能基を有する総炭素数2〜20のアシル基、官能基を有する総炭素数2〜20のアルキル基、官能基を有する総炭素数2〜20のアルキルカルバモイル基、若しくは官能基を有する総炭素数2〜20のアルキルチオカルバモイル基である。ただし、R8及びR9は、隣接する窒素原子を含む複素環を形成していてもよく、その場合、式:
Figure 2019065774

で表される基は、式:
Figure 2019065774

で表される基である。〕
The compound according to any one of claims 1 to 6, wherein the compound is represented by the following formula (1a), or a pharmacologically acceptable salt thereof.
Figure 2019065774

[In the formula,
L is the formula (L1):
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, −CH 2 COOR 10 groups, or a hydrocarbon group having 1 to 8 carbon atoms, and R 10 is a hydrogen atom. Alternatively, it is a hydrocarbon group having 1 to 8 carbon atoms, and * is a bond site. However, at least 3 or more of R 3 , R 4 , R 5 , and R 6 are −CH 2 COOH groups). Group represented or formula (L2):
Figure 2019065774

(In the formula, * is a binding site.)
R 7 is a hydrogen atom or a methyl group
R 8 and R 9 are independently hydrogen atoms or acyl groups having a total carbon number of 2 to 20 having a functional group, alkyl groups having a total carbon number of 2 to 20 having a functional group, and total carbon having a functional group. It is an alkylcarbamoyl group having a number of 2 to 20, or an alkylthiocarbamoyl group having a total carbon number of 2 to 20 and having a functional group. However, R 8 and R 9 may form a heterocycle containing adjacent nitrogen atoms, in which case the equation:
Figure 2019065774

The group represented by the formula:
Figure 2019065774

It is a group represented by. ]
Lが、式(L1):
Figure 2019065774

(式中、R3,R4,R5,R6は、それぞれ独立に、−CH2COOH基、イソブチル基であり、*は結合部位である。ただし、R3,R4,R5,R6のうち、3個が−CH2COOH基であり、1個がイソブチル基である。)で表される基である、請求項1〜7のいずれか1項に記載の化合物、又はその薬理学的に許容可能な塩。
L is the formula (L1):
Figure 2019065774

(In the formula, R 3 , R 4 , R 5 , and R 6 are independently -CH 2 COOH groups and isobutyl groups, respectively, and * is a binding site. However, R 3 , R 4 , R 5 , The compound according to any one of claims 1 to 7, wherein three of R 6 are -CH 2 COOH groups and one is an isobutyl group), or a compound thereof. A pharmacologically acceptable salt.
請求項1〜8のいずれか1項に記載の化合物、又はその薬理学的に許容可能な塩に、標的分子認識素子を結合させてなる化合物、又はその薬理学的に許容可能な塩。 A compound obtained by binding a target molecule recognition element to the compound according to any one of claims 1 to 8 or a pharmacologically acceptable salt thereof, or a pharmacologically acceptable salt thereof. 放射性金属及び放射性原子標識金属からなる群から選ばれる1種の金属と、前記金属に配位した請求項1〜9のいずれか1項に記載の化合物又はその薬理的に許容可能な塩と、を有する金属錯体化合物、又はその薬理学的に許容可能な塩。 A metal selected from the group consisting of a radioactive metal and a radioactive atom-labeled metal, the compound according to any one of claims 1 to 9 coordinated to the metal, or a pharmacologically acceptable salt thereof. A metal complex compound having, or a pharmacologically acceptable salt thereof. 前記金属が、111In、223Ra、67Ga、68Ga、44Sc、90Y、177Lu、225Ac、212Bi、213Bi、212Pb、227Th、64Cu、又は67Cuである、請求項10に記載の金属錯体化合物、又はその薬理学的に許容可能な塩。Claimed that the metal is 111 In, 223 Ra, 67 Ga, 68 Ga, 44 Sc, 90 Y, 177 Lu, 225 Ac, 212 Bi, 213 Bi, 212 Pb, 227 Th, 64 Cu, or 67 Cu. Item 5. The metal complex compound according to Item 10, or a pharmacologically acceptable salt thereof. 請求項1〜11のいずれか1項に記載の化合物、又はその薬理学的に許容可能な塩を含む、放射性薬剤の調製用薬剤。 An agent for preparing a radiopharmaceutical, which comprises the compound according to any one of claims 1 to 11 or a pharmacologically acceptable salt thereof. 請求項1〜11のいずれか1項に記載の化合物、又はその薬理学的に許容可能な塩の放射性薬剤の製造のための使用。 Use of the compound according to any one of claims 1 to 11 or a pharmacologically acceptable salt thereof for producing a radiopharmaceutical. 請求項10又は11に記載の金属錯体化合物、又はその薬理学的に許容可能な塩を含む、放射性薬剤。 A radiopharmaceutical comprising the metal complex compound according to claim 10 or 11, or a pharmacologically acceptable salt thereof. 請求項10又は11に記載の金属錯体化合物、又はその薬理学的に許容可能な塩を含む、放射線治療薬。 A radiotherapeutic agent comprising the metal complex compound according to claim 10 or 11, or a pharmacologically acceptable salt thereof. 請求項10又は11に記載の金属錯体化合物、又はその薬理学的に許容可能な塩を含む、放射性画像診断薬。
A radioactive diagnostic imaging agent comprising the metal complex compound according to claim 10 or 11, or a pharmacologically acceptable salt thereof.
JP2019545585A 2017-09-26 2018-09-26 radiopharmaceutical Active JP7207740B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017185484 2017-09-26
JP2017185484 2017-09-26
PCT/JP2018/035786 WO2019065774A1 (en) 2017-09-26 2018-09-26 Radioactive drug

