JPWO2019049876A1 - Silicon substrate used for manufacturing epitaxial silicon thin films and its manufacturing method - Google Patents

Silicon substrate used for manufacturing epitaxial silicon thin films and its manufacturing method Download PDF

Info

Publication number
JPWO2019049876A1
JPWO2019049876A1 JP2019540973A JP2019540973A JPWO2019049876A1 JP WO2019049876 A1 JPWO2019049876 A1 JP WO2019049876A1 JP 2019540973 A JP2019540973 A JP 2019540973A JP 2019540973 A JP2019540973 A JP 2019540973A JP WO2019049876 A1 JPWO2019049876 A1 JP WO2019049876A1
Authority
JP
Japan
Prior art keywords
layer
silicon
silicon substrate
thin film
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019540973A
Other languages
Japanese (ja)
Inventor
伊原学
長谷川馨
高澤千明
松浦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Publication of JPWO2019049876A1 publication Critical patent/JPWO2019049876A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates

Abstract

2層ポーラスシリコン(DLPS)を使用したエピタキシャルシリコン薄膜の製造において、欠陥の少ない高品質なエピタキシャルシリコン薄膜を提供し、ひいては高効率な単結晶シリコン太陽電池等を低コストで提供することを課題とし、低多孔度層(LPL)と高多孔度層(HPL)からなる2層ポーラスシリコン層を有するシリコン基板(DLPS)において、低多孔度層(LPL)の下記式(1)で表される表面粗さ(Rms)を、0.3nm以下となるようにすることにより上記課題を解決した。【数1】[式(1)において、lは基準長さ、Z(x)は位置xにおける基準線からの高低差である。]In the production of epitaxial silicon thin films using two-layer porous silicon (DLPS), the challenge is to provide high-quality epitaxial silicon thin films with few defects, and by extension, to provide highly efficient single crystal silicon solar cells and the like at low cost. In a silicon substrate (DLPS) having a two-layer porous silicon layer composed of a low-porous layer (LPL) and a high-porous layer (HPL), the surface of the low-porous layer (LPL) represented by the following formula (1). The above problem was solved by setting the roughness (Rms) to 0.3 nm or less. [Equation 1] [In the equation (1), l is the reference length, and Z (x) is the height difference from the reference line at the position x. ]

Description

本発明は、単結晶シリコン太陽電池等に使用されるエピタキシャルシリコン薄膜を製造するためのシリコン基板やその製造方法に関する。
また、本発明は、単結晶シリコン太陽電池等に使用されるエピタキシャルシリコン薄膜中の結晶欠陥を低減させる低欠陥化方法に関する。
The present invention relates to a silicon substrate for producing an epitaxial silicon thin film used for a single crystal silicon solar cell or the like, and a method for producing the same.
The present invention also relates to a defect reduction method for reducing crystal defects in an epitaxial silicon thin film used in a single crystal silicon solar cell or the like.

太陽の光エネルギーを電気エネルギーに変換することにより発電する太陽電池は、環境問題に対する関心の高まりに伴い、種々の素材・構成のものが開発されている。
高純度シリコン単結晶ウェハーを半導体基板として利用する単結晶シリコン太陽電池は、最も古くから使われており、エネルギー変換効率が高い反面、コストが高くなりやすいという欠点がある。
シリコン層を薄くすることで、原料コスト等を削減した単結晶薄膜シリコン太陽電池が提案されている。
Solar cells, which generate electricity by converting the light energy of the sun into electrical energy, have been developed with various materials and configurations in response to growing interest in environmental issues.
Single crystal silicon solar cells that use high-purity silicon single crystal wafers as semiconductor substrates have been used for the longest time, and while they have high energy conversion efficiency, they tend to be costly.
A single crystal thin film silicon solar cell has been proposed in which the cost of raw materials is reduced by making the silicon layer thinner.

単結晶薄膜シリコン太陽電池の製造方法として、2層ポーラスシリコン(DLPS;Double Layer Porous Silicon)を使用した方法が、報告されている(非特許文献1及び非特許文献2)。
2層ポーラスシリコン(DLPS)とは、単結晶シリコン基板(ウェハー)上に形成された、孔の密度の異なる2つの層からなる多孔質シリコンである。DLPSのシリコン基板側は高多孔度層(HPL;High Porosity Layer)、表面側は低多孔度層(LPL;Low Porosity Layer)となっている。
低多孔度層(LPL)はその上にシリコン薄膜をエピタキシャル成長させるためのシード層として作用し、高多孔度層(HPL)は剥離のための犠牲層である。高多孔度層(HPL)を剥離した後の下地の単結晶シリコン基板は、再利用することができる。
As a method for producing a single crystal thin-film silicon solar cell, a method using double-layer porous silicon (DLPS; Double Layer Porous Silicon) has been reported (Non-Patent Document 1 and Non-Patent Document 2).
The two-layer porous silicon (DLPS) is a porous silicon formed on a single crystal silicon substrate (wafer) and composed of two layers having different pore densities. The silicon substrate side of the DLPS is a high porosity layer (HPL; High Porosity Layer), and the surface side is a low porosity layer (LPL; Low Porosity Layer).
The low porosity layer (LPL) acts as a seed layer for epitaxially growing a silicon thin film on it, and the high porosity layer (HPL) is a sacrificial layer for exfoliation. The underlying single crystal silicon substrate after the highly porous layer (HPL) has been peeled off can be reused.

また、単結晶シリコン薄膜をエピタキシャル成長させる方法としては、物理気相蒸着(PVD;Physical Vapor Deposition)法や、化学気相蒸着(CVD;Chemical Vapor Deposition)法等がある。
CVD法の中でも、従来の方法と比較して約10倍以上の成長速度を実現できる急速蒸着(RVD;Rapid Vapor Deposition)法が報告されている(非特許文献3)。RVD法は、シリコン源を、シリコンの融点よりも遥かに高い2000℃程度に加熱する方法であり、10〜20μm/min程度の製膜速度を実現することができる。
Further, as a method for epitaxially growing a single crystal silicon thin film, there are a physical vapor deposition (PVD) method, a chemical vapor deposition (CVD) method, and the like.
Among the CVD methods, a rapid vapor deposition (RVD) method capable of achieving a growth rate of about 10 times or more that of a conventional method has been reported (Non-Patent Document 3). The RVD method is a method of heating a silicon source to about 2000 ° C., which is much higher than the melting point of silicon, and can realize a film forming speed of about 10 to 20 μm / min.

本発明者らは、2層ポーラスシリコン(DLPS)の表面をランプヒーターで高速走査することにより、低多孔度層(LPL)表面を平滑化させるゾーンヒーティング再結晶化(ZHR;Zone−Heating Recrystallization)法を以前報告した(非特許文献4)。
ゾーンヒーティング再結晶化(ZHR)法は、特許文献1や特許文献2等に記載の帯域溶融再結晶化法を応用したものである。帯域溶融再結晶化法は、ゾーンメルティング再結晶化(ZMR;Zone−Melting Recrystallization)法とも呼ばれ、上下を酸化シリコン層で挟まれたアモルファスシリコン薄膜の層を、シリコンの融点(1414℃)を超える温度まで加熱溶融し再結晶させることで、アモルファスシリコン層の結晶性を向上させる方法である。
ゾーンヒーティング再結晶化(ZHR)法は、2層ポーラスシリコン(DLPS)の表面をランプヒーターで高速走査し加熱することで低多孔度層(LPL)表面を平滑化させる方法である。ZHR法では、ZMR法で用いる装置と同様の装置を使用可能である。
The present inventors smooth the surface of the low-porous layer (LPL) by scanning the surface of the two-layer porous silicon (DLPS) at high speed with a lamp heater. Zone-Heating Recrystallization (ZHR) ) The method was previously reported (Non-Patent Document 4).
The zone heating recrystallization (ZHR) method is an application of the band melting recrystallization method described in Patent Document 1 and Patent Document 2. The zone melting recrystallization method is also called a zone melting recrystallization (ZMR) method, in which a layer of an amorphous silicon thin film sandwiched between silicon oxide layers is formed at the melting point of silicon (1414 ° C.). This is a method for improving the crystallinity of an amorphous silicon layer by heating and melting to a temperature exceeding the above and recrystallizing.
The zone heating recrystallization (ZHR) method is a method of smoothing the surface of a low-porous layer (LPL) by scanning the surface of two-layer porous silicon (DLPS) at high speed with a lamp heater and heating it. In the ZHR method, a device similar to the device used in the ZMR method can be used.

コストを抑えつつ、高効率な単結晶シリコン太陽電池を製造する技術の開発が切望されている。単結晶シリコン薄膜の質は、太陽電池としての性能に大きく影響するため、良質な単結晶シリコン薄膜を製造する技術を確立することにより、高効率な単結晶シリコン太陽電池を製造することが可能となる。
従来方法で製造される単結晶シリコン薄膜の品質には、まだまだ改善の余地があり、より高品質な単結晶シリコン薄膜を製造する技術の確立が望まれている。
There is an urgent need to develop a technology for manufacturing highly efficient single crystal silicon solar cells while keeping costs down. Since the quality of a single crystal silicon thin film greatly affects the performance as a solar cell, it is possible to manufacture a highly efficient single crystal silicon solar cell by establishing a technology for manufacturing a high quality single crystal silicon thin film. Become.
There is still room for improvement in the quality of the single crystal silicon thin film produced by the conventional method, and it is desired to establish a technique for producing a higher quality single crystal silicon thin film.

