JPWO2018116792A1 - Ferritic stainless steel - Google Patents

Ferritic stainless steel Download PDF

Info

Publication number
JPWO2018116792A1
JPWO2018116792A1 JP2018529681A JP2018529681A JPWO2018116792A1 JP WO2018116792 A1 JPWO2018116792 A1 JP WO2018116792A1 JP 2018529681 A JP2018529681 A JP 2018529681A JP 2018529681 A JP2018529681 A JP 2018529681A JP WO2018116792 A1 JPWO2018116792 A1 JP WO2018116792A1
Authority
JP
Japan
Prior art keywords
less
content
thermal fatigue
steel
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018529681A
Other languages
Japanese (ja)
Other versions
JP6665936B2 (en
Inventor
徹之 中村
徹之 中村
石川 伸
伸 石川
杉原 玲子
玲子 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2018116792A1 publication Critical patent/JPWO2018116792A1/en
Application granted granted Critical
Publication of JP6665936B2 publication Critical patent/JP6665936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

スケール密着性と熱疲労特性に優れ、耐凝縮水腐食性にも優れたフェライト系ステンレス鋼板を提供する。質量%で、C:0.010%以下、Si:1.0%以下、Mn:1.0%以下、P:0.040%以下、S:0.030%以下、Cr:17.0%以上18.5%以下、N:0.015%以下、Nb:0.40%以上0.80%以下、Ti:0.10%以上0.40%以下、Al:0.20%以下、Ni:0.05%以上0.40%以下、Co:0.01%以上0.30%以下、Mo:0.02%以上0.30%以下、Cu:0.02%以上0.40%以下、を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成を有するようにする。C%+N%:0.018%以下 ・・・(1)式(1)中、C%、N%は、それぞれC、Nの含有量(質量%)を表す。We provide ferritic stainless steel sheets with excellent scale adhesion and thermal fatigue characteristics, and excellent resistance to condensed water corrosion. In mass%, C: 0.010% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 17.0% 18.5% or less, N: 0.015% or less, Nb: 0.40% or more and 0.80% or less, Ti: 0.10% or more and 0.40% or less, Al: 0.20% or less, Ni : 0.05% to 0.40%, Co: 0.01% to 0.30%, Mo: 0.02% to 0.30%, Cu: 0.02% to 0.40% And the following formula (1) is satisfied, and the balance is made of Fe and inevitable impurities. C% + N%: 0.018% or less (1) In the formula (1), C% and N% represent the contents (mass%) of C and N, respectively.

Description

本発明は、スケール密着性、熱疲労特性および耐凝縮水腐食性に優れたフェライト系ステンレス鋼に関するものである。   The present invention relates to a ferritic stainless steel having excellent scale adhesion, thermal fatigue characteristics, and resistance to condensed water corrosion.

自動車の排気系部材の中で、上流側、特にエンジンに直結しているエキゾーストマニホールドは最高使用温度が800〜900℃にも達する厳しい環境で使用されている。そのため、その材料には優れた熱疲労特性が求められ、Nbを添加したフェライト系ステンレス鋼が主に用いられている。   Among exhaust system members of automobiles, an exhaust manifold that is directly connected to an upstream side, in particular, an engine is used in a severe environment where the maximum use temperature reaches 800 to 900 ° C. Therefore, excellent thermal fatigue characteristics are required for the material, and ferritic stainless steel added with Nb is mainly used.

フェライト系ステンレス鋼に添加されたNbは、鋼中に固溶することにより高温強度を高めて熱疲労特性を向上させる。しかし、Nbは鋼中のCやNと結合して炭窒化物になりやすく、固溶Nb量が減少して熱疲労特性が低下することがある。この対策として、NbよりCやNと結合しやすいTiを複合添加して、CやNをTi炭窒化物として生成させることでNb炭窒化物の生成を防ぐことも行われている。このNb−Ti複合添加鋼の代表的なものがType441フェライト系ステンレス鋼(18%Cr−0.5%Nb−0.2%Ti)(EN10088―2:EN1.4509)であり、この鋼は自動車のエキゾーストマニホールド等に広く使用されている。   Nb added to ferritic stainless steel increases the high temperature strength and improves thermal fatigue properties by dissolving in the steel. However, Nb is likely to combine with C and N in the steel to become carbonitride, and the amount of solid solution Nb may be reduced to deteriorate the thermal fatigue characteristics. As a countermeasure, it is also possible to prevent the formation of Nb carbonitride by adding Ti, which is easier to bond with C and N than Nb, to generate C and N as Ti carbonitride. A typical example of this Nb-Ti composite added steel is Type 441 ferritic stainless steel (18% Cr-0.5% Nb-0.2% Ti) (EN10088-2: EN1.4509). Widely used in automobile exhaust manifolds.

