JPWO2019021895A1 - Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same - Google Patents

Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same Download PDF

Info

Publication number
JPWO2019021895A1
JPWO2019021895A1 JP2018557430A JP2018557430A JPWO2019021895A1 JP WO2019021895 A1 JPWO2019021895 A1 JP WO2019021895A1 JP 2018557430 A JP2018557430 A JP 2018557430A JP 2018557430 A JP2018557430 A JP 2018557430A JP WO2019021895 A1 JPWO2019021895 A1 JP WO2019021895A1
Authority
JP
Japan
Prior art keywords
particles
copper foil
roughened
longitudinal dimension
treated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018557430A
Other languages
Japanese (ja)
Other versions
JP6550196B2 (en
Inventor
貴広 齋藤
貴広 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Application granted granted Critical
Publication of JP6550196B2 publication Critical patent/JP6550196B2/en
Publication of JPWO2019021895A1 publication Critical patent/JPWO2019021895A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本発明は、優れた高周波特性と高い密着性とを両立し得る表面処理銅箔等を提供する。銅箔基体と、該銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を少なくとも含む表面処理皮膜を有する表面処理銅箔であって、前記表面処理皮膜の表面を走査型電子顕微鏡(SEM)により観察した分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子の個数をカウントするとき、長手方向寸法t1が3.0μm以下である粗化粒子の個数比率が、99.0%以上であって、かつ、前記個数比率に占める長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数比率が、2.0〜20.0%であり、前記長手方向寸法t1が1.0〜3.0μmである粗化粒子に占める、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子の個数比率が、20%以上であることを特徴とする、表面処理銅箔。The present invention provides a surface-treated copper foil that can achieve both excellent high-frequency characteristics and high adhesion. A surface-treated copper foil having a copper foil base and a surface-treated film including at least a roughened layer formed by roughening particles on at least one surface of the copper foil base, the surface of the surface-treated film When the number of roughened particles having a longitudinal dimension t1 of 0.1 μm or more is counted in the analysis region observed with a scanning electron microscope (SEM), the roughening having a longitudinal dimension t1 of 3.0 μm or less is counted. The number ratio of coarse particles having a number ratio of particles of 99.0% or more and a longitudinal dimension t1 in the number ratio of 1.0 to 3.0 μm is 2.0 to 20. Roughening in which the ratio of the longitudinal dimension t1 to the transverse dimension t2 (t1 / t2) is 2 or more in the coarsened particles having a longitudinal dimension t1 of 1.0 to 3.0 μm. The number ratio of particles is 20% or more. The symptom, the surface treated copper foil.

Description

本発明は、表面処理銅箔、特に高周波帯域で使用されるプリント配線板に好適な表面処理銅箔に関する。さらに本発明は、上記表面処理銅箔を用いた銅張積層板およびプリント配線板に関する。   The present invention relates to a surface-treated copper foil, particularly a surface-treated copper foil suitable for a printed wiring board used in a high frequency band. Furthermore, this invention relates to the copper clad laminated board and printed wiring board using the said surface treatment copper foil.

近年、20GHzを超えるような高周波対応機器が開発されてきている。しかし、周波数がGHz帯になるような高周波信号を導体回路に伝送した場合、電流が流れる表皮深さは2μm程度か、それ以下となり、電流は導体のごく表層しか流れない。そのため、導体の表面凹凸が大きい場合には、導体の伝送経路(すなわち表皮部分の伝送経路)が長くなり、伝送損失が増加する。したがって、上記高周波対応機器に用いる銅張積層板では、伝送損失の増加を抑制するため、銅箔の表面粗さを小さくすることが望まれている。   In recent years, high frequency compatible devices exceeding 20 GHz have been developed. However, when a high frequency signal having a frequency in the GHz band is transmitted to the conductor circuit, the skin depth at which the current flows is about 2 μm or less, and the current flows only on the very surface of the conductor. For this reason, when the surface irregularity of the conductor is large, the transmission path of the conductor (that is, the transmission path of the skin portion) becomes long, and the transmission loss increases. Therefore, in the copper clad laminated board used for the said high frequency corresponding | compatible apparatus, in order to suppress the increase in transmission loss, it is desired to make the surface roughness of copper foil small.

また、通常、プリント配線板に使用される銅箔では、伝送特性に加えて、樹脂基材との高い接着性も求められる。一般に、樹脂基材と銅箔表面との間で接着力を高める手法としては、電気めっきやエッチング等により、その表面に粗化処理層(粗化粒子を形成させた層)を形成し、樹脂基材との物理的な接着効果(アンカー効果)を得ることで、接着力を高める手法が挙げられる。しかし、銅箔表面と、樹脂基材との接着性を効果的に高めるべく、銅箔表面に形成する粗化粒子の粒子サイズを大きくすると、上述の通り伝送損失が増加してしまう。   In addition, in general, a copper foil used for a printed wiring board is required to have high adhesion to a resin base material in addition to transmission characteristics. In general, as a technique for increasing the adhesive force between the resin base material and the copper foil surface, a roughened layer (layer in which roughened particles are formed) is formed on the surface by electroplating or etching, and the resin A technique for increasing the adhesion force by obtaining a physical adhesion effect (anchor effect) with the base material can be mentioned. However, if the particle size of the roughened particles formed on the copper foil surface is increased in order to effectively improve the adhesion between the copper foil surface and the resin base material, the transmission loss increases as described above.

このように、銅張積層板において、伝送損失の抑制と、銅箔と樹脂基材との密着性(接着性)の向上(耐久性の向上)とは、互いにトレードオフの関係にある。そのため、従来から、銅張積層板に用いられる銅箔では、伝送損失の抑制と樹脂基材との密着性の両立が検討されており、例えば、特許文献1では、粗化形状を所定の形状に制御する手法が提案されている。また、特許文献2では、銅箔と樹脂基材との密着性およびファインパターン性を両立させるため、粒径範囲を規定した一次突起物群と二次突起物群を形成する手法が提案されている。特許文献3では、銅箔と樹脂基材との密着性およびエッチング後の樹脂の透明性を両立させるため、粒径範囲毎に粒子密度を規定する手法が提案されている。特許文献4では、銅箔と樹脂基材との密着性および粗化粒子の脱落の抑制を両立させるため、粒径範囲毎に粒子密度を規定する手法が提案されている。   As described above, in the copper-clad laminate, suppression of transmission loss and improvement in adhesion (adhesion) between the copper foil and the resin base material are in a trade-off relationship with each other. Therefore, conventionally, in copper foil used for copper-clad laminates, both suppression of transmission loss and adhesion with a resin base material have been studied. For example, in Patent Document 1, a roughened shape is a predetermined shape. A method for controlling this is proposed. Patent Document 2 proposes a method of forming a primary projection group and a secondary projection group that define a particle size range in order to achieve both the adhesion and fine pattern properties between the copper foil and the resin base material. Yes. Patent Document 3 proposes a method of defining the particle density for each particle size range in order to achieve both the adhesion between the copper foil and the resin base material and the transparency of the resin after etching. Patent Document 4 proposes a method for defining the particle density for each particle size range in order to achieve both the adhesion between the copper foil and the resin base material and the suppression of the dropout of the roughened particles.

ところで、高周波対応のプリント配線板は、最近、さらに高い信頼性が要求される分野へも展開されてきている。例えば、車載用プリント配線基板等の移動体通信機器用プリント配線基板では、高温環境等の過酷な環境下にも耐え得る高度な信頼性が要求される。このような高度な信頼性の要求に応えるためには、銅箔と樹脂基材との密着性をさらに高める必要があり、例えば、150℃で1000時間の過酷試験にも耐え得る密着性が必要である。そのため、上記のような従来の手法では、近年求められている過酷な高温環境下での密着性(耐熱密着性)を満足できなくなっている。   Incidentally, high-frequency compatible printed wiring boards have recently been developed in fields where higher reliability is required. For example, a printed wiring board for mobile communication devices such as an in-vehicle printed wiring board is required to have high reliability that can withstand a severe environment such as a high temperature environment. In order to meet such a high reliability requirement, it is necessary to further improve the adhesion between the copper foil and the resin base material, for example, the adhesion that can withstand a severe test at 150 ° C. for 1000 hours. It is. For this reason, the conventional methods as described above cannot satisfy the adhesiveness (heat-resistant adhesiveness) in a severe high-temperature environment that has been demanded in recent years.

また、プリント配線板に使用される銅箔では、樹脂基材との接着力を高めるために、上記粗化処理層の形成に加え、銅箔表面をシランカップリング剤で処理することで、樹脂基材に対して化学的な接着性を得る手法が用いられる。しかし、シランカップリング剤と樹脂基材との間で、化学的接着性を高めるためには、樹脂基材が、ある程度極性の大きな置換基を有していることが必要である。しかし、誘電損失を抑えるべく、樹脂基材として、極性の大きな置換基の量を減少させた低誘電性基材を用いる場合には、シランカップリング剤で銅箔表面を処理しても化学的接着性を得難く、銅箔と樹脂基材との十分な接着性が担保し難くなる。   In addition, in copper foil used for printed wiring boards, in addition to the formation of the roughening treatment layer, the surface of the copper foil is treated with a silane coupling agent in order to increase the adhesive strength with the resin base material. A technique for obtaining chemical adhesion to the substrate is used. However, in order to increase the chemical adhesion between the silane coupling agent and the resin base material, the resin base material needs to have a substituent having a certain degree of polarity. However, in order to suppress dielectric loss, when using a low-dielectric substrate with a reduced amount of large polar substituents as a resin substrate, chemical treatment is possible even if the copper foil surface is treated with a silane coupling agent. It is difficult to obtain adhesion and it is difficult to ensure sufficient adhesion between the copper foil and the resin base material.

特許第5972486号公報Japanese Patent No. 5972486 特開平10−341066号公報Japanese Patent Laid-Open No. 10-341066 特開2015−24515号公報JP 2015-24515 A 特開2016−145390号公報JP-A-2006-145390

本発明は、上記実情に鑑みてなされたもので、特にプリント配線板の導体回路に用いる場合に、優れた高周波特性(低誘電損失)と高い密着性(常態密着性および耐熱密着性)とを両立し得る表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has excellent high frequency characteristics (low dielectric loss) and high adhesion (normal adhesion and heat-resistant adhesion), particularly when used in a conductor circuit of a printed wiring board. It aims at providing the surface-treated copper foil which can be compatible, and a copper clad laminated board and a printed wiring board using the same.

本発明者は、鋭意研究を重ねた結果、銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を少なくとも含む表面処理皮膜を有する表面処理銅箔において、前記表面処理皮膜の表面を走査型電子顕微鏡(SEM)により観察した分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子の個数をカウントするとき、長手方向寸法t1が3.0μm以下である粗化粒子の個数比率が、99.0%以上であって、かつ、前記個数比率に占める長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数比率が、2.0〜20.0%であり、前記長手方向寸法t1が1.0〜3.0μmである粗化粒子に占める、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子の個数比率が、20%以上であることによって、特にプリント配線板の導体回路に用いる場合に、優れた高周波特性(低誘電損失)と高い密着性(常態密着性および耐熱密着性)とを両立し得る表面処理銅箔が得られることを見出し、かかる知見に基づき本発明を完成させるに至った。   As a result of extensive research, the inventor has obtained a surface-treated copper foil having a surface-treated film including at least a roughened layer formed with roughened particles on at least one surface of a copper foil substrate. When counting the number of roughened particles having a longitudinal dimension t1 of 0.1 μm or more in an analysis region where the surface of the treatment film is observed with a scanning electron microscope (SEM), the longitudinal dimension t1 is 3.0 μm or less. The number ratio of the roughened particles is 99.0% or more, and the number ratio of the roughened particles whose longitudinal dimension t1 occupies the number ratio is 1.0 to 3.0 μm. The ratio (t1 / t2) of the longitudinal dimension t1 to the transverse dimension t2 in the roughened particles having a longitudinal dimension t1 of 1.0 to 3.0 μm is 0 to 20.0%. The ratio of the number of roughened particles is 2 %, A surface-treated copper foil that can achieve both excellent high-frequency characteristics (low dielectric loss) and high adhesion (normal adhesion and heat-resistant adhesion), particularly when used in a conductor circuit of a printed wiring board. And the present invention has been completed based on this finding.