特開2001−274084号公報Japanese Unexamined Patent Publication No. 2001-274804 特開2003−160396号公報Japanese Unexamined Patent Publication No. 2003-160396

H. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysen, M. Debucquoy, J. Govaerts, I. Gordon, R. Mertens, J. Poortmans, IEEE J. Photovoltaics 4, (2014), 70.H. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysen, M. Debucquoy, J. Govaerts, I. Gordon, R. Mertens, J. Poortmans, IEEE J. Photovoltaics 4, (2014), 70. J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, R. Brendel, Prog. Photovoltaics: Res. Appl. 20, (2012), 1.J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, R. Brendel, Prog. Photovoltaics: Res. Appl. 20, (2012), 1. Y. Yamasaki, K. Hasegawa, T. Osawa, S. Noda, CrystEngComm, 18, (2016), 3404Y. Yamasaki, K. Hasegawa, T. Osawa, S. Noda, CrystEngComm, 18, (2016), 3404 A. Lukianov, K. Murakami, C. Takazawa, M. Ihara, Applied Physics Letters 108, (2016), 213904A. Lukianov, K. Murakami, C. Takazawa, M. Ihara, Applied Physics Letters 108, (2016), 213904

本発明は上記背景技術に鑑みてなされたものであり、その課題は、2層ポーラスシリコン(DLPS)を使用した単結晶シリコン太陽電池等に使用されるエピタキシャルシリコン薄膜の製造において、より高品質なエピタキシャルシリコン薄膜を提供し、ひいては高効率な単結晶シリコン太陽電池等を低コストで提供することにある。 The present invention has been made in view of the above background technology, and the subject thereof is higher quality in the production of epitaxial silicon thin films used for single crystal silicon solar cells and the like using two-layer porous silicon (DLPS). An object of the present invention is to provide an epitaxial silicon thin film, and thus to provide a highly efficient single crystal silicon solar cell or the like at low cost.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、2層ポーラスシリコン(DLPS)の低多孔度層(LPL)のナノレベルでの表面粗さを低減することにより、該低多孔度層(LPL)をシード層としてエピタキシャル成長により製膜されるシリコン薄膜の結晶欠陥を低減することができることを見出した。 As a result of diligent studies to solve the above problems, the present inventor has reduced the surface roughness of the low porosity layer (LPL) of the two-layer porous silicon (DLPS) at the nano level. It has been found that it is possible to reduce crystal defects of a silicon thin film formed by epitaxial growth using a porous layer (LPL) as a seed layer.

すなわち、本発明は、エピタキシャルシリコン薄膜を製造するための、低多孔度層と高多孔度層からなる2層ポーラスシリコン層を有するシリコン基板であって、
該低多孔度層の下記式(1)で表される表面粗さ(Rms)が、0.3nm以下であることを特徴とするシリコン基板を提供するものである。
That is, the present invention is a silicon substrate having a two-layer porous silicon layer composed of a low-porous layer and a high-porous layer for producing an epitaxial silicon thin film.
Provided is a silicon substrate characterized in that the surface roughness (R ms ) of the low porosity layer represented by the following formula (1) is 0.3 nm or less.

式(1)において、lは基準長さ、Z(x)は位置xにおける基準線からの高低差である。 In the formula (1), l is the reference length, and Z (x) is the height difference from the reference line at the position x.

また、本発明は、エピタキシャルシリコン薄膜を製造するための、低多孔度層と高多孔度層からなる2層ポーラスシリコン層を有するシリコン基板の製造方法であって、
該低多孔度層の表面に、ゾーンヒーティング再結晶化法による熱処理を施すことにより、該低多孔度層の下記式(1)で表される表面粗さ(Rms)を、0.3nm以下まで低下させることを特徴とするシリコン基板の製造方法を提供するものである。
Further, the present invention is a method for manufacturing a silicon substrate having a two-layer porous silicon layer composed of a low-porous layer and a high-porous layer for manufacturing an epitaxial silicon thin film.
By heat-treating the surface of the low-porous layer by a zone heating recrystallization method, the surface roughness (R ms ) of the low-porous layer represented by the following formula (1) is reduced to 0.3 nm. It provides a method for manufacturing a silicon substrate, which is characterized by reducing the amount to the following.

式(1)において、lは基準長さ、Z(x)は位置xにおける基準線からの高低差である。 In the formula (1), l is the reference length, and Z (x) is the height difference from the reference line at the position x.

また、本発明は、エピタキシャルシリコン薄膜中の結晶欠陥を低減させる低欠陥化方法であって、
単結晶シリコン基板上に、低多孔度層と高多孔度層からなる2層ポーラスシリコン層を陽極酸化法により形成する工程(A)と、
該低多孔度層の表面をゾーンヒーティング再結晶化法により熱処理する工程(B)と、
該低多孔度層の表面に、エピタキシャルシリコン薄膜を製膜する工程(C)と、
を含む低欠陥化方法を提供するものである。
Further, the present invention is a defect reduction method for reducing crystal defects in an epitaxial silicon thin film.
A step (A) of forming a two-layer porous silicon layer composed of a low-porous layer and a high-porous layer on a single crystal silicon substrate by an anodizing method.
The step (B) of heat-treating the surface of the low-porous layer by the zone heating recrystallization method, and
A step (C) of forming an epitaxial silicon thin film on the surface of the low porosity layer,
It provides a method for reducing defects including.

本発明によれば、2層ポーラスシリコン(DLPS)を使用した単結晶シリコン太陽電池等に使用されるエピタキシャルシリコン薄膜の製造において、より高品質なエピタキシャルシリコン薄膜を提供することができる。
本発明のシリコン基板は、太陽電池のみならず、良質なシリコン薄膜を必要とするSiパワーデバイス等、低コスト・高性能な電子デバイス用基板としても利用可能である。
According to the present invention, it is possible to provide a higher quality epitaxial silicon thin film in the production of an epitaxial silicon thin film used for a single crystal silicon solar cell or the like using two-layer porous silicon (DLPS).
The silicon substrate of the present invention can be used not only as a substrate for solar cells but also as a substrate for low-cost and high-performance electronic devices such as Si power devices that require a high-quality silicon thin film.

2層ポーラスシリコン(DLPS)を使用してエピタキシャルシリコン薄膜を製膜する場合、歩留まりの達成の点からは、高多孔度層(HPL)の機械的強度を下げ、剥離させやすくする必要がある一方、薄膜成長のシード層となる低多孔度層(LPL)は、成長する薄膜の膜質に直結する。
本発明では、高多孔度層(HPL)の剥離しやすさと、製膜されるエピタキシャルシリコン薄膜の品質(低欠陥であること)を両立することができる。
エピタキシャルシリコン薄膜が低欠陥であることにより、再結合中心が少なくなり、その結果、キャリアライフタイムの長い高効率な単結晶シリコン太陽電池等を提供することができるところ、本発明によれば、薄膜成長のシード層となる低多孔度層(LPL)の表面に、「エピタキシャルシリコン薄膜に欠陥を生じさせるような表面粗さ」がないので、その上に形成されるエピタキシャルシリコン薄膜の低欠陥が実現される。
When forming an epitaxial silicon thin film using two-layer porous silicon (DLPS), it is necessary to reduce the mechanical strength of the highly porous layer (HPL) to make it easier to peel off from the viewpoint of achieving yield. The low-porous layer (LPL), which is the seed layer for thin film growth, is directly linked to the film quality of the growing thin film.
In the present invention, it is possible to achieve both the ease of peeling of the highly porous layer (HPL) and the quality (low defects) of the epitaxial silicon thin film to be formed.
Since the epitaxial silicon thin film has low defects, the number of recombination centers is reduced, and as a result, a highly efficient single crystal silicon solar cell having a long carrier lifetime can be provided. According to the present invention, the thin film Since the surface of the low porosity layer (LPL), which is the seed layer for growth, does not have "surface roughness that causes defects in the epitaxial silicon thin film", low defects of the epitaxial silicon thin film formed on the surface are realized. Will be done.

本発明では、シード層(LPL)上のエピタキシャルシリコン薄膜の製膜をRVD法で実施した場合に、高品質(低欠陥)な薄膜を製膜することができることが確認されている。
RVD法は、10〜20μm/min程度という高速製膜が可能であることから、生産性が高い。一方、高速で製膜を行う場合、薄膜の結晶性の制御が困難になる傾向がある。
本発明では、エピタキシャルシリコン薄膜の下地となるDLPSの表面を、特定の表面粗さ(Rms)になるように処理することにより、RVD法等による高速製膜をした場合であっても、高品質なエピタキシャルシリコン薄膜を製膜することができる。
In the present invention, it has been confirmed that when the epitaxial silicon thin film on the seed layer (LPL) is formed by the RVD method, a high quality (low defect) thin film can be formed.
The RVD method is highly productive because it enables high-speed film formation of about 10 to 20 μm / min. On the other hand, when the film is formed at high speed, it tends to be difficult to control the crystallinity of the thin film.
In the present invention, the surface of DLPS, which is the base of the epitaxial silicon thin film, is treated so as to have a specific surface roughness ( RMs ), so that the film is high even when high-speed film formation by the RVD method or the like is performed. A high quality epitaxial silicon thin film can be formed.

また、2層ポーラスシリコン(DLPS)の高多孔度層(HPL)を剥離した後の下地の単結晶シリコン基板は、再利用することができるが、何度も繰り返し使用した後のシリコン基板(ウェハー)は、物理的変化によりDLPS形成用としては再利用できなくなったとしても、RVD法のシリコン源としては、十分に利用可能である。
このため、本発明において、エピタキシャルシリコン薄膜をRVD法により製膜すれば、高価なシリコンウェハーを無駄なく利用することができる。
Further, the underlying single crystal silicon substrate after peeling off the highly porous layer (HPL) of the two-layer porous silicon (DLPS) can be reused, but the silicon substrate (wafer) after being used over and over again. ) Can be sufficiently used as a silicon source for the RVD method even if it cannot be reused for DLPS formation due to physical changes.
Therefore, in the present invention, if the epitaxial silicon thin film is formed by the RVD method, an expensive silicon wafer can be used without waste.

本発明を利用したエピタキシャルシリコン薄膜の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of the epitaxial silicon thin film using this invention. 2層ポーラスシリコン(DLPS)層の断面のFE−SEM(電界放出形走査電子顕微鏡)像である。It is an FE-SEM (field emission scanning electron microscope) image of the cross section of a two-layer porous silicon (DLPS) layer. ゾーンヒーティング再結晶化(ZHR)法による熱処理を示す模式図である。It is a schematic diagram which shows the heat treatment by the zone heating recrystallization (ZHR) method. ゾーンヒーティング再結晶化(ZHR)法による熱処理の条件と(a)表面粗さ(Rms)、(b)細孔径(Dpore)の関係を示すグラフである。It is a graph which shows the relationship between the condition of the heat treatment by the zone heating recrystallization (ZHR) method, (a) surface roughness ( RMs ), (b) pore diameter (D pore ). 急速蒸着(RVD)法により製膜したシリコン薄膜のXRDスペクトルを示すグラフである。 (a)out of plane (b)in planeIt is a graph which shows the XRD spectrum of the silicon thin film formed by the rapid vapor deposition (RVD) method. (A) out of plane (b) in plane 低多孔度層(LPL)の表面粗さ(Rms)とエピタキシャルシリコン薄膜の結晶欠陥との関係を示すグラフである。It is a graph showing the relationship between the surface roughness of the low porosity layer (LPL) and (R ms) and crystal defects of the epitaxial silicon thin film. ゾーンヒーティング再結晶化(ZHR)法による熱処理の条件と表面粗さ(Rms)の関係を示すグラフである。Zone Heating recrystallization (ZHR) method by heat treatment conditions and the surface roughness is a graph showing the relationship between (R ms).