エキゾーストマニホールドはエンジンの起動・停止のたびに加熱と急冷の繰り返しを受ける厳しい繰り返し酸化の環境で使用されるため、スケールが剥離すると、地鉄が直接高温の排気ガスに曝されて酸化が進行して板厚が減少し、場合によっては穴があいたり変形したりしてしまうことがある。このため、自動車のエキゾーストマニホールドに用いるNb−Ti複合添加フェライト系ステンレス鋼には、スケールが剥離しない優れたスケール密着性も求められている。   Since the exhaust manifold is used in a severe and repeated oxidation environment that is repeatedly heated and cooled each time the engine is started and stopped, if the scale peels off, the iron will be directly exposed to high-temperature exhaust gas and oxidation will proceed. As a result, the plate thickness decreases, and in some cases, holes are formed or deformed. For this reason, the Nb-Ti compound addition ferritic stainless steel used for the exhaust manifold of a motor vehicle is also required to have excellent scale adhesion that prevents the scale from peeling off.

Nb−Ti複合添加フェライト系ステンレス鋼の高温強度や熱疲労特性を向上させる方法として、特許文献1および2ではMoの添加が開示されている。特許文献3〜5ではMo、Cu、Wの添加が開示されている。スケール密着性を改善する方法として、特許文献3ではREM、Ca、Y、Zrの添加が開示されている。特許文献5ではREM、Caの添加が開示されている。特許文献6では、CoとNiを添加することでスケール密着性と熱疲労特性を改善したNb−Ti複合添加フェライト系ステンレス鋼が開示されている。   Patent Documents 1 and 2 disclose the addition of Mo as a method for improving the high-temperature strength and thermal fatigue properties of Nb—Ti composite-added ferritic stainless steel. Patent Documents 3 to 5 disclose the addition of Mo, Cu, and W. As a method for improving scale adhesion, Patent Document 3 discloses the addition of REM, Ca, Y, and Zr. Patent Document 5 discloses the addition of REM and Ca. Patent Document 6 discloses an Nb—Ti composite-added ferritic stainless steel in which scale adhesion and thermal fatigue characteristics are improved by adding Co and Ni.

一方、自動車排気管部品の下流側に配置されるマフラーやパイプなどには、例えば道路に撒かれた融雪塩を含む水が飛散したり、排ガスが冷却されて生じた腐食性イオンを含む凝縮水に曝されるため、耐食性(以下では、耐凝縮水腐食性と記す)が求められることが多く、TiやMoを添加したフェライト系ステンレス鋼が使用されている。例として、JIS G4305に規定されているSUS436L(18%Cr−0.2%Ti−1%Mo)やSUS430LX(18%Cr−0.2%Ti)が挙げられる。   On the other hand, mufflers and pipes arranged downstream of automobile exhaust pipe components, for example, water containing snow melting salt scattered on the road, or condensed water containing corrosive ions generated by exhaust gas cooling. Therefore, corrosion resistance (hereinafter referred to as “condensed water corrosion resistance”) is often required, and ferritic stainless steel to which Ti or Mo is added is used. Examples include SUS436L (18% Cr-0.2% Ti-1% Mo) and SUS430LX (18% Cr-0.2% Ti) defined in JIS G4305.

以上のように、上流側のエキゾーストマニフォールド等と下流のマフラー等は求められる特性が異なるため、それぞれの用途に適したフェライト系ステンレス鋼が使用されてきたが、これを共通のフェライト系ステンレス鋼で製造することができれば、鋼種数を低減できる上、異なる材質の部品を溶接する個所が減り、部品の製造性が安定し、自動車製造を効率化できる。   As described above, the required characteristics of the upstream exhaust manifold and the downstream muffler are different, so ferritic stainless steel suitable for each application has been used, but this is a common ferritic stainless steel. If it can be manufactured, the number of steel types can be reduced, the number of parts where parts of different materials are welded is reduced, the manufacturability of the parts is stabilized, and the automobile manufacturing can be made more efficient.