Publications (2)

Publication Number Publication Date
JPWO2019065774A1 true JPWO2019065774A1 (en) 2021-01-28
JP7207740B2 JP7207740B2 (en) 2023-01-18

Family

ID=65903027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019545585A Active JP7207740B2 (en) 2017-09-26 2018-09-26 radiopharmaceutical

Country Status (8)

Country Link
US (1) US11167050B2 (en)
EP (1) EP3689892A4 (en)
JP (1) JP7207740B2 (en)
KR (1) KR20200056979A (en)
CN (1) CN111065646B (en)
CA (1) CA3086454A1 (en)
SG (1) SG11202002528SA (en)
WO (1) WO2019065774A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3543337T3 (en) 2016-11-18 2022-05-09 Astellas Pharma Inc Hitherto UNKNOWN FAB FRAGMENT OF AN ANTI-HUMAN MUC1 ANTIBODY
TWI795415B (en) 2017-07-07 2023-03-11 日商安斯泰來製藥股份有限公司 A novel anti-human CEACAM5 antibody Fab fragment
JP7327762B2 (en) * 2018-04-16 2023-08-16 日本メジフィジックス株式会社 Modified antibodies and radiometal-labeled antibodies
WO2020093055A2 (en) 2018-11-02 2020-05-07 Indi Molecular, Inc. Peptide libraries with non-canonical amino acids
AU2020207081A1 (en) 2019-01-07 2021-08-12 Astellas Pharma Inc. Conjugate comprising ligand and CEACAM5 antibody Fab fragment
JPWO2021177390A1 (en) 2020-03-04 2021-09-10
WO2022098745A1 (en) * 2020-11-03 2022-05-12 Indi Molecular, Inc. Compositions, delivery systems, and methods useful in tumor therapy
KR20230154183A (en) 2021-03-04 2023-11-07 니혼 메디피직스 가부시키가이샤 Compounds and Radiolabeled Compounds
WO2023100852A1 (en) 2021-11-30 2023-06-08 日本メジフィジックス株式会社 Stabilized radiopharmaceutical composition
CN114685389B (en) * 2022-03-04 2023-10-27 复旦大学附属中山医院 PET imaging agent based on Michael addition, preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047821A (en) * 2003-07-30 2005-02-24 Nihon Medi Physics Co Ltd Diagnostic or therapeutic medicine using cyclopentadienyl carbonyl group-containing radiactive compound
WO2013081091A1 (en) * 2011-12-01 2013-06-06 国立大学法人 千葉大学 Drug for producing radiolabeled polypeptide reducing non-specific renal accumulation
JP2015086213A (en) * 2013-03-25 2015-05-07 国立大学法人 千葉大学 Radioactive nuclide labeling octreotide derivative
WO2017150549A1 (en) * 2016-03-01 2017-09-08 国立大学法人 千葉大学 Radiolabeled drug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047821A (en) * 2003-07-30 2005-02-24 Nihon Medi Physics Co Ltd Diagnostic or therapeutic medicine using cyclopentadienyl carbonyl group-containing radiactive compound
WO2013081091A1 (en) * 2011-12-01 2013-06-06 国立大学法人 千葉大学 Drug for producing radiolabeled polypeptide reducing non-specific renal accumulation
JPWO2013081091A1 (en) * 2011-12-01 2015-04-27 国立大学法人 千葉大学 Drug for producing radiolabeled polypeptide with reduced nonspecific renal accumulation
JP2015086213A (en) * 2013-03-25 2015-05-07 国立大学法人 千葉大学 Radioactive nuclide labeling octreotide derivative
WO2017150549A1 (en) * 2016-03-01 2017-09-08 国立大学法人 千葉大学 Radiolabeled drug