以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。 Hereinafter, the present invention will be described, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out.

本発明は、エピタキシャルシリコン薄膜を製造するためシリコン基板、該シリコン基板の製造方法、及び、エピタキシャルシリコン薄膜中の結晶欠陥を低減させる低欠陥化方法に関する。
本発明のシリコン基板は、単結晶シリコン太陽電池、シリコンパワーデバイス等の用途に使用される。
The present invention relates to a silicon substrate for manufacturing an epitaxial silicon thin film, a method for manufacturing the silicon substrate, and a defect reduction method for reducing crystal defects in the epitaxial silicon thin film.
The silicon substrate of the present invention is used for applications such as single crystal silicon solar cells and silicon power devices.

本発明を利用した単結晶エピタキシャルシリコン薄膜の製造プロセスの一例の模式図を図1に示す。 FIG. 1 shows a schematic diagram of an example of a manufacturing process of a single crystal epitaxial silicon thin film using the present invention.

まず、単結晶シリコン基板(ウェハー)上に、陽極酸化法により、低多孔度層(LPL)と高多孔度層(HPL)からなる2層ポーラスシリコン(DLPS)層を形成する(工程(A))。 First, a two-layer porous silicon (DLPS) layer composed of a low-porous layer (LPL) and a high-porous layer (HPL) is formed on a single crystal silicon substrate (wafer) by an anodization method (step (A)). ).

次いで、低多孔度層(LPL)の表面を、ゾーンヒーティング再結晶化(ZHR)法により熱処理する(工程(B))。ZHR法による熱処理により、後述の工程(C)を行うことによりLPLの表面に成長する単結晶エピタキシャルシリコン薄膜中の結晶欠陥が低減される。すなわち、単結晶シリコン太陽電池等に使用される、高品質なシリコン薄膜を形成することができる。 Next, the surface of the low porosity layer (LPL) is heat-treated by the zone heating recrystallization (ZHR) method (step (B)). The heat treatment by the ZHR method reduces crystal defects in the single crystal epitaxial silicon thin film that grows on the surface of the LPL by performing the step (C) described later. That is, it is possible to form a high-quality silicon thin film used for a single crystal silicon solar cell or the like.

ZHR法による熱処理後、フッ化水素酸(HF)等で洗浄後、LPLをシード層とし、LPLの表面に、エピタキシャルシリコン薄膜を製膜する(工程(C))。
工程(C)は、どのような方法で実施してもよいが、急速蒸着(RVD)法により実施するのが特に好ましい。
After heat treatment by the ZHR method, after washing with hydrofluoric acid (HF) or the like, an epitaxial silicon thin film is formed on the surface of the LPL using the LPL as a seed layer (step (C)).
The step (C) may be carried out by any method, but it is particularly preferable to carry out the step (C) by a rapid vapor deposition (RVD) method.

最後に、HPLを犠牲層として、エピタキシャルシリコン薄膜を、単結晶シリコン基板(ウェハー)から剥離する(工程(D))。剥離されたエピタキシャルシリコン薄膜は、単結晶シリコン太陽電池用等に使用することができる。また、剥離後のウェハーを、回収し、再利用することができる。 Finally, the epitaxial silicon thin film is peeled from the single crystal silicon substrate (wafer) using the HPL as a sacrificial layer (step (D)). The peeled epitaxial silicon thin film can be used for a single crystal silicon solar cell or the like. In addition, the peeled wafer can be recovered and reused.

本発明のシリコン基板を使用して、エピタキシャルシリコン薄膜の製造を行なった場合、製造されたエピタキシャルシリコン薄膜には、DLPSのLPL部分に由来するポーラス構造が下地として残存することになるので、本発明のシリコン基板を使用して製造されたエピタキシャルシリコン薄膜は、他の方法で製造されたシリコン薄膜とは、容易に区別することができる。 When the epitaxial silicon thin film is manufactured using the silicon substrate of the present invention, the porous structure derived from the LPL portion of DLPS remains as a base in the manufactured epitaxial silicon thin film. The epitaxial silicon thin film produced by using the silicon substrate of the above can be easily distinguished from the silicon thin film produced by other methods.

本発明は、エピタキシャルシリコン薄膜中の結晶欠陥を低減させる低欠陥化方法である。
本発明では、工程(B)の熱処理により、LPLの表面粗さを低減することにより、工程(C)で製膜されるエピタキシャルシリコン薄膜中の結晶欠陥を大幅に低減化させることができる。
The present invention is a defect reduction method for reducing crystal defects in an epitaxial silicon thin film.
In the present invention, by reducing the surface roughness of the LPL by the heat treatment in the step (B), it is possible to significantly reduce the crystal defects in the epitaxial silicon thin film formed in the step (C).

本発明のシリコン基板は、エピタキシャルシリコン薄膜を製造するための基板である。 The silicon substrate of the present invention is a substrate for manufacturing an epitaxial silicon thin film.

本発明のシリコン基板は、低多孔度層(LPL)と高多孔度層(HPL)からなる2層ポーラスシリコン(DLPS)の層を有している。図2に、本発明のシリコン基板のFE−SEM(電界放出形走査電子顕微鏡)像の一例を示す。
DLPSの層は、単結晶シリコン基板(ウェハー)上に、公知の方法(例えば、非特許文献1や非特許文献2に記載の2段階の陽極酸化法)で形成される。
The silicon substrate of the present invention has a two-layer porous silicon (DLPS) layer composed of a low-porous layer (LPL) and a high-porous layer (HPL). FIG. 2 shows an example of an FE-SEM (field emission scanning electron microscope) image of the silicon substrate of the present invention.
The DLPS layer is formed on a single crystal silicon substrate (wafer) by a known method (for example, a two-step anodizing method described in Non-Patent Document 1 and Non-Patent Document 2).

本発明において、低多孔度層(LPL)の下記式(1)で表される表面粗さ(Rms)は、0.3nm以下である。
In the present invention, the surface roughness (R ms ) of the low porosity layer (LPL) represented by the following formula (1) is 0.3 nm or less.

式(1)において、lは基準長さ、Z(x)は位置xにおける基準線からの高低差である。
なお、以下、本明細書において、単に「表面粗さ」という場合、上記式(1)で表される表面粗さのことをいう。
In the formula (1), l is the reference length, and Z (x) is the height difference from the reference line at the position x.
Hereinafter, in the present specification, the term "surface roughness" simply means the surface roughness represented by the above formula (1).

低多孔度層(LPL)の表面粗さ(Rms)は、0.28nm以下であることが好ましく、0.26nm以下であることがより好ましく、0.24nm以下であることが更に好ましく、0.22nm以下であることが特に好ましい。The surface roughness (R ms ) of the low porosity layer (LPL) is preferably 0.28 nm or less, more preferably 0.26 nm or less, further preferably 0.24 nm or less, and 0. It is particularly preferably .22 nm or less.

本発明において、低多孔度層(LPL)は、その上にエピタキシャルシリコン薄膜を製膜するためのシード層である。低多孔度層(LPL)の表面粗さを、上記範囲になるまで、ナノレベルで平滑化させることにより、LPL上に製膜されるエピタキシャルシリコン薄膜中の結晶欠陥が十分に低減化され、該薄膜を使用することにより、高効率な単結晶シリコン太陽電池等を製造することが可能となる。 In the present invention, the low porosity layer (LPL) is a seed layer for forming an epitaxial silicon thin film on the layer. By smoothing the surface roughness of the low porosity layer (LPL) at the nano level until it reaches the above range, crystal defects in the epitaxial silicon thin film formed on the LPL are sufficiently reduced. By using a thin film, it becomes possible to manufacture a highly efficient single crystal silicon solar cell or the like.

LPLの表面粗さ(Rms)を上記範囲内にする方法は問わないが、本発明を利用した単結晶エピタキシャルシリコン薄膜の製造プロセスにおいては、LPL上にエピタキシャルシリコン薄膜を製造した後、HPLを犠牲層として引き剥がす。歩留まり向上のために、HPLは剥離しやすく、かつ、LPLの表面粗さが低減されているのが望ましい。これらの両立のために、ZHR法による熱処理を行うことにより、表面粗さを上記範囲になるようにするのが好ましい。The method for keeping the surface roughness (R ms ) of the LPL within the above range is not limited, but in the manufacturing process of the single crystal epitaxial silicon thin film using the present invention, the HPL is produced after the epitaxial silicon thin film is manufactured on the LPL. Peel off as a sacrificial layer. In order to improve the yield, it is desirable that the HPL is easily peeled off and the surface roughness of the LPL is reduced. In order to achieve both of these, it is preferable to perform heat treatment by the ZHR method so that the surface roughness is within the above range.

LPLの平均厚さは、0.5μm以上であることが好ましく、0.8μm以上であることが特に好ましい。また、5μm以下であることが好ましく、3μm以下であることが特に好ましい。
平均厚さが上記範囲内であると、LPL上に欠陥の少ないエピタキシャルシリコン薄膜を安定して製膜しやすい。また、LPLは、太陽電池用シリコン薄膜の反射防止膜として使用可能であるが、平均厚さが上記範囲内であると、反射防止性能が十分となりやすい。
The average thickness of the LPL is preferably 0.5 μm or more, and particularly preferably 0.8 μm or more. Further, it is preferably 5 μm or less, and particularly preferably 3 μm or less.
When the average thickness is within the above range, it is easy to stably form an epitaxial silicon thin film having few defects on the LPL. Further, LPL can be used as an antireflection film for a silicon thin film for a solar cell, but when the average thickness is within the above range, the antireflection performance tends to be sufficient.