すなわち、本発明の要旨構成は、以下のとおりである。
[1]銅箔基体と、該銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を少なくとも含む表面処理皮膜を有する表面処理銅箔であって、
前記表面処理皮膜の表面を走査型電子顕微鏡(SEM)により観察した分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子の個数をカウントするとき、
長手方向寸法t1が3.0μm以下である粗化粒子の個数比率が、99.0%以上であって、かつ、前記個数比率に占める長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数比率が、2.0〜20.0%であり、
前記長手方向寸法t1が1.0〜3.0μmである粗化粒子に占める、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子の個数比率が、20%以上であることを特徴とする、表面処理銅箔。
[2]前記長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数が、前記分析領域300μmあたり、20〜100個である、上記[1]に記載の表面処理銅箔。
[3]長手方向寸法t1が1.0μm未満である粗化粒子の個数が、前記分析領域300μmあたり、300〜1200個である、上記[1]または[2]に記載の表面処理銅箔。
[4]長手方向寸法t1が3.0μm超である粗化粒子の個数が、前記分析領域300μmあたり、0〜3個である、上記[1]〜[3]のいずれか1項に記載の表面処理銅箔。
[5]長手方向寸法t1が1.0〜3.0μmであり、かつ短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子の個数が、前記分析領域300μmあたり、8個以上である、上記[1]〜[4]のいずれか1項に記載の表面処理銅箔。
[6]前記長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数が、前記分析領域300μmあたり、40〜80個である、上記[1]〜[5]のいずれか1項に記載の表面処理銅箔。
[7]前記表面処理皮膜の表面は、十点平均粗さRzjis値が0.5〜2.0μmである、上記[1]〜[6]のいずれか1項に記載の表面処理銅箔。
[8]高周波帯域用プリント配線板に使用される、上記[1]〜[7]のいずれか1項に記載の表面処理銅箔。
[9]車載用プリント配線板に使用される、上記[1]〜[8]のいずれか1項に記載の表面処理銅箔。
[10]上記[1]〜[9]のいずれか1項に記載の表面処理銅箔を用いて形成してなる、銅張積層板。
[11]上記[10]に記載の銅張積層板を用いて形成してなる、プリント配線板。
That is, the gist configuration of the present invention is as follows.
[1] A surface-treated copper foil having a copper foil base and a surface-treated film including at least a roughening treatment layer in which roughening particles are formed on at least one surface of the copper foil base,
In the analysis region where the surface of the surface treatment film is observed with a scanning electron microscope (SEM), when counting the number of roughened particles having a longitudinal dimension t1 of 0.1 μm or more,
The number ratio of roughened particles having a longitudinal dimension t1 of 3.0 μm or less is 99.0% or more, and the longitudinal dimension t1 occupying the number ratio is 1.0 to 3.0 μm. The number ratio of the activated particles is 2.0 to 20.0%,
The ratio of the number of roughened particles in which the ratio (t1 / t2) of the longitudinal dimension t1 to the transverse dimension t2 is 2 or more in the roughened particles having the longitudinal dimension t1 of 1.0 to 3.0 μm is as follows. The surface-treated copper foil is characterized by being 20% or more.
[2] The surface-treated copper foil according to [1], wherein the number of roughened particles having a longitudinal dimension t1 of 1.0 to 3.0 μm is 20 to 100 per 300 μm 2 of the analysis region. .
[3] The surface-treated copper foil according to [1] or [2], wherein the number of roughened particles having a longitudinal dimension t1 of less than 1.0 μm is 300 to 1200 per 300 μm 2 of the analysis region. .
[4] The number of roughened particles having a longitudinal dimension t1 of more than 3.0 μm is 0 to 3 per 300 μm 2 of the analysis region, according to any one of [1] to [3] above. Surface treated copper foil.
[5] The number of roughened particles whose longitudinal dimension t1 is 1.0 to 3.0 μm and whose ratio of the longitudinal dimension t1 to the lateral dimension t2 (t1 / t2) is 2 or more is the above analysis. The surface-treated copper foil according to any one of [1] to [4], wherein the number is 8 or more per 300 μm 2 of region.
[6] Any of the above [1] to [5], wherein the number of roughened particles having a longitudinal dimension t1 of 1.0 to 3.0 μm is 40 to 80 per 300 μm 2 of the analysis region. 2. The surface-treated copper foil according to item 1.
[7] The surface-treated copper foil according to any one of [1] to [6], wherein the surface of the surface-treated film has a ten-point average roughness Rzjis value of 0.5 to 2.0 μm.
[8] The surface-treated copper foil according to any one of [1] to [7], which is used for a printed wiring board for a high frequency band.
[9] The surface-treated copper foil according to any one of [1] to [8], which is used for an on-vehicle printed wiring board.
[10] A copper-clad laminate formed by using the surface-treated copper foil according to any one of [1] to [9].
[11] A printed wiring board formed using the copper-clad laminate according to [10].

本発明によれば、銅箔基体と、該銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を少なくとも含む表面処理皮膜を有する表面処理銅箔において、前記表面処理皮膜の表面を走査型電子顕微鏡(SEM)により観察した分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子の個数をカウントするとき、長手方向寸法t1が3.0μm以下である粗化粒子の個数比率が、99.0%以上であって、かつ、前記個数比率に占める長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数比率が、2.0〜20.0%であり、前記長手方向寸法t1が1.0〜3.0μmである粗化粒子に占める、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子の個数比率が、20%以上であることによって、特にプリント配線板の導体回路に用いる場合に、優れた高周波特性(低誘電損失)と高い密着性(常態密着性および耐熱密着性)とを両立し得る表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板が得られる。   According to the present invention, in the surface-treated copper foil having a copper foil base and a surface-treated film including at least a roughened layer formed with roughened particles on at least one surface of the copper foil base, the surface When counting the number of roughened particles having a longitudinal dimension t1 of 0.1 μm or more in an analysis region where the surface of the treatment film is observed with a scanning electron microscope (SEM), the longitudinal dimension t1 is 3.0 μm or less. The number ratio of the roughened particles is 99.0% or more, and the number ratio of the roughened particles whose longitudinal dimension t1 occupies the number ratio is 1.0 to 3.0 μm. The ratio (t1 / t2) of the longitudinal dimension t1 to the transverse dimension t2 in the roughened particles having a longitudinal dimension t1 of 1.0 to 3.0 μm is 0 to 20.0%. The number ratio of the roughened particles is 20% A surface-treated copper foil that can achieve both excellent high-frequency characteristics (low dielectric loss) and high adhesion (normal adhesion and heat-resistant adhesion), particularly when used in a conductor circuit of a printed wiring board, In addition, a copper clad laminate and a printed wiring board using the same can be obtained.

図1は、表面処理銅箔の表面処理皮膜の表面を走査型電子顕微鏡(SEM)により観察したSEM像であり、特に、図1(a)は従来の表面処理銅箔の一例であり、図1(b)は本発明の表面処理銅箔の一例であり、図1(c)は従来の表面処理銅箔の別の一例である。FIG. 1 is an SEM image obtained by observing the surface of a surface-treated film of a surface-treated copper foil with a scanning electron microscope (SEM). In particular, FIG. 1 (a) is an example of a conventional surface-treated copper foil. 1 (b) is an example of the surface-treated copper foil of the present invention, and FIG. 1 (c) is another example of the conventional surface-treated copper foil. 図2は、細長形状の粗化粒子の一例を示す、概略図である。FIG. 2 is a schematic view showing an example of elongated roughened particles. 図3は、球形状の粗化粒子の一例を示す、概略図である。FIG. 3 is a schematic view showing an example of spherical roughened particles. 図4は、実施例1で製造された表面処理銅箔の表面処理皮膜の表面を走査型電子顕微鏡により観察したSEM像である。FIG. 4 is an SEM image obtained by observing the surface of the surface-treated film of the surface-treated copper foil produced in Example 1 with a scanning electron microscope.

以下、本発明の表面処理銅箔の好ましい実施形態について、詳細に説明する。
本発明に従う表面処理銅箔は、銅箔基体と、該銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を少なくとも含む表面処理皮膜を有し、前記表面処理皮膜の表面を走査型電子顕微鏡(SEM)により観察した分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子の個数をカウントするとき、長手方向寸法t1が3.0μm以下である粗化粒子の個数比率が、99.0%以上であって、かつ、前記個数比率に占める長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数比率が、2.0〜20.0%であり、前記長手方向寸法t1が1.0〜3.0μmである粗化粒子に占める、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子の個数比率が、20%以上であることを特徴とする。
Hereinafter, preferred embodiments of the surface-treated copper foil of the present invention will be described in detail.
The surface-treated copper foil according to the present invention has a surface-treated film including at least a roughened layer formed by forming roughened particles on at least one surface of the copper foil base and the copper foil base. In the analysis region where the surface of the film was observed with a scanning electron microscope (SEM), when counting the number of roughened particles having a longitudinal dimension t1 of 0.1 μm or more, the longitudinal dimension t1 was 3.0 μm or less. The number ratio of some roughening particles is 99.0% or more, and the number ratio of roughening particles whose longitudinal dimension t1 in the number ratio is 1.0 to 3.0 μm is 2.0. The ratio (t1 / t2) of the longitudinal dimension t1 to the transverse dimension t2 in the roughened particles having the longitudinal dimension t1 of 1.0 to 3.0 [mu] m is 2 or more. The number ratio of some roughening particles is 20% or more And wherein the door.

本発明の表面処理銅箔は、銅箔基体と、該銅箔基体の少なくとも一方の面に、粗化粒子を形成してなる粗化処理層を少なくとも含む表面処理皮膜とを有する。このような表面処理皮膜の表面は、表面処理銅箔の最表面(表裏面)のうち少なくとも一方の面であり、また、銅箔基体の少なくとも一方の面に形成された粗化粒子の形成状態および粒子形状等が反映された微細な凹凸表面形状をもつ粗化面である。このような表面処理皮膜表面(以下、粗化面という。)は、例えば、銅箔基体上に形成された粗化処理層の表面であってもよいし、この粗化処理層上に直接形成されたシランカップリング剤層の表面、または、この粗化処理層上に、Niを含有する下地層、Znを含有する耐熱処理層および防錆処理層等の中間層を介して間接的に形成されたシランカップリング剤層の表面であってもよい。また、本発明の表面処理銅箔が、例えば、プリント配線板の導体回路に用いられる場合には、上記粗化面が、樹脂基材を貼着積層するための表面(貼着面)となる。   The surface-treated copper foil of the present invention has a copper foil substrate and a surface-treated film including at least a roughened layer formed by forming roughened particles on at least one surface of the copper foil substrate. The surface of such a surface-treated film is at least one surface of the outermost surface (front and back surfaces) of the surface-treated copper foil, and the formation state of roughened particles formed on at least one surface of the copper foil substrate And a roughened surface having a fine uneven surface shape reflecting the particle shape and the like. Such a surface treatment film surface (hereinafter referred to as a roughened surface) may be, for example, the surface of a roughened layer formed on a copper foil substrate, or directly formed on the roughened layer. Indirectly formed on the surface of the treated silane coupling agent layer or on this roughened layer via an intermediate layer such as a Ni-containing underlayer, a Zn-containing heat-resistant layer and a rust-proof layer It may be the surface of the formed silane coupling agent layer. Moreover, when the surface-treated copper foil of this invention is used for the conductor circuit of a printed wiring board, for example, the said roughening surface turns into the surface (sticking surface) for sticking and laminating | stacking a resin base material. .

さらに、本発明では、粗化面を真上から(該表面に対して垂直の方向から)走査型電子顕微鏡(SEM)により観察することにより、粗化面における粗化粒子の形成状態を分析する。なお、本発明において、粗化粒子とは、例えば、後述する粗化処理により形成される、粒状の電析物を指すものとする。さらに粗化粒子の大きさについては、SEMにより観察した分析領域にて、粗化粒子を平面視して(例えば図1(b)に示されるようにX−Y平面で見て)、この粗化粒子に対して外接する最小面積の長方形Pを描いたときの、長方形Pの長辺t1および短辺t2を、粗化粒子の長手方向寸法t1および短手方向寸法t2とそれぞれ定義する。なお、平面視した粗化粒子に対して外接する最小面積の長方形Pが、正方形であった場合には、長手方向寸法t1および短手方向寸法t2は同じ長さである。   Furthermore, in this invention, the formation state of the roughening particle | grains in a roughening surface is analyzed by observing a roughening surface from right above (from the direction perpendicular | vertical with respect to this surface) with a scanning electron microscope (SEM). . In addition, in this invention, a roughened particle shall point out the granular electrodeposit formed by the roughening process mentioned later, for example. Further, regarding the size of the roughened particles, the roughened particles are viewed in plan in the analysis region observed by SEM (for example, as viewed in the XY plane as shown in FIG. 1 (b)). The long side t1 and the short side t2 of the rectangle P when the rectangle P having the minimum area circumscribing the roughening particle is drawn are defined as the longitudinal dimension t1 and the short dimension t2 of the roughened particle, respectively. In addition, when the rectangle P having the minimum area circumscribing the roughened particles in plan view is a square, the longitudinal dimension t1 and the transverse dimension t2 are the same length.

ここで、図1(b)は、本発明の表面処理銅箔の粗化面を、真上から走査型電子顕微鏡(SEM)により観察したSEM画像の一例である。また、比較のために、図1(b)に示す本発明の表面処理銅箔と同様の方法で観察した、2種類の従来の表面処理銅箔の粗化面のSEM画像を、それぞれ図1(a)および図1(c)に示す。   Here, FIG.1 (b) is an example of the SEM image which observed the roughened surface of the surface-treated copper foil of this invention with the scanning electron microscope (SEM) from right above. For comparison, SEM images of roughened surfaces of two types of conventional surface-treated copper foils observed in the same manner as the surface-treated copper foil of the present invention shown in FIG. Shown in (a) and FIG.