Also Published As

Publication number Publication date
JP7207740B2 (en) 2023-01-18
SG11202002528SA (en) 2020-04-29
EP3689892A4 (en) 2021-05-12
WO2019065774A1 (en) 2019-04-04
KR20200056979A (en) 2020-05-25
CN111065646B (en) 2023-05-30
EP3689892A1 (en) 2020-08-05
CN111065646A (en) 2020-04-24
US11167050B2 (en) 2021-11-09
CA3086454A1 (en) 2019-04-04
US20200268913A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP7207740B2 (en) radiopharmaceutical
JP6966741B2 (en) Radioactive labeling drug
RU2592685C2 (en) Radioactive labelled peptides binding to her2
JP2021506784A (en) Complex containing PSMA targeting compound linked to lead or thorium radionuclide
JP6164556B2 (en) Drug for producing radiolabeled polypeptide with reduced nonspecific renal accumulation
Lee et al. Synthesis and biological evaluation of RGD peptides with the 99m Tc/188 Re chelated iminodiacetate core: Highly enhanced uptake and excretion kinetics of theranostics against tumor angiogenesis
WO2019151384A1 (en) Radioactive pharmaceutical
US20220054663A1 (en) Method for labeling of sensitive and thermosensitive targeting biomolecules with technetium based compounds
CN117042812A (en) CXCR 4-ligands and precursors thereof for diagnostic and therapeutic uses
JP5481673B2 (en) Radiolabeled drug
Gniazdowska et al. Synthesis, radiochemistry and stability of the conjugates of technetium-99m complexes with Substance P
JP5604680B2 (en) Radiolabeled drug
Babich et al. 6-Mercaptomethylpyridine-3-carboxylic acid (MEMNIC): a new reagent for peptide labeling with Tc-99m
WO2024143314A1 (en) Radiolabeled medicine
WO2022080481A1 (en) Radioactive complexes of anti-her2 antibody, and radiopharmaceutical
Kelderman et al. Technetium Nitrido Complexes of Tetradentate Thiosemicarbazones: Kit-Based Radiolabeling, Characterization, and In Vivo Evaluation
AU2022250323A1 (en) Radioactive complex of anti-egfr antibody, and radiopharmaceutical
JP2024517879A (en) Chelating agents for radioactive metals and methods of making and using same
JP5971867B2 (en) Gallium labeled drug
Schiller et al. 188Re (III)-” 4+ 1”-MIXED-LIGAND COMPLEXES: STABILITY STUDIES AND LABELING OF BIOMOLECULES
JP2015083546A (en) Radioactive labeling agent for inspection/therapy of cancer primary focus/bone metastasis

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221223

R150 Certificate of patent or registration of utility model

Ref document number: 7207740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150