LPL中の孔の平均孔径は、15nm以上であることが好ましく、20nm以上であることが特に好ましい。また、40nm以下であることが好ましく、35nm以下であることが特に好ましい。
LPLの空隙率は、20%以上が好ましく、30%以上が特に好ましい。また、50%以下が好ましく、45%以下が特に好ましい。
平均孔径や空隙率が上記範囲内であると、LPL上に欠陥の少ないエピタキシャルシリコン薄膜を安定して製膜しやすい。
The average pore diameter of the pores in the LPL is preferably 15 nm or more, and particularly preferably 20 nm or more. Further, it is preferably 40 nm or less, and particularly preferably 35 nm or less.
The porosity of LPL is preferably 20% or more, and particularly preferably 30% or more. Further, 50% or less is preferable, and 45% or less is particularly preferable.
When the average pore size and porosity are within the above ranges, it is easy to stably form an epitaxial silicon thin film having few defects on the LPL.

高多孔度層(HPL)は、エピタキシャルシリコン薄膜形成後に剥離される犠牲層であるので、HPLは、剥離しやすくなっているのが歩留まりの観点から望ましい。 Since the highly porous layer (HPL) is a sacrificial layer that is peeled off after forming the epitaxial silicon thin film, it is desirable that the HPL is easily peeled off from the viewpoint of yield.

HPLの平均厚さは、200nm以上であることが好ましく、250nm以上であることがより好ましく、300nm以上であることが特に好ましい。また、600nm以下であることが好ましく、550nm以下であることがより好ましく、500nm以下であることが特に好ましい。
平均厚さが、上記下限以上であると、機械的に剥離しやすくなり、歩留まりが向上する。また、上記上限を超えて厚くしても、剥離のしやすさはあまり向上しないので、陽極酸化のコスト等の観点から、HPLの厚さは上記上限以下で十分である。
The average thickness of HPL is preferably 200 nm or more, more preferably 250 nm or more, and particularly preferably 300 nm or more. Further, it is preferably 600 nm or less, more preferably 550 nm or less, and particularly preferably 500 nm or less.
When the average thickness is at least the above lower limit, it is easy to peel off mechanically and the yield is improved. Further, even if the thickness exceeds the above upper limit, the ease of peeling does not improve so much. Therefore, from the viewpoint of the cost of anodizing and the like, the thickness of HPL is sufficient at the above upper limit or less.

HPL中の孔の平均孔径は、15nm以上であることが好ましく、20nm以上であることが特に好ましい。また、40nm以下であることが好ましく、35nm以下であることが特に好ましい。
HPLの空隙率は、50%以上が好ましく、60%以上が特に好ましい。また、90%以下が好ましく、80%以下が特に好ましい。
平均孔径や空隙率が上記範囲内であると、剥離しやすく、また、コスト的に製造しやすい。
The average pore diameter of the pores in HPL is preferably 15 nm or more, and particularly preferably 20 nm or more. Further, it is preferably 40 nm or less, and particularly preferably 35 nm or less.
The porosity of HPL is preferably 50% or more, and particularly preferably 60% or more. Further, 90% or less is preferable, and 80% or less is particularly preferable.
When the average pore size and porosity are within the above ranges, it is easy to peel off and it is easy to manufacture in terms of cost.

本発明のシリコン基板の2層ポーラスシリコン(DLPS)の層は、全体がシリコンで構成されていてもよいし、高多孔度層(HPL)のみが酸化シリコンで構成されていてもよい。
HPLのみを酸化シリコンで形成する方法としては、電気化学的に形成する方法がある。
The two-layer porous silicon (DLPS) layer of the silicon substrate of the present invention may be entirely composed of silicon, or only the highly porous layer (HPL) may be composed of silicon oxide.
As a method of forming only HPL with silicon oxide, there is a method of forming it electrochemically.

HPLは、剥離のための犠牲層であり、後述の実施例のようにスコッチ(登録商標)テープ等により機械的に剥離することができる。
HPLを酸化シリコンで構成することにより、機械的剥離の他に、例えば、フッ化水素酸等を使用することにより化学的にHPLを剥離することもできる。
The HPL is a sacrificial layer for peeling, and can be mechanically peeled off with a Scotch (registered trademark) tape or the like as in the examples described later.
By constructing the HPL with silicon oxide, in addition to the mechanical peeling, the HPL can be chemically peeled off by using, for example, hydrofluoric acid or the like.

本発明のシリコン基板は、低多孔度層(LPL)の表面が、ゾーンヒーティング再結晶化(ZHR)法により熱処理されているものであることが好ましい。
ZHR法による熱処理を施すことにより、LPLの表面粗さ(Rms)を、0.3nm以下まで低下させやすい。
In the silicon substrate of the present invention, it is preferable that the surface of the low porous layer (LPL) is heat-treated by the zone heating recrystallization (ZHR) method.
By performing the heat treatment by the ZHR method, the surface roughness (R ms ) of LPL can be easily reduced to 0.3 nm or less.

ZHR法による熱処理を図3に示す。ZHR法では、試料(DLPS層を有するシリコン基板)を、LPL側が上になるように装置内にセットし、下部ヒーター(Bottom heater;BH)により、試料を予備加熱した状態で、ガスを流しながら、上部ランプヒーター(Upper lamp heater;ULH)により、LPL表面を高速走査し、LPL表面のみに選択的に熱処理を施す。 The heat treatment by the ZHR method is shown in FIG. In the ZHR method, a sample (silicon substrate having a DLPS layer) is set in the apparatus so that the LPL side is on the top, and the sample is preheated by a lower heater (Bottom heater; BH) while flowing gas. The LPL surface is scanned at high speed by an upper lamp heater (ULH), and only the LPL surface is selectively heat-treated.

陽極酸化法によりDLPS層を形成する場合、HPLを厚く形成するほど、LPLの表面粗さは大きくなりやすい。HPLを薄く形成すれば、LPLの表面粗さは小さくなるが、そのようにすると、HPLを犠牲層とした剥離が困難となる。
ZHR法による熱処理は、上部ランプヒーターにより、LPL表面を選択的に熱処理することで、LPL表面を平滑化する。このため、ZHR法を使用することにより、HPLの剥離のしやすさ(歩留まり)を保ったまま、LPL表面を平滑化し、エピタキシャル薄膜を低欠陥化しやすい。
When the DLPS layer is formed by the anodizing method, the thicker the HPL is formed, the larger the surface roughness of the LPL tends to be. If the HPL is formed thin, the surface roughness of the LPL becomes small, but doing so makes it difficult to peel off the HPL as a sacrificial layer.
The heat treatment by the ZHR method smoothes the LPL surface by selectively heat-treating the LPL surface with an upper lamp heater. Therefore, by using the ZHR method, the surface of the LPL is smoothed while maintaining the ease of peeling (yield) of the HPL, and the epitaxial thin film is likely to have low defects.

ZHR法による熱処理前のLPLの表面粗さをRms’、熱処理後のLPLの表面粗さをRmsとした場合、RmsをRms’で除した値の百分率は、80%以下であることが好ましく、70%以下であることがより好ましく、60%以下であることが特に好ましい。
前記のように、熱処理後のLPLの表面粗さが小さい程、LPL上に製膜されるエピタキシャルシリコン薄膜の欠陥は少なくなり良質な薄膜が得られるが、通常は、陽極酸化により形成した時点でのLPLの表面粗さ(すなわち、ZHR法による熱処理前のLPLの表面粗さ)が小さいということは、HPLが薄い(すなわち、剥離しにくい)ということになる。
したがって、「RmsをRms’で除した値」が小さい程、エピタキシャルシリコン薄膜の質と剥離しやすさ(歩留まり)の両立ができていることになる。
ZHR R ms the surface roughness of the LPL before heat treatment method ', if the surface roughness of the LPL after heat treatment was set to R ms, the R ms R ms' percentage of value obtained by dividing the is 80% or less It is preferably 70% or less, and particularly preferably 60% or less.
As described above, the smaller the surface roughness of the LPL after the heat treatment, the less the defects of the epitaxial silicon thin film formed on the LPL, and the better the thin film can be obtained. However, usually, when it is formed by anodization If the surface roughness of the LPL (that is, the surface roughness of the LPL before the heat treatment by the ZHR method) is small, it means that the HPL is thin (that is, it is difficult to peel off).
Therefore, the smaller the "value obtained by dividing R ms by R ms '", the better the quality of the epitaxial silicon thin film and the ease of peeling (yield) are achieved.

ZHR法による熱処理では、下部ヒーター(BH)により、試料を予備加熱するが、下部ヒーター(BH)による加熱量が多いと、LPLの表面粗さが低下する場合があるが、DLPSの構造変化の影響がHPLにも及び、剥離が困難になることがある。このため、下部ヒーター(BH)による加熱が過剰にならないようにする必要がある。
具体的には、下記式(2)で表される下部ヒーター加熱量(H)が、0kJm−2以上であることが好ましく、10kJm−2以上であることがより好ましい。また、300kJm−2以下であることが好ましく、200kJm−2以下であることがより好ましい。
In the heat treatment by the ZHR method, the sample is preheated by the lower heater (BH), but if the amount of heating by the lower heater (BH) is large, the surface roughness of the LPL may decrease, but the structural change of DLPS The effect extends to HPL, which may make peeling difficult. Therefore, it is necessary to prevent excessive heating by the lower heater (BH).
Specifically, the lower heater heating amount represented by the following formula (2) (H B) is preferably at 0KJm -2 or more, and more preferably 10KJm -2 or more. Further, it is preferably 300KJm -2 or less, and more preferably 200KJm -2 or less.

上部ランプヒーター(ULH)は、例えば、タングステン線等を使用したラインヒーターである。 The upper lamp heater (ULH) is, for example, a line heater using a tungsten wire or the like.