図1(a)に示される従来の表面処理銅箔は、粗化面における粗化粒子が、平面視で円形であり、かつ、微細で均一な粒径を有している。特許文献1〜4に記載の表面処理銅箔はこの例に相当し、このような表面処理銅箔は、粗化面の凹凸が小さいため、高周波特性は非常に優れているが、密着性、特に加熱処理後の密着性(耐熱密着性)が十分に得られない。   In the conventional surface-treated copper foil shown in FIG. 1A, the roughened particles on the roughened surface are circular in plan view and have a fine and uniform particle size. The surface-treated copper foils described in Patent Documents 1 to 4 correspond to this example, and such a surface-treated copper foil has very high frequency characteristics because the roughness of the roughened surface is small. In particular, the adhesion after heat treatment (heat resistant adhesion) cannot be obtained sufficiently.

一方、図1(c)に示される従来の表面処理銅箔は、粗化面における粗化粒子が、平面視で円形であり、かつ、粗大で均一な粒径を有している。このような表面処理銅箔は、粗化面の凹凸が大きいため、密着性(常態密着性および耐熱密着性)は優れるが、高周波特性が十分に得られない。   On the other hand, in the conventional surface-treated copper foil shown in FIG. 1C, the roughened particles on the roughened surface are circular in a plan view and have a coarse and uniform particle size. Such a surface-treated copper foil has excellent roughness (normal adhesion and heat-resistant adhesion) due to large roughness on the roughened surface, but sufficient high-frequency characteristics cannot be obtained.

本発明者は、上記従来の表面処理銅箔における問題点として、高周波特性と密着性のトレードオフの関係に着目し鋭意研究を進めた結果、粗化面における粗化粒子の大きさおよび形状をあえて不均一に制御することにより、上記相反する特性である高周波特性と密着性(常態密着性および耐熱密着性)を両立できることを見出した。   As a problem in the conventional surface-treated copper foil, the present inventor has intensively studied focusing on the trade-off relationship between high-frequency characteristics and adhesion, and as a result, determined the size and shape of the roughened particles on the roughened surface. It has been found that the high frequency characteristics and the adhesiveness (normal adhesiveness and heat-resistant adhesiveness), which are the above-mentioned contradictory characteristics, can be achieved at the same time by intentionally controlling unevenly.

すなわち、本発明の表面処理銅箔は、例えば図1(b)に示されるように、粗化面における粗化粒子の大きさおよび形状を不均一とし、特に、微細な粗化粒子(後述するA粒子)と、所定の大きさを有する粗化粒子(後述するB粒子)とを一定の割合で混在させると共に、所定の大きさを有する粗化粒子のうち一定の割合が細長形状の粗化粒子(後述するb1粒子)となるように制御する。このような本発明の表面処理銅箔は、粗化面における粗化粒子の大きさおよび形状が所定の関係に制御されているため、良好な高周波特性と適度な密着性(常態密着性および耐熱密着性)とを両立できる。   That is, the surface-treated copper foil of the present invention makes the size and shape of the roughened particles uneven on the roughened surface, for example, as shown in FIG. A particle) and roughened particles having a predetermined size (B particles to be described later) are mixed at a fixed ratio, and a fixed ratio of the roughened particles having a predetermined size is elongated. It controls so that it may become a particle (b1 particle mentioned below). In such a surface-treated copper foil of the present invention, the size and shape of the roughened particles on the roughened surface are controlled to a predetermined relationship, so that good high-frequency characteristics and appropriate adhesion (normal adhesion and heat resistance) Adhesion) can be achieved.

本発明の表面処理銅箔は、粗化面において、微細な粗化粒子と、所定の大きさを有する粗化粒子とを一定の割合で混在させると共に、所定の大きさを有する粗化粒子のうち一定の割合が細長形状の粗化粒子になるように制御されることで、高周波特性と密着性を両立できる。このような作用効果が得られるメカニズムは必ずしも明らかではないが、微細な粗化粒子に対し、所定の大きさを有する粗化粒子を一定割合加えることで、微細粒子のみの場合(図1(a)の場合)に比べて密着性を向上できる。さらに、所定の大きさを有する粗化粒子の一部を細長形状とすることで、粒子サイズを大きくしたことによる誘電損失の上昇を抑制し、微細粒子のみの場合に近い、優れた高周波特性が維持されるものと考えられる。   The surface-treated copper foil of the present invention is a mixture of fine roughened particles and roughened particles having a predetermined size at a fixed ratio on the roughened surface, and the roughened particles having a predetermined size. By controlling so that a certain ratio among them becomes elongated rough particles, both high frequency characteristics and adhesion can be achieved. The mechanism by which such an effect is obtained is not necessarily clear, but by adding a certain percentage of coarse particles having a predetermined size to fine coarse particles, only fine particles (FIG. 1 (a) In the case of), the adhesion can be improved. Furthermore, by making some of the roughened particles having a predetermined size into an elongated shape, an increase in dielectric loss due to an increase in the particle size is suppressed, and excellent high frequency characteristics close to that of only fine particles are obtained. It is considered to be maintained.

図2は、所定の大きさを有する細長形状の粗化粒子を、Z軸方向から平面視した場合の概略図(X−Y平面図)である。また、図3は、図2に示される細長形状の粗化粒子の長手方向寸法t1と同じ長さの直径(t1、t2)を有する球形状の粗化粒子を、Z軸方向から平面視した場合の概略図(X−Y平面図)である。また、図2、3の各(b)および(c)は、それぞれの破線矢印方向から電流を流した場合に、粗化粒子の表面における伝送経路を、模式的に実線で示した例である。   FIG. 2 is a schematic view (XY plan view) of elongated rough particles having a predetermined size when viewed in plan from the Z-axis direction. FIG. 3 is a plan view of spherical rough particles having a diameter (t1, t2) having the same length as the longitudinal dimension t1 of the elongated rough particles shown in FIG. 2 from the Z-axis direction. It is the schematic (XY plan view) in the case. Moreover, each (b) and (c) of FIGS. 2 and 3 is an example in which the transmission path on the surface of the roughened particles is schematically shown by a solid line when a current is passed from the direction of the respective dashed arrows. .

図2(b)および図3(b)の比較で分かるように、仮にX−Y平面をY軸に沿って電流が流れた場合には、細長形状の粗化粒子は、同じ長手方向寸法t1を有する球状粒子に比べて、粗化粒子の表面における伝送経路が短くなる。また、図2(c)および図3(c)の比較で分かるように、仮にX−Y平面をX軸に沿って電流が流れた場合には、細長形状の粗化粒子は、同じ長手方向寸法t1を有する球状粒子に比べて、電流が粗化粒子の表面を流れる確率が低くなる。   As can be seen from the comparison between FIG. 2B and FIG. 3B, if a current flows along the Y axis on the XY plane, the elongated rough particles have the same longitudinal dimension t1. The transmission path on the surface of the roughened particles is shorter than the spherical particles having Further, as can be seen from the comparison between FIG. 2C and FIG. 3C, if the current flows along the X axis on the XY plane, the elongated rough particles are in the same longitudinal direction. The probability that an electric current flows on the surface of the roughened particle is lower than that of the spherical particle having the dimension t1.

上記のように、細長形状の粗化粒子はその長手方向が、電流に対しどの方向に配向していたとしても、同じ長手方向寸法t1を有する球形状の粗化粒子に比べて、粗化粒子の表面における伝送経路が短くなるか、そもそも電流が粗化粒子の表面を流れる頻度が少ないため、伝送損失が小さくなると考えられる。   As described above, the elongated roughened particles are roughened compared to the spherical roughened particles having the same longitudinal dimension t1 regardless of the direction of the longitudinal direction of the roughened particles. It is considered that the transmission loss is reduced because the transmission path on the surface of the surface becomes shorter or the current does not frequently flow through the surface of the roughened particles.

また、密着性の観点では、長手方向寸法t1が所定の大きさ以上の粗化粒子が一定量含まれていれば、その形状が細長形状であっても、十分な密着性が得られることがわかった。   From the viewpoint of adhesion, if a certain amount of roughened particles having a longitudinal dimension t1 of a predetermined size or more is contained, sufficient adhesion can be obtained even if the shape is elongated. all right.

これらの知見に基づき、本発明者は、表面処理銅箔の粗化面において、微細な粗化粒子と、所定の大きさを有する粗化粒子とを一定の割合で混在させると共に、所定の大きさを有する粗化粒子の一部を細長形状の粗化粒子とすることで、高周波特性の悪化を抑え、密着性の向上を図ることに成功し、本発明を完成するに至った。   Based on these findings, the present inventor mixed fine roughened particles and roughened particles having a predetermined size at a predetermined ratio on the roughened surface of the surface-treated copper foil. By making a part of the roughening particles having the thickness into elongated roughening particles, the deterioration of the high frequency characteristics was suppressed and the adhesion was improved, and the present invention was completed.

本発明では、表面処理銅箔の粗化面を走査型電子顕微鏡(SEM)により観察することで、粗化面における粗化粒子の形成状態を確認する。なお、本発明では、表面処理皮膜の表面をSEM観察した分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子をカウント対象として、その個数をカウントする。このように規定するのは、長手方向寸法t1が0.1μm未満である微細な粒子は、本発明の求める高周波特性と密着性との両立が可能な範囲において、ほとんど影響を及ぼさないためである。
以下、本発明の表面処理銅箔の粗化面について、粗化粒子の大きさおよび形状、並びに分析領域における粒子形状毎の粗化粒子の個数比率等について詳しく説明する。
In this invention, the formation state of the roughening particle | grains in a roughening surface is confirmed by observing the roughening surface of surface-treated copper foil with a scanning electron microscope (SEM). In the present invention, the number of roughened particles having a longitudinal dimension t1 of 0.1 μm or more is counted in the analysis region obtained by SEM observation of the surface of the surface treatment film. The reason for this is that fine particles having a longitudinal dimension t1 of less than 0.1 μm have almost no effect within the range in which the high-frequency characteristics and adhesion required by the present invention are compatible. .
Hereinafter, with respect to the roughened surface of the surface-treated copper foil of the present invention, the size and shape of the roughened particles, the number ratio of the roughened particles for each particle shape in the analysis region, and the like will be described in detail.

粗化面は、微細な粗化粒子と、所定の大きさを有する粗化粒子とで、主に構成されている。ここで、微細な粗化粒子としては、長手方向寸法t1が1.0μm未満である粗化粒子(以下、A粒子という)であり、所定の大きさを有する粗化粒子としては、長手方向寸法t1が1.0〜3.0μmである粗化粒子(以下、B粒子という)である。すなわち粗化面は、上記A粒子およびB粒子により主に構成されており、上記分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子の個数をカウントするとき、長手方向寸法t1が3.0μm以下である粗化粒子(A粒子およびB粒子の合計)の個数比率が99.0%以上であり、好ましくは、99.5%以上である。上記範囲とすることで、高周波特性を良好に制御できる。   The roughened surface is mainly composed of fine roughened particles and roughened particles having a predetermined size. Here, the fine roughened particles are roughened particles (hereinafter referred to as A particles) having a longitudinal dimension t1 of less than 1.0 μm, and the roughened particles having a predetermined size are longitudinal dimensions. It is roughened particles (hereinafter referred to as B particles) having t1 of 1.0 to 3.0 μm. That is, the roughened surface is mainly composed of the A particles and B particles, and when the number of roughened particles whose longitudinal dimension t1 is 0.1 μm or more is counted in the analysis region, the longitudinal dimension is measured. The number ratio of roughened particles (total of A particles and B particles) whose t1 is 3.0 μm or less is 99.0% or more, and preferably 99.5% or more. By setting it as the above range, the high frequency characteristics can be favorably controlled.

また、粗化面は、A粒子とB粒子とが一定の割合で混在していることを特徴とする。すなわち、上記長手方向寸法t1が3.0μm以下である粗化粒子(A粒子およびB粒子の合計)に占める、B粒子の個数比率は、2.0〜20.0%であり、好ましくは3.5〜15.0%である。上記B粒子の個数比率が、2.0%未満であると密着性の向上効果が十分に得られず、20.0%超であると伝送損失の増大の影響が大きくなる。また、より具体的には、B粒子の個数は、上記分析領域300μmあたり、20〜100個であることが好ましく、より好ましくは40〜80個である。The roughened surface is characterized in that A particles and B particles are mixed in a certain ratio. That is, the number ratio of B particles in the roughened particles (total of A particles and B particles) having a longitudinal dimension t1 of 3.0 μm or less is 2.0 to 20.0%, preferably 3 0.5 to 15.0%. If the number ratio of the B particles is less than 2.0%, the effect of improving the adhesion cannot be sufficiently obtained, and if it exceeds 20.0%, the influence of an increase in transmission loss becomes large. More specifically, the number of B particles is preferably 20 to 100, more preferably 40 to 80 per 300 μm 2 of the analysis region.

