JPWO2018179458A1 - Gas barrier laminate and sealed body - Google Patents

Gas barrier laminate and sealed body Download PDF

Info

Publication number
JPWO2018179458A1
JPWO2018179458A1 JP2019508505A JP2019508505A JPWO2018179458A1 JP WO2018179458 A1 JPWO2018179458 A1 JP WO2018179458A1 JP 2019508505 A JP2019508505 A JP 2019508505A JP 2019508505 A JP2019508505 A JP 2019508505A JP WO2018179458 A1 JPWO2018179458 A1 JP WO2018179458A1
Authority
JP
Japan
Prior art keywords
gas barrier
layer
group
component
barrier laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019508505A
Other languages
Japanese (ja)
Inventor
健太 西嶋
健太 西嶋
健寛 大橋
健寛 大橋
達矢 泉
達矢 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Publication of JPWO2018179458A1 publication Critical patent/JPWO2018179458A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

ガスバリア層と、該ガスバリア層と直接接する密着性向上層と、該密着性向上層の前記ガスバリア層とは反対側の面上に直接接する接着剤層とを有し、該接着剤層が、成分(A):変性ポリオレフィン系樹脂及び成分(B):熱硬化性樹脂を含有する接着剤組成物から形成された層である、ガスバリア性積層体、及び被封止物が前記ガスバリア性積層体で封止されてなる封止体に関する。A gas barrier layer, an adhesion improving layer that is in direct contact with the gas barrier layer, and an adhesive layer that directly contacts the surface of the adhesion improving layer opposite to the gas barrier layer, wherein the adhesive layer has a component (A): Modified polyolefin-based resin and component (B): A gas barrier laminate, which is a layer formed from an adhesive composition containing a thermosetting resin, and an object to be sealed is the gas barrier laminate. The present invention relates to a sealed body that is sealed.

Description

本発明は、ガスバリア性積層体、及び被封止物が当該ガスバリア性積層体で封止されてなる封止体に関する。   The present invention relates to a gas barrier laminate and a sealed body in which an object to be sealed is sealed with the gas barrier laminate.

近年、有機EL素子は、低電圧直流駆動による高輝度発光が可能な発光素子として注目されている。
しかし、有機EL素子には、時間の経過とともに、発光輝度、発光効率、発光均一性等の発光特性が低下し易いという問題があった。
この発光特性の低下の問題の原因として、酸素や水分等が有機EL素子の内部に浸入し、電極や有機層を劣化させることが考えられる。
そして、この対処方法として、封止材を用いる方法がいくつか提案されている。例えば、特許文献1には、融解熱量と重量平均分子量が特定の範囲内にあるオレフィン重合体と、40℃における動粘度が特定の範囲内にある炭化水素系合成油とを含むシート状封止材が記載されている。
In recent years, an organic EL element has attracted attention as a light-emitting element capable of emitting high-luminance light by low-voltage DC driving.
However, the organic EL element has a problem that light emission characteristics such as light emission luminance, light emission efficiency, light emission uniformity, and the like are apt to be reduced with time.
As a cause of the problem of the deterioration of the light emission characteristics, it is conceivable that oxygen, moisture, and the like enter the inside of the organic EL element and deteriorate the electrodes and the organic layer.
As a countermeasure, several methods using a sealing material have been proposed. For example, Patent Document 1 discloses a sheet-shaped sealing containing an olefin polymer having a heat of fusion and a weight average molecular weight within a specific range, and a hydrocarbon-based synthetic oil having a kinematic viscosity at 40 ° C. within a specific range. The materials are listed.

特開2015−137333号公報JP 2015-137333 A

有機EL素子等の被封止物は、屋外や車内等の過酷な条件で使用される場合も多い。従って、このような条件下においても優れた接着性能を有し、被封止物を十分に封止し得る封止材が要望されていた。
また、このような封止材を前述の有機EL素子等を封止するために用いる場合、前述のとおり、水分が有機EL素子等の発光特性の劣化に影響を及ぼすため、より水分遮断性に優れる封止材が求められている。
An object to be sealed such as an organic EL element is often used under severe conditions such as outdoors or in a car. Therefore, there has been a demand for a sealing material which has excellent adhesive performance even under such conditions and can sufficiently seal an object to be sealed.
In addition, when such a sealing material is used to seal the above-described organic EL element or the like, as described above, since moisture affects the deterioration of the light emission characteristics of the organic EL element or the like, the moisture barrier property is further reduced. An excellent sealing material is required.

このような封止材としては、例えば、ガスバリア性を有する封止材が挙げられる。当該封止材は、一般的に、ガスバリア層と接着剤層とを有する複数の層から形成されている。しかしながら、当該ガスバリア層は有機化合物を含有する層との親和性が低いため、ガスバリア層上に有機化合物を含有する接着剤層等を直接形成すると、ガスバリア層と接着剤層との層間密着性が低下し、得られるガスバリア性積層体は、その使用中に、ガスバリア層と接着剤層との間で分離してしまう虞があった。
そして、前述のような高温高湿条件下に置かれた場合であっても、ガスバリア層と接着剤層との間で分離が起こり難い(以下、ガスバリア層と接着剤層とが分離する現象を抑制できる特性を「ガスバリア層と接着剤層との密着性」ともいう。)封止材が求められている。
Examples of such a sealing material include a sealing material having gas barrier properties. The sealing material is generally formed from a plurality of layers having a gas barrier layer and an adhesive layer. However, since the gas barrier layer has low affinity with the layer containing the organic compound, if the adhesive layer containing the organic compound is formed directly on the gas barrier layer, the interlayer adhesion between the gas barrier layer and the adhesive layer becomes poor. There is a possibility that the obtained gas barrier laminate may be separated between the gas barrier layer and the adhesive layer during use.
Further, even when the device is placed under the high temperature and high humidity conditions as described above, separation between the gas barrier layer and the adhesive layer hardly occurs (hereinafter, the phenomenon in which the gas barrier layer and the adhesive layer separate from each other). The characteristic that can be suppressed is also referred to as “adhesion between the gas barrier layer and the adhesive layer”.) A sealing material is required.

本発明は、接着剤層の水蒸気透過率が低く、かつ、ガスバリア層と接着剤層との密着性に優れるガスバリア性積層体、及び被封止物が前記ガスバリア性積層体で封止されてなる封止体を提供することを目的とする。   The present invention provides a gas barrier laminate having a low water vapor transmission rate of an adhesive layer, and excellent adhesion between a gas barrier layer and an adhesive layer, and an object to be sealed is sealed with the gas barrier laminate. An object is to provide a sealed body.

本発明者らは、特定の組成を有する接着剤組成物から形成された接着剤層を用い、当該接着剤層とガスバリア層との間に密着性向上層を設けることによって、前述の課題を解決し得ることを見出し、本発明を完成させた。
すなわち、本発明は、下記[1]〜[11]を提供する。
[1] ガスバリア層と、
該ガスバリア層と直接接する密着性向上層と、
該密着性向上層の前記ガスバリア層とは反対側の面上に直接接する接着剤層とを有し、
該接着剤層が、下記成分(A)及び(B)を含有する接着剤組成物から形成された層である、ガスバリア性積層体。
成分(A):変性ポリオレフィン系樹脂
成分(B):熱硬化性樹脂
[2] 成分(B)が、多官能エポキシ化合物である、前記[1]に記載のガスバリア性積層体。
[3] 前記ガスバリア層が、無機蒸着膜からなるガスバリア層、及び高分子化合物を含む層の表面が改質されてなるガスバリア層からなる群より選ばれる1種以上である、前記[1]又は[2]に記載のガスバリア性積層体。
[4] 成分(A)が、酸変性ポリオレフィン系樹脂である、前記[1]〜[3]のいずれかに記載のガスバリア性積層体。
[5] 前記接着剤組成物中、成分(A)の含有量が、前記接着剤組成物の固形分全量に対して、45〜95質量%である、前記[1]〜[4]のいずれかに記載のガスバリア性積層体。
[6] 前記接着剤組成物中、成分(B)の含有量が、成分(A)100質量部に対して、5〜110質量部である、前記[1]〜[5]のいずれかに記載のガスバリア性積層体。
[7] 前記接着剤組成物が、更に、下記成分(C)を含有する、前記[1]〜[6]のいずれかに記載のガスバリア性積層体。
成分(C):硬化触媒
[8] 前記接着剤組成物中、成分(C)の含有量が、成分(B)100質量部に対して、0.1〜10質量部である、前記[7]に記載のガスバリア性積層体。
[9] 前記接着剤層の厚さ50μmにおける水蒸気透過率が、40℃、相対湿度90%の雰囲気下で、200g/m/day以下である、前記[1]〜[8]のいずれかに記載のガスバリア性積層体。
[10] 被封止物が、前記[1]〜[9]のいずれかに記載のガスバリア性積層体で封止されてなる、封止体。
[11] 前記封止物が、有機EL素子、有機ELディスプレイ素子、無機EL素子、無機ELディスプレイ素子、電子ペーパー素子、液晶ディスプレイ素子、及び太陽電池素子からなる群より選ばれる1種以上である、前記[10]に記載の封止体。
The present inventors have solved the above-mentioned problems by using an adhesive layer formed from an adhesive composition having a specific composition and providing an adhesion improving layer between the adhesive layer and the gas barrier layer. The present invention was completed, and the present invention was completed.
That is, the present invention provides the following [1] to [11].
[1] a gas barrier layer,
An adhesion improving layer directly in contact with the gas barrier layer,
An adhesive layer directly in contact with the gas barrier layer on the side opposite to the gas barrier layer of the adhesion improving layer,
A gas barrier laminate, wherein the adhesive layer is a layer formed from an adhesive composition containing the following components (A) and (B).
Component (A): Modified polyolefin resin Component (B): Thermosetting resin [2] The gas barrier laminate according to [1], wherein the component (B) is a polyfunctional epoxy compound.
[3] The above [1] or [1], wherein the gas barrier layer is at least one selected from the group consisting of a gas barrier layer formed of an inorganic vapor-deposited film and a gas barrier layer obtained by modifying the surface of a layer containing a polymer compound. The gas barrier laminate according to [2].
[4] The gas barrier laminate according to any of [1] to [3], wherein the component (A) is an acid-modified polyolefin-based resin.
[5] Any of the above-mentioned [1] to [4], wherein the content of the component (A) in the adhesive composition is 45 to 95% by mass based on the total solid content of the adhesive composition. A gas barrier laminate according to any of the above items.
[6] The adhesive composition according to any one of [1] to [5], wherein the content of the component (B) is 5 to 110 parts by mass with respect to 100 parts by mass of the component (A). The gas barrier laminate according to the above.
[7] The gas barrier laminate according to any of [1] to [6], wherein the adhesive composition further contains the following component (C).
Component (C): curing catalyst [8] In the adhesive composition, the content of the component (C) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (B). ] The gas barrier laminate according to [1].
[9] Any of [1] to [8] above, wherein the adhesive layer has a water vapor transmission rate of 200 g / m 2 / day or less in an atmosphere of 40 ° C. and a relative humidity of 90% at a thickness of 50 μm. The gas barrier laminate according to item 1.
[10] A sealed body in which an object to be sealed is sealed with the gas barrier laminate according to any one of [1] to [9].
[11] The sealing material is at least one selected from the group consisting of an organic EL element, an organic EL display element, an inorganic EL element, an inorganic EL display element, an electronic paper element, a liquid crystal display element, and a solar cell element. The sealed body according to [10].

本発明によれば、接着剤層の水蒸気透過率が低く、かつ、ガスバリア層と接着剤層との密着性に優れるガスバリア性積層体、及び被封止物が前記ガスバリア性積層体で封止されてなる封止体を提供し得る。   According to the present invention, the water vapor transmission rate of the adhesive layer is low, and the gas barrier laminate having excellent adhesion between the gas barrier layer and the adhesive layer, and the object to be sealed are sealed with the gas barrier laminate. A sealed body comprising:

本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10〜90、より好ましくは30〜60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10〜60」とすることもできる。   In the present specification, the lower limit and the upper limit described stepwise in a preferable numerical range (for example, a range such as the content) can be independently combined. For example, from the description "preferably 10 to 90, more preferably 30 to 60", "preferable lower limit (10)" and "more preferable upper limit (60)" are combined to obtain "10 to 60". You can also.

[ガスバリア性積層体]
本発明のガスバリア性積層体は、ガスバリア層と、該ガスバリア層と直接接する密着性向上層と、該密着性向上層の前記ガスバリア層とは反対側の面上に直接接する接着剤層とを有し、該接着剤層が、下記成分(A)及び(B)を含有する接着剤組成物(以下、「接着剤組成物」ともいう。)から形成された層である、ガスバリア性積層体である。
成分(A):変性ポリオレフィン系樹脂
成分(B):熱硬化性樹脂
前記ガスバリア性積層体は、当該構成を満たすことで、接着剤層の水蒸気透過率が低く、かつ、ガスバリア層と接着剤層との密着性に優れるものとなる。
なお、「ガスバリア性」とは、酸素や水蒸気の透過を抑制する特性を示す。
[Gas barrier laminate]
The gas barrier laminate of the present invention has a gas barrier layer, an adhesion improving layer that is in direct contact with the gas barrier layer, and an adhesive layer that is in direct contact with the surface of the adhesion improving layer opposite to the gas barrier layer. The gas barrier laminate, wherein the adhesive layer is a layer formed from an adhesive composition containing the following components (A) and (B) (hereinafter, also referred to as “adhesive composition”): is there.
Component (A): Modified polyolefin-based resin Component (B): Thermosetting resin By satisfying the configuration, the gas barrier laminate has a low water vapor transmission rate of the adhesive layer, and has a gas barrier layer and an adhesive layer. And excellent adhesion to the film.
The “gas barrier property” indicates a property of suppressing permeation of oxygen and water vapor.

前記ガスバリア性積層体の層構成としては、例えば、次に示す構成が挙げられるが、これらに限定されるものではない。
(i)基材層/ガスバリア層/密着性向上層/接着剤層
(ii)剥離フィルム/ガスバリア層/密着性向上層/接着剤層
前記ガスバリア性積層体が、(i)の層構成のように、基材層を有する構成である場合、例えば、ガスバリア層とは反対側の基材層上に、更に、剥離フィルム、プライマー層、接着剤層、又はハードコート層等を設けてもよい。また、当該プライマー層、当該接着剤層、又は当該ハードコート層等の面上に更に剥離フィルムを有していてもよい。
前記ガスバリア性積層体が、(i)の層構成のように、基材層を有する構成である場合、基材層とガスバリア層との密着性を向上させるため、基材層とガスバリア層との間にプライマー層を有することが好ましい。
また、前記ガスバリア性積層体が、(ii)の層構成のように、基材層を有しない構成である場合、ガスバリア層を保護するため、剥離フィルムとガスバリア層との間に下地層を有することが好ましい。
Examples of the layer configuration of the gas barrier laminate include the following configurations, but are not limited thereto.
(I) base layer / gas barrier layer / adhesion improving layer / adhesive layer (ii) release film / gas barrier layer / adhesion improving layer / adhesive layer The gas barrier laminate has a layer configuration of (i). In the case of a configuration having a base material layer, for example, a release film, a primer layer, an adhesive layer, a hard coat layer, or the like may be further provided on the base material layer opposite to the gas barrier layer. Further, a release film may be further provided on the surface of the primer layer, the adhesive layer, the hard coat layer, or the like.
When the gas barrier laminate has a configuration having a base layer, as in the layer configuration of (i), in order to improve the adhesion between the base layer and the gas barrier layer, the base layer and the gas barrier layer are not bonded to each other. It is preferable to have a primer layer between them.
Further, when the gas barrier laminate has a configuration without a base layer as in the layer configuration of (ii), it has an underlayer between the release film and the gas barrier layer to protect the gas barrier layer. Is preferred.

前記ガスバリア性積層体は、密着性向上層とは反対側の接着剤層上に、更に剥離フィルムを設けてもよい。すなわち、前記ガスバリア性積層体は、前記ガスバリア性積層体の最表面に位置する2つの層のうち、一方の層の面上又は両方の層の面上に剥離フィルムを有していてもよい。
なお、前記ガスバリア性積層体が剥離フィルムを有する場合、その態様は、使用前の状態を表したものであり、前記ガスバリア性積層体を使用する際は、通常、剥離フィルムは剥離除去される。
In the gas barrier laminate, a release film may be further provided on the adhesive layer opposite to the adhesiveness improving layer. That is, the gas barrier laminate may have a release film on one of the layers or on both layers of the two layers located on the outermost surface of the gas barrier laminate.
When the gas barrier laminate has a release film, the aspect represents a state before use. When the gas barrier laminate is used, the release film is usually peeled off.

前記ガスバリア性積層体の水蒸気透過率は、40℃、相対湿度90%の雰囲気下で、好ましくは、5.0g/m/day以下、より好ましくは0.5g/m/day以下である。当該水蒸気透過率の下限値は特に限定されず、小さいほど好ましいが、例えば、1.0×10−6g/m/dayである。
当該水蒸気透過率の値は、公知のガス透過率測定装置を使用して測定することができる。
The water vapor transmission rate of the gas barrier laminate is preferably 5.0 g / m 2 / day or less, more preferably 0.5 g / m 2 / day or less in an atmosphere at 40 ° C. and a relative humidity of 90%. . The lower limit of the water vapor transmission rate is not particularly limited, and is preferably as small as possible, for example, 1.0 × 10 −6 g / m 2 / day.
The value of the water vapor permeability can be measured using a known gas permeability measuring device.