上部ランプヒーター(ULH)の出力は、0.1kW以上であることが好ましく、0.5kW以上であることがより好ましい。また、20kW以下であることが好ましく、10kW以下であることがより好ましい。
上部ランプヒーター(ULH)の走査速度は、0.1mm/s以上であることが好ましく、0.5mm/s以上であることがより好ましい。また、100mm/s以下であることが好ましく、50mm/s以下であることがより好ましい。
出力や走査速度を上記範囲内とすることにより、LPL表面のみを選択的に加熱しやすくなり、ZHR法による表面粗さの低下効果が大きくなりやすい。
The output of the upper lamp heater (ULH) is preferably 0.1 kW or more, and more preferably 0.5 kW or more. Further, it is preferably 20 kW or less, and more preferably 10 kW or less.
The scanning speed of the upper lamp heater (ULH) is preferably 0.1 mm / s or more, and more preferably 0.5 mm / s or more. Further, it is preferably 100 mm / s or less, and more preferably 50 mm / s or less.
By setting the output and the scanning speed within the above range, it becomes easy to selectively heat only the LPL surface, and the effect of reducing the surface roughness by the ZHR method tends to be large.

ZHR法による熱処理を行うことにより、LPLの表面粗さが減少するメカニズムについては、必ずしも明らかではないが、(a)表面エネルギーによる平滑化、(b)表面酸化、(c)内部を含む構造変化、という3つの要因で進行すると推察される。
すなわち、ZHR法による熱処理を行うことにより、表面エネルギーが減少するようにLPL表面が再構成され平滑化するが、加熱量が多い場合、LPL表面の水素原子が脱離してしまう場合がある(なお、LPL表面の水素原子は、陽極酸化によるDLPS層の形成後、余分なSiOを溶かすための洗浄に使用するフッ化水素酸(HF)に由来する)。水素原子の脱離による表面酸化により、表面の平滑化が妨害されることがある。また、加熱量が多い場合、DLPS層内部にまで構造変化が及び、これによりLPL表面も影響を受ける場合がある。
The mechanism by which the surface roughness of LPL is reduced by heat treatment by the ZHR method is not always clear, but (a) smoothing by surface energy, (b) surface oxidation, and (c) structural changes including the inside. It is presumed that it progresses due to three factors.
That is, by performing the heat treatment by the ZHR method, the LPL surface is reconstructed and smoothed so that the surface energy is reduced, but when the amount of heating is large, hydrogen atoms on the LPL surface may be desorbed (note that). , The hydrogen atoms on the surface of the LPL are derived from hydrofluoric acid (HF) used for cleaning to dissolve excess SiO 2 after the DLPS layer is formed by anodization). Surface oxidation due to desorption of hydrogen atoms may interfere with surface smoothing. Further, when the amount of heating is large, the structural change extends to the inside of the DLPS layer, which may affect the LPL surface.

水素原子の脱離による表面酸化等により、表面粗さが低下する場合があるので、ZHR法による熱処理を行う際に、ガス雰囲気を制御することが有効である。
ZHR法による熱処理は低多孔度層(LPL)の表面の酸化を防止し、かつ、低多孔度層(LPL)の表面が水素終端処理されないような水素分圧に制御されたガス雰囲気中において施すのが好ましい。
Since the surface roughness may decrease due to surface oxidation due to desorption of hydrogen atoms, it is effective to control the gas atmosphere when performing the heat treatment by the ZHR method.
The heat treatment by the ZHR method is performed in a gas atmosphere controlled by hydrogen partial pressure so as to prevent oxidation of the surface of the low porosity layer (LPL) and prevent the surface of the low porosity layer (LPL) from being hydrogen-terminated. Is preferable.

具体的には、ガス雰囲気中には、酸素を含まないのが望ましく、ベースとなるガスは、窒素、アルゴン、ヘリウム等の不活性ガスであるのが好ましい。
また、上記不活性ガスをベースとしつつ、水素ガスが0.01%以上4%以下の割合で含まれるガス雰囲気中において行うのが特に好ましい。
通常、市販されている不活性ガスは、ppmオーダー以下のわずかな量の酸素が不純物として混入している。このわずかに混入された酸素が、LPLの表面に影響を与える場合があるが、水素ガスの濃度が上記下限以上であると、水素ガスと不純物の酸素の反応により、酸素を水として除去することができる。
また、水素ガスの濃度が上記上限以下であると、爆発限界以下であるため、特殊な装置を要せず、コストを抑えられる。
Specifically, it is desirable that the gas atmosphere does not contain oxygen, and the base gas is preferably an inert gas such as nitrogen, argon, or helium.
Further, it is particularly preferable to carry out the operation in a gas atmosphere containing the above-mentioned inert gas as a base and hydrogen gas in a proportion of 0.01% or more and 4% or less.
Generally, a commercially available inert gas contains a small amount of oxygen on the order of ppm or less as an impurity. This slightly mixed oxygen may affect the surface of the LPL, but if the concentration of hydrogen gas is equal to or higher than the above lower limit, oxygen is removed as water by the reaction of hydrogen gas and oxygen of impurities. Can be done.
Further, when the concentration of hydrogen gas is not more than the above upper limit, it is not more than the explosion limit, so that no special device is required and the cost can be suppressed.

ZHR法により熱処理した後には、LPLをシード層として、その上にシリコン薄膜をエピタキシャル成長させる。
エピタキシャルシリコン薄膜の製膜速度は、生産性やコスト等の観点から、3μm/min以上が好ましく、5μm/min以上がより好ましく、10μm/min以上が特に好ましい。また、低欠陥の薄膜を得るためには、20μm/min以下が好ましい。通常、製膜速度が上記下限以上であると、低欠陥の薄膜を得にくくなるところ、本発明のシリコン基板における低多孔度層(LPL)の表面をシード層として用いれば、製膜速度が上記下限以上であっても低欠陥が実現され、本発明の特長が生かせる。
After the heat treatment by the ZHR method, a silicon thin film is epitaxially grown on the LPL as a seed layer.
From the viewpoint of productivity, cost and the like, the film forming speed of the epitaxial silicon thin film is preferably 3 μm / min or more, more preferably 5 μm / min or more, and particularly preferably 10 μm / min or more. Further, in order to obtain a thin film having low defects, it is preferably 20 μm / min or less. Normally, when the film forming speed is equal to or higher than the above lower limit, it becomes difficult to obtain a thin film having low defects. Even if it is above the lower limit, low defects are realized, and the features of the present invention can be utilized.

シリコン薄膜をエピタキシャル成長させる方法に特に限定は無く、PVD法やCVD法を使用することができるが、LPLに製膜されるエピタキシャルシリコン薄膜は、急速蒸着(RVD)法により製膜されるものであることが好ましい。RVD法では、製膜速度が大きく、上記のような高速度でシリコンを製膜しやすい。
本発明では、ZHR法等により、下地となるLPL表面を処理することにより、RVD法等を用いて高速度で製膜をした場合であっても、低欠陥のエピタキシャルシリコン薄膜を得ることができ、生産性と品質を両立することができる。本発明のシリコン基板は、高速度での製膜が可能なRVD法と特に良くマッチングしている。
The method for epitaxially growing the silicon thin film is not particularly limited, and the PVD method or the CVD method can be used. However, the epitaxial silicon thin film formed on the LPL is formed by the rapid vapor deposition (RVD) method. Is preferable. In the RVD method, the film forming speed is high, and it is easy to form silicon at the high speed as described above.
In the present invention, by treating the LPL surface as a base by the ZHR method or the like, a low-defect epitaxial silicon thin film can be obtained even when a film is formed at a high speed by the RVD method or the like. , Productivity and quality can be compatible. The silicon substrate of the present invention is particularly well matched with the RVD method capable of forming a film at a high speed.

RVD法では、シリコン源を、シリコンの融点よりも遥かに高い温度に加熱することでシリコンを気化し、反応器中に設置した基板上にシリコンを蒸着する。RVD法では、シリコン源としてガス(ジクロロシラン等)を使用したCVD法と比較して、大幅に速い10〜20μm/min程度の製膜速度でシリコンをエピタキシャル成長させることができ、コストの削減につながる。
一方、このような高速の製膜の場合、製膜されるエピタキシャルシリコン薄膜の品質(欠陥の量)に対して、シード層の平滑性が与える影響が大きくなりやすいため、本発明により、シード層となるLPLの表面粗さを低減することによる効果が大きくなりやすい。
In the RVD method, the silicon source is heated to a temperature much higher than the melting point of the silicon to vaporize the silicon, and the silicon is deposited on the substrate placed in the reactor. In the RVD method, silicon can be epitaxially grown at a film formation rate of about 10 to 20 μm / min, which is significantly faster than the CVD method using gas (dichlorosilane, etc.) as the silicon source, leading to cost reduction. ..
On the other hand, in the case of such high-speed film formation, the smoothness of the seed layer tends to have a large effect on the quality (amount of defects) of the epitaxial silicon thin film to be formed. Therefore, according to the present invention, the seed layer is formed. The effect of reducing the surface roughness of the LPL is likely to be large.

RVD法による製膜の際には、シリコン源の温度は1800℃以上2200℃以下、基板の温度は900℃以上1200℃以下となるように加熱するのが好ましい。また、反応器内は、5×10−4Pa以下にまで減圧した状態で行うのが好ましい。
また、蒸着時間は、0.1秒以上10秒以下とすることが好ましい。
When forming a film by the RVD method, it is preferable to heat the silicon source so that the temperature of the silicon source is 1800 ° C. or higher and 2200 ° C. or lower, and the temperature of the substrate is 900 ° C. or higher and 1200 ° C. or lower. Further, it is preferable to carry out the reaction in a state where the pressure inside the reactor is reduced to 5 × 10 -4 Pa or less.
The vapor deposition time is preferably 0.1 seconds or more and 10 seconds or less.

上記のような条件下で製膜することにより、5〜20μm程度のシリコン薄膜を、本発明のシリコン基板上に単結晶シリコン薄膜をエピタキシャル成長させることができる。 By forming a film under the above conditions, a silicon thin film of about 5 to 20 μm can be epitaxially grown on the silicon substrate of the present invention.

RVD法等により製膜されたエピタキシャルシリコン薄膜は、単結晶シリコン太陽電池の製造等のために使用することができる。単結晶シリコン太陽電池のエネルギー変換効率は、エピタキシャルシリコン薄膜の品質に依存する。結晶欠陥の少ないエピタキシャルシリコン薄膜は、高効率な単結晶シリコン太陽電池を与える。 The epitaxial silicon thin film formed by the RVD method or the like can be used for manufacturing a single crystal silicon solar cell or the like. The energy conversion efficiency of a single crystal silicon solar cell depends on the quality of the epitaxial silicon thin film. The epitaxial silicon thin film with few crystal defects provides a highly efficient single crystal silicon solar cell.