さらに、粗化面は、B粒子の一部を細長形状の粗化粒子とする。このような細長形状の粗化粒子としては、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子(以下、b1粒子という)である。すなわち、B粒子に占める、b1粒子の個数比率は20%以上であり、好ましくは30%以上である。B粒子に占めるb1粒子の個数比率が、20%以上であると密着性を確保しつつ、伝送損失への悪影響を最小限に抑制できる。一方、20%未満になると、B粒子に占める、球状粒子(図3のような粒子)の個数比率が増すため、伝送損失が悪化する。なお、B粒子に占める、b1粒子の個数比率の上限は、例えば、80%以下である。また、より具体的には、b1粒子の個数は、上記分析領域300μmあたり、8個以上であることが好ましい。なお、b1粒子の短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)の上限は、例えば4以下である。Further, the roughened surface has a part of the B particles as elongated rough particles. Such elongated rough particles are rough particles (hereinafter referred to as b1 particles) having a ratio (t1 / t2) of the longitudinal dimension t1 to the transverse dimension t2 of 2 or more. That is, the number ratio of b1 particles in the B particles is 20% or more, preferably 30% or more. When the number ratio of b1 particles in the B particles is 20% or more, the adverse effect on the transmission loss can be minimized while ensuring the adhesion. On the other hand, if it is less than 20%, the number ratio of spherical particles (particles as shown in FIG. 3) in the B particles increases, so that transmission loss is deteriorated. The upper limit of the number ratio of b1 particles in the B particles is, for example, 80% or less. More specifically, the number of b1 particles is preferably 8 or more per 300 μm 2 of the analysis region. In addition, the upper limit of ratio (t1 / t2) of the longitudinal direction dimension t1 with respect to the transversal dimension t2 of b1 particle | grains is 4 or less, for example.

また、上述のように粗化面は、微細な粗化粒子であるA粒子と、所定の大きさを有する粗化粒子であるB粒子とで主に構成される。A粒子の個数比率は、B粒子の個数比率により相対的に決まるが、A粒子が多い場合には、伝送損失の低減は見込めるものの、十分な密着性を確保することは出来ない。したがって、上述のように、十分な密着性を得る観点から、粗化面に、A粒子とB粒子とを一定の割合で混在させる必要がある。なお、より具体的には、A粒子の個数は、上記分析領域300μmあたり、300〜1200個であることが好ましい。Further, as described above, the roughened surface is mainly composed of A particles that are fine roughened particles and B particles that are roughened particles having a predetermined size. The number ratio of the A particles is relatively determined by the number ratio of the B particles. However, when the number of A particles is large, a reduction in transmission loss can be expected, but sufficient adhesion cannot be ensured. Therefore, as described above, from the viewpoint of obtaining sufficient adhesion, it is necessary to mix A particles and B particles on the roughened surface at a certain ratio. More specifically, the number of A particles is preferably 300 to 1200 per 300 μm 2 of the analysis region.

さらに、粗化面は、粗大な粗化粒子が一定割合以下となるように制御されている。このような粗大な粗化粒子としては、長手方向寸法t1が3.0μm超の粗化粒子(以下、C粒子という)である。すなわち、粗化面は、C粒子が一定割合以下となるように制御しており、カウント対象の粗化粒子に占める、C粒子の個数比率は、1%以下であり、好ましくは、0.5%以下である。C粒子は、密着性の向上に寄与するが、1.0%超であると、伝送損失の増大を招く。なお、より具体的には、C粒子の個数は、上記分析領域300μmあたり、0〜3個であることが好ましい。Furthermore, the roughened surface is controlled so that coarse roughened particles become a certain ratio or less. Such coarse roughened particles are roughened particles (hereinafter referred to as C particles) having a longitudinal dimension t1 of more than 3.0 μm. That is, the roughened surface is controlled so that the C particles become a certain ratio or less, and the number ratio of the C particles in the roughened particles to be counted is 1% or less, preferably 0.5%. % Or less. C particles contribute to the improvement of adhesion, but if it exceeds 1.0%, the transmission loss increases. More specifically, the number of C particles is preferably 0 to 3 per 300 μm 2 of the analysis region.

本発明の表面処理銅箔は、上記のような特徴を持つ粗化面を有することで、互いにトレードオフの関係である伝送損失の抑制と、樹脂基材との密着性(常態密着性及び耐熱密着性)の向上とを両立できる。   The surface-treated copper foil of the present invention has a roughened surface having the above-described characteristics, thereby suppressing transmission loss, which is a trade-off relationship with each other, and adhesion with a resin substrate (normal adhesion and heat resistance). (Adhesion) can be improved.

また、本発明の表面処理銅箔の粗化面は、十点平均粗さRzjisの値が0.5〜2.0μmであることが好ましい。上記範囲とすることにより、伝送損失の抑制がより確実となる。   Further, the roughened surface of the surface-treated copper foil of the present invention preferably has a ten-point average roughness Rzjis value of 0.5 to 2.0 μm. By setting it within the above range, transmission loss can be more reliably suppressed.

また、本発明の表面処理銅箔は、これをプリント配線板の導体回路に用いることにより、GHz帯の高周波信号を伝送した際の伝送損失を高度に抑制でき、かつ、高温下においても表面処理銅箔と樹脂基材(樹脂層)との密着性を良好に維持でき、過酷条件における耐久性にも優れたプリント配線板を得ることができる。   In addition, the surface-treated copper foil of the present invention can be used for a conductor circuit of a printed wiring board to highly suppress transmission loss when a high-frequency signal in the GHz band is transmitted, and surface treatment even at high temperatures. The printed wiring board which can maintain favorable adhesiveness of copper foil and a resin base material (resin layer), and was excellent also in durability in severe conditions can be obtained.

次に、本発明の表面処理銅箔の好ましい製造方法について、その一例を説明する。本発明では、銅箔基体の表面に、粗化粒子を形成する粗化処理を行うことが好ましい。   Next, an example of a preferred method for producing the surface-treated copper foil of the present invention will be described. In this invention, it is preferable to perform the roughening process which forms a rough particle on the surface of a copper foil base | substrate.

銅箔基体は、公知のものを用いることができ、例えば電解銅箔や圧延銅箔を用いることができる。   A well-known thing can be used for a copper foil base | substrate, for example, an electrolytic copper foil and a rolled copper foil can be used.

粗化処理は、例えば下記に示すような粗化めっき処理(1)と固定めっき処理(2)を組み合せて行うことが好ましい。   The roughening treatment is preferably performed by combining, for example, roughening plating treatment (1) and fixed plating treatment (2) as shown below.

・粗化めっき処理(1)
粗化めっき処理(1)は、銅箔基体の少なくとも一方の面上に粗化粒子を形成する処理である。具体的には硫酸銅浴で高電流密度のめっき処理を行う。このような硫酸銅浴(粗化めっき液基本浴)には、粗化粒子の脱落、即ち「粉落ち」の防止を目的としたモリブデン(Mo)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)、セレン(Se)、テルル(Te)、タングステン(W)等の従来から知られている添加剤の添加が可能であり、特にモリブデン(Mo)を添加することが好ましい。本発明者は、鋭意研究を行った結果、下記の要因が表面処理銅箔の表面性状に影響を及ぼすことを見出し、適切にそれらの条件を設定することで、本発明の効果である高周波特性および密着性(常態密着性および耐熱密着性)の要求特性を高い水準で満足させることができることを発見した。
・ Roughening plating (1)
The rough plating process (1) is a process of forming rough particles on at least one surface of the copper foil base. Specifically, high current density plating is performed in a copper sulfate bath. Such a copper sulfate bath (basic bath for roughing plating solution) includes molybdenum (Mo), arsenic (As), antimony (Sb), bismuth for the purpose of preventing the falling off of the roughened particles, that is, “powder off”. Conventionally known additives such as (Bi), selenium (Se), tellurium (Te), tungsten (W) can be added, and it is particularly preferable to add molybdenum (Mo). As a result of diligent research, the present inventors have found that the following factors affect the surface properties of the surface-treated copper foil, and appropriately setting those conditions, the high-frequency characteristics that are the effects of the present invention It was also found that the required properties of adhesion (normal adhesion and heat-resistant adhesion) can be satisfied at a high level.

まず、粗化めっき処理(1)の粗化めっき浴中に添加される添加剤、例えばモリブデン(Mo)を例に挙げて説明する。モリブデン(Mo)濃度は、100mg/L未満とすると、粗化粒子を微細に形成することが難しくなり、B粒子およびC粒子の個数比率が増加するため、高周波特性が悪化する傾向がある。また、モリブデン(Mo)濃度は、400mg/Lを超えると、粗化粒子が過度に微細化され易くなり、B粒子の個数比率が減少するため、耐熱密着性が悪化する傾向がある。したがって、モリブデン(Mo)濃度は、100〜400mg/Lとすることが好ましい。   First, the additive added to the roughening plating bath of the roughening plating process (1), for example, molybdenum (Mo) will be described as an example. When the molybdenum (Mo) concentration is less than 100 mg / L, it becomes difficult to form coarse particles finely, and the number ratio of B particles and C particles increases, so that high-frequency characteristics tend to deteriorate. On the other hand, when the molybdenum (Mo) concentration exceeds 400 mg / L, the roughened particles are easily refined excessively, and the number ratio of the B particles decreases, so that the heat resistant adhesion tends to deteriorate. Therefore, the molybdenum (Mo) concentration is preferably 100 to 400 mg / L.

次に、粗化めっき処理(1)の電解条件等を説明する。
極間流速は、0.05m/s未満とすると、粗化粒子を微細に形成することが難しくなり、B粒子およびC粒子の個数比率が増加するため、高周波特性が悪化する傾向がある。また、極間流速は、0.14m/sを超えると、粗化粒子が過度に微細化され易くなり、B粒子の個数比率が減少するため、耐熱密着性が悪化する傾向がある。したがって、極間流速は、0.05〜0.14m/sとすることが好ましい。
Next, electrolysis conditions and the like of the rough plating process (1) will be described.
When the interpolar flow rate is less than 0.05 m / s, it becomes difficult to form coarse particles finely, and the number ratio of B particles and C particles increases, so that high-frequency characteristics tend to deteriorate. On the other hand, if the interpolar flow rate exceeds 0.14 m / s, the coarse particles are likely to be excessively refined and the number ratio of the B particles is decreased, so that the heat resistant adhesion tends to be deteriorated. Accordingly, the interpolar flow rate is preferably 0.05 to 0.14 m / s.

電流密度(A/dm)と処理時間(秒)の積(=S)は、100{(A/dm)・秒}未満とすると、本発明の求める十分な常態密着性を得ることが難しくなる。また、上記積Sは、300{(A/dm)・秒}を超えると、粗化粒子が過度に成長し、本発明の求める良好な高周波特性を得ることが難しくなる。したがって、上記積Sは、100〜300{(A/dm)・秒}とすることが好ましい。When the product (= S) of the current density (A / dm 2 ) and the processing time (seconds) is less than 100 {(A / dm 2 ) · second}, sufficient normal adhesion required by the present invention can be obtained. It becomes difficult. On the other hand, if the product S exceeds 300 {(A / dm 2 ) · second}, the coarse particles grow excessively, and it becomes difficult to obtain the good high frequency characteristics required by the present invention. Therefore, the product S is preferably 100 to 300 {(A / dm 2 ) · second}.

また、モリブデン(Mo)濃度に対する電流密度と処理時間の積Sの比(=S/Mo濃度)は、0.5〔{(A/dm)・秒}/(mg/L)〕未満とすると、粗化粒子が過度に微細化され易くなり、B粒子の個数比率が減少するため、耐熱密着性が悪化する傾向がある。また、S/Mo濃度は、2.5〔{(A/dm)・秒}/(mg/L)〕を超えると、粗化粒子を微細に形成することが難しくなり、B粒子およびC粒子の個数比率が増加するため、高周波特性が悪化する傾向がある。したがってS/Mo濃度は、0.5〜2.5〔{(A/dm)・秒}/(mg/L)〕とすることが好ましい。Further, the ratio of the product S of the current density and the treatment time to the molybdenum (Mo) concentration (= S / Mo concentration) is less than 0.5 [{(A / dm 2 ) · second} / (mg / L)]. Then, it becomes easy to refine the coarse particles excessively and the number ratio of the B particles decreases, so that the heat resistant adhesion tends to deteriorate. On the other hand, when the S / Mo concentration exceeds 2.5 [{(A / dm 2 ) · second} / (mg / L)], it becomes difficult to form coarse particles finely. Since the number ratio of the particles increases, the high frequency characteristics tend to deteriorate. Therefore, the S / Mo concentration is preferably 0.5 to 2.5 [{(A / dm 2 ) · second} / (mg / L)].