前記ガスバリア性積層体の厚さは特に限定されないが、当該ガスバリア性積層体を使用する際の態様において、前記厚さは好ましくは0.5〜300μm、より好ましくは3〜200μm、更に好ましくは5〜150μmである。
前記ガスバリア積層体の厚さが前記範囲内であることで、前記ガスバリア性積層体を封止材として用いる際に、好適に用いることができる。
The thickness of the gas barrier laminate is not particularly limited, but in an embodiment when the gas barrier laminate is used, the thickness is preferably 0.5 to 300 μm, more preferably 3 to 200 μm, and still more preferably 5 to 200 μm. 150150 μm.
When the thickness of the gas barrier laminate is within the above range, the gas barrier laminate can be suitably used when the gas barrier laminate is used as a sealing material.

<ガスバリア層>
前記ガスバリア層は、ガスバリア性を有する層である。
ガスバリア層の水蒸気透過率は、40℃、相対湿度90%の雰囲気下で、好ましくは、5.0g/m/day以下、より好ましくは0.5g/m
/day以下である。当該ガスバリア性を有するガスバリア層を設けることで、ガスバリア性積層体のガスバリア性が、より優れたものとなる。
ガスバリア層の水蒸気透過率の下限は特に限定されないが、汎用の測定装置の検出限界等を考慮すれば、例えば、1.0×10−6g/m/dayである。
当該水蒸気透過率の値は、公知のガス透過率測定装置を使用して測定することができる。
なお、当該水蒸気透過率の値は、基材上に測定対象となるガスバリア層を設けたガスバリアフィルムを作製し、当該ガスバリアフィルムについて測定した水蒸気透過率の値を、当該ガスバリア層の水蒸気透過率と擬制することもできる。
<Gas barrier layer>
The gas barrier layer is a layer having gas barrier properties.
The water vapor transmission rate of the gas barrier layer is preferably 5.0 g / m 2 / day or less, more preferably 0.5 g / m 2 in an atmosphere at 40 ° C. and a relative humidity of 90%.
2 / day or less. By providing the gas barrier layer having the gas barrier property, the gas barrier property of the gas barrier laminate becomes more excellent.
The lower limit of the water vapor transmission rate of the gas barrier layer is not particularly limited, but is, for example, 1.0 × 10 −6 g / m 2 / day in consideration of the detection limit of a general-purpose measuring device.
The value of the water vapor permeability can be measured using a known gas permeability measuring device.
In addition, the value of the water vapor transmission rate, the gas barrier film provided with a gas barrier layer to be measured on a substrate is prepared, the value of the water vapor transmission rate measured for the gas barrier film, the water vapor transmission rate of the gas barrier layer and You can also fake.

ガスバリア層としては、好ましくは無機蒸着膜からなるガスバリア層、ガスバリア性樹脂を含むガスバリア層、及び高分子化合物を含む層(以下、「高分子層」ともいう。)の表面が改質されてなるガスバリア層〔この場合、ガスバリア層とは、改質された領域のみを意味するのではなく、「改質された領域を含む高分子層」を意味する。〕からなる群より選ばれる1種以上であり、より好ましくは無機蒸着膜からなるガスバリア層、及び高分子化合物を含む層の表面が改質されてなるガスバリア層からなる群より選ばれる1種以上が挙げられる。このような主として無機物からなるガスバリア層上に、後述する接着剤組成物から形成される接着剤層を直接積層した場合には、特に高温高湿条件を経た後に層間の部分的な剥離を生じる懸念がある。しかしながら、本発明では密着性向上層の存在により、ガスバリア性積層体は高温高湿条件を経た後でもガスバリア層と接着剤層との密着性が良好となる。
そして、これらの中でも、特に前記ガスバリア層が、無機蒸着膜からなるガスバリア層である場合、ガスバリア層と接着剤層とが分離し易いという問題がより生じやすい。そのため、本発明のガスバリア積層体は、前記ガスバリア層が無機蒸着膜である場合に、より有効である。
As the gas barrier layer, preferably, the surfaces of a gas barrier layer formed of an inorganic vapor-deposited film, a gas barrier layer containing a gas barrier resin, and a layer containing a polymer compound (hereinafter, also referred to as a “polymer layer”) are modified. Gas barrier layer [In this case, the gas barrier layer means not only a modified region but also a “polymer layer including a modified region”. At least one selected from the group consisting of a gas barrier layer formed of an inorganic vapor-deposited film, and a gas barrier layer obtained by modifying the surface of a layer containing a polymer compound. Is mentioned. When an adhesive layer formed of an adhesive composition described later is directly laminated on such a gas barrier layer mainly composed of an inorganic substance, there is a concern that partial delamination between layers may occur particularly after high-temperature and high-humidity conditions. There is. However, in the present invention, due to the presence of the adhesion improving layer, the gas barrier laminate has good adhesion between the gas barrier layer and the adhesive layer even after passing through high temperature and high humidity conditions.
Among these, particularly when the gas barrier layer is a gas barrier layer formed of an inorganic vapor-deposited film, the problem that the gas barrier layer and the adhesive layer are easily separated is more likely to occur. Therefore, the gas barrier laminate of the present invention is more effective when the gas barrier layer is an inorganic vapor-deposited film.

前記無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
前記無機化合物の蒸着膜の原料としては、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ、酸化亜鉛スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
前記金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
これら無機化合物や金属の蒸着膜の原料は、単独で用いてもよく、又は2種以上を併用してもよい。
Examples of the inorganic vapor-deposited film include an inorganic compound and a metal vapor-deposited film.
Examples of the raw material of the inorganic compound vapor-deposited film include inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, tin oxide, and zinc tin oxide; and inorganic nitrides such as silicon nitride, aluminum nitride, and titanium nitride. Inorganic carbide; inorganic sulfide; inorganic oxynitride such as silicon oxynitride; inorganic oxycarbide; inorganic nitrided carbide; inorganic oxynitride carbide, and the like.
Examples of the material for the metal deposition film include aluminum, magnesium, zinc, and tin.
The raw materials of these inorganic compound and metal vapor deposition films may be used alone or in combination of two or more.

前記無機蒸着膜としては、ガスバリア性の観点から、無機酸化物、無機窒化物及び金属からなる群より選ばれる1種以上を原料とする無機蒸着膜が好ましく、更に、透明性の観点から、無機酸化物及び無機窒化物からなる群より選ばれる1種以上を原料とする無機蒸着膜がより好ましい。また、無機蒸着膜は、単層でもよく、多層でもよい。   From the viewpoint of gas barrier properties, the inorganic vapor-deposited film is preferably an inorganic vapor-deposited film made of one or more materials selected from the group consisting of inorganic oxides, inorganic nitrides, and metals. An inorganic vapor-deposited film made from at least one selected from the group consisting of oxides and inorganic nitrides is more preferable. Further, the inorganic vapor-deposited film may be a single layer or a multilayer.

前記無機蒸着膜の厚さは、ガスバリア性と取り扱い性の観点から、好ましくは1〜2,000nm、より好ましくは3〜1,000nm、更に好ましくは5〜500nm、より更に好ましくは40〜200nmである。   From the viewpoint of gas barrier properties and handleability, the thickness of the inorganic vapor-deposited film is preferably 1 to 2,000 nm, more preferably 3 to 1,000 nm, still more preferably 5 to 500 nm, and still more preferably 40 to 200 nm. is there.

前記無機蒸着膜を形成する方法は特に制限されず、公知の方法を使用することができる。前記無機蒸着膜を形成する方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD法;熱CVD法、プラズマCVD法、光CVD法等のCVD法;原子層堆積法(ALD法);が挙げられる。   The method for forming the inorganic vapor-deposited film is not particularly limited, and a known method can be used. Examples of the method for forming the inorganic vapor-deposited film include a PVD method such as a vacuum vapor deposition method, a sputtering method, and an ion plating method; a CVD method such as a thermal CVD method, a plasma CVD method, and a photo CVD method; an atomic layer deposition method ( ALD method).

前記ガスバリア性樹脂としては、例えば、ポリビニルアルコール、ポリビニルアルコールの部分ケン化物、エチレン−ビニルアルコール共重合体、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリクロロトリフルオロエチレン等の酸素や水蒸気等を透過しにくい樹脂が挙げられる。   As the gas barrier resin, for example, polyvinyl alcohol, partially saponified polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, oxygen and water vapor such as polychlorotrifluoroethylene, etc. Resins that are difficult to permeate can be used.

前記ガスバリア性樹脂を含むガスバリア層の厚さは、ガスバリア性の観点から、好ましくは1〜2,000nm、より好ましくは3〜1,000nm、更に好ましくは5〜500nm、より更に好ましくは40〜200nmである。   The thickness of the gas barrier layer containing the gas barrier resin is preferably 1 to 2,000 nm, more preferably 3 to 1,000 nm, still more preferably 5 to 500 nm, and still more preferably 40 to 200 nm from the viewpoint of gas barrier properties. It is.

前記ガスバリア性樹脂を含むガスバリア層を形成する方法としては、前記ガスバリア性樹脂を含む溶液を、剥離フィルムや基材上に塗布し、得られた塗膜を適宜乾燥する方法が挙げられる。
前記ガスバリア性樹脂を含む溶液の塗布方法は特に限定されず、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の塗布方法が挙げられる。
前記塗膜の乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等の公知の乾燥方法を利用することができる。
Examples of a method of forming the gas barrier layer containing the gas barrier resin include a method of applying a solution containing the gas barrier resin on a release film or a base material and appropriately drying the obtained coating film.
The method of applying the solution containing the gas barrier resin is not particularly limited, and known methods such as spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating are used. An application method is mentioned.
As a method for drying the coating film, known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be used.

前記高分子層の表面が改質されてなるガスバリア層において、用いる高分子化合物としては、ケイ素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、脂環式炭化水素系樹脂、芳香族系重合体等が挙げられる。
これらの高分子化合物は単独で用いてもよく、又は2種以上を併用してもよい。
In the gas barrier layer in which the surface of the polymer layer is modified, as the polymer compound used, silicon-containing polymer compound, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, Examples include polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, alicyclic hydrocarbon resin, and aromatic polymer.
These polymer compounds may be used alone or in combination of two or more.

前記高分子層は、前述の高分子化合物の他に、本発明の目的を阻害しない範囲で他の成分を含有してもよい。当該他の成分としては、硬化剤、老化防止剤、光安定剤、難燃剤等が挙げられる。
前記高分子層中の前記高分子化合物の含有量は、よりガスバリア性に優れるガスバリア層を形成し得る観点から、好ましくは50質量%以上、より好ましくは70質量%以上である。
The polymer layer may contain other components in addition to the above-described polymer compound as long as the object of the present invention is not impaired. Such other components include a curing agent, an antioxidant, a light stabilizer, a flame retardant, and the like.
The content of the polymer compound in the polymer layer is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of forming a gas barrier layer having more excellent gas barrier properties.

前記高分子層の厚さは、特に制限されないが、好ましくは20nm〜50μm、より好ましくは30nm〜1μm、更に好ましくは40nm〜500nmである。   The thickness of the polymer layer is not particularly limited, but is preferably 20 nm to 50 μm, more preferably 30 nm to 1 μm, and still more preferably 40 nm to 500 nm.

前記高分子層は、例えば、高分子化合物を有機溶剤に溶解又は分散した液を、公知の塗布方法によって、剥離フィルムや基材層上に塗布し、得られた塗膜を乾燥することにより形成することができる。   The polymer layer is formed, for example, by applying a solution obtained by dissolving or dispersing a polymer compound in an organic solvent on a release film or a substrate layer by a known coating method, and drying the obtained coating film. can do.

前記有機溶剤としては、ベンゼン、トルエン等の芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;n−ペンタン、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
これらの溶媒は、単独で用いてもよく、又は2種以上を併用してもよい。
Examples of the organic solvent include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n-pentane, n-hexane; aliphatic hydrocarbon solvents such as n-heptane; alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane;
These solvents may be used alone or in combination of two or more.

前記高分子化合物を有機溶剤に溶解又は分散した液の塗布方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート法、グラビアコート法、ナイフコート法、エアナイフコート法、ロールナイフコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法等が挙げられる。   As a coating method of a liquid in which the polymer compound is dissolved or dispersed in an organic solvent, a bar coating method, a spin coating method, a dipping method, a roll coating method, a gravure coating method, a knife coating method, an air knife coating method, a roll knife coating method , A die coating method, a screen printing method, a spray coating method, a gravure offset method and the like.

前記高分子層を形成するための塗膜の乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が挙げられる。加熱温度は、好ましくは80〜150℃であり、加熱時間は、通常、数十秒から数十分である。   Examples of a method for drying the coating film for forming the polymer layer include conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation. The heating temperature is preferably from 80 to 150 ° C., and the heating time is usually from several tens of seconds to several tens of minutes.

前記高分子層の表面が改質されてなるガスバリア層において、前記高分子層の表面を改質する方法としては、イオン注入処理、プラズマ処理、紫外線照射処理、熱処理等が挙げられる。
イオン注入処理は、後述するように、加速させたイオンを高分子層に注入して、高分子層を改質する方法である。
プラズマ処理は、高分子層をプラズマ中に晒して、高分子層を改質する方法である。例えば、特開2012−106421号公報に記載の方法に従って、プラズマ処理を行うことができる。
紫外線照射処理は、高分子層に紫外線を照射して高分子層を改質する方法である。例えば、特開2013−226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。
In the gas barrier layer obtained by modifying the surface of the polymer layer, examples of a method for modifying the surface of the polymer layer include ion implantation, plasma treatment, ultraviolet irradiation, and heat treatment.
The ion implantation process is a method of modifying the polymer layer by injecting accelerated ions into the polymer layer, as described later.
Plasma treatment is a method in which a polymer layer is exposed to plasma to modify the polymer layer. For example, plasma processing can be performed according to the method described in JP-A-2012-106421.
The ultraviolet irradiation treatment is a method of irradiating the polymer layer with ultraviolet light to modify the polymer layer. For example, according to the method described in JP-A-2013-226557, the ultraviolet ray modification treatment can be performed.

前記高分子層の表面が改質されてなるガスバリア層としては、よりガスバリア性に優れることから、ケイ素含有高分子化合物を含む層にイオン注入処理を施して得られるものが好ましい。
ケイ素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、ポリオルガノシロキサン系化合物、ポリ(ジシラニレンフェニレン)系化合物、及びポリ(ジシラニレンエチニレン)系化合物等が挙げられ、ポリシラザン系化合物がより好ましい。
As the gas barrier layer obtained by modifying the surface of the polymer layer, a layer obtained by subjecting a layer containing a silicon-containing polymer compound to an ion implantation treatment is preferable because the gas barrier layer has more excellent gas barrier properties.
Examples of the silicon-containing polymer compound include a polysilazane-based compound, a polycarbosilane-based compound, a polysilane-based compound, a polyorganosiloxane-based compound, a poly (disilanilenephenylene) -based compound, and a poly (disilanilenethynylene) -based compound. And a polysilazane-based compound is more preferable.

ポリシラザン系化合物は、分子内に−Si−N−結合(シラザン結合)を含む繰り返し単位を有する化合物である。具体的には、次の一般式(1)で表される繰り返し単位を有する化合物が好ましい。   A polysilazane-based compound is a compound having a repeating unit containing a -Si-N- bond (silazane bond) in the molecule. Specifically, a compound having a repeating unit represented by the following general formula (1) is preferable.

Figure 2018179458
Figure 2018179458

一般式(1)中、nは任意の自然数を示す。Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基又はアルキルシリル基等の非加水分解性基を示す。   In the general formula (1), n represents an arbitrary natural number. Rx, Ry, and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted A non-hydrolyzable group such as an aryl group or an alkylsilyl group having a group is shown.

前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−へキシル基、n−ヘプチル基、n−オクチル基等の炭素数1〜10のアルキル基が挙げられる。
前記無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3〜10のシクロアルキル基が挙げられる。
前記無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基等の炭素数2〜10のアルケニル基が挙げられる。
Examples of the alkyl group of the unsubstituted or substituted alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, Examples thereof include an alkyl group having 1 to 10 carbon atoms such as an n-pentyl group, an isopentyl group, a neopentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.
Examples of the cycloalkyl group of the unsubstituted or substituted cycloalkyl group include a cycloalkyl group having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
Examples of the alkenyl group of the unsubstituted or substituted alkenyl group include those having 2 carbon atoms such as a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, and a 3-butenyl group. -10 alkenyl groups.

前記アルキル基、前記シクロアルキル基及び前記アルケニル基が置換基を有する場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4−メチルフェニル基、4−クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
なお、本明細書において、「(メタ)アクリロイル」の記載は、「アクリロイル」及び/又は「メタクリロイル」を意味する。同様に、「(メタ)アクリル」の記載も「アクリル」及び/又は「メタクリル」を意味する。
When the alkyl group, the cycloalkyl group and the alkenyl group have a substituent, examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a hydroxy group; a thiol group; an epoxy group; Groups; (meth) acryloyloxy groups; unsubstituted or substituted aryl groups such as phenyl, 4-methylphenyl and 4-chlorophenyl;
In the present specification, the description of “(meth) acryloyl” means “acryloyl” and / or “methacryloyl”. Similarly, the description of “(meth) acryl” also means “acryl” and / or “methacryl”.