2層ポーラスシリコン(DLPS)を使用したエピタキシャルシリコン薄膜の製造においては、シード層である低多孔度層(LPL)の表面をナノレベルで平滑化することにより、その上に成長するエピタキシャルシリコン薄膜を劇的に低欠陥化することができる。 In the production of an epitaxial silicon thin film using two-layer porous silicon (DLPS), the surface of the low porous layer (LPL), which is a seed layer, is smoothed at the nano level, so that the epitaxial silicon thin film that grows on the epitaxial silicon thin film is formed. Defects can be dramatically reduced.

エピタキシャルシリコン薄膜の結晶欠陥については、例えば、後述の実施例のように、電子スピン共鳴法(Electron Spin Resonance;ESR)により評価することができる。 Crystal defects in the epitaxial silicon thin film can be evaluated by, for example, an electron spin resonance (ESR) method as in the examples described later.

本発明の基板上に製膜したエピタキシャルシリコン薄膜は、超音波処理、あるいはroll to roll法により容易に剥離し、自立した40μm厚の単結晶シリコンとして得られる。原料をp型にすればp型シリコンが得られ、続いて通常の単結晶シリコン太陽電池作製プロセスと同様にpn接合形成、電極の蒸着等により太陽電池が得られる。 The epitaxial silicon thin film formed on the substrate of the present invention can be easily peeled off by sonication or the roll-to-roll method to obtain a self-supporting single crystal silicon having a thickness of 40 μm. If the raw material is p-type, p-type silicon is obtained, and then the solar cell is obtained by pn junction formation, electrode deposition, etc. in the same manner as in a normal single crystal silicon solar cell manufacturing process.

以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded.

実施例1
<2層ポーラスシリコン(DLPS)層の形成>
p型単結晶Si(100)ウェハー(1〜4mΩ・cm)に対して、ガルバノスタット装置(YR6163、Advantest)を使用し、白金メッシュをカソードとして、2段階の陽極酸化を施した。電解液として、48質量%フッ化水素酸(和光純薬(株))と95%エタノール(関東化学(株))の1:1混合液を使用した。2mA/cm、415sでLPLを形成した後、200mA/cm、5sでHPLを形成し、DLPSを有するシリコン基板を作製した。
Example 1
<Formation of 2-layer porous silicon (DLPS) layer>
A galvanostat device (YR6163, Advantest) was used to perform two-step anodization on a p-type single crystal Si (100) wafer (1 to 4 mΩ · cm) using a platinum mesh as a cathode. As the electrolytic solution, a 1: 1 mixed solution of 48% by mass hydrofluoric acid (Wako Pure Chemical Industries, Ltd.) and 95% ethanol (Kanto Chemical Co., Inc.) was used. After forming LPL at 2 mA / cm 2 , 415 s, HPL was formed at 200 mA / cm 2 , 5 s to prepare a silicon substrate having DLPS.

LPLの厚さは約1μm、HPLの厚さは約400nmだった。このHPLの厚さは、本発明者らが以前に報告した非特許文献4における値(約300nm)よりも厚い(すなわち、剥離しやすい一方、表面粗さが大きくなりやすい)。 The thickness of LPL was about 1 μm and the thickness of HPL was about 400 nm. The thickness of this HPL is thicker than the value (about 300 nm) in Non-Patent Document 4 previously reported by the present inventors (that is, it is easy to peel off, but the surface roughness tends to be large).

<ゾーンヒーティング再結晶化(ZHR)法による熱処理>
DLPSを有するシリコン基板を、10質量%フッ化水素酸で洗浄し、表面の酸化物層を除去した後、図3に示す装置を使用してZHR法による熱処理を施した。
<Heat treatment by zone heating recrystallization (ZHR) method>
The silicon substrate having DLPS was washed with 10% by mass hydrofluoric acid to remove the oxide layer on the surface, and then heat-treated by the ZHR method using the apparatus shown in FIG.

窒素雰囲気下(15L/min)で、DLPSを有するシリコン基板を、下部ヒーター(BH)で1分間予備加熱した後、タングステン線を使用した上部ランプヒーター(ULH)により、LPL表面を走査した。
下部ヒーター(BH)の出力は、0〜17.9kWの範囲内で調整し、前記式(2)により下部ヒーター加熱量(H)を算出した。
上部ランプヒーター(ULH)の出力は、2.9kWとし、走査速度(vscan)は、1〜26mm/sの範囲内で調整した。
A silicon substrate having DLPS was preheated for 1 minute with a lower heater (BH) under a nitrogen atmosphere (15 L / min), and then the surface of the LPL was scanned with an upper lamp heater (ULH) using a tungsten wire.
The output of the lower heater (BH) was adjusted within the range of 0 to 17.9 kW, and the lower heater heating amount (H B ) was calculated by the above formula (2).
The output of the upper lamp heater (ULH) was 2.9 kW, and the scanning speed (v scan ) was adjusted within the range of 1 to 26 mm / s.

DLPSの表面や断面を、電界放出形走査電子顕微鏡(FE−SEM)(JEOL JEM−6301FZ)により観察し、前記式(1)で定義される表面粗さ(Rms)を、原子間力顕微鏡(Atomic Force Microscope;AFM)(Bruker MultiMode N3−IHA SPA System)により測定した。The surface and cross section of DLPS, was observed by a field emission scanning electron microscope (FE-SEM) (JEOL JEM -6301FZ), the formula (1) surface defined by the roughness (R ms), atomic force microscopy It was measured by (Atomic Force Microscope; AFM) (Brooker MultiMode N3-IHA SPA System).

<急速蒸着(RVD)法によるシリコン薄膜の製膜>
ZHR法による熱処理後、DLPSを有するシリコン基板を再び10質量%フッ化水素酸で洗浄して表面の酸化物層を除去した後、RVD法によりシリコン薄膜の製膜を実施した。RVD法の装置としては、非特許文献3に記載のものと同様のものを使用した。
<Silicon thin film formation by rapid thin film deposition (RVD) method>
After the heat treatment by the ZHR method, the silicon substrate having DLPS was washed again with 10% by mass hydrofluoric acid to remove the oxide layer on the surface, and then the silicon thin film was formed by the RVD method. As the apparatus for the RVD method, the same equipment as that described in Non-Patent Document 3 was used.

DLPSを有するシリコン基板を設置した反応器内を4.0μTorr(5.3×10−4Pa)より低い圧力に減圧し、その後、DLPSを有するシリコン基板の温度を1100℃まで昇温した。シリコン源であるn型シリコンウェハーを、2000℃まで加熱することにより、気化したシリコンを、DLPSを有するシリコン基板のLPL上に蒸着させた。
1分間の製膜時間で、約9μmのシリコン薄膜を製膜することができた。
The pressure inside the reactor on which the silicon substrate having DLPS was installed was reduced to a pressure lower than 4.0 μTorr (5.3 × 10 -4 Pa), and then the temperature of the silicon substrate having DLPS was raised to 1100 ° C. By heating an n-type silicon wafer, which is a silicon source, to 2000 ° C., vaporized silicon was deposited on the LPL of a silicon substrate having DLPS.
A silicon thin film of about 9 μm could be formed in a film forming time of 1 minute.

<シリコン薄膜の剥離>
DLPSを有するシリコン基板上に得られたシリコン薄膜を、スコッチ(登録商標)テープにより、HPLの部分を犠牲層として剥離した。
<Peeling of silicon thin film>
The silicon thin film obtained on the silicon substrate having DLPS was peeled off with a Scotch (registered trademark) tape using the HPL portion as a sacrificial layer.

シリコン薄膜の表面や断面の結晶方位を、FE−SEMやX線回折(X−Ray Diffraction;XRD)装置(PANalytical X’Pert−Pro−MRDBruker MultiMode N3−IHA SPA System)により観察した。
また、シリコン薄膜表面を電子スピン共鳴法(Electron Spin Resonance;ESR)により観測し、表面の結晶欠陥を評価した。ESRの測定にはJEOL(日本電子)のJES−FA100を使用した。
The crystal orientation of the surface and cross section of the silicon thin film was observed by an FE-SEM or an X-Ray Diffraction (XRD) device (PANNalytical X'Pert-Pro-MRDBruker MultiMode N3-IHA SPA System).
In addition, the surface of the silicon thin film was observed by electron spin resonance (ESR) to evaluate crystal defects on the surface. JEOL (JEOL Ltd.) JES-FA100 was used for the measurement of ESR.

比較例1
p型単結晶Si(100)ウェハーに2層ポーラスシリコン(DLPS)層を形成しフッ化水素酸で洗浄した後、ZHR法による熱処理を行わずにRVD法によるシリコン薄膜の製膜を実施した以外は、実施例1と同様にしてシリコン薄膜を製造し、基板から剥離した。
Comparative Example 1
A two-layer porous silicon (DLPS) layer was formed on a p-type single crystal Si (100) wafer, washed with hydrofluoric acid, and then a silicon thin film was formed by the RVD method without heat treatment by the ZHR method. Made a silicon thin film in the same manner as in Example 1 and peeled off from the substrate.

[結果]
ZHR法による熱処理の際の、各走査速度(vscan)における下部ヒーター加熱量(H)に対する(a)LPLの表面粗さ(Rms)及び(b)LPLの細孔径(Dpore)の依存性を図4に示す。
ZHR法による熱処理を行った場合、行わない場合と比較して、表面粗さ(Rms)が低減した。また、細孔径(Dpore)は、下部ヒーター加熱量(H)の増大に伴い、低減、増加、低減の傾向を示した。
表面粗さ(Rms)、細孔径(Dpore)はともに、上部ランプヒーター(ULH)のスキャンの有無により異なる挙動が見られた。
[result]
During heat treatment ZHR method, lower heater heating amount at each scan rate (v scan) for (H B) of (a) the surface roughness of the LPL (R ms) and (b) LPL pore size (D pore) The dependency is shown in FIG.
When the heat treatment by the ZHR method was performed, the surface roughness (R ms ) was reduced as compared with the case where the heat treatment was not performed. In addition, the pore diameter (D pore ) showed a tendency of decrease, increase, and decrease as the lower heater heating amount (H B ) increased.
Both the surface roughness ( RMs ) and the pore diameter (D pore ) behaved differently depending on the presence or absence of scanning of the upper lamp heater (ULH).