特開平4−224657号公報JP-A-4-224657 特開平5−70897号公報JP-A-5-70897 特開2004−218013号公報JP 2004-218013 A 特開2008−240143号公報JP 2008-240143 A 特開2009−174040号公報JP 2009-174040 A 特許第5505570号公報Japanese Patent No. 5505570

しかし、特許文献1〜5に開示された方法では、MoやWが高価であるとともに、鋼板の靭性など加工性を低下させる欠点を有している。また、Cuは常温における加工性を大きく低下させるのみならず、耐酸化性を低下させてしまう欠点を有している。また、特許文献1〜5では、エキゾーストマニフォールドに必要な熱疲労特性や耐酸化性(スケール密着性)とともにマフラー等に必要な耐凝縮水腐食性が同時に評価されたものはない。さらに、SUS436L(18%Cr−0.2%Ti−1%Mo)やSUS430LX(18%Cr−0.2%Ti)をエキゾーストマニフォールドに用いる場合、熱疲労特性が不足する問題があった。   However, the methods disclosed in Patent Documents 1 to 5 have disadvantages that Mo and W are expensive and that workability such as toughness of a steel sheet is lowered. In addition, Cu has the disadvantage of not only greatly reducing processability at room temperature but also reducing oxidation resistance. Further, in Patent Documents 1 to 5, none of the thermal fatigue characteristics and oxidation resistance (scale adhesion) necessary for the exhaust manifold are evaluated at the same time as the condensed water corrosion resistance necessary for a muffler or the like. Furthermore, when SUS436L (18% Cr-0.2% Ti-1% Mo) or SUS430LX (18% Cr-0.2% Ti) is used for the exhaust manifold, there is a problem that thermal fatigue characteristics are insufficient.

このように、従来のフェライト系ステンレス鋼では、スケール密着性、熱疲労特性および耐凝縮水腐食性の全ての特性が良好であるとはまだ言えなかった。   Thus, it has not been said that conventional ferritic stainless steels are all good in terms of scale adhesion, thermal fatigue characteristics, and condensation water corrosion resistance.

本発明は、上述の問題を解決するためになされたもので、スケール密着性と熱疲労特性に優れるとともに耐凝縮水腐食性にも優れたフェライト系ステンレス鋼を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a ferritic stainless steel that is excellent in scale adhesion and thermal fatigue properties and also excellent in resistance to condensed water corrosion.

なお、本発明の「スケール密着性に優れる」とは、研磨した冷延焼鈍板を大気中において、1000℃での20min保持と100℃での1min保持を400サイクル行う繰り返し酸化試験(加熱速度:5℃/sec、冷却速度:1.5℃/sec)後の試験片表面でスケールが剥離した面積が5%未満であることを指す。   In the present invention, “excellent in scale adhesion” means that the polished cold-rolled annealed plate is repeatedly subjected to a repeated oxidation test (heating rate: 100 ° C. for 20 minutes at 1000 ° C. and 1 minute at 100 ° C. for 400 cycles). (5 ° C./sec, cooling rate: 1.5 ° C./sec) indicates that the area where the scale peels on the surface of the test piece after less than 5%.

また、「熱疲労特性に優れる」とは、JSMS−SD−7−03に準拠し、200〜900℃間で加熱・冷却を繰り返すと同時に、拘束率0.6で歪を繰り返し付与し、各サイクルの200℃において検出された荷重を、試験片均熱平行部の断面積で割った値(応力)が、5サイクル目の応力に対して75%まで低下したサイクル数(熱疲労寿命)が660サイクル以上であることを指す。   In addition, “excelling in thermal fatigue characteristics” means that, according to JSMS-SD-7-03, heating and cooling are repeated at 200 to 900 ° C., and at the same time, strain is repeatedly applied at a constraint ratio of 0.6. The number of cycles (thermal fatigue life) in which the value (stress) obtained by dividing the load detected at 200 ° C. of the cycle by the cross-sectional area of the soaking parallel part of the test piece is reduced to 75% with respect to the stress of the fifth cycle It refers to 660 cycles or more.

また、「耐凝縮水腐食性に優れる」とは、Cl:500ppm、SO 2−:1000ppmを含み、pH:4、温度:80℃である恒温槽内に研磨した冷延焼鈍板を保持し、1セット:溶液浸漬2時間と乾燥6時間を、30セット行い、腐食減量が10g/m以下であることを指す。“Excellent resistance to condensed water corrosion” means holding a cold-rolled annealed plate in a constant temperature bath containing Cl : 500 ppm, SO 4 2− : 1000 ppm, pH: 4 and temperature: 80 ° C. 1 set: 30 sets of solution immersion 2 hours and drying 6 hours are performed, and the corrosion weight loss is 10 g / m 2 or less.