前記無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基等の炭素数6〜15のアリール基が挙げられる。   Examples of the aryl group of the unsubstituted or substituted aryl group include an aryl group having 6 to 15 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.

前記アリール基が置換基を有する場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1〜6のアルキル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシ基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4−メチルフェニル基、4−クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。   When the aryl group has a substituent, examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; a methoxy group; C1-C6 alkoxy such as ethoxy; nitro; cyano; hydroxy; thiol; epoxy; glycidoxy; (meth) acryloyloxy; phenyl, 4-methylphenyl, 4-chlorophenyl An unsubstituted or substituted aryl group such as a group;

前記アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリ−tert−ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。   Examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tri-tert-butylsilyl group, a methyldiethylsilyl group, a dimethylsilyl group, a diethylsilyl group, a methylsilyl group, and an ethylsilyl group.

これらの中でも、Rx、Ry、Rzとしては、水素原子、炭素数1〜6のアルキル基、又はフェニル基が好ましく、水素原子がより好ましい。
一般式(1)で表される繰り返し単位を有するポリシラザン系化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンのいずれであってもよい。
Among them, Rx, Ry, and Rz are preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, and more preferably a hydrogen atom.
Examples of the polysilazane-based compound having a repeating unit represented by the general formula (1) include an inorganic polysilazane in which Rx, Ry, and Rz are all hydrogen atoms, and an organic polysilazane in which at least one of Rx, Ry, and Rz is not a hydrogen atom. It may be.

また、本発明においては、前記ポリシラザン系化合物として、ポリシラザン変性物を用いることもできる。当該ポリシラザン変性物としては、例えば、特開昭62−195024号公報、特開平2−84437号公報、特開昭63−81122号公報、特開平1−138108号公報等、特開平2−175726号公報、特開平5−238827号公報、特開平5−238827号公報、特開平6−122852号公報、特開平6−306329号公報、特開平6−299118号公報、特開平9−31333号公報、特開平5−345826号公報、特開平4−63833号公報等に記載されているものが挙げられる。
これらの中でも、前記ポリシラザン系化合物としては、入手容易性、及び優れたガスバリア性を有するイオン注入層を形成できる観点から、一般式(1)中、Rx、Ry、Rzが全て水素原子であるペルヒドロポリシラザンが好ましい。
また、前記ポリシラザン系化合物としては、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
前記ポリシラザン系化合物は、単独で用いてもよく、又は2種以上を併用してもよい。
In the present invention, a modified polysilazane compound may be used as the polysilazane-based compound. Examples of the modified polysilazane include, for example, JP-A-62-195024, JP-A-2-84437, JP-A-63-81212, JP-A-1-138108, and JP-A-2-175726. JP-A-5-238827, JP-A-5-238827, JP-A-6-122852, JP-A-6-306329, JP-A-6-299118, JP-A-9-31333, Examples thereof include those described in JP-A-5-345826 and JP-A-4-63833.
Among these, as the polysilazane-based compound, from the viewpoint of availability and the ability to form an ion-implanted layer having excellent gas barrier properties, in general formula (1), Rx, Ry, and Rz are all hydrogen atoms. Hydropolysilazane is preferred.
As the polysilazane-based compound, a commercially available product as a glass coating material or the like can be used as it is.
The polysilazane-based compounds may be used alone or in combination of two or more.

また、前記ポリシラザン系化合物の数平均分子量(Mn)は、特に限定されないが、100〜50,000である化合物を好適に用いることができる。
当該数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィーを行い、標準ポリスチレン換算値として求めることができる。
The number average molecular weight (Mn) of the polysilazane-based compound is not particularly limited, but a compound having a number average molecular weight of 100 to 50,000 can be suitably used.
The number average molecular weight (Mn) can be determined as a value in terms of standard polystyrene by performing gel permeation chromatography.

前記高分子層に注入するイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン等のアルカン系ガス類のイオン;エチレン、プロピレン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン等の芳香族炭化水素系ガス類のイオン;シクロプロパン等のシクロアルカン系ガス類のイオン;シクロペンテン等のシクロアルケン系ガス類のイオン;金属のイオン;有機ケイ素化合物のイオン;等が挙げられる。
これらのイオンは単独で用いてもよく、又は2種以上を併用してもよい。
これらの中でも、より簡便にイオンを注入することができ、より優れたガスバリア性を有するガスバリア層を形成し得ることから、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオンが好ましい。
Examples of ions to be implanted into the polymer layer include ions of rare gases such as argon, helium, neon, krypton, and xenon; ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur; and methane and ethane. Ions of alkane-based gases such as ethylene and propylene; ions of alkane-based gases such as pentadiene and butadiene; ions of alkyne-based gases such as acetylene; aromatics such as benzene and toluene Ion of a hydrocarbon gas; ion of a cycloalkane gas such as cyclopropane; ion of a cycloalkene gas such as cyclopentene; metal ion; ion of an organosilicon compound.
These ions may be used alone or in combination of two or more.
Among them, rare gas ions such as argon, helium, neon, krypton, and xenon are preferable because ions can be more easily implanted and a gas barrier layer having more excellent gas barrier properties can be formed.

イオンを注入する方法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。
これらの方法の中でも、簡便に目的のガスバリア層を形成できることから、後者のプラズマイオンを注入する方法(プラズマイオン注入法)が好ましい。
Examples of a method of implanting ions include a method of irradiating ions (ion beams) accelerated by an electric field, and a method of implanting ions in plasma.
Among these methods, the latter method of injecting plasma ions (plasma ion implantation method) is preferable because a target gas barrier layer can be easily formed.

プラズマイオン注入法は、例えば、希ガス等のプラズマ生成ガスを含む雰囲気下でプラズマを発生させ、高分子層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を、高分子層の表面部に注入して行うことができる。プラズマイオン注入法は、より具体的には、WO2010/107018号パンフレット等に記載された方法により実施することができる。   In the plasma ion implantation method, for example, a plasma is generated in an atmosphere containing a plasma generating gas such as a rare gas, and a negative high voltage pulse is applied to the polymer layer, so that ions (positive ions) in the plasma are generated. Can be performed by injecting into the surface of the polymer layer. More specifically, the plasma ion implantation method can be implemented by a method described in WO 2010/107018 pamphlet or the like.

イオンの注入量は、ガスバリア性積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定することができる
イオン注入により、イオンが注入される領域の厚さは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、高分子層の厚さやガスバリア性積層体の使用目的等に応じて調整すればよいが、好ましくは10〜400nmである。
The amount of implanted ions can be appropriately determined according to the intended use of the gas barrier laminate (required gas barrier properties, transparency, etc.). The thickness of the region into which ions are implanted by ion implantation is It can be controlled by injection conditions such as type, applied voltage, processing time and the like, and may be adjusted according to the thickness of the polymer layer, the purpose of use of the gas barrier laminate, and the like, and preferably 10 to 400 nm.

イオンが注入されたことは、X線光電子分光分析(XPS)を用いてポリシラザン層の表面から10nm付近の元素分析測定を行うことによって確認することができる。   The fact that the ions have been implanted can be confirmed by performing elemental analysis around 10 nm from the surface of the polysilazane layer using X-ray photoelectron spectroscopy (XPS).

前記ガスバリア層は、単層であってもよく又は複層であってもよい。例えば、無機蒸着膜からなるガスバリア層と高分子層の表面が改質されてなるガスバリア層とを併用してもよい。この場合には、密着性向上層と隣接する層が無機蒸着膜からなるガスバリア層であることが好ましい。   The gas barrier layer may be a single layer or a multilayer. For example, a gas barrier layer formed of an inorganic vapor-deposited film and a gas barrier layer formed by modifying the surface of a polymer layer may be used in combination. In this case, the layer adjacent to the adhesion improving layer is preferably a gas barrier layer made of an inorganic vapor-deposited film.

<密着性向上層>
前記密着性向上層は、前記ガスバリア層に直接接するように設けられる層であって、かつ、当該ガスバリア層に接する面とは反対側の面上に前記接着剤層が直接接するように設けられる層である。
前記ガスバリア性積層体が、当該密着性向上層を有することによって、前記ガスバリア層と前記接着剤層との密着性に優れるものとなる。
<Adhesion improving layer>
The adhesion improving layer is a layer provided so as to be in direct contact with the gas barrier layer, and a layer provided so that the adhesive layer is directly in contact with a surface opposite to a surface in contact with the gas barrier layer. It is.
When the gas barrier laminate has the adhesion improving layer, the adhesion between the gas barrier layer and the adhesive layer is excellent.

前記密着性向上層の厚さは特に限定されないが、好ましくは700nm以下であり、より好ましくは50〜700nm、更に好ましくは100〜500nm、より更に好ましくは150〜400nmである。
密着性向上層の厚さが700nm以下であることで、携帯端末等の小型化が要求される物品に本発明のガスバリア性積層体を適用する際に、ガスバリア性積層体を薄くできるために有利である。また、密着性向上層の厚さが50nm以上であれば、密着性向上層の厚さがより均一なものとなり、ガスバリア層と接着剤層との密着性を向上させる効果がより安定する。
The thickness of the adhesion improving layer is not particularly limited, but is preferably 700 nm or less, more preferably 50 to 700 nm, further preferably 100 to 500 nm, and still more preferably 150 to 400 nm.
When the thickness of the adhesion improving layer is 700 nm or less, the gas barrier laminate of the present invention can be made thinner when the gas barrier laminate of the present invention is applied to an article requiring miniaturization such as a portable terminal, which is advantageous. It is. When the thickness of the adhesion improving layer is 50 nm or more, the thickness of the adhesion improving layer becomes more uniform, and the effect of improving the adhesion between the gas barrier layer and the adhesive layer is further stabilized.

前記密着性向上層は、有機物を含有する層であることが好ましい。具体的には、ポリエステル樹脂を含む層;アクリル樹脂を含む層;多官能アクリレート化合物、多官能ウレタンアクリレート化合物等のエネルギー線硬化性化合物を含有する硬化性組成物の硬化物からなる層;熱硬化性エポキシ樹脂、メラミン樹脂等の熱硬化性樹脂を含有する硬化性組成物の硬化物からなる層;等が挙げられる。
前記密着性向上層は、好ましくは熱硬化性エポキシ樹脂を含有する硬化性組成物の硬化物からなる層である。熱硬化性エポキシ樹脂を含有する硬化性組成物を用いることで、前記ガスバリア層と前記接着剤層との密着性、特に高温高湿条件下で保管した後の当該密着性により優れる密着性向上層を形成することができる。
The adhesion improving layer is preferably a layer containing an organic substance. Specifically, a layer containing a polyester resin; a layer containing an acrylic resin; a layer made of a cured product of a curable composition containing an energy ray-curable compound such as a polyfunctional acrylate compound or a polyfunctional urethane acrylate compound; A layer made of a cured product of a curable composition containing a thermosetting resin such as a hydrophilic epoxy resin or a melamine resin.
The adhesion improving layer is preferably a layer made of a cured product of a curable composition containing a thermosetting epoxy resin. By using a curable composition containing a thermosetting epoxy resin, the adhesion between the gas barrier layer and the adhesive layer, particularly an adhesion improving layer that is more excellent in the adhesion after storage under high temperature and high humidity conditions Can be formed.

熱硬化性エポキシ樹脂は、分子内に少なくともエポキシ基を2つ以上有する化合物(以下、「多官能エポキシ化合物」ともいう。)である。前記密着性向上層に用いることができる熱硬化性エポキシ樹脂としては、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,3−ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミノ基又はグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルオキシ基を有するエポキシ樹脂、レゾルシノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂等が挙げられる。
これらの熱硬化性エポキシ樹脂中でも、分子内に芳香環を含むエポキシ樹脂が好ましい。
これらの熱硬化性エポキシ樹脂は、単独で用いてもよく、又は2種以上を併用してもよい。
The thermosetting epoxy resin is a compound having at least two epoxy groups in a molecule (hereinafter, also referred to as a “polyfunctional epoxy compound”). Examples of the thermosetting epoxy resin that can be used for the adhesion improving layer include an epoxy resin having a glycidylamino group derived from meta-xylylenediamine, and a glycidylamino derived from 1,3-bis (aminomethyl) cyclohexane. Epoxy resin having a glycidylamino group derived from diaminodiphenylmethane, epoxy resin having a glycidylamino group or glycidyloxy group derived from paraaminophenol, epoxy resin having a glycidyloxy group derived from bisphenol A Resin, epoxy resin having glycidyloxy group derived from bisphenol F, epoxy resin having glycidyloxy group derived from phenol novolak, glycidyloxy derivative derived from resorcinol Epoxy resins having a sheet group.
Among these thermosetting epoxy resins, an epoxy resin containing an aromatic ring in the molecule is preferable.
These thermosetting epoxy resins may be used alone or in combination of two or more.

前記硬化性組成物中の熱硬化性エポキシ樹脂の含有量は、前記硬化性組成物の固形分全量に対して、好ましくは10〜60質量%、より好ましくは20〜50質量%である。   The content of the thermosetting epoxy resin in the curable composition is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, based on the total solid content of the curable composition.

前記硬化性組成物は、多官能アミン化合物を含有することが好ましい。多官能アミン化合物を含有する硬化性組成物は、硬化反応がより効率よく進行するため、密着性向上層を効率よく形成することができる。
前記多官能アミン化合物としては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、ジアミノジフェニルメタン、メタフェニレンジアミン等が挙げられる。
これらの多官能アミン化合物は、単独で用いてもよく、又は2種以上を併用してもよい。
前記硬化性組成物中の多官能アミン化合物の含有量は、前記硬化性組成物の固形分全量に対して、好ましくは25〜80質量%、より好ましくは35〜75質量%である。
It is preferable that the curable composition contains a polyfunctional amine compound. The curable composition containing the polyfunctional amine compound allows the curing reaction to proceed more efficiently, so that the adhesion improving layer can be efficiently formed.
Examples of the polyfunctional amine compound include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, metaxylylenediamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, diaminodiphenylmethane, and metaphenylenediamine. No.
These polyfunctional amine compounds may be used alone or in combination of two or more.
The content of the polyfunctional amine compound in the curable composition is preferably 25 to 80% by mass, more preferably 35 to 75% by mass, based on the total solid content of the curable composition.

前記硬化性組成物は、シランカップリング剤を含有してもよい。前記硬化性組成物がシランカップリング剤を含有する場合、ガスバリア層との密着性により優れた密着性向上層を形成することができる。   The curable composition may contain a silane coupling agent. When the curable composition contains a silane coupling agent, it is possible to form a better adhesion improving layer due to better adhesion to the gas barrier layer.

前記シランカップリング剤としては、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、3−(2−アミノエチル)アミノプロピルメチルジエトキシシラン等のアミノシランカップリング剤;3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン等のエポキシシランカップリング剤;3−メルカプトプロピルトリメトキシシラン;3−メタクリロキシプロピルトリメトキシシラン;特開2000−239447号公報、特開2001−40037号公報等に記載された高分子シランカップリング剤;等が挙げられる。これらのシランカップリング剤は、単独で用いてもよく、又は2種以上を併用してもよい。   Examples of the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, and 3- (2-aminoethyl) aminopropyltriethoxysilane. Aminosilane coupling agents such as silane, 3- (2-aminoethyl) aminopropylmethyldimethoxysilane, 3- (2-aminoethyl) aminopropylmethyldiethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycol Epoxysilane coupling agents such as sidoxypropylmethyldimethoxysilane; 3-mercaptopropyltrimethoxysilane; 3-methacryloxypropyltrimethoxysilane; described in JP-A-2000-239947, JP-A-2001-40037 and the like. Polymeric silane coupling agent; and the like. These silane coupling agents may be used alone or in combination of two or more.

前記硬化性組成物がシランカップリング剤を含有する場合、シランカップリング剤の含有量は、熱硬化性エポキシ樹脂100質量部に対して、好ましくは0.01〜5質量部、より好ましくは0.01〜3質量部である。   When the curable composition contains a silane coupling agent, the content of the silane coupling agent is preferably 0.01 to 5 parts by mass, and more preferably 0 to 100 parts by mass of the thermosetting epoxy resin. 0.01 to 3 parts by mass.

前記硬化性組成物は溶剤を含有していてもよい。
当該溶剤としては、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、塩化エチレン、クロロホルム、四塩化炭素、1,2−ジクロロエタン、モノクロロベンゼン等のハロゲン化炭化水素系溶媒;メタノール、エタノール、プロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、2−ペンタノン、イソホロン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;エチルセロソルブ等のセロソルブ系溶剤;1,3−ジオキソラン等のエーテル系溶媒;等が挙げられる。
これらの溶剤は、単独で用いてもよく、又は2種以上を併用してもよい。
The curable composition may contain a solvent.
Examples of the solvent include aliphatic hydrocarbon solvents such as n-hexane and n-heptane; aromatic hydrocarbon solvents such as toluene and xylene; dichloromethane, ethylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, Halogenated hydrocarbon solvents such as monochlorobenzene; alcohol solvents such as methanol, ethanol, propanol, butanol, propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, 2-pentanone, isophorone, cyclohexanone; ethyl acetate, acetic acid Ester solvents such as butyl; cellosolve solvents such as ethyl cellosolve; ether solvents such as 1,3-dioxolane;
These solvents may be used alone or in combination of two or more.