・固定めっき処理(2)
固定めっき処理(2)は、上記粗化めっき処理(1)で表面処理をした銅箔基体に平滑なかぶせめっきを行う処理である。この処理は、粗化粒子の脱落を防止するため、すなわち粗化粒子を固定化するために行う。具体的には硫酸銅浴でめっき処理を行う。本発明者は、鋭意研究を行った結果、通常固定めっきに意図的に加えることは無い塩素を添加することに加えて、下記の要因が表面処理銅箔の表面性状に影響を及ぼすことを見出し、適切にそれらの条件を設定することで、本発明の効果である高周波特性および密着性(常態密着性および耐熱密着性)の要求特性を高い水準で満足させることができることを発見した。
・ Fixed plating treatment (2)
The fixed plating treatment (2) is a treatment for performing smooth covering plating on the copper foil substrate subjected to the surface treatment in the roughening plating treatment (1). This treatment is performed to prevent the roughened particles from falling off, that is, to fix the roughened particles. Specifically, plating is performed in a copper sulfate bath. As a result of diligent research, the present inventors have found that the following factors affect the surface properties of the surface-treated copper foil in addition to adding chlorine that is not intentionally added to the fixed plating. It has been discovered that by appropriately setting these conditions, the required characteristics of high frequency characteristics and adhesion (normal adhesion and heat-resistant adhesion), which are the effects of the present invention, can be satisfied at a high level.

まず、固定めっき処理(2)の固定めっき浴中に添加される塩素濃度について説明する。塩素(Cl)濃度は、50mg/L未満とすると、粗化粒子が球形に成長し易くなり、b1粒子の個数比率が減少するため、高周波特性が悪化する傾向がある。また、塩素(Cl)濃度は200mg/Lを超えると、想定外の電析異常を招く可能性が高くなる。したがって、塩素(Cl)濃度は、50〜200mg/Lとすることが好ましい。   First, the chlorine concentration added to the fixed plating bath of the fixed plating process (2) will be described. When the chlorine (Cl) concentration is less than 50 mg / L, the coarse particles tend to grow into a spherical shape, and the number ratio of b1 particles decreases, so that the high-frequency characteristics tend to deteriorate. Moreover, when chlorine (Cl) density | concentration exceeds 200 mg / L, possibility that it will lead to unexpected electrodeposition abnormality will become high. Therefore, the chlorine (Cl) concentration is preferably 50 to 200 mg / L.

次に、固定めっき処理(2)の電解条件等を説明する。
極間流速は、0.15m/s未満とすると、正常な固定めっきを施すことが難しくなり、粉落ちが発生し易くなる。また、極間流速は、0.40m/sを超えると、粗化粒子が球形に成長し易くなり、b1粒子の個数比率が減少するため、高周波特性が悪化する傾向がある。したがって、極間流速は、0.15〜0.40m/sとすることが好ましい。
Next, electrolysis conditions and the like of the fixed plating process (2) will be described.
When the inter-electrode flow rate is less than 0.15 m / s, it is difficult to perform normal fixed plating, and powder falling easily occurs. On the other hand, when the interpolar flow velocity exceeds 0.40 m / s, the coarse particles tend to grow into a spherical shape, and the number ratio of b1 particles decreases, so that the high-frequency characteristics tend to deteriorate. Therefore, the interpolar flow rate is preferably 0.15 to 0.40 m / s.

特に、電流密度と処理時間の積(=K)は、30{(A/dm)・秒}未満とすると、十分な固定めっきを施すことが難しくなる。また、上記積Kは、100{(A/dm)・秒}を超えると、粗化粒子が過度に成長するため、本発明の求める良好な高周波特性を得ることが難しくなる。したがって、上記積Kは、30〜100{(A/dm)・秒}とすることが好ましい。In particular, if the product of the current density and the processing time (= K) is less than 30 {(A / dm 2 ) · second}, it is difficult to perform sufficient fixed plating. Further, when the product K exceeds 100 {(A / dm 2 ) · second}, the coarse particles grow excessively, so that it is difficult to obtain good high frequency characteristics required by the present invention. Accordingly, the product K is preferably 30 to 100 {(A / dm 2 ) · second}.

また、塩素(Cl)濃度に対する電流密度と処理時間の積Kの比(=K/Cl濃度)は、0.2〔{(A/dm)・秒}/(mg/L)〕未満とすると、想定外の電析異常を招く可能性が高くなる。また、K/Cl濃度は、2.0〔{(A/dm)・秒}/(mg/L)〕を超えると、粗化粒子が球形に成長し易くなり、b1粒子の個数比率が減少するため、高周波特性が悪化する傾向がある。したがって、塩素(Cl)濃度に対する電流密度と処理時間の積Kの比(=K/Cl濃度)は、0.2〜2.0とすることが好ましい。The ratio of the product K of the current density to the chlorine (Cl) concentration and the processing time (= K / Cl concentration) is less than 0.2 [{(A / dm 2 ) · second} / (mg / L)]. Then, the possibility of causing an unexpected electrodeposition abnormality is increased. On the other hand, if the K / Cl concentration exceeds 2.0 [{(A / dm 2 ) · second} / (mg / L)], it becomes easy for the coarse particles to grow into a spherical shape, and the number ratio of the b1 particles is increased. Since it decreases, the high frequency characteristics tend to deteriorate. Therefore, it is preferable that the ratio (= K / Cl concentration) of the product K of the current density and the treatment time with respect to the chlorine (Cl) concentration is 0.2 to 2.0.

さらに、粗化めっき処理(1)の電流密度と処理時間の積Sに対する固定めっき処理(2)の電流密度と処理時間の積Kの比率((K/S)×100(%))は、25%未満とすると、十分な固定めっきを施すことが難しくなり、粉落ちが発生し易くなる。上記比率[(K/S)×100]は、50%を超えると、粗化粒子が過度に成長し易くなり、本発明の求める良好な高周波特性を得ることが難しくなる。したがって、上記比率[(K/S)×100]は、25〜50%とすることが好ましい。   Furthermore, the ratio ((K / S) × 100 (%)) of the product K of the current density and the processing time of the fixed plating process (2) to the product S of the current density and the processing time of the roughening plating process (1) is: If it is less than 25%, it is difficult to perform sufficient fixed plating, and powder falling easily occurs. When the ratio [(K / S) × 100] exceeds 50%, the coarse particles are likely to grow excessively, and it is difficult to obtain good high frequency characteristics required by the present invention. Therefore, the ratio [(K / S) × 100] is preferably 25 to 50%.

以下、粗化めっき処理用めっき液の組成および電解条件の一例を示す。なお、下記条件は好ましい一例であり、本発明の効果を妨げない範囲で、必要に応じて添加剤の種類や量、電解条件を適宜変更、調整することができる。   Hereinafter, an example of the composition and electrolysis conditions of the plating solution for rough plating treatment will be shown. The following conditions are preferred examples, and the types and amounts of additives and electrolysis conditions can be appropriately changed and adjusted as necessary within the range not impeding the effects of the present invention.

<粗化めっき処理(1)の条件>
硫酸銅五水和物・・・銅(原子)換算で、15〜30g/L
硫酸・・・100〜250g/L
モリブデン酸アンモニウム・・・モリブデン(原子)換算で、100〜400mg/L
極間流速・・・0.05〜0.14m/s
電流密度・・・45〜70A/dm
処理時間・・・2〜5秒
浴温・・・15〜30℃
<Conditions for roughening plating (1)>
Copper sulfate pentahydrate: 15-30 g / L in terms of copper (atom)
Sulfuric acid ... 100-250g / L
Ammonium molybdate: 100 to 400 mg / L in terms of molybdenum (atom)
Inter-polar flow velocity: 0.05 to 0.14 m / s
Current density: 45 to 70 A / dm 2
Treatment time: 2-5 seconds Bath temperature: 15-30 ° C

<固定めっき処理(2)の条件>
硫酸銅五水和物・・・銅(原子)換算で、50〜70g/L
硫酸・・・80〜160g/L
塩化ナトリウム・・・塩素(原子)換算で、50〜200mg/L
極間流速・・・0.15〜0.40m/s
電流密度・・・5〜15A/dm
処理時間・・・4〜15秒
浴温・・・50〜70℃
<Conditions for fixed plating treatment (2)>
Copper sulfate pentahydrate: 50 to 70 g / L in terms of copper (atom)
Sulfuric acid ... 80-160g / L
Sodium chloride: 50 to 200 mg / L in terms of chlorine (atom)
Inter-polar flow velocity ... 0.15 to 0.40 m / s
Current density: 5 to 15 A / dm 2
Treatment time: 4-15 seconds Bath temperature: 50-70 ° C

さらに、本発明の表面処理銅箔は、銅箔基体の少なくとも一方の面に、粗化粒子の電析により形成される、所定の微細な凹凸表面形状をもつ粗化処理層を有し、さらに、該粗化処理層上に、直接または、Niを含有する下地層、Znを含有する耐熱処理層および防錆処理層等の中間層を介して間接的にシランカップリング剤層をさらに形成してもよい。なお、上記中間層およびシランカップリング剤層はその厚みが非常に薄いため、表面処理銅箔の粗化面における粗化粒子の粒子形状に影響を与えるものではない。表面処理銅箔の粗化面における粗化粒子の粒子形状は、該粗化面に対応する粗化処理層の表面における粗化粒子の粒子形状で実質的に決定される。   Furthermore, the surface-treated copper foil of the present invention has a roughened layer having a predetermined fine irregular surface shape formed by electrodeposition of roughened particles on at least one surface of the copper foil substrate, Further, a silane coupling agent layer is further formed directly on the roughened layer or indirectly through an intermediate layer such as an underlayer containing Ni, a heat-resistant layer containing Zn and a rust-proofing layer. May be. Since the intermediate layer and the silane coupling agent layer are very thin, they do not affect the shape of the roughened particles on the roughened surface of the surface-treated copper foil. The particle shape of the roughened particles on the roughened surface of the surface-treated copper foil is substantially determined by the particle shape of the roughened particles on the surface of the roughened layer corresponding to the roughened surface.

また、シランカップリング剤層の形成方法としては、例えば、表面処理銅箔の前記粗化処理層の凹凸表面上に、直接または中間層を介して間接的にシランカップリング剤溶液を塗布した後、風乾(自然乾燥)又は加熱乾燥して形成する方法が挙げられる。塗布されたカップリング剤溶液は、溶液中の水が蒸発すれば、シランカップリング剤層が形成されることで本発明の効果が十分に発揮される。50〜180℃で加熱乾燥すると、シランカップリング剤と銅箔の反応が促進される点で好適である。   Moreover, as a formation method of a silane coupling agent layer, for example, after applying a silane coupling agent solution directly or indirectly via an intermediate layer on the uneven surface of the roughened layer of the surface-treated copper foil And a method of forming by air drying (natural drying) or heat drying. If the water in the solution of the applied coupling agent solution evaporates, a silane coupling agent layer is formed, so that the effects of the present invention are sufficiently exerted. Heating and drying at 50 to 180 ° C. is preferable in that the reaction between the silane coupling agent and the copper foil is promoted.

シランカップリング剤層は、エポキシ系シラン、アミノ系シラン、ビニル系シラン、メタクリル系シラン、アクリル系シラン、スチリル系シラン、ウレイド系シラン、メルカプト系シラン、スルフィド系シラン、イソシアネート系シランのいずれか1種以上を含有することが好ましい。   The silane coupling agent layer is any one of epoxy silane, amino silane, vinyl silane, methacrylic silane, acrylic silane, styryl silane, ureido silane, mercapto silane, sulfide silane, and isocyanate silane. It is preferable to contain seeds or more.

その他の実施形態として、粗化処理層とシランカップリング剤層との間に、Niを含有する下地層、Znを含有する耐熱処理層およびCrを含有する防錆処理層の中から選択される少なくとも1層の中間層を有することがさらに好ましい。   As other embodiments, the substrate is selected from a base layer containing Ni, a heat-resistant treatment layer containing Zn, and a rust prevention treatment layer containing Cr between the roughening treatment layer and the silane coupling agent layer. More preferably, it has at least one intermediate layer.

ニッケル(Ni)を含有する下地層は、例えば銅箔基体や粗化処理層中の銅(Cu)が、樹脂基材側に拡散し銅害が発生して密着性が低下することがある場合には、粗化処理層とシランカップリング剤層との間に形成することが好ましい。Niを含有する下地層は、ニッケル(Ni)、ニッケル(Ni)−リン(P)、ニッケル(Ni)−亜鉛(Zn)の中から選択される少なくとも1種で形成することが好ましい。   The base layer containing nickel (Ni) is, for example, when copper (Cu) in the copper foil base or roughening layer is diffused to the resin base material side, causing copper damage and lowering the adhesion. It is preferable to form between the roughening treatment layer and the silane coupling agent layer. The underlayer containing Ni is preferably formed of at least one selected from nickel (Ni), nickel (Ni) -phosphorus (P), and nickel (Ni) -zinc (Zn).