本発明者らは、Nb―Ti−Co−Ni複合添加フェライト系ステンレス鋼の熱疲労特性に及ぼすC+N量の影響を検討し、Tiが含まれている鋼においてC+N量、Ti量を適正量に限定することでさらに優れた熱疲労特性が得られることを見出した。
さらに、Nb―Ti−Co−Ni複合添加フェライト系ステンレス鋼の耐凝縮水腐食性に関する研究を行い、Mo、Cuの両方を適量添加することにより耐凝縮水腐食性を改善し、マフラー等の下流側の部品に使用することが可能となることを見出した。
The present inventors examined the influence of the C + N amount on the thermal fatigue properties of Nb—Ti—Co—Ni composite-added ferritic stainless steel, and made the C + N amount and Ti amount appropriate for steels containing Ti. It has been found that more excellent thermal fatigue characteristics can be obtained by limiting.
Furthermore, research on the anti-condensation water corrosion resistance of ferritic stainless steel with Nb-Ti-Co-Ni composite addition was carried out, and the anti-condensation water corrosion resistance was improved by adding appropriate amounts of both Mo and Cu. It has been found that it can be used for side parts.

本発明は、以上の知見に基づいてなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.010%以下、Si:1.0%以下、Mn:1.0%以下、P:0.040%以下、S:0.030%以下、Cr:17.0%以上18.5%以下、N:0.015%以下、Nb:0.40%以上0.80%以下、Ti:0.10%以上0.40%以下、Al:0.20%以下、Ni:0.05%以上0.40%以下、Co:0.01%以上0.30%以下、Mo:0.02%以上0.30%以下、Cu:0.02%以上0.40%以下、を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成を有するフェライト系ステンレス鋼。
C%+N%:0.018%以下 ・・・(1)
式(1)中、C%、N%は、それぞれC、Nの含有量(質量%)を表す。
[2]質量%で、さらに、Ca:0.0005%以上0.0030%以下、Mg:0.0002%以上0.0020%以下、B:0.0002%以上0.0020%以下、のうちから選ばれる1種または2種以上を含有する前記[1]に記載のフェライト系ステンレス鋼。
[3]質量%で、さらに、V:0.01%以上0.50%以下、W:0.02%以上0.30%以下、Zr:0.005%以上0.50%以下、のうちから選ばれる1種または2種以上を含有する前記[1]または[2]に記載のフェライト系ステンレス鋼。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.010% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 17 0.0% or more and 18.5% or less, N: 0.015% or less, Nb: 0.40% or more and 0.80% or less, Ti: 0.10% or more and 0.40% or less, Al: 0.20% Hereinafter, Ni: 0.05% to 0.40%, Co: 0.01% to 0.30%, Mo: 0.02% to 0.30%, Cu: 0.02% to 0.30%. A ferritic stainless steel that contains 40% or less, satisfies the following formula (1), and the balance is composed of Fe and inevitable impurities.
C% + N%: 0.018% or less (1)
In the formula (1), C% and N% represent C and N contents (% by mass), respectively.
[2] By mass%, Ca: 0.0005% to 0.0030%, Mg: 0.0002% to 0.0020%, B: 0.0002% to 0.0020%, The ferritic stainless steel according to [1] above, containing one or more selected from
[3] In mass%, V: 0.01% to 0.50%, W: 0.02% to 0.30%, Zr: 0.005% to 0.50%, The ferritic stainless steel according to the above [1] or [2], containing one or more selected from

本発明によれば、スケール密着性、熱疲労特性および耐凝縮水腐食性に優れるフェライト系ステンレス鋼を得ることができる。本発明のフェライト系ステンレス鋼は、耐熱性(スケール密着性、熱疲労特性)と耐凝縮水腐食性の両方に優れるため、自動車の排気系部材の上流側、下流側の両方に好適に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, the ferritic stainless steel which is excellent in scale adhesiveness, thermal fatigue characteristics, and condensed water corrosion resistance can be obtained. Since the ferritic stainless steel of the present invention is excellent in both heat resistance (scale adhesion, thermal fatigue characteristics) and condensate corrosion resistance, it should be used suitably both upstream and downstream of automobile exhaust system members. Can do.

図1は、熱疲労試験片を説明する図である。FIG. 1 is a diagram for explaining a thermal fatigue test piece. 図2は、熱疲労試験における温度および拘束条件を説明する図である。FIG. 2 is a diagram for explaining temperature and restraint conditions in a thermal fatigue test.