前記硬化性組成物中の溶剤の含有量は特に限定されないが、硬化性組成物全量に対して、好ましくは85〜99質量%、より好ましくは90〜97質量%である。   The content of the solvent in the curable composition is not particularly limited, but is preferably 85 to 99% by mass, and more preferably 90 to 97% by mass, based on the total amount of the curable composition.

前記硬化性組成物は、本発明の効果を妨げない範囲において、各種添加剤を含有していてもよい。当該添加剤としては、紫外線吸収剤、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、着色顔料等が挙げられる。これらの添加剤の含有量は、目的に合わせて適宜調整すればよい。   The curable composition may contain various additives as long as the effects of the present invention are not impaired. Examples of the additive include an ultraviolet absorber, an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, and a coloring pigment. What is necessary is just to adjust the content of these additives suitably according to the objective.

前記硬化性組成物は、前記熱硬化性エポキシ樹脂、及び、必要に応じてその他成分を、常法に従って適宜混合・攪拌することにより調製することができる。   The curable composition can be prepared by appropriately mixing and stirring the thermosetting epoxy resin and, if necessary, other components according to a conventional method.

前記密着性向上層は、常法に従って、例えば、前記硬化性組成物等の密着性向上層を形成するための樹脂組成物を前記ガスバリア層上に塗布し、得られた塗膜を硬化又は乾燥させることにより形成することができる。
当該塗付方法としては、通常の湿式コーティング方法を用いることができる。例えば、バーコート法、ディッピング法、ロールコート法、グラビアコート法、ナイフコート法、エアナイフコート法、ロールナイフコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法、スピンコート法、ブレードコート法等が挙げられる。
The adhesion improving layer, according to a conventional method, for example, a resin composition for forming an adhesion improving layer such as the curable composition is applied on the gas barrier layer, and the obtained coating film is cured or dried. It can be formed by performing.
As the coating method, an ordinary wet coating method can be used. For example, bar coating method, dipping method, roll coating method, gravure coating method, knife coating method, air knife coating method, roll knife coating method, die coating method, screen printing method, spray coating method, gravure offset method, spin coating method, blade A coating method is exemplified.

前記塗膜を硬化又は乾燥させる際は、常法に従って塗膜を加熱すればよい。
加熱温度は、好ましくは70〜180℃、より好ましくは80〜150℃である。
加熱時間は、好ましくは30秒〜10分、より好ましくは1〜7分である。
When the coating film is cured or dried, the coating film may be heated according to a conventional method.
The heating temperature is preferably from 70 to 180 ° C, more preferably from 80 to 150 ° C.
The heating time is preferably 30 seconds to 10 minutes, more preferably 1 to 7 minutes.

<接着剤層>
前記接着剤層は、前記密着性向上層の前記ガスバリア層とは反対側の面上に直接接する層であって、下記成分(A)及び(B)を含有する接着剤組成物から形成された層である。
成分(A):変性ポリオレフィン系樹脂
成分(B):熱硬化性樹脂
前記ガスバリア性積層体が、当該接着剤層を有することによって、ガスバリア性積層体の水分遮断性がより向上する。更に、接着強度にも優れたものとなる。
<Adhesive layer>
The adhesive layer is a layer directly in contact with a surface of the adhesion improving layer opposite to the gas barrier layer, and is formed from an adhesive composition containing the following components (A) and (B). Layer.
Component (A): Modified polyolefin-based resin Component (B): Thermosetting resin When the gas barrier laminate has the adhesive layer, the moisture barrier property of the gas barrier laminate is further improved. Further, the adhesive strength is also excellent.

前記接着剤層の厚さは特に限定されないが、好ましくは0.5〜100μm、より好ましくは1〜60μm、更に好ましくは3〜40μmである。
前記接着剤層の厚さが上記範囲内であることで、前記ガスバリア性積層体を封止材として用いる際に、好適に用いることができる。
The thickness of the adhesive layer is not particularly limited, but is preferably 0.5 to 100 μm, more preferably 1 to 60 μm, and still more preferably 3 to 40 μm.
When the thickness of the adhesive layer is within the above range, it can be suitably used when the gas barrier laminate is used as a sealing material.

前記接着剤層は、厚さ50μmにおける水蒸気透過率が、40℃、相対湿度90%の雰囲気下で、好ましくは200g/m/day以下、より好ましくは150g/m/day以下、更に好ましくは100g/m/day以下である。
前記接着剤層の水蒸気透過率の下限は特に限定されないが、汎用の測定装置の検出限界等を考慮すれば、例えば、1.0×10−6g/m/dayである。
当該接着剤層の水蒸気透過率の値は、公知のガス透過率測定装置を使用して測定することができ、例えば、後述する実施例に記載の方法を用いて測定される値を用いることができる。
前記接着剤層は、水蒸気透過率が低く、水分遮断性に優れる。このため、前記ガスバリア性積層体は、封止材を形成する際に好適に用いられる。
The adhesive layer has a water vapor transmission rate at a thickness of 50 μm in an atmosphere of 40 ° C. and a relative humidity of 90%, preferably 200 g / m 2 / day or less, more preferably 150 g / m 2 / day or less, and still more preferably. Is 100 g / m 2 / day or less.
The lower limit of the water vapor permeability of the adhesive layer is not particularly limited, but is, for example, 1.0 × 10 −6 g / m 2 / day in consideration of the detection limit of a general-purpose measuring device.
The value of the water vapor permeability of the adhesive layer can be measured using a known gas permeability measuring device, and for example, a value measured using a method described in Examples described later may be used. it can.
The adhesive layer has a low water vapor transmission rate and is excellent in moisture barrier properties. For this reason, the gas barrier laminate is suitably used when forming a sealing material.

(成分(A):変性ポリオレフィン系樹脂)
前記接着剤組成物は、成分(A)として、変性ポリオレフィン系樹脂を含有する。
前記接着剤組成物が、変性ポリオレフィン系樹脂を含有することで、前記接着剤層は接着強度に優れたものとなる。また、前記接着剤層の水蒸気透過率が低くなり、前記ガスバリア性積層体が水分遮断性に優れる。更に、変性ポリオレフィン系樹脂を含有する接着剤組成物を用いることで、後述する厚さの接着剤層を効率よく形成することができる。
変性ポリオレフィン系樹脂は、前駆体としてのポリオレフィン樹脂に、変性剤を用いて変性処理を施して得られる、官能基が導入されたポリオレフィン樹脂である。
(Component (A): modified polyolefin resin)
The adhesive composition contains a modified polyolefin-based resin as the component (A).
When the adhesive composition contains the modified polyolefin-based resin, the adhesive layer has excellent adhesive strength. In addition, the water vapor permeability of the adhesive layer is reduced, and the gas barrier laminate is excellent in moisture barrier properties. Furthermore, by using the adhesive composition containing the modified polyolefin-based resin, an adhesive layer having a thickness described later can be efficiently formed.
The modified polyolefin-based resin is a polyolefin resin having a functional group introduced, which is obtained by subjecting a polyolefin resin as a precursor to a modification treatment using a modifying agent.

ポリオレフィン樹脂とは、オレフィン系単量体由来の繰り返し単位を含む重合体をいう。ポリオレフィン樹脂は、オレフィン系単量体由来の繰り返し単位のみからなる重合体であってもよいし、オレフィン系単量体由来の繰り返し単位と、オレフィン系単量体と共重合可能な単量体由来の繰り返し単位とからなる重合体であってもよい。   The polyolefin resin refers to a polymer containing a repeating unit derived from an olefin monomer. The polyolefin resin may be a polymer composed of only olefin-based monomer-derived repeating units, or a olefin-based monomer-derived repeating unit and a monomer that can be copolymerized with the olefin-based monomer. May be a polymer comprising a repeating unit of

前記オレフィン系単量体としては、炭素数2〜8のα−オレフィンが好ましく、エチレン、プロピレン、1−ブテン、イソブチレン、又は1−ヘキセンがより好ましく、エチレン又はプロピレンが更に好ましい。
前記オレフィン系単量体と共重合可能な単量体としては、酢酸ビニル、(メタ)アクリル酸エステル、スチレン等が挙げられる。
The olefin monomer is preferably an α-olefin having 2 to 8 carbon atoms, more preferably ethylene, propylene, 1-butene, isobutylene or 1-hexene, and still more preferably ethylene or propylene.
Examples of the monomer copolymerizable with the olefin-based monomer include vinyl acetate, (meth) acrylate, and styrene.

前記ポリオレフィン樹脂としては、超低密度ポリエチレン(VLDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン、ポリプロピレン(PP)、エチレン−プロピレン共重合体、オレフィン系エラストマー(TPO)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル共重合体等が挙げられる。   Examples of the polyolefin resin include very low density polyethylene (VLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene, polypropylene (PP), and ethylene-propylene. Copolymers, olefin-based elastomers (TPO), ethylene-vinyl acetate copolymer (EVA), ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, and the like.

ポリオレフィン樹脂の変性処理に用いる変性剤は、分子内に、官能基、すなわち、後述する架橋反応に寄与し得る基を有する化合物である。
官能基としては、カルボキシル基、カルボン酸無水物に由来の基、カルボン酸エステル基、水酸基、エポキシ基、アミド基、アンモニウム基、ニトリル基、アミノ基、イミド基、イソシアネート基、アセチル基、チオール基、エーテル基、チオエーテル基、スルホン基、ホスホン基、ニトロ基、ウレタン基、ハロゲン原子等が挙げられる。これらの官能基の中でも、カルボキシル基、カルボン酸無水物に由来の基、カルボン酸エステル基、水酸基、アンモニウム基、アミノ基、イミド基、イソシアネート基が好ましく、カルボン酸無水物に由来の基、アルコキシシリル基がより好ましく、カルボン酸無水物に由来の基が特に好ましい。
官能基を有する化合物は、分子内に2種以上の官能基を有していてもよい。
The modifier used in the modification treatment of the polyolefin resin is a compound having a functional group, that is, a group capable of contributing to a crosslinking reaction described later in the molecule.
Examples of the functional group include a carboxyl group, a group derived from a carboxylic anhydride, a carboxylic ester group, a hydroxyl group, an epoxy group, an amide group, an ammonium group, a nitrile group, an amino group, an imide group, an isocyanate group, an acetyl group, and a thiol group. , An ether group, a thioether group, a sulfone group, a phosphone group, a nitro group, a urethane group, a halogen atom, and the like. Among these functional groups, a carboxyl group, a group derived from a carboxylic acid anhydride, a carboxylic acid ester group, a hydroxyl group, an ammonium group, an amino group, an imide group, and an isocyanate group are preferable, and a group derived from a carboxylic acid anhydride, an alkoxy group. Silyl groups are more preferred, and groups derived from carboxylic anhydrides are particularly preferred.
The compound having a functional group may have two or more functional groups in the molecule.

前記変性ポリオレフィン系樹脂としては、好ましくは酸変性ポリオレフィン系樹脂及びシラン変性ポリオレフィン系樹脂からなる群より選ばれる1種以上が挙げられ、本発明のより優れた効果が得られる観点から、より好ましくは酸変性ポリオレフィン系樹脂である。   Examples of the modified polyolefin-based resin include one or more selected from the group consisting of an acid-modified polyolefin-based resin and a silane-modified polyolefin-based resin. From the viewpoint of obtaining the superior effects of the present invention, more preferably, It is an acid-modified polyolefin resin.

酸変性ポリオレフィン系樹脂とは、ポリオレフィン樹脂に対して酸でグラフト変性したものをいう。例えば、ポリオレフィン樹脂に不飽和カルボン酸及び/又はその無水物を反応させて、カルボキシル基及び/又はカルボン酸無水物に由来の基を導入(グラフト変性)したものが挙げられる。   The acid-modified polyolefin-based resin refers to a resin obtained by graft-modifying an polyolefin resin with an acid. For example, a resin obtained by reacting a polyolefin resin with an unsaturated carboxylic acid and / or an anhydride thereof to introduce a carboxyl group and / or a group derived from a carboxylic anhydride (graft modification) can be used.

ポリオレフィン樹脂に反応させる不飽和カルボン酸及びその無水物としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
これらの不飽和カルボン酸は、1種を単独で、又は2種以上を組み合わせて用いることができる。これらの不飽和カルボン酸の中でも、接着強度により優れる接着剤組成物が得られ易いことから、無水マレイン酸が好ましい。
As the unsaturated carboxylic acid and its anhydride to be reacted with the polyolefin resin, maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, maleic anhydride, itaconic anhydride, glutaconic anhydride, Examples thereof include citraconic anhydride, aconitic anhydride, norbornene dicarboxylic anhydride, and tetrahydrophthalic anhydride.
These unsaturated carboxylic acids can be used alone or in combination of two or more. Among these unsaturated carboxylic acids, maleic anhydride is preferred because an adhesive composition having more excellent adhesive strength is easily obtained.

ポリオレフィン樹脂に反応させる不飽和カルボン酸及び/又はその無水物の量は、ポリオレフィン樹脂100質量部に対して、好ましくは0.1〜5質量部、より好ましくは0.2〜3質量部、更に好ましくは0.2〜1.0質量部である。このようにして得られた酸変性ポリオレフィン系樹脂を含有する接着剤組成物は、接着強度により優れる。   The amount of the unsaturated carboxylic acid and / or anhydride thereof to be reacted with the polyolefin resin is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, based on 100 parts by mass of the polyolefin resin. Preferably it is 0.2 to 1.0 part by mass. The adhesive composition containing the acid-modified polyolefin-based resin thus obtained is more excellent in adhesive strength.

前記酸変性ポリオレフィン系樹脂としては、市販品を用いることもできる。当該市販品としては、例えば、アドマー(登録商標)(三井化学社製)、ユニストール(登録商標)(三井化学社製)、BondyRam(Polyram社製)、orevac(登録商標)(ARKEMA社製)、モディック(登録商標)(三菱化学社製)等が挙げられる。   Commercial products can also be used as the acid-modified polyolefin resin. Examples of the commercially available products include Admer (registered trademark) (manufactured by Mitsui Chemicals), Unistol (registered trademark) (manufactured by Mitsui Chemicals), BondyRam (manufactured by Polyram), and orevac (registered trademark) (manufactured by ARKEMA) And Modic (registered trademark) (manufactured by Mitsubishi Chemical Corporation).

前記シラン変性ポリオレフィン系樹脂の前駆体であるポリオレフィン樹脂としては、前述したポリオレフィン樹脂が挙げられる。   Examples of the polyolefin resin that is a precursor of the silane-modified polyolefin-based resin include the above-described polyolefin resins.

シラン変性ポリオレフィン系樹脂とは、ポリオレフィン樹脂に対して不飽和シラン化合物でグラフト変性したものをいう。シラン変性ポリオレフィン系樹脂は、主鎖であるポリオレフィン樹脂に側鎖である不飽和シラン化合物がグラフト共重合した構造を有する。例えば、シラン変性ポリエチレン樹脂及びシラン変性エチレン−酢酸ビニル共重合体が挙げられ、シラン変性低密度ポリエチレン、シラン変性超低密度ポリエチレン、シラン変性直鎖状低密度ポリエチレン等のシラン変性ポリエチレン樹脂が好ましい。   The silane-modified polyolefin-based resin refers to a resin obtained by graft-modifying a polyolefin resin with an unsaturated silane compound. The silane-modified polyolefin-based resin has a structure in which a polyolefin resin as a main chain is graft-copolymerized with an unsaturated silane compound as a side chain. For example, silane-modified polyethylene resins and silane-modified ethylene-vinyl acetate copolymers can be mentioned, and silane-modified polyethylene resins such as silane-modified low-density polyethylene, silane-modified ultra-low-density polyethylene, and silane-modified linear low-density polyethylene are preferable.

ポリオレフィン樹脂に反応させる不飽和シラン化合物としては、ビニルシラン化合物が好ましく、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリイソプロポキシシラン、ビニルトリブトキシシラン、ビニルトリペンチロキシシラン、ビニルトリフェノキシシラン、ビニルトリベンジルオキシシラン、ビニルトリメチレンジオキシシラン、ビニルトリエチレンジオキシシラン、ビニルプロピオニルオキシシラン、ビニルトリアセトキシシラン、ビニルトリカルボキシシラン等が挙げられる。これらのシラン化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。
なお、不飽和シラン化合物を主鎖であるポリオレフィン樹脂にグラフト重合させる場合の方法及び条件は、公知のグラフト重合の常法を採用することができる。
As the unsaturated silane compound reacted with the polyolefin resin, a vinyl silane compound is preferable, for example, vinyl trimethoxy silane, vinyl triethoxy silane, vinyl tripropoxy silane, vinyl triisopropoxy silane, vinyl tributoxy silane, vinyl tripentyloxy silane And vinyltriphenoxysilane, vinyltribenzyloxysilane, vinyltrimethylenedioxysilane, vinyltriethylenedioxysilane, vinylpropionyloxysilane, vinyltriacetoxysilane, vinyltricarboxysilane, and the like. These silane compounds can be used alone or in combination of two or more.
The method and conditions for graft-polymerizing the unsaturated silane compound to the polyolefin resin that is the main chain can employ a conventional method of known graft polymerization.