亜鉛(Zn)を含有する耐熱処理層は、耐熱性をさらに向上させる必要がある場合に形成することが好ましい。耐熱処理層は、例えば亜鉛、または亜鉛を含有する合金、即ち、亜鉛(Zn)−錫(Sn)、亜鉛(Zn)−ニッケル(Ni)、亜鉛(Zn)−コバルト(Co)、亜鉛(Zn)−銅(Cu)、亜鉛(Zn)−クロム(Cr)および亜鉛(Zn)−バナジウム(V)の中から選択される少なくとも1種の亜鉛を含有する合金で形成することが好ましい。   The heat-resistant treatment layer containing zinc (Zn) is preferably formed when heat resistance needs to be further improved. The heat-resistant treatment layer is made of, for example, zinc or an alloy containing zinc, that is, zinc (Zn) -tin (Sn), zinc (Zn) -nickel (Ni), zinc (Zn) -cobalt (Co), zinc (Zn ) -Copper (Cu), zinc (Zn) -chromium (Cr), and zinc (Zn) -vanadium (V), preferably an alloy containing at least one kind of zinc.

Crを含有する防錆処理層は、耐食性をさらに向上させる必要がある場合に形成することが好ましい。防錆処理層としては、例えばクロムめっきにより形成されるクロム層、クロメート処理により形成されるクロメート層が挙げられる。   The antirust treatment layer containing Cr is preferably formed when the corrosion resistance needs to be further improved. Examples of the antirust treatment layer include a chromium layer formed by chromium plating and a chromate layer formed by chromate treatment.

上記の下地層、耐熱処理層及び防錆処理層は、これらの三層の全てを形成する場合には、粗化処理層上に、この順序で形成するのが好ましく、また、用途や目的とする特性に応じて、いずれか一層または二層のみを形成してもよい。   In the case where all of these three layers are formed, the base layer, the heat-resistant treatment layer, and the rust prevention treatment layer are preferably formed in this order on the roughening treatment layer. Any one layer or only two layers may be formed depending on the characteristics to be performed.

〔表面処理銅箔の作製〕
以下に、本発明の表面処理銅箔の作製方法をまとめる。
本発明では、以下の形成工程(S1)〜(S5)に従い、表面処理銅箔を作製する。
(S1)粗化処理層の形成工程
銅箔基体上に、粗化粒子の電析により、微細な凹凸表面をもつ粗化処理層を形成する。
(S2)下地層の形成工程
粗化処理層上に、必要によりNiを含有する下地層を形成する。
(S3)耐熱処理層の形成工程
粗化処理層上または下地層上に、必要によりZnを含有する耐熱処理層を形成する。
(S4)防錆処理層の形成工程
粗化処理層上、または必要により粗化処理層上に形成した下地層および/または耐熱処理層上に、必要によりCrを含有する防錆処理層を形成する。
(S5)シランカップリング剤層の形成工程
粗化処理層上に、直接シランカップリング剤層を形成するか、または下地層、耐熱処理層および防錆処理層の少なくとも1層を形成した中間層を介して間接的にシランカップリング剤層を形成する。
[Production of surface-treated copper foil]
Below, the preparation methods of the surface-treated copper foil of this invention are put together.
In the present invention, a surface-treated copper foil is produced according to the following formation steps (S1) to (S5).
(S1) Roughening treatment layer forming step A roughening treatment layer having a fine uneven surface is formed on the copper foil substrate by electrodeposition of roughening particles.
(S2) Forming step of underlayer An underlayer containing Ni is formed as necessary on the roughening layer.
(S3) Heat-resistant treatment layer forming step A heat-resistant treatment layer containing Zn is formed as necessary on the roughening treatment layer or the underlayer.
(S4) Rust prevention treatment layer forming step If necessary, a rust prevention treatment layer containing Cr is formed on the roughening treatment layer or, if necessary, the underlying layer and / or the heat-resistant treatment layer formed on the roughening treatment layer. To do.
(S5) Silane coupling agent layer forming step An intermediate layer in which a silane coupling agent layer is directly formed on the roughening treatment layer, or at least one of an underlayer, a heat-resistant treatment layer and a rust prevention treatment layer is formed. A silane coupling agent layer is indirectly formed through

また、本発明の表面処理銅箔は、銅張積層板の製造に好適に用いられる。このような銅張積層板は、高密着性および高周波伝送特性に優れるプリント配線板の製造に好適に用いられ、優れた効果を発揮する。特に、本発明の表面処理銅箔は、高周波帯域用プリント配線板及び車載用プリント配線基板として使用される場合に好適である。   Moreover, the surface-treated copper foil of this invention is used suitably for manufacture of a copper clad laminated board. Such a copper clad laminate is suitably used for the production of a printed wiring board excellent in high adhesion and high-frequency transmission characteristics, and exhibits excellent effects. In particular, the surface-treated copper foil of the present invention is suitable for use as a high-frequency band printed wiring board and a vehicle-mounted printed wiring board.

また、銅張積層板は、本発明の表面処理銅箔を用いて、公知の方法により形成することができる。例えば、銅張積層板は、表面処理銅箔と樹脂基材(絶縁基板)とを、表面処理銅箔の粗化面(貼着面)と樹脂基材とが向かい合うように、積層貼着することにより製造される。絶縁基板としては、例えば、フレキシブル樹脂基板又はリジット樹脂基板等が挙げられる。   Moreover, a copper clad laminated board can be formed by a well-known method using the surface-treated copper foil of this invention. For example, a copper-clad laminate is laminated and adhered to a surface-treated copper foil and a resin base material (insulating substrate) so that the roughened surface (sticking surface) of the surface-treated copper foil and the resin base material face each other. It is manufactured by. Examples of the insulating substrate include a flexible resin substrate or a rigid resin substrate.

また、銅張積層板を製造する場合には、シランカップリング剤層を有する表面処理銅箔と、絶縁基板とを加熱プレスによって貼り合わせることにより製造すればよい。なお、絶縁基板上にシランカップリング剤を塗布し、シランカップリング剤が塗布された絶縁基板と、最表面に防錆処理層を有する表面処理銅箔とを加熱プレスによって貼り合わせることにより作製された銅張積層板も、本発明と同等の効果を有する。   Moreover, what is necessary is just to manufacture by bonding the surface treatment copper foil which has a silane coupling agent layer, and an insulated substrate by hot press, when manufacturing a copper clad laminated board. It is produced by applying a silane coupling agent on an insulating substrate, and bonding the insulating substrate coated with the silane coupling agent and a surface-treated copper foil having a rust-proofing layer on the outermost surface by a hot press. The copper-clad laminate also has the same effect as the present invention.

また、プリント配線板は、上記銅張積層板を用いて、公知の方法により形成することができる。   Moreover, a printed wiring board can be formed by a well-known method using the said copper clad laminated board.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の一例に過ぎない。本発明は、本発明の概念および請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。   As mentioned above, although embodiment of this invention was described, the said embodiment is only an example of this invention. The present invention includes all aspects included in the concept and claims of the present invention, and can be variously modified within the scope of the present invention.

以下に、本発明を実施例に基づきさらに詳細に説明するが、以下は本発明の一例である。   Hereinafter, the present invention will be described in more detail based on examples, but the following is an example of the present invention.

(実施例1)
実施例1では、以下の工程[1]〜[4]を行い、表面処理銅箔を得た。以下詳しく説明する。
Example 1
In Example 1, the following steps [1] to [4] were performed to obtain a surface-treated copper foil. This will be described in detail below.

[1]銅箔基体の準備
粗化処理を施すための基材となる銅箔基体として、電解銅箔(厚さ18μm)を準備した。電解銅箔は下記条件により製造した。
[1] Preparation of Copper Foil Base An electrolytic copper foil (thickness: 18 μm) was prepared as a copper foil base serving as a base material for roughening treatment. The electrolytic copper foil was manufactured under the following conditions.

<電解銅箔の製造条件>
Cu :80g/L
SO :70g/L
塩素濃度 :25mg/L
浴温 :55℃
電流密度 :45A/dm
(添加剤)
・3−メルカプト1−プロパンスルホン酸ナトリウム :2mg/L
・ヒドロキシエチルセルロース :10mg/L
・低分子量膠(分子量3000) :50mg/L
<Production conditions for electrolytic copper foil>
Cu: 80 g / L
H 2 SO 4 : 70 g / L
Chlorine concentration: 25 mg / L
Bath temperature: 55 ° C
Current density: 45 A / dm 2
(Additive)
・ 3-mercapto 1-propanesulfonic acid sodium salt: 2 mg / L
Hydroxyethyl cellulose: 10 mg / L
・ Low molecular weight glue (molecular weight 3000): 50 mg / L

[2]粗化処理層の形成
次に、上記[1]にて準備した銅箔基体の片面に、粗化めっき処理を施した。この粗化めっき処理は、2段階の電気めっき処理により行った。粗化めっき処理(1)は、下記の粗化めっき液基本浴組成を用い、モリブデン(Mo)濃度を下記表1記載の通りとし、かつ、極間流速、電流密度、処理時間を下記表1記載の通りとした。モリブデン(Mo)濃度は、モリブデン酸ナトリウムを純水に溶解した水溶液を粗化めっき液基本浴に加えることで調整した。また、続けて行う固定めっき処理(2)は、下記固定めっき液組成を用い、塩素(Cl)濃度、極間流速、電流密度、処理時間を下記表1記載の通りとして行った。
[2] Formation of roughening treatment layer Next, roughening plating treatment was performed on one surface of the copper foil base prepared in the above [1]. The rough plating process was performed by a two-stage electroplating process. The roughening plating process (1) uses the following roughening plating solution basic bath composition, the molybdenum (Mo) concentration is as shown in Table 1 below, and the interelectrode flow rate, current density, and processing time are shown in Table 1 below. As described. The molybdenum (Mo) concentration was adjusted by adding an aqueous solution in which sodium molybdate was dissolved in pure water to the roughening plating solution basic bath. Further, the subsequent fixed plating treatment (2) was carried out using the following fixed plating solution composition, with the chlorine (Cl) concentration, the interelectrode flow rate, the current density, and the treatment time as shown in Table 1 below.

<粗化めっき液基本浴組成>
Cu :25g/L
SO :180g/L
浴温 :25℃
<Roughening plating solution basic bath composition>
Cu: 25 g / L
H 2 SO 4 : 180 g / L
Bath temperature: 25 ° C

<固定めっき液組成>
Cu :60g/L
SO :120g/L
浴温 :60℃
<Fixed plating solution composition>
Cu: 60 g / L
H 2 SO 4 : 120 g / L
Bath temperature: 60 ° C

Figure 2019021895
Figure 2019021895

[3]金属処理層の形成
続いて、上記[2]で形成した粗化処理層の表面に、下記の条件で、Ni、Zn、Crの順に金属めっきを施して金属処理層(中間層)を形成した。
[3] Formation of metal treatment layer Subsequently, the surface of the roughening treatment layer formed in the above [2] is subjected to metal plating in the order of Ni, Zn, and Cr under the following conditions to obtain a metal treatment layer (intermediate layer). Formed.

<Niめっき>
Ni :40g/L
BO :5g/L
浴温 :20℃
pH :3.6
電流密度 :0.2A/dm
処理時間 :10秒
<Ni plating>
Ni: 40 g / L
H 3 BO 3 : 5 g / L
Bath temperature: 20 ° C
pH: 3.6
Current density: 0.2 A / dm 2
Processing time: 10 seconds

<Znめっき>
Zn :2.5g/L
NaOH :40g/L
浴温 :20℃
電流密度 :0.3A/dm
処理時間 :5秒
<Zn plating>
Zn: 2.5 g / L
NaOH: 40 g / L
Bath temperature: 20 ° C
Current density: 0.3 A / dm 2
Processing time: 5 seconds

<Crめっき>
Cr :5g/L
浴温 :30℃
pH :2.2
電流密度 :5A/dm
処理時間 :5秒
<Cr plating>
Cr: 5 g / L
Bath temperature: 30 ° C
pH: 2.2
Current density: 5 A / dm 2
Processing time: 5 seconds

[4]シランカップリング剤層の形成
最後に、上記[3]にて形成した金属処理層(特に、最表面のCrめっき層)の上に、濃度0.2質量%の3−グリシドキシプロピルトリメトキシシラン水溶液を塗布し、100℃で乾燥させ、シランカップリング剤層を形成した。
[4] Formation of Silane Coupling Agent Layer Finally, 3-glycidoxy having a concentration of 0.2% by mass on the metal treatment layer (particularly the outermost Cr plating layer) formed in [3] above. A propyltrimethoxysilane aqueous solution was applied and dried at 100 ° C. to form a silane coupling agent layer.

(実施例2〜5および比較例1〜4)
実施例2〜5および比較例1〜4は、粗化処理層の形成工程[2]において、粗化めっき処理(1)および固定めっき処理(2)の各条件を、上記表1記載の通りとした以外は、実施例1と同様の方法にて、表面処理銅箔を得た。
(Examples 2-5 and Comparative Examples 1-4)
In Examples 2 to 5 and Comparative Examples 1 to 4, in the roughening treatment layer forming step [2], the conditions of the roughening plating treatment (1) and the fixed plating treatment (2) are as shown in Table 1 above. A surface-treated copper foil was obtained in the same manner as in Example 1 except that.

[評価]
上記実施例および比較例に係る表面処理銅箔について、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。結果を表2に示す。
[Evaluation]
About the surface treatment copper foil which concerns on the said Example and comparative example, the characteristic evaluation shown below was performed. The evaluation conditions for each characteristic are as follows. The results are shown in Table 2.