以下、本発明を詳細に説明する。
本発明のフェライト系ステンレス鋼は、質量%で、C:0.010%以下、Si:1.0%以下、Mn:1.0%以下、P:0.040%以下、S:0.030%以下、Cr:17.0%以上18.5%以下、N:0.015%以下、Nb:0.40%以上0.80%以下、Ti:0.10%以上0.40%以下、Al:0.20%以下、Ni:0.05%以上0.40%以下、Co:0.01%以上0.30%以下、Mo:0.02%以上0.30%以下、Cu:0.02%以上0.40%以下、を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成を有し、スケール密着性と熱疲労特性に優れるとともに、耐凝縮水腐食性にも優れている。
C%+N%:0.018%以下 ・・・(1)
式(1)中、C%、N%は、それぞれC、Nの含有量(質量%)を表す。
Hereinafter, the present invention will be described in detail.
The ferritic stainless steel of the present invention is, in mass%, C: 0.010% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030. % Or less, Cr: 17.0% or more and 18.5% or less, N: 0.015% or less, Nb: 0.40% or more and 0.80% or less, Ti: 0.10% or more and 0.40% or less, Al: 0.20% or less, Ni: 0.05% or more and 0.40% or less, Co: 0.01% or more and 0.30% or less, Mo: 0.02% or more and 0.30% or less, Cu: 0 0.02% or more and 0.40% or less, satisfying the following formula (1), with the balance being composed of Fe and unavoidable impurities, and being excellent in scale adhesion and thermal fatigue properties, Excellent resistance to condensed water corrosion.
C% + N%: 0.018% or less (1)
In the formula (1), C% and N% represent C and N contents (% by mass), respectively.

次に、本発明のフェライト系ステンレス鋼の成分組成を規定した理由を説明する。なお、成分%は、特に断りのない限り、すべて質量%を意味する。   Next, the reason for defining the component composition of the ferritic stainless steel of the present invention will be described. In addition, all the component% means the mass% unless there is particular notice.

C:0.010%以下
Cは、鋼の強度を高めるのに有効な元素であり、その効果は0.001%以上のCの含有で得られるため、C含有量は0.001%以上であることが好ましい。一方、0.010%を超えてCを含有すると、スケール剥離が起こるため、C含有量は0.010%以下とする。なお、C含有量は、靭性、加工性を確保する観点から、また、NbCが粗大化したり析出量が多くなったりすることで、鋼中の固溶Nb量が減少して熱疲労特性が低下してしまう観点から、少ない方が望ましく、C含有量は0.008%以下とするのが好ましい。C含有量は、より好ましくは0.005%以上である。
C: 0.010% or less C is an element effective for increasing the strength of steel, and the effect is obtained by containing 0.001% or more of C. Therefore, the C content is 0.001% or more. Preferably there is. On the other hand, if the C content exceeds 0.010%, scale peeling occurs, so the C content is set to 0.010% or less. The C content is from the viewpoint of ensuring toughness and workability, and the amount of solid solution Nb in the steel decreases and thermal fatigue characteristics deteriorate due to the coarsening of NbC and the increase in the amount of precipitation. Therefore, it is desirable that the content be less, and the C content is preferably 0.008% or less. The C content is more preferably 0.005% or more.

Si:1.0%以下
Siは、耐酸化性向上のために有効な元素であり、その効果は0.01%以上のSiの含有で得られるため、Si含有量は0.01%以上であることが好ましい。一方、1.0%を超えてSiを含有すると加工性が低下するため、Si含有量は1.0%以下とする。Si含有量は、より好ましくは0.20%以上であり、さらにより好ましくは0.30%以上である。特に、Ni含有量を0.20%以上かつSi含有量を0.30%以上とするとスケール密着性が特に優れる。また、Si含有量は、好ましくは1.00%以下であり、より好ましくは0.50%以下であり、さらに好ましくは0.40%以下である。
Si: 1.0% or less Si is an element effective for improving the oxidation resistance, and the effect can be obtained by containing 0.01% or more of Si. Therefore, the Si content is 0.01% or more. Preferably there is. On the other hand, if the Si content exceeds 1.0%, the workability deteriorates, so the Si content is 1.0% or less. The Si content is more preferably 0.20% or more, and even more preferably 0.30% or more. In particular, when the Ni content is 0.20% or more and the Si content is 0.30% or more, the scale adhesion is particularly excellent. Moreover, Si content becomes like this. Preferably it is 1.00% or less, More preferably, it is 0.50% or less, More preferably, it is 0.40% or less.