表面粗さ(Rms)や細孔径(Dpore)の変化は、前記のように、「表面エネルギーによる平滑化」、「表面酸化」、「内部を含む構造変化」という3つの要因で進行したと考えられる。表面エネルギーを減少させる方向へ表面が平滑化し、下部ヒーター加熱量(H)の増加に伴って水素脱離による表面酸化が進行するが、表面酸化だけでなく、DLPS全体の構造変化が進行したと考えられる。これは、加熱量が大きい程、上部ランプヒーター(ULH)による溶融深さが深くなるためであり、それによってDLPSの最表面だけでなく深部まで構造が変化し、表面粗さ(Rms)や細孔径(Dpore)が再び減少したと考えられる。Changes in surface roughness (R ms ) and pore size (D pore ) proceeded due to three factors: "smoothing by surface energy", "surface oxidation", and "structural change including the inside" as described above. it is conceivable that. Surface energy surface is smoothed in the direction of reducing, the surface oxidation by hydrogen desorption progresses with increasing lower heater heating amount (H B), not only surface oxidation, structural changes in the overall DLPS proceeded it is conceivable that. This is because the larger the amount of heating, the deeper the melting depth of the upper lamp heater (ULH), which changes the structure not only to the outermost surface of DLPS but also to the deeper part, resulting in surface roughness ( RMs ) and It is considered that the pore size (D pore ) decreased again.

RVD法によりLPL上に製膜したシリコン薄膜のXRDスペクトルの例を図5に示す。図5(a)に示すように(400)のみにピークを示したこと、図5(b)に示すように(220)に対して4回対称性を示したことから、エピタキシャル成長によって極めて高速で単結晶シリコン薄膜の作製に成功したことがわかる。
図5に図示しない実験条件においても、概ね図5と同様のスペクトルが得られ、単結晶シリコン薄膜が得られていた。
An example of the XRD spectrum of the silicon thin film formed on the LPL by the RVD method is shown in FIG. As shown in FIG. 5 (a), the peak was shown only in (400), and as shown in FIG. 5 (b), the symmetry was shown four times with respect to (220). It can be seen that the single crystal silicon thin film was successfully produced.
Even under experimental conditions not shown in FIG. 5, a spectrum substantially similar to that in FIG. 5 was obtained, and a single crystal silicon thin film was obtained.

図6に、低多孔度層(LPL)の表面粗さ(Rms)とエピタキシャルシリコン薄膜の結晶欠陥との関係を示す。
表面粗さ(Rms)が小さいほど、シリコン薄膜中の結晶欠陥が少なくなっており、ZHR法による熱処理を行いLPLの表面粗さを低減することにより、RVD法により形成されるシリコン薄膜の結晶粒界が減少し、結晶欠陥の少ない良質な薄膜を形成できることが示唆された。
Figure 6 shows the relationship between the surface roughness of the low porosity layer (LPL) and (R ms) and crystal defects of the epitaxial silicon thin film.
The smaller the surface roughness (R ms ), the fewer crystal defects in the silicon thin film. Crystals of the silicon thin film formed by the RVD method by performing heat treatment by the ZHR method to reduce the surface roughness of the LPL. It was suggested that the grain boundaries were reduced and a good quality thin film with few crystal defects could be formed.

実施例2
導入ガスの雰囲気等を変更した以外は、実施例1と同様にして、DLPSに対してZHR法による熱処理を行い、表面粗さ(Rms)を測定した。
導入ガスは、(a)窒素、(b)水素/窒素=3/97(体積比)、(c)水素/窒素=5/95(体積比)の3種類で実施した。
上部ランプヒーター(ULH)の走査速度(vscan)を5mm/sで固定し、下部ヒーター(BH)の出力を、0〜17.9kWの範囲内で調整した。
実施例2においては、装置のガス流路を改善し、大気の逆拡散による酸素流入を抑制した。
Example 2
The surface roughness (R ms ) was measured by heat-treating DLPS by the ZHR method in the same manner as in Example 1 except that the atmosphere of the introduced gas was changed.
The introduced gas was (a) nitrogen, (b) hydrogen / nitrogen = 3/97 (volume ratio), and (c) hydrogen / nitrogen = 5/95 (volume ratio).
The scanning speed (v scan ) of the upper lamp heater (ULH) was fixed at 5 mm / s, and the output of the lower heater (BH) was adjusted within the range of 0 to 17.9 kW.
In Example 2, the gas flow path of the apparatus was improved to suppress the inflow of oxygen due to the back diffusion of the atmosphere.

ZHR法による熱処理の際の総加熱量(H+H)に対するLPLの表面粗さ(Rms)の依存性を図4に示す。
なお、Hは、上部ランプヒーター(ULH)による加熱量を示すが、加熱量の大半は、下部ヒーター(BH)によるものであるので、H+Hの値は、Hの値とほとんど変わらない。
The total amount of heat during the heat treatment by ZHR method (H B + H L) to the surface roughness of the LPL dependencies (R ms) shown in FIG.
Note that HL indicates the amount of heating by the upper lamp heater (ULH), but since most of the amount of heating is due to the lower heater (BH), the value of H B + H L is almost the same as the value of H B. does not change.

LPLの表面粗さ(Rms)は、導入ガスの雰囲気によって、異なる挙動を示し、導入ガス中の水素の量が増えるに従い、表面粗さ(Rms)の最小値が、低加熱側にシフトしていく傾向が見られた。The surface roughness (R ms ) of LPL behaves differently depending on the atmosphere of the introduced gas, and as the amount of hydrogen in the introduced gas increases, the minimum value of the surface roughness (R ms ) shifts to the low heating side. There was a tendency to do so.

実施例3
(1)以下の条件で、DLPSにZHR法による熱処理を施して得たシリコン基板を使用して、RVD法により厚さ約48μmのシリコン薄膜1を得た。
Example 3
(1) Under the following conditions, a silicon thin film 1 having a thickness of about 48 μm was obtained by the RVD method using a silicon substrate obtained by heat-treating DLPS by the ZHR method.

<シリコン薄膜1の作製時の条件>
1200℃に加熱した基板に対し、真空下でp型シリコン原料を2000℃以上に加熱して蒸着した。1回8〜11μm/1minの蒸着を5回行い、48μmのシリコン薄膜を得た。
<Conditions for manufacturing silicon thin film 1>
A p-type silicon raw material was heated to 2000 ° C. or higher under vacuum on a substrate heated to 1200 ° C. for vapor deposition. Evaporation of 8 to 11 μm / 1 min was performed 5 times to obtain a 48 μm silicon thin film.

得られたシリコン薄膜1の上に、コーティング膜としてAlをALD法により約20nm堆積したサンプルを得た。
ライフタイム測定装置(SEMILAB社製、WT−2000PVN)により、このサンプルのライフタイムを測定したところ、ライフタイムは約70μsであった。
A sample in which Al 2 O 3 was deposited as a coating film at about 20 nm on the obtained silicon thin film 1 by the ALD method was obtained.
When the lifetime of this sample was measured by a lifetime measuring device (WT-2000PVN manufactured by SEMILAB), the lifetime was about 70 μs.

(2)以下の条件で、DLPSにZHR法による熱処理を施さずに得たシリコン基板を使用して、RVD法により厚さ約63μmのシリコン薄膜2を得た。 (2) Under the following conditions, a silicon thin film 2 having a thickness of about 63 μm was obtained by the RVD method using a silicon substrate obtained by subjecting DLPS to DLPS without heat treatment by the ZHR method.

<シリコン薄膜2の作製時の条件>
1200℃に加熱した基板に対し、真空下でp型シリコン原料を2000℃以上に加熱して蒸着した。1回8〜11μm/1minの蒸着を6回行い、63μmのシリコン薄膜を得た。
<Conditions for manufacturing silicon thin film 2>
A p-type silicon raw material was heated to 2000 ° C. or higher under vacuum on a substrate heated to 1200 ° C. for vapor deposition. Evaporation of 8 to 11 μm / 1 min was performed 6 times to obtain a silicon thin film of 63 μm.

シリコン薄膜2について、シリコン薄膜1の場合と同様にして測定したライフタイムは、約36μsであった。 The lifetime of the silicon thin film 2 measured in the same manner as in the case of the silicon thin film 1 was about 36 μs.

一般に、膜厚が厚いほど長くなるライフタイムが長くなる傾向にあるが、ZHR法による熱処理を施したシリコン薄膜1は、ZHR法による熱処理を施していないシリコン薄膜2よりも薄いにも関わらず、ライフタイムが長かった。
これにより、ZHR法による熱処理が、シリコン薄膜の品質向上に有効であることが示唆された。
Generally, the thicker the film thickness, the longer the lifetime tends to be. However, the silicon thin film 1 subjected to the heat treatment by the ZHR method is thinner than the silicon thin film 2 not subjected to the heat treatment by the ZHR method. The lifetime was long.
This suggests that the heat treatment by the ZHR method is effective in improving the quality of the silicon thin film.

本発明を利用したエピタキシャルシリコン薄膜の製造プロセスは、高効率な単結晶シリコン太陽電池用シリコン薄膜等を低コストで作製できる。このため、本発明により製造されたシリコン基板は、一般家庭用、工場用等の単結晶シリコン太陽電池用の基板や、Siパワーデバイス等の電子デバイス用基板等として広く利用されるものである。 In the manufacturing process of the epitaxial silicon thin film using the present invention, a highly efficient silicon thin film for a single crystal silicon solar cell or the like can be produced at low cost. Therefore, the silicon substrate manufactured by the present invention is widely used as a substrate for a single crystal silicon solar cell for general household use, a factory, etc., a substrate for an electronic device such as a Si power device, and the like.