[粗化粒子の計測]
表面処理銅箔の粗化面における粗化粒子の計測は、粗化面を真上(粗化処理層を有する銅箔基体の表面に直交する方向)から走査型電子顕微鏡(SEM)観察することで求めた。詳細を以下に説明する。なお、走査型電子顕微鏡は、電界放出型走査電子顕微鏡(SU8020、株式会社日立ハイテクノロジーズ製)を用いた。
粗化面を真上から観察したSEM像に基づき、粗化粒子の長手方向寸法t1と短手方向寸法t2を測定した。なお、測定で用いたSEM像は0.1μmの粗化粒子を確認可能な倍率の画像とした。具体的には、例えば、図4に示すように、倍率1万倍で960×720ピクセルのデジタル画像である。図4は、実施例1で製造した表面処理銅箔の粗化面を真上から観察したSEM像である。さらに、この測定は、各表面処理銅箔につき、無作為に選択された異なる3視野にて行い、分析領域(観察視野)の合計を300μmとした。
分析領域300μmの範囲内で得られたデータを、長手方向寸法t1に応じて、以下のように区分し、それぞれに区分された粗化粒子の個数をカウントした。
・A粒子:長手方向寸法t1が0.1μm以上1.0μm未満である粗化粒子
・B粒子:長手方向寸法t1が1.0μm〜3.0μmである粗化粒子
・b1粒子:上記B粒子のうち、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子
・C粒子:長手方向寸法t1が3.0μm超である粗化粒子
さらに、上記測定で求められた各区分の粗化粒子の個数に基づき、カウント対象となった粗化粒子(A粒子とB粒子とC粒子。以下、カウント対象粒子という。)の個数と、長手方向寸法t1が3.0μm以下である粗化粒子(A粒子+B粒子)の個数、およびカウント対象粒子に占めるその個数比率(%)、長手方向寸法t1が3.0μm以下である粗化粒子(A粒子+B粒子)に占めるB粒子の個数比率(%)、並びにB粒子に占めるb1粒子の個数比率(%)を、それぞれ算出した。
[Measurement of coarse particles]
Measurement of the roughened particles on the roughened surface of the surface-treated copper foil is performed by observing the roughened surface directly above (in a direction perpendicular to the surface of the copper foil substrate having the roughened layer) using a scanning electron microscope (SEM). I asked for it. Details will be described below. As the scanning electron microscope, a field emission scanning electron microscope (SU8020, manufactured by Hitachi High-Technologies Corporation) was used.
Based on the SEM image of the roughened surface observed from directly above, the longitudinal dimension t1 and the lateral dimension t2 of the roughened particles were measured. In addition, the SEM image used for the measurement was an image having a magnification capable of confirming 0.1 μm roughened particles. Specifically, for example, as shown in FIG. 4, it is a digital image of 960 × 720 pixels at a magnification of 10,000. FIG. 4 is an SEM image obtained by observing the roughened surface of the surface-treated copper foil produced in Example 1 from directly above. Furthermore, this measurement was performed for each surface-treated copper foil in three randomly selected different visual fields, and the total analysis area (observation visual field) was set to 300 μm 2 .
The data obtained within the analysis region of 300 μm 2 was divided as follows according to the longitudinal dimension t1, and the number of coarse particles divided into each was counted.
A particle: roughened particle having a longitudinal dimension t1 of 0.1 μm or more and less than 1.0 μm B particle: roughened particle having a longitudinal dimension t1 of 1.0 μm to 3.0 μm b1 particle: the above B particle Among them, the ratio of the longitudinal dimension t1 to the transverse dimension t2 (t1 / t2) is roughened particles / C particles: roughened particles whose longitudinal dimension t1 is more than 3.0 μm Further measurement Based on the number of roughened particles in each category determined in step 1, the number of roughened particles (A particles, B particles, and C particles; hereinafter referred to as count target particles) to be counted and the longitudinal dimension t1 are The number of roughened particles (A particles + B particles) that are 3.0 μm or less, the number ratio (%) in the count target particles, and the roughened particles (A particles + B particles) whose longitudinal dimension t1 is 3.0 μm or less ) B particle number ratio (%) And the number ratio of b1 particles occupying the B particles (%) was calculated.

[表面粗さの測定]
表面処理銅箔の粗化面において、接触式表面粗さ測定機(サーフコーダーSE1700、株式会社小坂研究所製)用いて、JIS B 0601:2001で定義される十点平均粗さRzjis(μm)を測定した。
[Measurement of surface roughness]
On the roughened surface of the surface-treated copper foil, a 10-point average roughness Rzjis (μm) defined by JIS B 0601: 2001 was used using a contact-type surface roughness measuring machine (Surfcoder SE1700, manufactured by Kosaka Laboratory Ltd.). Was measured.

[高周波特性の評価]
高周波特性の評価として高周波帯域での伝送損失を測定した。詳細を以下に説明する。
表面処理銅箔の粗化面を、パナソニック株式会社製のポリフェニレンエーテル系低誘電率樹脂基材であるMEGTRON6(厚さ50〜100μm)の両面に面圧3MPa、200℃の条件で2時間プレスすることにより貼り合わせて、両面銅張積層板を作製した。得られた積層板に回路加工を行い、伝送路幅100μm、長さ40mmのマイクロストリップラインを形成させた。この伝送路に、ネットワークアナライザを用いて高周波信号を伝送し、伝送損失を測定した。特性インピーダンスは50Ωとした。
伝送損失の測定値は、絶対値が小さいほど伝送損失が少なく、高周波特性が良好であることを意味する。得られた測定値を指標にして、下記評価基準に基づき高周波特性を評価した。
◎:40GHzにおける伝送損失が−26dB以上
○:40GHzにおける伝送損失が−26dB未満から−28dB以上
×:40GHzにおける伝送損失が−28dB未満
[Evaluation of high frequency characteristics]
As an evaluation of high frequency characteristics, transmission loss in the high frequency band was measured. Details will be described below.
The roughened surface of the surface-treated copper foil is pressed for 2 hours under conditions of a surface pressure of 3 MPa and 200 ° C. on both sides of MEGRON 6 (thickness 50 to 100 μm), which is a polyphenylene ether-based low dielectric constant resin base material manufactured by Panasonic Corporation. Thus, a double-sided copper-clad laminate was produced. Circuit processing was performed on the obtained laminate to form a microstrip line having a transmission line width of 100 μm and a length of 40 mm. A high frequency signal was transmitted to the transmission line using a network analyzer, and transmission loss was measured. The characteristic impedance was 50Ω.
The measured value of transmission loss means that the smaller the absolute value, the smaller the transmission loss and the better the high frequency characteristics. Using the obtained measured values as indices, high frequency characteristics were evaluated based on the following evaluation criteria.
◎: Transmission loss at 40 GHz is −26 dB or more ○: Transmission loss at 40 GHz is less than −26 dB to −28 dB or more ×: Transmission loss at 40 GHz is less than −28 dB

[常態密着性の評価]
常態密着性の評価として、剥離試験を行った。詳細を以下に説明する。
上記[高周波特性の評価]に記載の方法と同様の方法で銅張積層板を作製し、得られた銅張積層板の銅箔部分(表面処理銅箔)を10mm巾テープでマスキングした。この銅張積層板に対して塩化銅エッチングを行った後テープを除去し、10mm巾の回路配線板を作製した。東洋精機製作所社製のテンシロンテスターを用いて、この回路配線板の10mm巾の回路配線部分(銅箔部分)を90度方向に50mm/分の速度で樹脂基材から剥離した際の剥離強度を測定した。得られた測定値を指標にして、下記評価基準に基づき密着性を評価した。
<常態密着性の評価基準>
◎:剥離強度が0.5kN/m以上
×:剥離強度が0.5kN/m未満
[Evaluation of normal adhesion]
A peel test was performed as an evaluation of normal adhesion. Details will be described below.
A copper-clad laminate was produced by the same method as described in [Evaluation of high-frequency characteristics], and the copper foil part (surface-treated copper foil) of the obtained copper-clad laminate was masked with a 10 mm width tape. The copper-clad laminate was etched with copper chloride, and then the tape was removed to prepare a circuit wiring board having a width of 10 mm. Using a Tensilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd., peel strength when peeling a 10 mm wide circuit wiring portion (copper foil portion) of this circuit wiring board from a resin base material at a speed of 50 mm / min in a 90 degree direction. It was measured. Using the obtained measured value as an index, the adhesion was evaluated based on the following evaluation criteria.
<Evaluation criteria for normal adhesion>
A: Peel strength is 0.5 kN / m or more X: Peel strength is less than 0.5 kN / m

[耐熱密着性の評価]
常態密着性の評価として、加熱処理後の剥離試験を行った。詳細を以下に説明する。
上記[高周波特性の評価]に記載の方法と同様の方法で銅張積層板を作製し、得られた銅張積層板の銅箔部分を10mm巾テープでマスキングした。この銅張積層板に対して塩化銅エッチングを行った後テープを除去し、10mm巾の回路配線板を作製した。この回路配線板を300℃の加熱オーブンにて1時間加熱した後、常温下において東洋精機製作所社製のテンシロンテスターを用いて、回路配線板の10mm巾の回路配線部分(銅箔部分)を90度方向に50mm/分の速度で樹脂基材から剥離した際の剥離強度を測定した。得られた測定値を指標にして、下記評価基準に基づき耐熱密着性を評価した。
<耐熱密着性の評価基準>
◎:剥離強度が0.5kN/m以上
○:剥離強度が0.4kN/m以上0.5kN/m未満
×:剥離強度が0.4kN/m未満
[Evaluation of heat-resistant adhesion]
As an evaluation of normal adhesion, a peel test after heat treatment was performed. Details will be described below.
A copper clad laminate was produced in the same manner as described in [Evaluation of high frequency characteristics], and the copper foil portion of the obtained copper clad laminate was masked with a 10 mm wide tape. The copper-clad laminate was etched with copper chloride, and then the tape was removed to prepare a circuit wiring board having a width of 10 mm. After heating this circuit wiring board in a 300 ° C. heating oven for 1 hour, a circuit wiring part (copper foil part) having a width of 10 mm of the circuit wiring board is obtained by using a Tensilon tester manufactured by Toyo Seiki Seisakusho at room temperature. The peel strength when peeled from the resin substrate at a rate of 50 mm / min in the direction of the strength was measured. Using the obtained measured value as an index, the heat-resistant adhesion was evaluated based on the following evaluation criteria.
<Evaluation criteria for heat-resistant adhesion>
A: Peel strength is 0.5 kN / m or more B: Peel strength is 0.4 kN / m or more and less than 0.5 kN / m X: Peel strength is less than 0.4 kN / m

[総合評価]
上記の高周波特性、常態密着性および耐熱密着性のすべてを総合し、下記評価基準に基づき総合評価を行った。なお、本実施例では、総合評価でAおよびBを合格レベルとした。
<総合評価の評価基準>
A(優):全ての評価が◎である。
B(合格):全ての評価で×評価がない。
C(不合格):少なくとも1つの評価が×である。
[Comprehensive evaluation]
All of the above high-frequency characteristics, normal state adhesiveness and heat-resistant adhesiveness were integrated and comprehensive evaluation was performed based on the following evaluation criteria. In this example, A and B were regarded as acceptable levels in the overall evaluation.
<Evaluation criteria for comprehensive evaluation>
A (excellent): All evaluations are ◎.
B (pass): There is no x evaluation in all evaluations.
C (failure): At least one evaluation is x.

Figure 2019021895
Figure 2019021895

表2に示されるように、実施例1〜5の表面処理銅箔は、粗化面を走査型電子顕微鏡(SEM)により観察した分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子の個数をカウントするとき、長手方向寸法t1が3.0μm以下である粗化粒子(A粒子およびB粒子の合計)の個数比率が99.0%以上であって、かつ、この個数比率に占める長手方向寸法t1が1.0〜3.0μmである粗化粒子(B粒子)の個数比率が2.0〜20.0%であり、さらにB粒子に占める、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子(b1粒子)の個数比率が、20%以上となるように制御されているため、高周波特性に優れ、高い密着性(常態密着性および耐熱密着性)を発揮することが確認された。   As shown in Table 2, the surface-treated copper foils of Examples 1 to 5 have a longitudinal dimension t1 of 0.1 μm or more in an analysis region in which the roughened surface is observed with a scanning electron microscope (SEM). When counting the number of coarse particles, the number ratio of coarse particles (total of A particles and B particles) having a longitudinal dimension t1 of 3.0 μm or less is 99.0% or more, and this number The ratio of the number of roughened particles (B particles) having a longitudinal dimension t1 in the ratio of 1.0 to 3.0 μm is 2.0 to 20.0%, and the transverse dimension t2 in the B particles. The ratio of the number of roughened particles (b1 particles) having a ratio (t1 / t2) of the dimension t1 in the longitudinal direction to 2 or more is controlled so as to be 20% or more. (Normal adhesion and heat adhesion) It was.