Mn:1.0%以下
Mnは、鋼の強度を高める元素であり、また、脱酸剤としての作用も有する。その効果は0.01%以上のMnの含有で得られるため、Mn含有量は0.01%以上であることが好ましい。一方、1.0%を超えてMnを含有すると、酸化増量を著しく増加させて耐酸化性を低下させてしまうため、Mn含有量は1.0%以下とする。Mn含有量は、より好ましくは0.20%以上であり、さらにより好ましくは0.30%以上である。また、Mn含有量は、好ましくは1.00%以下であり、より好ましくは0.60%以下であり、さらに好ましくは0.50%以下である。
Mn: 1.0% or less Mn is an element that increases the strength of steel and also has an action as a deoxidizer. Since the effect can be obtained with a Mn content of 0.01% or more, the Mn content is preferably 0.01% or more. On the other hand, if Mn is contained exceeding 1.0%, the oxidation increase is remarkably increased and the oxidation resistance is lowered, so the Mn content is 1.0% or less. The Mn content is more preferably 0.20% or more, and even more preferably 0.30% or more. Moreover, Mn content becomes like this. Preferably it is 1.00% or less, More preferably, it is 0.60% or less, More preferably, it is 0.50% or less.

P:0.040%以下
Pは、靭性を低下させる元素であり、低減することが望ましく、P含有量は0.040%以下とする。好ましくは、P含有量は0.035%以下である。より好ましくは、P含有量は0.030%以下である。
P: 0.040% or less P is an element that lowers toughness, and is desirably reduced. The P content is 0.040% or less. Preferably, the P content is 0.035% or less. More preferably, the P content is 0.030% or less.

S:0.030%以下
Sは、成形性と耐食性を低下させるので少ないほうが望ましく、S含有量は0.030%以下とする。好ましくは、S含有量は0.006%以下である。より好ましくは、S含有量は0.003%以下である。
S: 0.030% or less Since S decreases moldability and corrosion resistance, it is preferable that S be less. The S content is 0.030% or less. Preferably, the S content is 0.006% or less. More preferably, the S content is 0.003% or less.

Cr:17.0%以上18.5%以下
Crは、耐食性および耐酸化性を向上させるために必要な元素であり、良好な耐食性および耐酸化性を得るために、17.0%以上のCrの含有が必要である。Cr含有量が17.0%未満であると酸化スケールが増大しやすくなり、スケール密着性が低下するのみならず、熱疲労特性も低下する場合がある。さらに、凝縮水中での耐食性も十分には得られない。一方、18.5%を超えてCrを含有すると、鋼が硬質化して製造性や加工性が低下するため、Cr含有量は18.5%以下とする。好ましくは、Cr含有量は17.5%以上18.5%以下の範囲である。
Cr: 17.0% or more and 18.5% or less Cr is an element necessary for improving corrosion resistance and oxidation resistance. In order to obtain good corrosion resistance and oxidation resistance, 17.0% or more of Cr It is necessary to contain. If the Cr content is less than 17.0%, the oxide scale tends to increase, and not only the adhesion to the scale is lowered, but also the thermal fatigue characteristics may be lowered. Furthermore, sufficient corrosion resistance in condensed water cannot be obtained. On the other hand, if the Cr content exceeds 18.5%, the steel becomes hard and manufacturability and workability deteriorate, so the Cr content is set to 18.5% or less. Preferably, the Cr content is in the range of 17.5% to 18.5%.

N:0.015%以下
Nは、鋼の靭性および加工性を低下させるので少ないほうが望ましく、また、N含有量が多いと、粗大なTiNが析出し、TiNに付随してNbCが多量に析出して鋼中固溶Nb量が減少することで熱疲労特性が低下する。さらに、粗大なTiNを起点として酸化スケールが剥離しやすくなりスケール密着性も低下するため、N含有量は0.015%以下とする。好ましくは、N含有量は0.012%以下である。より好ましくは、N含有量は0.010%以下である。
N: 0.015% or less N is desirable because it lowers the toughness and workability of the steel. When the N content is large, coarse TiN precipitates, and a large amount of NbC precipitates accompanying TiN. As a result, the amount of solute Nb in the steel is reduced, so that the thermal fatigue characteristics are lowered. Further, since the oxidized scale is easily peeled off starting from coarse TiN and the adhesion of the scale is lowered, the N content is set to 0.015% or less. Preferably, the N content is 0.012% or less. More preferably, the N content is 0.010% or less.