ポリオレフィン樹脂に反応させる不飽和シラン化合物の量としては、ポリオレフィン樹脂100質量部に対して、好ましくは0.1〜10質量部、より好ましくは0.3〜7質量部、更に好ましくは0.5〜5質量部である。当該不飽和シラン化合物の量が当該範囲にあることで、得られるシラン変性ポリオレフィン系樹脂を含有する接着剤組成物は、接着強度により優れる。   The amount of the unsaturated silane compound reacted with the polyolefin resin is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 7 parts by mass, and still more preferably 0.5 to 10 parts by mass, based on 100 parts by mass of the polyolefin resin. To 5 parts by mass. When the amount of the unsaturated silane compound is within the above range, the resulting adhesive composition containing the silane-modified polyolefin-based resin is more excellent in adhesive strength.

前記シラン変性ポリオレフィン系樹脂としては、市販品を用いることもできる。当該市販品としては、例えば、リンクロン(登録商標)(三菱化学社製)等が挙げられる。当該リンクロンのなかでも、低密度ポリエチレン系のリンクロン、直鎖状低密度ポリエチレン系のリンクロン、超低密度ポリエチレン系のリンクロン、及びエチレン−酢酸ビニル共重合体系のリンクロンからなる群より選ばれる1種以上を好ましく使用することができる。   Commercial products can also be used as the silane-modified polyolefin-based resin. Examples of the commercially available product include Linklon (registered trademark) (manufactured by Mitsubishi Chemical Corporation). Among the linkrons, from the group consisting of low-density polyethylene-based linkrons, linear low-density polyethylene-based linklons, ultra-low-density polyethylene-based linklons, and ethylene-vinyl acetate copolymer-based linklons. One or more selected ones can be preferably used.

前記変性ポリオレフィン系樹脂の重量平均分子量(Mw)は、好ましくは10,000〜2,000,000、より好ましくは、20,000〜1,500,000、更に好ましくは25,000〜250,000、より更に好ましくは30,000〜150,000である。前記変性ポリオレフィン系樹脂の重量平均分子量(Mw)が前記範囲にあることで、前記接着剤組成物中の前記変性ポリオレフィン系樹脂の含有量が多い場合であっても、前記接着剤組成物から形成されるシートの形状を維持することが容易となる。
前記変性ポリオレフィン系樹脂の重量平均分子量(Mw)は、テトラヒドロフランを溶媒として用いてゲルパーミエーションクロマトグラフィーを行い、標準ポリスチレン換算値として求めることができる。具体的には、後述する実施例に記載の方法に基づいて測定した値を用いることができる。
The weight average molecular weight (Mw) of the modified polyolefin-based resin is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,500,000, and further preferably 25,000 to 250,000. And still more preferably 30,000 to 150,000. When the weight average molecular weight (Mw) of the modified polyolefin-based resin is within the above range, even if the content of the modified polyolefin-based resin in the adhesive composition is large, the modified polyolefin-based resin is formed from the adhesive composition. It is easy to maintain the shape of the sheet to be formed.
The weight average molecular weight (Mw) of the modified polyolefin-based resin can be determined as a standard polystyrene equivalent value by performing gel permeation chromatography using tetrahydrofuran as a solvent. Specifically, a value measured based on a method described in Examples described later can be used.

前記変性ポリオレフィン系樹脂は、前記接着剤組成物中の前記変性ポリオレフィン系樹脂の含有量が多い場合であっても、前記接着剤組成物から形成されるシートの形状を維持することが容易である観点から、常温(25℃)で固体であるものが好ましい。   The modified polyolefin-based resin can easily maintain the shape of a sheet formed from the adhesive composition, even when the content of the modified polyolefin-based resin in the adhesive composition is large. From the viewpoint, those which are solid at normal temperature (25 ° C.) are preferred.

前記変性ポリオレフィン系樹脂は、1種を単独で、又は2種以上を組み合わせて用いることができる。
前記接着剤組成物中、成分(A)の含有量は、前記接着剤組成物の固形分全量に対して、好ましくは30〜95質量%、より好ましくは45〜90質量%、更に好ましくは50〜85質量%である。前記変性ポリオレフィン系樹脂の含有量がこの範囲内にある接着剤組成物は、接着強度により優れる。
The modified polyolefin resin can be used alone or in combination of two or more.
In the adhesive composition, the content of the component (A) is preferably 30 to 95% by mass, more preferably 45 to 90% by mass, and still more preferably 50 to 90% by mass based on the total solid content of the adhesive composition. ~ 85% by mass. An adhesive composition having a content of the modified polyolefin-based resin in this range is more excellent in adhesive strength.

(成分(B):熱硬化性樹脂)
前記接着剤組成物は、成分(B)として、熱硬化性樹脂を含有する。
前記接着剤組成物は、熱硬化性樹脂を含有することで、接着強度に優れた接着剤層を形成することができる。
(Component (B): thermosetting resin)
The adhesive composition contains a thermosetting resin as the component (B).
By containing the thermosetting resin, the adhesive composition can form an adhesive layer having excellent adhesive strength.

成分(B)として用いる熱硬化性樹脂としては、熱硬化性エポキシ樹脂、メラミン樹脂、尿素樹脂、マレイミド樹脂等が挙げられ、好ましくは熱硬化性エポキシ樹脂である。
当該熱硬化性エポキシ樹脂とは、密着性向上層で用いることができる熱硬化性エポキシ樹脂について説明した多官能エポキシ樹脂である。
Examples of the thermosetting resin used as the component (B) include a thermosetting epoxy resin, a melamine resin, a urea resin, and a maleimide resin, and a thermosetting epoxy resin is preferable.
The thermosetting epoxy resin is a multifunctional epoxy resin described for the thermosetting epoxy resin that can be used in the adhesion improving layer.

成分(B)として用いる多官能エポキシ樹脂としては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、ノボラック型エポキシ樹脂(例えば、フェノール・ノボラック型エポキシ樹脂、クレゾール・ノボラック型エポキシ樹脂、臭素化フェノール・ノボラック型エポキシ樹脂)等の芳香族エポキシ化合物;水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル等の脂環式エポキシ化合物;ペンタエリスリトールポリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、2,2−ビス(3−グリシジル−4−グリシジルオキシフェニル)プロパン、ジメチロールトリシクロデカンジグリシジルエーテル等の脂肪族エポキシ化合物;等が挙げられる。
これらの多官能エポキシ化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。
Examples of the polyfunctional epoxy resin used as the component (B) include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, and brominated bisphenol. Aromatic epoxy compounds such as S-diglycidyl ether, novolak type epoxy resin (for example, phenol novolak type epoxy resin, cresol novolak type epoxy resin, brominated phenol novolak type epoxy resin); hydrogenated bisphenol A diglycidyl ether; Alicyclic epoxy compounds such as hydrogenated bisphenol F diglycidyl ether and hydrogenated bisphenol S diglycidyl ether; pentaerythritol polyglycidyl ether 1,6-hexanediol diglycidyl ether, hexahydrophthalic acid diglycidyl ester, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, 2,2-bis (3-glycidyl-4-glycidyloxyphenyl) propane And aliphatic epoxy compounds such as dimethylol tricyclodecane diglycidyl ether.
One of these polyfunctional epoxy compounds can be used alone, or two or more can be used in combination.

前記接着剤組成物中における成分(B)の含有量は、成分(A)100質量部に対して、好ましくは5〜110質量部、より好ましくは10〜100質量部である。成分(B)の含有量がこの範囲内にある接着剤組成物から形成された接着剤層は水蒸気遮断性により優れる。   The content of the component (B) in the adhesive composition is preferably 5 to 110 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the component (A). The adhesive layer formed from the adhesive composition having the component (B) content within this range is more excellent in water vapor barrier properties.

(成分(C):硬化触媒)
前記接着剤組成物は、より接着強度の高い接着剤層が得られ易くなる観点から、更に、成分(C)として、硬化触媒を含有することが好ましい。
当該硬化触媒としては、より接着強度の高い接着剤層をより得られ易くなる観点から、より好ましくはイミダゾール系硬化触媒である。
また、前記接着剤組成物が、成分(B)(特にエポキシ化合物)とイミダゾール系硬化触媒とを共に含有する場合、得られる接着剤層は高温時においても優れた接着性を有する。
(Component (C): curing catalyst)
The adhesive composition preferably further contains a curing catalyst as the component (C) from the viewpoint that an adhesive layer having higher adhesive strength is easily obtained.
The curing catalyst is more preferably an imidazole-based curing catalyst from the viewpoint that an adhesive layer having higher adhesive strength can be more easily obtained.
When the adhesive composition contains both the component (B) (especially an epoxy compound) and an imidazole-based curing catalyst, the resulting adhesive layer has excellent adhesion even at high temperatures.

当該イミダゾール系硬化触媒としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等が挙げられる。
これらの硬化触媒は、単独で用いてもよく、又は2種以上を併用してもよい。
Examples of the imidazole-based curing catalyst include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, Phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and the like.
These curing catalysts may be used alone or in combination of two or more.

前記接着剤組成物が、成分(C)を含有する場合、前記接着剤組成物中における成分(C)の含有量は、前記成分(B)100質量部に対して、好ましくは0.1〜10質量部、より好ましくは0.5〜5質量部である。成分(C)の含有量がこの範囲内にある接着剤組成物から形成された接着剤層は高温時においても優れた接着性を有する。   When the adhesive composition contains the component (C), the content of the component (C) in the adhesive composition is preferably from 0.1 to 100 parts by mass of the component (B). It is 10 parts by mass, more preferably 0.5 to 5 parts by mass. The adhesive layer formed from the adhesive composition having the component (C) content within this range has excellent adhesive properties even at high temperatures.

(成分(D):シランカップリング剤)
前記接着剤組成物は、更に、成分(D)として、シランカップリング剤を含有してもよい。
前記接着剤組成物が、シランカップリング剤を含有する場合、常温及び高温環境下における接着強度により優れたものとなる。
(Component (D): silane coupling agent)
The adhesive composition may further contain a silane coupling agent as component (D).
When the adhesive composition contains a silane coupling agent, the adhesive composition is more excellent in adhesive strength under normal temperature and high temperature environments.

当該シランカップリング剤としては、分子内にアルコキシシリル基を少なくとも1個有する有機ケイ素化合物が好ましい。
当該シランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン等の重合性不飽和基含有ケイ素化合物;3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、8−グリシドキシオクチルトリメトキシシラン等のエポキシ構造を有するケイ素化合物;3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン等のアミノ基含有ケイ素化合物;3−クロロプロピルトリメトキシシラン;3−イソシアネートプロピルトリエトキシシラン;等が挙げられる。
これらのシランカップリング剤は、単独で用いてもよく、又は2種以上を併用してもよい。
As the silane coupling agent, an organosilicon compound having at least one alkoxysilyl group in a molecule is preferable.
Examples of the silane coupling agent include polymerizable unsaturated group-containing silicon compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, and methacryloxypropyltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 2- (3, Silicon compounds having an epoxy structure such as 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 8-glycidoxyoctyltrimethoxysilane; 3-aminopropyltrimethoxysilane, N- (2 Amino-containing silicon compounds such as -aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane; 3-chloropropyltrimethoxysilane; 3-isocyanatopropyltrie Ibis Silane; and the like.
These silane coupling agents may be used alone or in combination of two or more.

前記接着剤組成物が成分(D)を含有する場合、成分(D)の含有量は、成分(A)100質量部に対して、好ましくは0.01〜5.0質量部、より好ましくは0.05〜1.0質量部である。   When the adhesive composition contains the component (D), the content of the component (D) is preferably 0.01 to 5.0 parts by weight, more preferably 100 parts by weight of the component (A). It is 0.05 to 1.0 part by mass.

また、前記接着剤組成物は、成形性を良好とする観点から、更に、希釈溶媒を含有してもよい。
当該希釈溶媒としては、ベンゼン、トルエン等の芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;n−ペンタン、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系溶媒;等が挙げられる。
これらの希釈溶媒は、単独で用いてもよく、又は2種以上を併用してもよい。
また、当該希釈溶媒を用いる場合、前記接着剤組成物中、当該希釈溶媒の含有量は、塗工性等を考慮して適宜調整することができる。
Further, the adhesive composition may further contain a diluting solvent from the viewpoint of improving moldability.
Examples of the diluting solvent include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n-pentane, n-hexane; aliphatic hydrocarbon solvents such as n-heptane; alicyclic hydrocarbon solvents such as cyclopentane, cyclohexane and methylcyclohexane;
These diluting solvents may be used alone or in combination of two or more.
When the diluting solvent is used, the content of the diluting solvent in the adhesive composition can be appropriately adjusted in consideration of coatability and the like.

前記接着剤組成物は、本発明の効果を妨げない範囲で、その他成分を含有してもよい。
その他成分としては、紫外線吸収剤、帯電防止剤、光安定剤、酸化防止剤、樹脂安定剤、充填剤、顔料、増量剤、軟化剤、粘着付与剤等の添加剤が挙げられる。
これらのその他成分は単独で用いてもよく、又は2種以上を併用してもよい。
前記接着剤組成物が当該その他成分を含有する場合、その他成分の各含有量は、目的に合わせて適宜調整することができる。
The adhesive composition may contain other components as long as the effects of the present invention are not impaired.
Other components include additives such as ultraviolet absorbers, antistatic agents, light stabilizers, antioxidants, resin stabilizers, fillers, pigments, extenders, softeners, tackifiers, and the like.
These other components may be used alone or in combination of two or more.
When the adhesive composition contains the other components, the content of each of the other components can be appropriately adjusted according to the purpose.

前記接着剤組成物は、所定の成分を、常法に従って適宜混合することにより調製することができる。   The adhesive composition can be prepared by appropriately mixing predetermined components according to a conventional method.

前記接着剤層は、キャスト法等の常法に従って、例えば、前記接着剤組成物を前記密着性向上層上又は予め用意した剥離フィルムの剥離処理面上に塗布し、得られた塗膜を硬化又は乾燥させることにより形成することができる。
前記接着剤組成物を前記剥離フィルムの剥離処理面上に塗布する方法を用いる場合、得られた剥離フィルム付接着剤層を、次いで、前記密着性向上層面と重ねて貼り合せることで、前記ガスバリア性積層体を得ることができる。
The adhesive layer is applied in accordance with a conventional method such as a casting method, for example, by applying the adhesive composition on the adhesion improving layer or on a release-treated surface of a release film prepared in advance, and curing the obtained coating film. Alternatively, it can be formed by drying.
When using a method of applying the adhesive composition on the release-treated surface of the release film, the obtained adhesive layer with a release film is then laminated on the surface of the adhesion-improving layer to be bonded to the gas barrier. A laminated body can be obtained.

前記接着剤組成物を塗工する方法としては、例えば、前述した密着性向上層を形成する際に用いることができる各種の湿式コーティング方法等が挙げられる。   Examples of the method of applying the adhesive composition include various wet coating methods that can be used when forming the above-described adhesion improving layer.

前記接着剤組成物から形成される塗膜を硬化又は乾燥させる際は、常法に従って当該塗膜を加熱すればよい。
当該加熱時の加熱温度は、好ましくは70〜180℃、より好ましくは80〜150℃である。
当該加熱時の加熱時間は、好ましくは30秒〜5分、より好ましくは1〜4分である。
また、前述のとおり、前記剥離フィルム付接着剤層の当該接着剤層面を、前記密着性向上層面に貼り合せて、前記ガスバリア性積層体を得る場合、貼り合せる際にヒートラミネーター等を用いて加熱して貼合してもよい。
この場合の加熱温度は、好ましくは40〜90℃、より好ましくは50〜80℃である。
When curing or drying a coating film formed from the adhesive composition, the coating film may be heated according to a conventional method.
The heating temperature during the heating is preferably from 70 to 180 ° C, more preferably from 80 to 150 ° C.
The heating time during the heating is preferably 30 seconds to 5 minutes, more preferably 1 to 4 minutes.
In addition, as described above, when bonding the adhesive layer surface of the adhesive layer with the release film to the adhesion improving layer surface to obtain the gas barrier laminate, heating using a heat laminator or the like during bonding is performed. It may be bonded.
The heating temperature in this case is preferably 40 to 90 ° C, more preferably 50 to 80 ° C.

硬化処理後の接着剤層の85℃における引き剥がし接着強度は、好ましくは1〜100N/25mm、より好ましくは5〜50N/25mmである。硬化処理後の接着剤層の85℃における引き剥がし接着強度は、後述する実施例に記載した方法により測定されるものである。   The peel strength at 85 ° C. of the adhesive layer after the curing treatment is preferably 1 to 100 N / 25 mm, more preferably 5 to 50 N / 25 mm. The peel adhesive strength at 85 ° C. of the adhesive layer after the curing treatment is measured by the method described in Examples described later.