これに対し、比較例1の表面処理銅箔の粗化面では、長手方向寸法t1が3.0μm以下である粗化粒子(A粒子およびB粒子の合計)に占める、長手方向寸法t1が1.0〜3.0μmである粗化粒子(B粒子)の個数比率が2.0%未満であるため、耐熱密着性が劣ることが確認された。   On the other hand, in the roughened surface of the surface-treated copper foil of Comparative Example 1, the longitudinal dimension t1 occupies the roughened particles (total of A particles and B particles) whose longitudinal dimension t1 is 3.0 μm or less. Since the number ratio of the roughened particles (B particles) of 0.0 to 3.0 μm is less than 2.0%, it was confirmed that the heat resistant adhesion was inferior.

また、比較例2は、長手方向寸法t1が1.0〜3.0μmである粗化粒子(B粒子)に占める、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子(b1粒子)の個数比率が20%未満であるため、高周波特性が劣ることが確認された。比較例3は、長手方向寸法t1が3.0μm以下である粗化粒子(A粒子およびB粒子の合計)に占める、長手方向寸法t1が1.0〜3.0μmである粗化粒子(B粒子)の個数比率が20.0%超であるため、高周波特性が劣ることが確認された。さらに、比較例4は、カウント対象の粗化粒子に占める、長手方向寸法t1が3.0μm以下である粗化粒子の個数比率が99.0%未満である(すなわち、長手方向寸法t1が3.0μm超である粗化粒子が1.0%以上である)ため、高周波特性が劣ることが確認された。   In Comparative Example 2, the ratio (t1 / t2) of the longitudinal dimension t1 to the transverse dimension t2 in the roughened particles (B particles) having a longitudinal dimension t1 of 1.0 to 3.0 μm is 2 Since the number ratio of the above roughened particles (b1 particles) was less than 20%, it was confirmed that the high frequency characteristics were inferior. Comparative Example 3 is a roughened particle (B) having a longitudinal dimension t1 of 1.0 to 3.0 μm in the roughened particles (total of A particles and B particles) having a longitudinal dimension t1 of 3.0 μm or less. It was confirmed that the high frequency characteristics were inferior because the number ratio of the particles was over 20.0%. Further, in Comparative Example 4, the ratio of the number of coarse particles having a longitudinal dimension t1 of 3.0 μm or less in the coarse particles to be counted is less than 99.0% (that is, the longitudinal dimension t1 is 3). It was confirmed that the high-frequency characteristics were inferior because the roughened particles exceeding 0.0 μm were 1.0% or more.

Claims (11)

銅箔基体と、該銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を少なくとも含む表面処理皮膜を有する表面処理銅箔であって、
前記表面処理皮膜の表面を走査型電子顕微鏡(SEM)により観察した分析領域にて、長手方向寸法t1が0.1μm以上である粗化粒子の個数をカウントするとき、
長手方向寸法t1が3.0μm以下である粗化粒子の個数比率が、99.0%以上であって、かつ、前記個数比率に占める長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数比率が、2.0〜20.0%であり、
前記長手方向寸法t1が1.0〜3.0μmである粗化粒子に占める、短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子の個数比率が、20%以上であることを特徴とする、表面処理銅箔。
A copper foil base and a surface-treated copper foil having a surface treatment film including at least a roughening treatment layer in which roughening particles are formed on at least one surface of the copper foil base,
In the analysis region where the surface of the surface treatment film is observed with a scanning electron microscope (SEM), when counting the number of roughened particles having a longitudinal dimension t1 of 0.1 μm or more,
The number ratio of roughened particles having a longitudinal dimension t1 of 3.0 μm or less is 99.0% or more, and the longitudinal dimension t1 occupying the number ratio is 1.0 to 3.0 μm. The number ratio of the activated particles is 2.0 to 20.0%,
The ratio of the number of roughened particles in which the ratio (t1 / t2) of the longitudinal dimension t1 to the transverse dimension t2 is 2 or more in the roughened particles having the longitudinal dimension t1 of 1.0 to 3.0 μm is as follows. The surface-treated copper foil is characterized by being 20% or more.
前記長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数が、前記分析領域300μmあたり、20〜100個である、請求項1に記載の表面処理銅箔。 2. The surface-treated copper foil according to claim 1, wherein the number of roughened particles having a longitudinal dimension t1 of 1.0 to 3.0 μm is 20 to 100 per 300 μm 2 of the analysis region. 長手方向寸法t1が1.0μm未満である粗化粒子の個数が、前記分析領域300μmあたり、300〜1200個である、請求項1または2に記載の表面処理銅箔。The surface-treated copper foil of Claim 1 or 2 whose number of the roughening particles whose longitudinal direction dimension t1 is less than 1.0 micrometer is 300-1200 per 300 micrometer < 2 > of said analysis area | regions. 長手方向寸法t1が3.0μm超である粗化粒子の個数が、前記分析領域300μmあたり、0〜3個である、請求項1〜3のいずれか1項に記載の表面処理銅箔。Longitudinal dimension t1 is the number of roughening particles are 3.0μm greater than the analysis region 300 [mu] m 2 per a 0-3, a surface treated copper foil according to any one of claims 1 to 3. 長手方向寸法t1が1.0〜3.0μmであり、かつ短手方向寸法t2に対する長手方向寸法t1の比(t1/t2)が2以上である粗化粒子の個数が、前記分析領域300μmあたり、8個以上である、請求項1〜4のいずれか1項に記載の表面処理銅箔。The number of roughened particles having a longitudinal dimension t1 of 1.0 to 3.0 μm and a ratio of the longitudinal dimension t1 to the lateral dimension t2 (t1 / t2) of 2 or more is 300 μm 2 in the analysis region 300 μm 2. The surface-treated copper foil of any one of Claims 1-4 which is 8 or more per hit. 前記長手方向寸法t1が1.0〜3.0μmである粗化粒子の個数が、前記分析領域300μmあたり、40〜80個である、請求項1〜5のいずれか1項に記載の表面処理銅箔。The surface according to any one of claims 1 to 5, wherein the number of roughened particles having a longitudinal dimension t1 of 1.0 to 3.0 µm is 40 to 80 per 300 µm 2 of the analysis region. Treated copper foil. 前記表面処理皮膜の表面は、十点平均粗さRzjis値が0.5〜2.0μmである、請求項1〜6のいずれか1項に記載の表面処理銅箔。   The surface-treated copper foil according to any one of claims 1 to 6, wherein the surface of the surface-treated film has a ten-point average roughness Rzjis value of 0.5 to 2.0 µm. 高周波帯域用プリント配線板に使用される、請求項1〜7のいずれか1項に記載の表面処理銅箔。   The surface-treated copper foil of any one of Claims 1-7 used for the printed wiring board for high frequency bands. 車載用プリント配線板に使用される、請求項1〜8のいずれか1項に記載の表面処理銅箔。   The surface-treated copper foil of any one of Claims 1-8 used for a vehicle-mounted printed wiring board. 請求項1〜9のいずれか1項に記載の表面処理銅箔を用いて形成してなる、銅張積層板。   The copper clad laminated board formed using the surface-treated copper foil of any one of Claims 1-9. 請求項10に記載の銅張積層板を用いて形成してなる、プリント配線板。   The printed wiring board formed using the copper clad laminated board of Claim 10.
JP2018557430A 2017-07-24 2018-07-18 Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same Active JP6550196B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017142385 2017-07-24
JP2017142385 2017-07-24
PCT/JP2018/026793 WO2019021895A1 (en) 2017-07-24 2018-07-18 Surface-treated copper foil, and copper-clad laminate sheet and printed wiring board using same

Publications (2)

Publication Number Publication Date
JP6550196B2 JP6550196B2 (en) 2019-07-24
JPWO2019021895A1 true JPWO2019021895A1 (en) 2019-08-08

Family

ID=65039735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018557430A Active JP6550196B2 (en) 2017-07-24 2018-07-18 Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same

Country Status (5)

Country Link
JP (1) JP6550196B2 (en)
KR (1) KR102353143B1 (en)
CN (1) CN111194362B (en)
TW (1) TWI751359B (en)
WO (1) WO2019021895A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6816193B2 (en) * 2019-03-26 2021-01-20 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminates and printed wiring boards using this
WO2023162965A1 (en) * 2022-02-28 2023-08-31 京セラ株式会社 Wiring board
CN114603944B (en) * 2022-05-12 2022-09-06 广州方邦电子股份有限公司 Metal foil, copper-clad laminate, wiring board, semiconductor, negative electrode material, and battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043182A1 (en) * 2010-09-27 2012-04-05 Jx日鉱日石金属株式会社 Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
WO2014196576A1 (en) * 2013-06-04 2014-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electric appliance, resin layer, production method for copper foil with carrier, and production method for printed wiring board
WO2016035876A1 (en) * 2014-09-05 2016-03-10 古河電気工業株式会社 Copper foil, copper clad laminated plate, and substrate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69117155T2 (en) * 1990-12-19 1996-09-05 Nikko Gould Foil Co Method and device for the electrolytic production of copper foils
JPH10341066A (en) 1997-06-10 1998-12-22 Furukawa Electric Co Ltd:The Copper foil for printed circuit and copper foil with resin adhesive for printed circuit and copper-clad lamination board for printed circuit using it
TW200424359A (en) * 2003-02-04 2004-11-16 Furukawa Circuit Foil Copper foil for high frequency circuit, method of production and apparatus for production of same, and high frequency circuit using copper foil
EP1531656A3 (en) * 2003-11-11 2007-10-03 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
JP4833692B2 (en) * 2006-03-06 2011-12-07 古河電気工業株式会社 Copper foil, method for producing copper foil, and laminated circuit board using the copper foil
JP5242710B2 (en) * 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
JP5698585B2 (en) * 2011-03-31 2015-04-08 新日鉄住金化学株式会社 Metal-clad laminate
MY175198A (en) * 2011-09-30 2020-06-15 Jx Nippon Mining & Metals Corp Copper foil excellent in adherence with resin, method for manufacturing the copper foil, and printed wiring board or battery negative electrode material using the electrolytic copper foil
KR20140088911A (en) * 2012-01-18 2014-07-11 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil for copper-clad laminate and copper-clad laminate using same
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board
JP6273106B2 (en) 2013-07-24 2018-01-31 Jx金属株式会社 Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board
JP5885790B2 (en) * 2013-08-20 2016-03-15 Jx金属株式会社 Surface treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic device, method for manufacturing electronic device, and method for manufacturing printed wiring board
JP5826322B2 (en) * 2014-03-25 2015-12-02 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, circuit forming substrate for semiconductor package, semiconductor package, and printed wiring board manufacturing method
JP6522974B2 (en) 2015-02-07 2019-05-29 Jx金属株式会社 Copper foil with carrier, laminate, method of producing laminate, and method of producing printed wiring board
JP6089160B1 (en) * 2015-08-12 2017-03-01 古河電気工業株式会社 Copper foil for high frequency circuits, copper clad laminates, printed wiring boards

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043182A1 (en) * 2010-09-27 2012-04-05 Jx日鉱日石金属株式会社 Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
WO2014196576A1 (en) * 2013-06-04 2014-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate, printed wiring board, electric appliance, resin layer, production method for copper foil with carrier, and production method for printed wiring board
WO2016035876A1 (en) * 2014-09-05 2016-03-10 古河電気工業株式会社 Copper foil, copper clad laminated plate, and substrate

Also Published As

Publication number Publication date
WO2019021895A1 (en) 2019-01-31
CN111194362A (en) 2020-05-22
JP6550196B2 (en) 2019-07-24
KR20200033852A (en) 2020-03-30
KR102353143B1 (en) 2022-01-18
TW201920776A (en) 2019-06-01
CN111194362B (en) 2022-03-11
TWI751359B (en) 2022-01-01

Similar Documents

Publication Publication Date Title
JP5654416B2 (en) Liquid crystal polymer copper clad laminate and copper foil used for the laminate
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
JP6479254B2 (en) Copper foil and copper-clad laminate having the same
JP5399489B2 (en) Copper foil and manufacturing method thereof
TW201800242A (en) Surface-treated copper foil and copper-clad laminate produced using same
JP6550196B2 (en) Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same
KR102635176B1 (en) Surface-treated copper foil for high-frequency circuit and method for producing the same
JP5075099B2 (en) Surface-treated copper foil, surface treatment method thereof, and laminated circuit board
JP2012087388A (en) Surface-treated copper foil and copper-clad laminate sheet
TWI590719B (en) Printed circuit copper foil
JP7019876B1 (en) Surface-treated copper foil for printed wiring boards, and copper-clad laminates and printed wiring boards for printed wiring boards using this
JP2020183565A (en) Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board
TWI746910B (en) Surface-treated copper foil, and copper clad laminate and printed wiring board using it
JP2014172181A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wire board, printed circuit board, copper-clad laminate and method of producing printed wiring board
JP6273317B2 (en) Copper foil for printed circuit
JP2024505241A (en) Low-roughness surface-treated copper foil with low bending deformation, copper foil laminates and printed wiring boards containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190628

R151 Written notification of patent or utility model registration

Ref document number: 6550196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350