Nb:0.40%以上0.80%以下
Nbは、鋼中に固溶して高温強度を著しく上昇させて熱疲労特性を向上させる効果を有する元素である。その効果は0.40%以上のNbの含有で得られる。一方、0.80%を超えるNbの過剰な含有は鋼の靭性を低下させるのみならず、高温においてLaves相(FeNb)を形成して却って高温強度を低下させるため、Nb含有量は0.80%以下とする。Nb含有量は、好ましくは0.43%以上であり、より好ましくは0.45%以上である。また、Nb含有量は、好ましくは0.60%以下であり、より好ましくは0.50%以下である。
Nb: 0.40% or more and 0.80% or less Nb is an element having an effect of improving thermal fatigue properties by solid solution in steel and remarkably increasing high-temperature strength. The effect is obtained when Nb content is 0.40% or more. On the other hand, excessive Nb content exceeding 0.80% not only lowers the toughness of the steel, but also forms a Laves phase (Fe 2 Nb) at a high temperature and lowers the high temperature strength, so the Nb content is 0 80% or less. The Nb content is preferably 0.43% or more, and more preferably 0.45% or more. Moreover, Nb content becomes like this. Preferably it is 0.60% or less, More preferably, it is 0.50% or less.

Ti:0.10%以上0.40%以下
Tiは、優先的にC、Nと結びついて炭窒化物を生成することで、Nb炭窒化物の生成を防ぐとともに、耐食性、成形性および溶接部の粒界腐食性を向上させる。これらの効果を得るためには0.10%以上のTiの含有が必要である。Ti含有量が0.10%未満であると、C、Nを完全にTi炭窒化物として生成させることができず、Nb炭窒化物が形成してNb固溶量が減少して熱疲労特性が低下する。一方で、0.40%を超える過剰なTiの含有は、Ti炭窒化物の析出量が増加し、それに付随してNb炭窒化物が析出しやすくなることでNb固溶量が減少するため、熱疲労特性が低下する。さらに、Ti炭窒化物の析出量増加によりスケール密着性も低下し、粗大なTi炭窒化物を起点として腐食が発生するため耐凝縮水腐食性も低下させる。このためTi含有量は0.40%以下とする。Ti含有量は、好ましくは0.15%以上である。また、Ti含有量は、好ましくは0.30%以下であり、より好ましくは0.25%以下である。
Ti: 0.10% or more and 0.40% or less Ti is preferentially combined with C and N to generate carbonitride, thereby preventing the formation of Nb carbonitride, and corrosion resistance, formability, and welded portion. Improves intergranular corrosion resistance. In order to obtain these effects, it is necessary to contain 0.10% or more of Ti. If the Ti content is less than 0.10%, C and N cannot be produced completely as Ti carbonitride, Nb carbonitride is formed, and the Nb solid solution amount is reduced, resulting in thermal fatigue characteristics. Decreases. On the other hand, if the Ti content exceeds 0.40%, the amount of Ti carbonitride deposited increases, and Nb carbonitride tends to precipitate accordingly, so that the amount of Nb solid solution decreases. , Thermal fatigue properties are reduced. Furthermore, the adhesion of the scale also decreases due to an increase in the amount of Ti carbonitride deposited, and since corrosion occurs starting from coarse Ti carbonitrides, the resistance to condensed water corrosion is also reduced. For this reason, Ti content shall be 0.40% or less. The Ti content is preferably 0.15% or more. Moreover, Ti content becomes like this. Preferably it is 0.30% or less, More preferably, it is 0.25% or less.

Al:0.20%以下
Alは脱酸に有効な元素であり、その効果は0.01%以上の含有で得られるため、Al含有量は0.01%以上であることが好ましい。一方、鋼を硬質化させて加工性を低下させるため、Al含有量は0.20%以下とする。Al含有量は、より好ましくは0.02%以上である。また、Al含有量は、好ましくは0.10%以下であり、より好ましくは0.06%以下である。
Al: 0.20% or less Since Al is an element effective for deoxidation, and the effect is obtained with a content of 0.01% or more, the Al content is preferably 0.01% or more. On the other hand, in order to harden steel and reduce workability, the Al content is set to 0.20% or less. The Al content is more preferably 0.02% or more. Moreover, Al content becomes like this. Preferably it is 0.10% or less, More preferably, it is 0.06% or less.