Claims (18)

エピタキシャルシリコン薄膜を製造するための、低多孔度層と高多孔度層からなる2層ポーラスシリコン層を有するシリコン基板であって、
該低多孔度層の下記式(1)で表される表面粗さ(Rms)が、0.3nm以下であることを特徴とするシリコン基板。
[式(1)において、lは基準長さ、Z(x)は位置xにおける基準線からの高低差である。]
A silicon substrate having a two-layer porous silicon layer composed of a low-porous layer and a high-porous layer for producing an epitaxial silicon thin film.
A silicon substrate having a surface roughness (R ms ) represented by the following formula (1) of the low-porous layer of 0.3 nm or less.
[In the formula (1), l is the reference length, and Z (x) is the height difference from the reference line at the position x. ]
上記エピタキシャルシリコン薄膜が、急速蒸着法により製膜されるものである請求項1に記載のシリコン基板。 The silicon substrate according to claim 1, wherein the epitaxial silicon thin film is formed by a rapid vapor deposition method. 上記低多孔度層の表面が、ゾーンヒーティング再結晶化法により熱処理されたものである請求項1又は請求項2に記載のシリコン基板。 The silicon substrate according to claim 1 or 2, wherein the surface of the low-porous layer is heat-treated by a zone heating recrystallization method. 上記高多孔度層の平均厚さが200nm以上である請求項1ないし請求項3の何れかの請求項に記載のシリコン基板。 The silicon substrate according to any one of claims 1 to 3, wherein the average thickness of the highly porous layer is 200 nm or more. 上記2層ポーラスシリコン層のうち、高多孔度層のみが、酸化シリコンで構成されている請求項1ないし請求項4の何れかの請求項に記載のシリコン基板。 The silicon substrate according to any one of claims 1 to 4, wherein only the highly porous layer of the two-layer porous silicon layer is made of silicon oxide. 上記酸化シリコンが、電気化学的に形成されたものである請求項5に記載のシリコン基板。 The silicon substrate according to claim 5, wherein the silicon oxide is electrochemically formed. 単結晶シリコン太陽電池用である、請求項1ないし請求項6の何れかの請求項に記載のシリコン基板。 The silicon substrate according to any one of claims 1 to 6, which is for a single crystal silicon solar cell. エピタキシャルシリコン薄膜を製造するための、低多孔度層と高多孔度層からなる2層ポーラスシリコン層を有するシリコン基板の製造方法であって、
該低多孔度層の表面に、ゾーンヒーティング再結晶化法による熱処理を施すことにより、該低多孔度層の下記式(1)で表される表面粗さ(Rms)を、0.3nm以下まで低下させることを特徴とするシリコン基板の製造方法。
[式(1)において、lは基準長さ、Z(x)は位置xにおける基準線からの高低差である。]
A method for manufacturing a silicon substrate having a two-layer porous silicon layer composed of a low-porous layer and a high-porous layer for manufacturing an epitaxial silicon thin film.
By heat-treating the surface of the low-porous layer by a zone heating recrystallization method, the surface roughness (R ms ) of the low-porous layer represented by the following formula (1) is reduced to 0.3 nm. A method for manufacturing a silicon substrate, which comprises reducing the amount to the following.
[In the formula (1), l is the reference length, and Z (x) is the height difference from the reference line at the position x. ]
上記低多孔度層の表面の酸化を防止し、かつ、上記低多孔度層の表面が水素終端処理されないような水素分圧に制御されたガス雰囲気中において上記熱処理を施す請求項8に記載のシリコン基板の製造方法。 The eighth aspect of the present invention, wherein the heat treatment is performed in a gas atmosphere controlled to a hydrogen partial pressure so as to prevent oxidation of the surface of the low porosity layer and prevent the surface of the low porosity layer from being hydrogen-terminated. Manufacturing method of silicon substrate. 水素ガスが0.01%以上4%以下の割合で含まれるガス雰囲気中において上記熱処理を施す請求項8又は請求項9に記載のシリコン基板の製造方法。 The method for manufacturing a silicon substrate according to claim 8 or 9, wherein the heat treatment is performed in a gas atmosphere containing hydrogen gas at a ratio of 0.01% or more and 4% or less. 上記2層ポーラスシリコン層の高多孔度層のみが、酸化シリコンで構成されている請求項8ないし請求項10の何れかの請求項に記載のシリコン基板の製造方法。 The method for manufacturing a silicon substrate according to any one of claims 8 to 10, wherein only the highly porous layer of the two-layer porous silicon layer is made of silicon oxide. 上記酸化シリコンが、電気化学的に形成されたものである請求項11に記載のシリコン基板の製造方法。 The method for manufacturing a silicon substrate according to claim 11, wherein the silicon oxide is electrochemically formed. 上記シリコン基板が、単結晶シリコン太陽電池用のシリコン基板である請求項8ないし請求項12の何れかの請求項に記載のシリコン基板の製造方法。 The method for manufacturing a silicon substrate according to any one of claims 8 to 12, wherein the silicon substrate is a silicon substrate for a single crystal silicon solar cell. エピタキシャルシリコン薄膜中の結晶欠陥を低減させる低欠陥化方法であって、
単結晶シリコン基板上に、低多孔度層と高多孔度層からなる2層ポーラスシリコン層を陽極酸化法により形成する工程(A)と、
該低多孔度層の表面をゾーンヒーティング再結晶化法により熱処理する工程(B)と、
該低多孔度層の表面に、エピタキシャルシリコン薄膜を製膜する工程(C)と、
を含む低欠陥化方法。
It is a defect reduction method for reducing crystal defects in an epitaxial silicon thin film.
A step (A) of forming a two-layer porous silicon layer composed of a low-porous layer and a high-porous layer on a single crystal silicon substrate by an anodizing method.
The step (B) of heat-treating the surface of the low-porous layer by the zone heating recrystallization method, and
A step (C) of forming an epitaxial silicon thin film on the surface of the low porosity layer,
Defect reduction method including.
上記工程(C)が、急速蒸着法により実施される請求項14に記載の低欠陥化方法。 The defect reduction method according to claim 14, wherein the step (C) is carried out by a rapid vapor deposition method. 上記2層ポーラスシリコン層の高多孔度層のみが、酸化シリコンで構成されている請求項14又は請求項15に記載の低欠陥化方法。 The method for reducing defects according to claim 14 or 15, wherein only the highly porous layer of the two-layer porous silicon layer is composed of silicon oxide. 上記酸化シリコンが、電気化学的に形成されたものである請求項16に記載の低欠陥化方法。 The method for reducing defects according to claim 16, wherein the silicon oxide is electrochemically formed. 上記単結晶シリコン基板が、単結晶シリコン太陽電池用のシリコン基板である請求項14ないし請求項17の何れかの請求項に記載の低欠陥化方法。 The defect reduction method according to any one of claims 14 to 17, wherein the single crystal silicon substrate is a silicon substrate for a single crystal silicon solar cell.
JP2019540973A 2017-09-05 2018-09-05 Silicon substrate used for manufacturing epitaxial silicon thin films and its manufacturing method Pending JPWO2019049876A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017170037 2017-09-05
JP2017170037 2017-09-05
PCT/JP2018/032815 WO2019049876A1 (en) 2017-09-05 2018-09-05 Silicon substrate to be used for production of epitaxial silicon thin film, and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2019049876A1 true JPWO2019049876A1 (en) 2020-11-12

Family

ID=65634175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019540973A Pending JPWO2019049876A1 (en) 2017-09-05 2018-09-05 Silicon substrate used for manufacturing epitaxial silicon thin films and its manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2019049876A1 (en)
WO (1) WO2019049876A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2617811A (en) * 2022-01-31 2023-10-25 Iqe Plc A layered structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733265B2 (en) * 1998-09-04 2006-01-11 キヤノン株式会社 Method for manufacturing semiconductor substrate and method for manufacturing semiconductor film
GB0813491D0 (en) * 2008-07-23 2008-08-27 Element Six Ltd Diamond Material

Also Published As

Publication number Publication date
WO2019049876A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US9748410B2 (en) N-type aluminum nitride single-crystal substrate and vertical nitride semiconductor device
Tao et al. 730 mV implied Voc enabled by tunnel oxide passivated contact with PECVD grown and crystallized n+ polycrystalline Si
Pihan et al. Polycrystalline silicon films by aluminium-induced crystallisation: growth process vs. silicon deposition method
JP2008066719A (en) High-performance silicon-based photovoltaic cell, and manufacturing method thereof
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
JP4949540B2 (en) Solar cell and manufacturing method thereof
CN112309832A (en) Preparation method of transferable gallium oxide single crystal film
Hainey et al. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications
CN108950683B (en) High-mobility nitrogen-doped large single crystal graphene film and preparation method thereof
CN109161850B (en) (In) GaN nanotube growing on Si substrate and preparation method and application thereof
JP6701788B2 (en) Method for manufacturing gate insulating film for silicon carbide semiconductor device
CN111092128A (en) Method for manufacturing substrate for solar cell, and substrate for solar cell
JPWO2019049876A1 (en) Silicon substrate used for manufacturing epitaxial silicon thin films and its manufacturing method
Tsukada et al. Fabrication of (1 1 1)-oriented Si layers on SiO2 substrates by an aluminum-induced crystallization method and subsequent growth of semiconducting BaSi2 layers for photovoltaic application
Lukianov et al. Free-standing epitaxial silicon thin films for solar cells grown on double porous layers of silicon and electrochemically oxidized porous silicon dioxide
US5851904A (en) Method of manufacturing microcrystalline layers and their utilization
CN113410287A (en) Two-dimensional SnSe-SnSe2P-n heterojunction and preparation method thereof
Shekoofa et al. Nano-crystalline thin films fabricated by Si-Al co-sputtering and metal induced crystallization for photovoltaic applications
Huang et al. Effects of RTA temperatures on conductivity and micro-structures of boron-doped silicon nanocrystals in Si-rich oxide thin films
CN114959635A (en) Preparation method of tin sulfide/molybdenum disulfide mixed dimension van der waals heterojunction
Bugarinović et al. Cuprous oxide as an active material for solar cells
Ekanayake et al. Poly-silicon thin films by aluminium induced crystallisation of microcrystalline silicon
Hasegawa et al. Critical effect of nanometer-size surface roughness of a porous Si seed layer on the defect density of epitaxial Si films for solar cells by rapid vapor deposition
JP2009238971A (en) Substrate for diamond thin film formation, semiconductor substrate using the substrate, and method of manufacturing the same
CN111640794A (en) High-dielectric-constant gate dielectric material and preparation method thereof