<基材層>
前記ガスバリア性積層体が、前述した(i)の層構成のように、基材層を有する構成である場合、基材層を有するガスバリア性積層体は、後述する封止体等の製造時に用いる場合の取扱い性に優れる。
また、基材層を有することでガスバリア性積層体は自立性を獲得し易くなる。
<Base layer>
When the gas barrier laminate has a configuration having a base layer as in the above-described layer configuration (i), the gas barrier laminate having the base layer is used at the time of manufacturing a sealing body and the like described below. Excellent handleability in cases.
In addition, the presence of the base material layer makes it easier for the gas barrier laminate to acquire self-sustainability.

前記基材層の厚さは、好ましくは0.4〜400μm、より好ましくは0.5〜95μm、更に好ましくは0.9〜90μmである。   The thickness of the substrate layer is preferably 0.4 to 400 μm, more preferably 0.5 to 95 μm, and still more preferably 0.9 to 90 μm.

前記基材層の材質としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
これらの中でも、透明性に優れ、かつ、汎用性があることから、ポリエステル、ポリアミド又はシクロオレフィン系ポリマーが好ましく、ポリエステル又はシクロオレフィン系ポリマーがより好ましい。
Examples of the material of the base layer include polyimide, polyamide, polyamide imide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyether sulfone, polyphenylene sulfide, acrylic resin, and cycloolefin type. Polymers, aromatic polymers and the like.
Among them, polyester, polyamide or cycloolefin-based polymer is preferable, and polyester or cycloolefin-based polymer is more preferable because of excellent transparency and versatility.

前記ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられ、ポリエチレンテレフタレートが好ましい。
前記ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
前記シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。その具体例としては、アペル(三井化学社製のエチレン−シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。
Examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate, and polyethylene terephthalate is preferred.
Examples of the polyamide include wholly aromatic polyamide, nylon 6, nylon 66, and nylon copolymer.
Examples of the cycloolefin-based polymer include a norbornene-based polymer, a monocyclic cyclic olefin-based polymer, a cyclic conjugated diene-based polymer, a vinyl alicyclic hydrocarbon polymer, and a hydride thereof. Specific examples thereof include Apel (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals, Inc.), Arton (a norbornene-based polymer manufactured by JSR), Zeonoa (a norbornene-based polymer manufactured by Zeon Corporation), and the like. .

前記基材層は、本発明の効果を妨げない範囲において、各種添加剤を含有していてもよい。
当該添加剤としては、紫外線吸収剤、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、着色顔料等が挙げられる。これらの添加剤の含有量は、目的に合わせて適宜調整すればよい。
The base layer may contain various additives as long as the effects of the present invention are not impaired.
Examples of the additive include an ultraviolet absorber, an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, and a coloring pigment. What is necessary is just to adjust the content of these additives suitably according to the objective.

前記基材層としては、キャスト法や溶融押出法等の公知の方法により製造された樹脂製フィルムを利用することができる。
前記ガスバリア層を形成する材料によっては、前記基材層と前記ガスバリア層との密着性が劣る場合もある。この場合には、前記ガスバリア層と前記密着性向上層の間の密着性が良好であっても、前記基材層と前記ガスバリア層の間の剥離が生じる可能性があるため、前記基材層上に、プライマー層を
介して前記ガスバリア層が積層されていることが好ましい。当該プライマー層は単一の層であってもよいし、同種又は異種の層を2層以上積層させたものであってもよい。
前記プライマー層としては、例えば、紫外線硬化性化合物を含む組成物を硬化した層が挙げられる。当該紫外線硬化性化合物を含む組成物は、無機充填材を含有していてもよい。当該無機充填材としては、例えば、シリカ粒子が挙げられる。
前記プライマー層の厚さは、好ましくは0.1〜10μm、より好ましくは0.5〜5μmである。
As the base layer, a resin film manufactured by a known method such as a casting method or a melt extrusion method can be used.
Depending on the material forming the gas barrier layer, the adhesion between the base layer and the gas barrier layer may be poor. In this case, even if the adhesion between the gas barrier layer and the adhesion improving layer is good, separation between the substrate layer and the gas barrier layer may occur. It is preferable that the above-mentioned gas barrier layer is laminated on top of the above via a primer layer. The primer layer may be a single layer or a laminate of two or more layers of the same type or different types.
Examples of the primer layer include a layer obtained by curing a composition containing an ultraviolet curable compound. The composition containing the ultraviolet curable compound may contain an inorganic filler. Examples of the inorganic filler include silica particles.
The thickness of the primer layer is preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm.

基材層を有するガスバリア性積層体は、前記基材層上に、直接又はその他層を介して積層されたガスバリア層を形成する工程を有することで効率よく製造することができる。
例えば、前記基材層上に、直接又はその他層を形成した後、前記方法を用いてガスバリア層を形成する方法を用いることができる。その他層としてはプライマー層が挙げられる。
以下、基材層/ガスバリア層の順序で積層させた層構成又は基材層/その他層(好ましくはプライマー層)/ガスバリア層の順序で積層させた層構成からなるフィルムを「ガスバリアフィルム」ともいう。
前述の工程で得られたガスバリアフィルムのガスバリア層上に、例えば、密着性向上層に係る説明で前述した方法を用いて、密着性向上層を形成する工程を経て、更に、接着剤層に係る説明で前述した方法を用いて、当該密着性向上層を有するガスバリアフィルム上に前記接着剤層を設ける工程を経ることで、基材層を有するガスバリア性積層体を製造することができる。
The gas barrier laminate having a base layer can be efficiently manufactured by having a step of forming a gas barrier layer laminated directly or via another layer on the base layer.
For example, a method in which a gas barrier layer is formed using the above method directly or after forming another layer on the base material layer can be used. Other layers include a primer layer.
Hereinafter, a film having a layer configuration laminated in the order of base layer / gas barrier layer or a layer configuration laminated in the order of substrate layer / other layer (preferably a primer layer) / gas barrier layer is also referred to as a “gas barrier film”. .
On the gas barrier layer of the gas barrier film obtained in the above step, for example, using the method described above in the description of the adhesion improving layer, through the step of forming an adhesion improving layer, further relates to the adhesive layer The gas barrier laminate having the base material layer can be manufactured by performing the step of providing the adhesive layer on the gas barrier film having the adhesion improving layer using the method described above in the description.

<剥離フィルム>
前記ガスバリア性積層体は、剥離フィルムを有していてもよい。
当該剥離フィルムは従来公知のものを使用することができ、前記ガスバリア層、接着剤層、下地層等を保護するために用いられる。
より具体的には、当該剥離フィルムは、前記ガスバリア性積層体の製造工程においては支持体として機能するとともに、前記ガスバリア性積層体を使用するまでの間は、当該剥離フィルムが接する層の保護シートとして機能する。
また、前記ガスバリア性積層体が、基材層を有しない構成である場合、前記ガスバリア性積層体は、前述した(ii)の層構成のように、剥離フィルムを有することが好ましい。
基材層を有しないガスバリア性積層体を製造する際、支持体として機能し得る剥離フィルムを用いることで、基材層を有しないガスバリア性積層体を製造し易くなる。
なお、当該基材層を有しないガスバリア性積層体は、例えば、前記基材を有するガスバリア性積層体の製造方法例において、ガスバリアフィルム中の「基材層/ガスバリア層の順序で積層させた層構成又は基材層/その他層(好ましくはプライマー層)/ガスバリア層の順序で積層させた層構成」に代えて、「剥離フィルム/ガスバリア層の順序で積層させた層構成又は剥離フィルム/その他層(好ましくは、後述する下地層)/ガスバリア層の順序で積層させた層構成」を有するガスバリアフィルムを用いることで製造することができる。
なお、前記ガスバリア性積層体を使用する際は、通常、剥離フィルムは剥離除去される。
<Release film>
The gas barrier laminate may have a release film.
A conventionally known release film can be used and is used for protecting the gas barrier layer, the adhesive layer, the underlayer, and the like.
More specifically, the release film functions as a support in the production process of the gas barrier laminate, and until the gas barrier laminate is used, a protective sheet of a layer that the release film contacts, until the gas barrier laminate is used. Function as
Further, when the gas barrier laminate has a configuration having no base material layer, the gas barrier laminate preferably has a release film as in the above-described layer configuration (ii).
When producing a gas barrier laminate having no base layer, the use of a release film that can function as a support makes it easier to produce a gas barrier laminate having no base layer.
In addition, the gas barrier laminate having no base material layer is, for example, a layer in the order of “base material layer / gas barrier layer” in the gas barrier film in the manufacturing method of the gas barrier laminate having the base material. "Layer structure or release film / other layer laminated in order of release film / gas barrier layer" instead of "Layer structure or layer configuration laminated in order of base material layer / other layer (preferably primer layer) / gas barrier layer" (Preferably, an underlayer described later) / a layer structure in which the layers are laminated in the order of a gas barrier layer ”.
When the gas barrier laminate is used, the release film is usually peeled off.

前記剥離フィルムとしては、従来公知のものを利用することができる。例えば、剥離フィルム用の基材上に、剥離剤により剥離処理された剥離層を有するものが挙げられる。
前記剥離フィルム用基材としては、グラシン紙、コート紙、上質紙等の紙基材;これらの紙基材にポリエチレン等の熱可塑性樹脂をラミネートしたラミネート紙;ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等のプラスチックフィルム;等が挙げられる。
前記剥離剤としては、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。
A conventionally known release film can be used as the release film. For example, a substrate having a release layer that has been subjected to a release treatment with a release agent on a substrate for a release film may be used.
Examples of the base material for the release film include paper base materials such as glassine paper, coated paper, and high-quality paper; laminated paper obtained by laminating a thermoplastic resin such as polyethylene on these paper base materials; polyethylene terephthalate resin, polybutylene terephthalate resin; Plastic films such as polyethylene naphthalate resin, polypropylene resin and polyethylene resin; and the like.
Examples of the release agent include a rubber-based elastomer such as a silicone-based resin, an olefin-based resin, an isoprene-based resin, and a butadiene-based resin, a long-chain alkyl-based resin, an alkyd-based resin, and a fluorine-based resin.

前記ガスバリア性積層体の最表面上の両方の面上に剥離フィルムを有する場合、2枚の剥離フィルムはそれぞれ同一のものを用いてもよく、異なるものを用いてもよい。互いに異なる2枚の剥離フィルムを用いる場合、それぞれ異なる剥離力を有するものを用いることが好ましい。
2枚の剥離フィルムの剥離力が異なることで、前記ガスバリア性積層体の使用時に問題が発生し難くなる。すなわち、2枚の剥離フィルムの剥離力を異なるようにすることで、前記ガスバリア性積層体から最初に剥離フィルムを剥離する工程をより効率よく行うことができる。
When the release films are provided on both surfaces on the outermost surface of the gas barrier laminate, the two release films may be the same or different. When two different release films are used, it is preferable to use films having different release forces.
When the release forces of the two release films are different, problems are less likely to occur when the gas barrier laminate is used. That is, by making the release forces of the two release films different, the step of first releasing the release film from the gas barrier laminate can be performed more efficiently.

前記剥離フィルムの厚さは、好ましくは10〜300μm、より好ましくは20〜125μm、更に好ましくは30〜100μmである。   The thickness of the release film is preferably 10 to 300 μm, more preferably 20 to 125 μm, and still more preferably 30 to 100 μm.

<下地層>
前記ガスバリア性積層体が、例えば、前述した(ii)の層構成のように、基材層を有しない構成である場合、前記ガスバリア性積層体は、ガスバリア層を保護するため、剥離フィルムとガスバリア層との間に下地層を有することが好ましい。
当該下地層は、前記剥離フィルム上に直接設けられる。
当該下地層を有することで、前記ガスバリア性積層体において、基材層を有しない構成である場合は、前記ガスバリア層等を傷つけることなく、剥離フィルムを効率よく剥離除去することができる。
<Underlayer>
When the gas barrier laminate has a configuration without a base layer, for example, as in the layer configuration of (ii) described above, the gas barrier laminate includes a release film and a gas barrier to protect the gas barrier layer. It is preferable to have a base layer between the layers.
The underlayer is provided directly on the release film.
By having the base layer, in the case where the gas barrier laminate has a configuration without a base layer, the release film can be efficiently removed and removed without damaging the gas barrier layer and the like.

前記下地層は、好ましくはエネルギー硬化性樹脂と無機フィラーとを含有する硬化性組成物の硬化物からなるものである。
エネルギー硬化性樹脂とは、電子線、紫外線等のエネルギー線を照射したり、加熱したりすることにより、硬化反応が開始され、硬化物に変化する樹脂をいう。当該エネルギー硬化性樹脂は、通常、重合性化合物を主成分とする混合物である。
また、当該重合性化合物とは、エネルギー重合性官能基を有する化合物である。当該エネルギー重合性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基、スチリル基等のエチレン性不飽和基が例示される。
The underlayer preferably comprises a cured product of a curable composition containing an energy-curable resin and an inorganic filler.
The energy-curable resin refers to a resin that starts a curing reaction by being irradiated with an energy beam such as an electron beam or an ultraviolet ray or is heated to change into a cured product. The energy-curable resin is usually a mixture containing a polymerizable compound as a main component.
Further, the polymerizable compound is a compound having an energy polymerizable functional group. Examples of the energy polymerizable functional group include ethylenically unsaturated groups such as a (meth) acryloyl group, a vinyl group, an allyl group, and a styryl group.

前記エネルギー硬化性樹脂は、オリゴマーを含んでいてもよい。当該オリゴマーとしては、ポリエステルアクリレート系オリゴマー、エポキシアクリレート系オリゴマー、ウレタンアクリレート系オリゴマー、ポリオールアクリレート系オリゴマー等が挙げられる。
また、前記エネルギー硬化性樹脂は、光重合開始剤、熱重合開始剤等の重合開始剤を含んでいてもよい。
The energy-curable resin may include an oligomer. Examples of the oligomer include a polyester acrylate oligomer, an epoxy acrylate oligomer, a urethane acrylate oligomer, and a polyol acrylate oligomer.
Further, the energy curable resin may include a polymerization initiator such as a photopolymerization initiator and a thermal polymerization initiator.

前記エネルギー硬化樹脂としては、紫外線照射により硬化する樹脂(紫外線硬化性樹脂)が好ましい。紫外線硬化性樹脂を用いることで、前記エネルギー硬化性樹脂の硬化物からなる層を効率よく形成することができる。   As the energy-curable resin, a resin (ultraviolet-curable resin) that is cured by ultraviolet irradiation is preferable. By using an ultraviolet curable resin, a layer made of a cured product of the energy curable resin can be efficiently formed.

前記無機フィラーを構成する無機物としては、シリカ、酸化アルミニウム、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物;フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物;等が挙げられる。
前記無機フィラーは、その表面が有機化合物で修飾されたものであってよい。
Examples of the inorganic substance constituting the inorganic filler include metal oxides such as silica, aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide; Metal fluorides such as magnesium fluoride and sodium fluoride; and the like.
The surface of the inorganic filler may be modified with an organic compound.

前記無機フィラーの平均粒径は特に限定されないが、好ましくは5〜100nmである。無機フィラーの平均粒径が小さ過ぎると、剥離フィルムの剥離性を十分に高めることが困難になるおそれがある。一方、無機フィラーの平均粒径が大き過ぎると、下地層上に形成するガスバリア層のガスバリア性を低下させるおそれがある。
前記無機フィラーの平均粒径は、粒度分布測定装置を使用して、動的光散乱法により測定することができる。
The average particle size of the inorganic filler is not particularly limited, but is preferably 5 to 100 nm. If the average particle size of the inorganic filler is too small, it may be difficult to sufficiently enhance the releasability of the release film. On the other hand, if the average particle size of the inorganic filler is too large, the gas barrier properties of the gas barrier layer formed on the underlayer may be reduced.
The average particle size of the inorganic filler can be measured by a dynamic light scattering method using a particle size distribution measuring device.

前記下地層に含まれる樹脂成分(エネルギー硬化性樹脂由来の成分)の含有量は特に限定されないが、前記下地層に含まれる成分全量を基準として、好ましくは30〜90質量%、より好ましくは50〜70質量%である。
前記下地層に含まれる前記無機フィラーの含有量は特に限定されないが、前記下地層に含まれる成分全量を基準として、好ましくは10〜70質量%、より好ましくは50〜70質量%である。
前記下地層に含まれる前記無機フィラーの含有量が少な過ぎると、剥離フィルムを効率よく剥離除去するのが困難になるおそれがある。一方、前記下地層に含まれる前記無機フィラーの含有量が多過ぎると、前記ガスバリア性積層体の透明性、耐屈曲性が低下するおそれがある。
The content of the resin component (component derived from the energy-curable resin) contained in the underlayer is not particularly limited, but is preferably 30 to 90% by mass, more preferably 50% by mass, based on the total amount of components contained in the underlayer. 7070% by mass.
The content of the inorganic filler contained in the underlayer is not particularly limited, but is preferably from 10 to 70% by mass, more preferably from 50 to 70% by mass, based on the total amount of the components contained in the underlayer.
If the content of the inorganic filler contained in the underlayer is too small, it may be difficult to efficiently peel off the release film. On the other hand, if the content of the inorganic filler contained in the underlayer is too large, the transparency and bending resistance of the gas barrier laminate may be reduced.

前記下地層の厚さは特に限定されないが、好ましくは0.1〜10μm、より好ましくは0.5〜5μmである。
前記下地層が薄すぎると、剥離フィルムを剥離除去する際に、ガスバリア層等が破壊されるおそれがある。一方、前記下地層が厚すぎると、耐屈曲性が低下するおそれがある。
The thickness of the underlayer is not particularly limited, but is preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm.
If the underlayer is too thin, the gas barrier layer and the like may be broken when the release film is peeled off. On the other hand, if the underlayer is too thick, the bending resistance may decrease.

前記下地層の、剥離フィルムと接する側と反対側の面の粗さ曲線の断面最大高さ(Rt)は特に限定されないが、好ましくは1〜200nm、より好ましくは2〜150nmである。
前記下地層の、剥離フィルムと接する側と反対側の面とは、剥離フィルム上に下地層を形成した場合に、下地層が露出している面である。当該面上に、直接又はその他層を介して前記ガスバリア層が接する。
前記粗さ曲線の断面最大高さ(Rt)は、前記ガスバリア性積層体の製造途中の状態であれば、露出している下地層の表面を光干渉顕微鏡により観察することにより測定することができる。
粗さ曲線の断面最大高さ(Rt)が小さ過ぎると、剥離フィルムの剥離性を十分に高めることが困難になるおそれがある。一方、粗さ曲線の断面最大高さ(Rt)が大き過ぎると、下地層上に形成するガスバリア層のガスバリア性を低下させるおそれがある。
粗さ曲線の断面最大高さ(Rt)は、用いる無機フィラーの平均粒径や量を調節することにより最適化することができる。
The maximum cross-sectional height (Rt) of the roughness curve of the surface of the underlayer opposite to the side in contact with the release film is not particularly limited, but is preferably 1 to 200 nm, more preferably 2 to 150 nm.
The surface of the underlayer opposite to the side in contact with the release film is a surface where the underlayer is exposed when the underlayer is formed on the release film. The gas barrier layer is in contact with the surface directly or via another layer.
The maximum cross-sectional height (Rt) of the roughness curve can be measured by observing the exposed surface of the underlayer with an optical interference microscope if the gas barrier laminate is in the process of being manufactured. .
If the maximum cross-sectional height (Rt) of the roughness curve is too small, it may be difficult to sufficiently increase the releasability of the release film. On the other hand, if the maximum cross-sectional height (Rt) of the roughness curve is too large, the gas barrier properties of the gas barrier layer formed on the underlayer may be reduced.
The maximum section height (Rt) of the roughness curve can be optimized by adjusting the average particle size and amount of the inorganic filler used.

[封止体]
本発明の封止体は、被封止物が、前記ガスバリア性積層体で封止されてなるものである。
前記封止体は、前記本発明のガスバリア性積層体で封止されてなる封止体であるため、層間剥離等による欠損及び/又は水蒸気等の浸入に起因する不具合が発生し難いものとなる。そのため、当該封止体は、長期にわたって被封止物の性能維持が要求される用途で好適に用いることができる。
前記封止体としては、例えば、透明基板と、該透明基板上に形成された素子(被封止物)と、該素子を封止するための封止材とを備えるものであって、当該封止材が、前記ガスバリア性積層体であるものが挙げられる。
[Sealed body]
The sealed body of the present invention is one in which an object to be sealed is sealed with the gas barrier laminate.
Since the sealing body is a sealing body sealed with the gas barrier laminate of the present invention, defects due to delamination or the like and / or inconvenience due to intrusion of water vapor or the like hardly occur. . Therefore, the sealed body can be suitably used in applications in which the performance of the sealed object is required to be maintained for a long time.
The sealing body includes, for example, a transparent substrate, an element (an object to be sealed) formed on the transparent substrate, and a sealing material for sealing the element. The sealing material may be the gas barrier laminate.

前記透明基板は、特に限定されるものではなく、種々の基板材料を用いることができる。特に可視光の透過率が高い基板材料を用いることが好ましい。また、素子外部から浸入しようとする水分やガスを阻止する遮断性能が高く、耐溶剤性や耐候性に優れている材料が好ましい。
具体的には、例えば、石英やガラス等の透明無機材料;ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類の透明プラスチック;が挙げられる。
前記透明基板の厚さは特に制限されず、光の透過率や、素子内外を遮断する性能を勘案して、適宜選択することができる。
The transparent substrate is not particularly limited, and various substrate materials can be used. In particular, it is preferable to use a substrate material having a high visible light transmittance. In addition, a material having high blocking performance for preventing moisture and gas from entering from the outside of the element and having excellent solvent resistance and weather resistance is preferable.
Specifically, for example, transparent inorganic materials such as quartz and glass; polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polypropylene, polyphenylene sulfide, polyvinylidene fluoride, acetyl cellulose, brominated phenoxy, aramids, polyimide , Polystyrenes, polyarylates, polysulfones, polyolefins and the like.
The thickness of the transparent substrate is not particularly limited, and can be appropriately selected in consideration of light transmittance and a performance of blocking the inside and outside of the element.

<被封止物>
前記被封止物としては、有機エレクトロルミネッセンス(有機EL)素子、有機ELディスプレイ素子、無機EL素子、無機ELディスプレイ素子、電子ペーパー素子、液晶ディスプレイ素子、及び太陽電池素子からなる群より選ばれる1種以上等が挙げられる。
<Object to be sealed>
The object to be sealed is selected from the group consisting of an organic electroluminescence (organic EL) element, an organic EL display element, an inorganic EL element, an inorganic EL display element, an electronic paper element, a liquid crystal display element, and a solar cell element. And more.

前記封止体の製造方法は特に限定されない。例えば、前記ガスバリア性積層体の接着剤層を被封止物上に重ねた後、加熱することにより、前記接着剤層と被封止物を接着させる。
次いで、前記接着剤層を硬化させることにより、前記封止体を製造することができる。
前記ガスバリア性積層体の接着剤層と被封止物を接着させる際の接着条件は特に限定されない。接着温度は、好ましくは23〜100℃、より好ましくは40〜80℃である。この接着処理は、加圧しながら行ってもよい。前記接着剤層を硬化させる際の硬化条件としては、前述した条件を利用することができる。
The method for producing the sealing body is not particularly limited. For example, after the adhesive layer of the gas barrier laminate is overlaid on the object to be sealed, the adhesive layer and the object to be sealed are bonded by heating.
Subsequently, the sealing body can be manufactured by curing the adhesive layer.
The bonding conditions for bonding the adhesive layer of the gas barrier laminate with the object to be sealed are not particularly limited. The bonding temperature is preferably from 23 to 100C, more preferably from 40 to 80C. This bonding process may be performed while applying pressure. As the curing conditions for curing the adhesive layer, the conditions described above can be used.

前述のとおり、前記封止体は各種電子デバイス用途に好適に用いることができる。当該電子デバイスとしては、例えば、液晶ディスプレイ、有機EL発光体、無機EL発光体、電子ペーパー、太陽電池が挙げられる。なお、有機EL発光体、無機EL発光体は、例えば、ディスプレイ、照明等の用途に供されることが一般的である。
具体的には、このような電子デバイスとして、基板、陽極層、発光層、陰極層が順次積層された発光素子の陰極層を覆うように、前記ガスバリア性積層体の前記接着剤層が貼り合わされたELディスプレイが例示される。
前記ガスバリア性積層体を備える電子デバイスは、層間剥離等による封止材自身の欠損や水蒸気等の浸入に起因する不具合が発生し難いものとなる。
As described above, the sealing body can be suitably used for various electronic device applications. Examples of the electronic device include a liquid crystal display, an organic EL luminous body, an inorganic EL luminous body, electronic paper, and a solar cell. Note that the organic EL luminous body and the inorganic EL luminous body are generally used for applications such as display and lighting.
Specifically, as such an electronic device, the adhesive layer of the gas barrier laminate is attached so as to cover a cathode layer of a light emitting element in which a substrate, an anode layer, a light emitting layer, and a cathode layer are sequentially laminated. EL display is exemplified.
An electronic device provided with the gas barrier laminate is less likely to cause defects due to loss of the sealing material itself due to delamination or the like and penetration of water vapor or the like.

以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
以下に記載する「部」及び「%」は、特に言及しない限り、「質量基準」である。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
“Parts” and “%” described below are “mass basis” unless otherwise specified.

[重量平均分子量(Mw)]
成分(A)である変性ポリオレフィン系樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフ(GPC)装置(東ソー株式会社製、製品名「HLC−8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL−L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
[Weight average molecular weight (Mw)]
The weight average molecular weight (Mw) of the modified polyolefin resin as the component (A) was measured using a gel permeation chromatograph (GPC) apparatus (manufactured by Tosoh Corporation, product name "HLC-8020") under the following conditions. The measured value was used in terms of standard polystyrene.
(Measurement condition)
-Column: "TSK guard column HXL-L", "TSK gel G2500HXL", "TSK gel G2000HXL", "TSK gel G1000HXL" (all manufactured by Tosoh Corporation)-Column temperature: 40 ° C
・ Developing solvent: tetrahydrofuran ・ Flow rate: 1.0 mL / min

[実施例1]
<密着性向上層用組成物の調製>
熱硬化性エポキシ樹脂(三菱ガス化学株式会社製、「マクシーブ M−100」、固形分100%)100部、多官能アミン化合物(三菱ガス化学社製、多官能アミン樹脂「マクシーブ C−93T」、固形分65.2%)320部、メタノール5166部、酢酸エチル586部を混合し、硬化性組成物(1)を得た。なお、部数は固形分と溶媒の合計量である。
[Example 1]
<Preparation of composition for adhesion improving layer>
100 parts of thermosetting epoxy resin (manufactured by Mitsubishi Gas Chemical Company, "Maxive M-100", solid content 100%), polyfunctional amine compound (manufactured by Mitsubishi Gas Chemical Company, polyfunctional amine resin "Maxive C-93T", 320 parts of solid content (65.2%), 5166 parts of methanol and 586 parts of ethyl acetate were mixed to obtain a curable composition (1). The number of parts is the total amount of the solid content and the solvent.

<接着剤組成物の調製>
下記成分を、以下の配合でメチルエチルケトンに溶解し、固形分濃度18%の接着剤組成物を調製した。なお、部数の記載は、固形分換算した値である。
成分(A):酸変性ポリオレフィン系樹脂(α−オレフィン重合体、三井化学社製、商品名:ユニストールH−200、重量平均分子量(Mw):52,000)、100部
成分(B):多官能エポキシ化合物(水添ビスフェノールAジグリシジルエーテル、三菱化学社製、商品名:YX8034)、25部
成分(C):イミダゾール系硬化触媒(四国化成社製、商品名:キュアゾール2E4MZ、2−エチル−4−メチルイミダゾール)、0.25部
<Preparation of adhesive composition>
The following components were dissolved in methyl ethyl ketone with the following composition to prepare an adhesive composition having a solid content of 18%. In addition, the description of the number of parts is a value converted into a solid content.
Component (A): acid-modified polyolefin resin (α-olefin polymer, manufactured by Mitsui Chemicals, Inc., trade name: Unistor H-200, weight average molecular weight (Mw): 52,000), 100 parts component (B): Polyfunctional epoxy compound (hydrogenated bisphenol A diglycidyl ether, manufactured by Mitsubishi Chemical Corporation, trade name: YX8034), 25 parts component (C): imidazole-based curing catalyst (manufactured by Shikoku Chemicals, trade name: Curesol 2E4MZ, 2-ethyl) -4-methylimidazole), 0.25 parts

<接着剤層の形成>
前記接着剤組成物を、剥離フィルム(1)(リンテック社製、商品名:SP−PET382150)の剥離処理面上にナイフコーターで塗工し、得られた塗膜を100℃で2分間乾燥し、厚さが25μmの接着剤層を形成した。当該接着剤層の剥離フィルム(1)とは反対側の面上に、更に、剥離フィルム(2)(リンテック社製、商品名:SP−PET381031)の剥離処理面を貼り合わせた。
また、同様の方法を用いて、当該厚さが25μmである接着剤層とは別に、厚みが50μmの接着剤層を水蒸気透過率測定用の試料として得た。
<Formation of adhesive layer>
The adhesive composition is applied on a release-treated surface of a release film (1) (trade name: SP-PET382150, manufactured by Lintec Corporation) using a knife coater, and the obtained coating film is dried at 100 ° C for 2 minutes. And an adhesive layer having a thickness of 25 μm. On the surface of the adhesive layer opposite to the release film (1), a release-treated surface of a release film (2) (trade name: SP-PET381031 manufactured by Lintec Corporation) was further bonded.
In addition, using the same method, an adhesive layer having a thickness of 50 μm was obtained as a sample for measuring the water vapor transmission rate, separately from the adhesive layer having a thickness of 25 μm.

<ガスバリアフィルムの製造>
プライマー層付きポリエチレンテレフタレートフィルム(厚さ51μm)の厚さが1μmのプライマー層上に、ガスバリア層として酸化ケイ素膜を、CVD法により100nmの厚さで設け、ガスバリアフィルムを得た。
<Manufacture of gas barrier film>
A silicon oxide film having a thickness of 100 nm was provided as a gas barrier layer by a CVD method on a 1 μm thick polyethylene terephthalate film with a primer layer (51 μm thickness) to obtain a gas barrier film.

<ガスバリア性積層体の製造>
得られたガスバリアフィルムのガスバリア層形成面に、前記密着性向上層用組成物を、マイヤーバーを用いて塗布した。
得られた塗膜を100℃で2分間加熱することで、厚さが300nmの密着性向上層を形成した。
次に、前記厚さが25μmの接着剤層から剥離フィルム(2)を剥がし、露出した接着剤層面と、密着性向上層が設けられたガスバリアフィルムの密着性向上層面とをヒートラミネータを用いて60℃で貼り合わせ、ガスバリア性積層体を、剥離フィルム(1)を残した状態で得た。
<Production of gas barrier laminate>
The composition for an adhesion improving layer was applied to the gas barrier layer forming surface of the obtained gas barrier film using a Meyer bar.
By heating the obtained coating film at 100 ° C. for 2 minutes, an adhesion improving layer having a thickness of 300 nm was formed.
Next, the release film (2) was peeled off from the adhesive layer having a thickness of 25 μm, and the exposed adhesive layer surface and the adhesion improving layer surface of the gas barrier film provided with the adhesion improving layer were heated using a heat laminator. The laminate was bonded at 60 ° C. to obtain a gas barrier laminate with the release film (1) left.

[比較例1]
密着性向上層を設けずに、ガスバリア層に直接接着剤層を貼り合わせたこと以外は、実施例1と同様にしてガスバリア性積層体及び水蒸気透過率測定用試料を得た。該比較例1については、ガスバリア層と接着剤層との密着性の結果が不良であったため、引き剥がし接着強度の測定を行わなかった。
[Comparative Example 1]
A gas barrier laminate and a sample for measuring water vapor transmission rate were obtained in the same manner as in Example 1, except that the adhesive layer was directly bonded to the gas barrier layer without providing the adhesion improving layer. In Comparative Example 1, the result of the adhesion between the gas barrier layer and the adhesive layer was poor, so that the peeling adhesion strength was not measured.

[比較例2]
アクリル酸ブチル90部、及びアクリル酸10部、重合開始剤としてアゾビスイソブチロニトリル0.2部、反応溶媒として酢酸エチル200部を反応器に入れ混合した。次いで、得られた混合物内に窒素ガスを4時間吹き込んで脱気した後、攪拌しながら60℃まで昇温した。そのまま、撹拌を60℃で24時間続けることで重合反応を行い、アクリル系共重合体(重量平均分子量:650,000)を酢酸エチル溶液状態で得た。
実施例1において、成分(A)を前記アクリル系共重合体に変更し、接着剤組成物の固形分濃度を35%とした点以外は、実施例1と同様にして、ガスバリア性積層体及び水蒸気透過率測定用試料を得た。該比較例2については、接着剤層の水蒸気透過率の結果が不良であったため、引き剥がし接着強度の測定を行わなかった。
[Comparative Example 2]
90 parts of butyl acrylate, 10 parts of acrylic acid, 0.2 parts of azobisisobutyronitrile as a polymerization initiator, and 200 parts of ethyl acetate as a reaction solvent were put in a reactor and mixed. Next, the mixture was degassed by blowing nitrogen gas into the mixture for 4 hours, and then heated to 60 ° C. with stirring. The polymerization reaction was carried out by continuing stirring at 60 ° C. for 24 hours to obtain an acrylic copolymer (weight average molecular weight: 650,000) in an ethyl acetate solution state.
In Example 1, a gas barrier laminate and a gas barrier laminate were prepared in the same manner as in Example 1 except that the component (A) was changed to the acrylic copolymer and the solid content concentration of the adhesive composition was changed to 35%. A sample for measuring the water vapor transmission rate was obtained. In Comparative Example 2, the peeling adhesive strength was not measured because the result of the water vapor transmission rate of the adhesive layer was poor.

実施例及び各比較例で製造したガスバリア性積層体及び水蒸気透過率測定用試料の特性について、以下の方法に基づき評価した。その結果を表1に示す。   The properties of the gas barrier laminate and the sample for measuring water vapor transmission rate manufactured in the examples and comparative examples were evaluated based on the following methods. Table 1 shows the results.

[接着剤層の水蒸気透過率]
実施例及び各比較例において作製した水蒸気透過率測定用試料から剥離フィルム(1)及び(2)を除去して、水蒸気透過率測定装置(LYSSY社製、商品名:L80−5000)を用いて、温度40℃、相対湿度90%の環境下における、水蒸気透過率を測定した。
[Water vapor transmission rate of adhesive layer]
The release films (1) and (2) were removed from the water vapor transmission rate measurement samples prepared in the examples and the comparative examples, and the water vapor transmission rate measurement apparatus (manufactured by LYSSY, trade name: L80-5000) was used. At a temperature of 40 ° C. and a relative humidity of 90%.

[ガスバリア層と接着剤層との密着性]
25mm×300mmの大きさに裁断したガスバリア性積層体の剥離フィルム(1)を剥離し、露出した接着剤層をガラス板に重ねて、ヒートラミネータを用いてこれらを60℃で圧着した。次いで、当該圧着後のガスバリア性積層体とガラス板の積層体を100℃で2時間加熱して接着剤層を硬化させた後、24時間静置して、密着性評価用の試験片を得た。
当該試験片を、温度85℃、相対湿度85%環境下に168時間静置し、取り出した。その後、当該試験片を剥離角度180°の条件で剥離試験を行い、引き剥がした後にガラス板表面への接着剤層の転着の有無を確認した。
A:転着なし
B:転着あり
[Adhesion between gas barrier layer and adhesive layer]
The release film (1) of the gas barrier laminate cut into a size of 25 mm × 300 mm was peeled off, the exposed adhesive layer was placed on a glass plate, and these were pressed at 60 ° C. using a heat laminator. Next, the laminated body of the gas barrier laminate and the glass plate after the pressure bonding is heated at 100 ° C. for 2 hours to cure the adhesive layer, and then left to stand for 24 hours to obtain a test piece for evaluation of adhesion. Was.
The test piece was left standing for 168 hours under an environment of a temperature of 85 ° C. and a relative humidity of 85%, and was taken out. Thereafter, the test piece was subjected to a peeling test under a condition of a peeling angle of 180 °, and after peeling off, it was confirmed whether or not the adhesive layer was transferred to the surface of the glass plate.
A: No transfer B: Transfer

[引き剥がし接着強度の測定]
25mm×300mmの大きさに裁断したガスバリア性積層体の剥離フィルム(1)を剥離し、露出した接着剤層をガラス板に重ね、ヒートラミネータを用いてこれらを60℃で圧着した。次いで、ガスバリア性積層体を100℃で2時間加熱して接着剤層を硬化させた後、24時間静置した。
これを試験片として使用して、JIS Z0237:2009に準拠し、温度85℃(湿度は制御なし)の環境下において、剥離角度180°の条件で剥離試験を行い、引き剥がし接着強度(N/25mm)を測定した。
[Measurement of peeling adhesive strength]
The release film (1) of the gas barrier laminate cut into a size of 25 mm × 300 mm was peeled off, the exposed adhesive layer was placed on a glass plate, and these were pressed at 60 ° C. using a heat laminator. Next, the gas barrier laminate was heated at 100 ° C. for 2 hours to cure the adhesive layer, and then allowed to stand for 24 hours.
Using this as a test piece, a peel test was performed under the condition of a peel angle of 180 ° in an environment of a temperature of 85 ° C. (humidity was not controlled) in accordance with JIS Z0237: 2009, and a peeling adhesive strength (N / 25 mm).

Figure 2018179458
Figure 2018179458

表1より、実施例1のガスバリア性積層体は、ガラス板上に接着剤層が転着することがなくガスバリア層と接着剤層との密着性に優れていることが確認された。更に、実施例1のガスバリア性積層体が有する接着剤層の水蒸気透過率は、比較例2のガスバリア性積層体が有する接着剤層の水蒸気透過率よりも優れていることが確認された。
また、実施例1のガスバリア性積層体は、接着強度にも優れることが確認された。
From Table 1, it was confirmed that the gas barrier laminate of Example 1 had excellent adhesiveness between the gas barrier layer and the adhesive layer without the adhesive layer being transferred onto the glass plate. Furthermore, it was confirmed that the water vapor transmission rate of the adhesive layer of the gas barrier laminate of Example 1 was superior to the water vapor transmission rate of the adhesive layer of the gas barrier laminate of Comparative Example 2.
Further, it was confirmed that the gas barrier laminate of Example 1 had excellent adhesive strength.

一方、比較例1のガスバリア性積層体では、ガスバリア層と接着剤層との間に密着性向上層を有しないため、ガスバリア層と接着剤層との密着性に劣ることが確認された。
また、比較例2のガスバリア性積層体は、成分(A)及び(B)を含有する接着剤組成物から形成された層でないため、得られる接着剤層の水蒸気透過率が劣ることが確認された。
On the other hand, in the gas barrier laminate of Comparative Example 1, it was confirmed that the adhesiveness between the gas barrier layer and the adhesive layer was inferior because the adhesiveness improving layer was not provided between the gas barrier layer and the adhesive layer.
In addition, since the gas barrier laminate of Comparative Example 2 was not a layer formed from the adhesive composition containing the components (A) and (B), it was confirmed that the obtained adhesive layer had poor water vapor permeability. Was.

本発明のガスバリア性積層体は、接着剤層の水蒸気透過率が低く、かつ、ガスバリア層と接着剤層との密着性に優れる。そのため、本発明のガスバリア性積層体は、例えば、各種電子デバイス用素子の封止材等、層間剥離等によるガスバリア性積層体自身の欠損及び/又は水蒸気等の浸入による故障発生の防止が要求される用途で好適に用いることができる。
そして、被封止物を、本発明のガスバリア性積層体で封止されてなる本発明の封止体も、層間剥離等による封止材自身が欠損及び/又は水蒸気等の浸入による不具合が発生し難いものとなる。そのため、本発明の封止体は、各種電子デバイス用途等の長期にわたって被封止物の性能維持が要求される用途で好適に用いることができる。
The gas barrier laminate of the present invention has a low water vapor transmission rate of the adhesive layer and excellent adhesion between the gas barrier layer and the adhesive layer. For this reason, the gas barrier laminate of the present invention is required to prevent the failure of the gas barrier laminate itself due to delamination or the like and / or the occurrence of failure due to intrusion of water vapor or the like, such as a sealing material for various electronic device elements. It can be suitably used in various applications.
Also, in the sealed body of the present invention in which the object to be sealed is sealed with the gas barrier laminate of the present invention, the sealing material itself is damaged due to delamination or the like and / or a defect due to penetration of water vapor or the like occurs. It is difficult to do. Therefore, the sealed body of the present invention can be suitably used in applications in which performance of an object to be sealed is required to be maintained for a long period of time, such as various electronic device applications.

Claims (11)

ガスバリア層と、
該ガスバリア層と直接接する密着性向上層と、
該密着性向上層の前記ガスバリア層とは反対側の面上に直接接する接着剤層とを有し、
該接着剤層が、下記成分(A)及び(B)を含有する接着剤組成物から形成された層である、ガスバリア性積層体。
成分(A):変性ポリオレフィン系樹脂
成分(B):熱硬化性樹脂
A gas barrier layer,
An adhesion improving layer directly in contact with the gas barrier layer,
An adhesive layer directly in contact with the gas barrier layer on the side opposite to the gas barrier layer of the adhesion improving layer,
A gas barrier laminate, wherein the adhesive layer is a layer formed from an adhesive composition containing the following components (A) and (B).
Component (A): Modified polyolefin resin Component (B): Thermosetting resin
成分(B)が、多官能エポキシ化合物である、請求項1に記載のガスバリア性積層体。   The gas barrier laminate according to claim 1, wherein the component (B) is a polyfunctional epoxy compound. 前記ガスバリア層が、無機蒸着膜からなるガスバリア層、及び高分子化合物を含む層の表面が改質されてなるガスバリア層からなる群より選ばれる1種以上である、請求項1又は2に記載のガスバリア性積層体。   The gas barrier layer according to claim 1, wherein the gas barrier layer is at least one selected from the group consisting of a gas barrier layer formed of an inorganic vapor-deposited film, and a gas barrier layer formed by modifying the surface of a layer containing a polymer compound. Gas barrier laminate. 成分(A)が、酸変性ポリオレフィン系樹脂である、請求項1〜3のいずれか1項に記載のガスバリア性積層体。   The gas barrier laminate according to any one of claims 1 to 3, wherein the component (A) is an acid-modified polyolefin-based resin. 前記接着剤組成物中、成分(A)の含有量が、前記接着剤組成物の固形分全量に対して、45〜95質量%である、請求項1〜4のいずれか1項に記載のガスバリア性積層体。   5. The adhesive composition according to claim 1, wherein the content of the component (A) in the adhesive composition is 45 to 95% by mass based on the total solid content of the adhesive composition. Gas barrier laminate. 前記接着剤組成物中、成分(B)の含有量が、成分(A)100質量部に対して、5〜110質量部である、請求項1〜5のいずれか1項に記載のガスバリア性積層体。   The gas barrier property according to any one of claims 1 to 5, wherein the content of the component (B) in the adhesive composition is 5 to 110 parts by mass with respect to 100 parts by mass of the component (A). Laminate. 前記接着剤組成物が、更に、下記成分(C)を含有する、請求項1〜6のいずれか1項に記載のガスバリア性積層体。
成分(C):硬化触媒
The gas barrier laminate according to any one of claims 1 to 6, wherein the adhesive composition further contains the following component (C).
Component (C): curing catalyst
前記接着剤組成物中、成分(C)の含有量が、成分(B)100質量部に対して、0.1〜10質量部である、請求項7に記載のガスバリア性積層体。   The gas barrier laminate according to claim 7, wherein the content of the component (C) in the adhesive composition is 0.1 to 10 parts by mass based on 100 parts by mass of the component (B). 前記接着剤層の厚さ50μmにおける水蒸気透過率が、40℃、相対湿度90%の雰囲気下で、200g/m/day以下である、請求項1〜8のいずれか1項に記載のガスバリア性積層体。The gas barrier according to any one of claims 1 to 8, wherein a water vapor transmission rate at a thickness of 50 µm of the adhesive layer is 200 g / m 2 / day or less in an atmosphere at 40 ° C and a relative humidity of 90%. Laminate. 被封止物が、請求項1〜9のいずれか1項に記載のガスバリア性積層体で封止されてなる、封止体。   A sealed body, wherein an object to be sealed is sealed with the gas barrier laminate according to any one of claims 1 to 9. 前記封止物が、有機EL素子、有機ELディスプレイ素子、無機EL素子、無機ELディスプレイ素子、電子ペーパー素子、液晶ディスプレイ素子、及び太陽電池素子からなる群より選ばれる1種以上である、請求項10に記載の封止体。   The sealing material is at least one selected from the group consisting of an organic EL device, an organic EL display device, an inorganic EL device, an inorganic EL display device, an electronic paper device, a liquid crystal display device, and a solar cell device. 11. The sealed body according to 10.
JP2019508505A 2017-03-30 2017-05-31 Gas barrier laminate and sealed body Pending JPWO2018179458A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017067512 2017-03-30
JP2017067512 2017-03-30
PCT/JP2017/020347 WO2018179458A1 (en) 2017-03-30 2017-05-31 Gas barrier laminate, and sealing element

Publications (1)

Publication Number Publication Date
JPWO2018179458A1 true JPWO2018179458A1 (en) 2020-02-06

Family

ID=63674821

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019508505A Pending JPWO2018179458A1 (en) 2017-03-30 2017-05-31 Gas barrier laminate and sealed body
JP2019509697A Active JP7158377B2 (en) 2017-03-30 2018-03-23 Gas barrier film and sealant

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019509697A Active JP7158377B2 (en) 2017-03-30 2018-03-23 Gas barrier film and sealant

Country Status (5)

Country Link
JP (2) JPWO2018179458A1 (en)
KR (1) KR102496772B1 (en)
CN (1) CN110392721A (en)
TW (1) TWI772392B (en)
WO (2) WO2018179458A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111174A1 (en) * 2018-11-30 2020-06-04 コニカミノルタ株式会社 Laminate, method for producing same, and electronic device provided with same
EP3904079A4 (en) * 2018-12-27 2022-09-14 Lintec Corporation Gas barrier laminate
JP7398394B2 (en) * 2018-12-27 2023-12-14 リンテック株式会社 Gas barrier laminate
TWI708680B (en) * 2019-01-08 2020-11-01 穎華科技股份有限公司 Polymer plastic front plate and method for manufacturing the same
JPWO2021132030A1 (en) * 2019-12-26 2021-07-01

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123335A (en) * 1995-10-31 1997-05-13 Toppan Printing Co Ltd Transparent gas-barrier laminate for retorting
JP2000233479A (en) * 1999-02-16 2000-08-29 Dainippon Printing Co Ltd Laminate material and packing container using the same
WO2014084350A1 (en) * 2012-11-30 2014-06-05 リンテック株式会社 Adhesive agent composition, adhesive sheet, and electronic device
WO2015147097A1 (en) * 2014-03-27 2015-10-01 リンテック株式会社 Sealing material, sealing sheet, method for sealing organic device and organic el element
WO2018047920A1 (en) * 2016-09-07 2018-03-15 リンテック株式会社 Adhesive composition, sealing sheet, and sealed body

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3763482B2 (en) * 1995-02-24 2006-04-05 尾池工業株式会社 Transfer foil for plastic liquid crystal panel
JP3287229B2 (en) * 1996-08-20 2002-06-04 東洋紡績株式会社 Gas barrier resin film
JP3934895B2 (en) * 2001-09-17 2007-06-20 大日本印刷株式会社 Barrier film, laminated material using the same, packaging container, image display medium, and barrier film manufacturing method
CN101272904B (en) * 2005-09-26 2012-12-19 尤尼吉可株式会社 Gas barrier multilayer body and article
WO2013018602A1 (en) 2011-08-03 2013-02-07 リンテック株式会社 Gas barrier adhesive sheet, method for producing same, electronic member, and optical member
JP5988989B2 (en) * 2011-11-04 2016-09-07 リンテック株式会社 GAS BARRIER FILM AND MANUFACTURING METHOD THEREOF, GAS BARRIER FILM LAMINATE, ELECTRONIC DEVICE MEMBER, AND ELECTRONIC DEVICE
CN104487476B (en) * 2012-04-27 2017-07-14 三菱瓦斯化学株式会社 Epoxy curing agent, composition epoxy resin and gas barrier property bonding agent and gas-barrier multilayer body
WO2016056625A1 (en) * 2014-10-10 2016-04-14 リンテック株式会社 Film-form sealant, sealing sheet, and electronic device
TWI751989B (en) 2015-12-01 2022-01-11 日商琳得科股份有限公司 Adhesive composition, sealing plate and sealing body
JPWO2018016346A1 (en) 2016-07-20 2019-05-09 東レフィルム加工株式会社 Film for transfer of gas barrier laminated film and organic EL device
JP6940224B2 (en) 2016-09-07 2021-09-22 リンテック株式会社 Gas barrier laminate and seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123335A (en) * 1995-10-31 1997-05-13 Toppan Printing Co Ltd Transparent gas-barrier laminate for retorting
JP2000233479A (en) * 1999-02-16 2000-08-29 Dainippon Printing Co Ltd Laminate material and packing container using the same
WO2014084350A1 (en) * 2012-11-30 2014-06-05 リンテック株式会社 Adhesive agent composition, adhesive sheet, and electronic device
WO2015147097A1 (en) * 2014-03-27 2015-10-01 リンテック株式会社 Sealing material, sealing sheet, method for sealing organic device and organic el element
WO2018047920A1 (en) * 2016-09-07 2018-03-15 リンテック株式会社 Adhesive composition, sealing sheet, and sealed body

Also Published As

Publication number Publication date
WO2018179458A1 (en) 2018-10-04
WO2018180962A1 (en) 2018-10-04
TWI772392B (en) 2022-08-01
CN110392721A (en) 2019-10-29
JP7158377B2 (en) 2022-10-21
TW201840415A (en) 2018-11-16
KR102496772B1 (en) 2023-02-06
JPWO2018180962A1 (en) 2020-02-06
KR20190130565A (en) 2019-11-22

Similar Documents

Publication Publication Date Title
JP6814158B2 (en) Adhesive composition, encapsulation sheet, and encapsulant
JP6814157B2 (en) Adhesive composition, encapsulation sheet, and encapsulant
US11078388B2 (en) Adhesive composition, sealing sheet, and sealed body
JPWO2018179458A1 (en) Gas barrier laminate and sealed body
TWI742153B (en) Adhesive composition, sealing sheet and sealing body
CN109642134B (en) Adhesive composition, sealing sheet, and sealing body
JP7071279B2 (en) Adhesive composition, encapsulation sheet, and encapsulant
WO2018047422A1 (en) Gas barrier laminate and sealed body
WO2020067488A1 (en) Gas-barrier laminate
JP6590451B2 (en) Sheet adhesive, gas barrier laminate, and sealing body
JPWO2018221572A1 (en) Adhesive composition, adhesive sheet, and sealed body
WO2018221573A1 (en) Adhesive composition, adhesive sheet, and sealed body
JP2020057472A (en) Method for manufacturing sealed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210921