Ni:0.05%以上0.40%以下
Niは、本発明においてスケール密着性を確保するために重要な元素であり、その効果を得るためには、0.05%以上のNiを含有することが必要である。Niが0.05%未満であると、スケール密着性が低下し、スケールが剥離した点が起点となって熱疲労破壊する場合がある。また、後述のように、本発明の鋼は適量のCo含有によって熱膨張係数が低減されているため、Co無添加鋼あるいはCoの含有量が不足する鋼に比べて、より少量のNi含有量で上記効果が得られる。一方、Niは高価な元素であることに加えて、0.40%を超えてNiを含有すると、高温でγ相を生成し却ってスケール密着性を低下させる。従って、Ni含有量は、0.05%以上0.40%以下の範囲とする。Ni含有量は、好ましくは0.10%以上であり、より好ましくは0.20%以上である。また、Ni含有量は、好ましくは0.30%以下であり、より好ましくは0.25%以下である。
Ni: 0.05% or more and 0.40% or less Ni is an important element for securing scale adhesion in the present invention. In order to obtain the effect, Ni is contained at 0.05% or more. It is necessary. When Ni is less than 0.05%, the adhesion of the scale is lowered, and the point at which the scale is peeled off may cause thermal fatigue failure. Further, as will be described later, since the thermal expansion coefficient of the steel of the present invention is reduced by containing an appropriate amount of Co, the Ni content is smaller than that of steel containing no Co or steel lacking the Co content. The above effect can be obtained. On the other hand, in addition to Ni being an expensive element, if Ni is contained in excess of 0.40%, a γ phase is generated at a high temperature and scale adhesion is reduced. Therefore, the Ni content is in the range of 0.05% to 0.40%. The Ni content is preferably 0.10% or more, more preferably 0.20% or more. Moreover, Ni content becomes like this. Preferably it is 0.30% or less, More preferably, it is 0.25% or less.

Co:0.01%以上0.30%以下
Coは、本発明において重要な元素である。Coは熱疲労特性を向上させるのに必要な元素であり、そのためには少なくとも0.01%以上のCoの含有が必要である。Coは、鋼の熱膨張係数を低減させて昇温時の膨張量を少なくして、昇温および冷却時に発生する歪量を小さくすることで熱疲労特性を向上させることができる。さらに、鋼の熱膨張係数が低減することにより、鋼とスケールの熱膨張係数の差が小さくなり、冷却時にスケールが剥離しにくくなる。そのため、より少量のNiの含有によってスケールの剥離を防止することができる効果がある。一方、0.30%を超えてCoを含有すると、酸化皮膜と地鉄の界面にCoが濃化し、スケール密着性が低下する。0.30%を超えてCoを含有すると、この界面濃化の副作用が上記の熱膨張係数低減によるスケール剥離防止効果を打ち消し、冷却時にスケールが剥離する。従って、Co含有量は0.01%以上0.30%以下とする。Co含有量は、好ましくは0.02%以上であり、より好ましくは0.03%以上である。また、Co含有量は、好ましくは0.10%以下である。
Co: 0.01% or more and 0.30% or less Co is an important element in the present invention. Co is an element necessary for improving thermal fatigue characteristics, and for that purpose, it is necessary to contain at least 0.01% of Co. Co can improve thermal fatigue characteristics by reducing the thermal expansion coefficient of steel to reduce the amount of expansion at the time of temperature rise and by reducing the amount of strain generated at the time of temperature rise and cooling. Furthermore, when the thermal expansion coefficient of steel is reduced, the difference between the thermal expansion coefficients of steel and scale is reduced, and the scale is difficult to peel off during cooling. Therefore, there is an effect that peeling of the scale can be prevented by containing a smaller amount of Ni. On the other hand, when Co is contained exceeding 0.30%, Co is concentrated at the interface between the oxide film and the base iron, and the scale adhesion is lowered. When Co is contained exceeding 0.30%, the side effect of this interface concentration counteracts the effect of preventing scale peeling due to the reduction of the thermal expansion coefficient, and the scale peels off during cooling. Therefore, the Co content is 0.01% or more and 0.30% or less. The Co content is preferably 0.02% or more, and more preferably 0.03% or more. Further, the Co content is preferably 0.10% or less.

Mo:0.02%以上0.30%以下
Moは、固溶強化により鋼の強度を増加させて熱疲労特性を向上させるとともに耐塩害腐食性を向上させることで耐凝縮水腐食性を向上させる元素であり、その効果は0.02%以上のMoの含有で得られる。しかし、Moは高価な元素であるとともに、多量にMoを含有すると表面欠陥が発生するのみならず、室温における加工性が低下する。表面欠陥を発生させず良好な表面性状を得るためには、Mo含有量は0.30%以下とする必要がある。従って、Mo含有量は0.02%以上0.30%以下の範囲とする。Mo含有量は、好ましくは0.04%以上である。また、Mo含有量は、好ましくは0.10%以下である。
Mo: 0.02% or more and 0.30% or less Mo increases the strength of steel by solid solution strengthening to improve thermal fatigue properties and improve corrosion resistance against salt water by improving salt corrosion resistance It is an element, and the effect is obtained when the Mo content is 0.02% or more. However, Mo is an expensive element. When a large amount of Mo is contained, not only surface defects are generated, but workability at room temperature is lowered. In order to obtain good surface properties without generating surface defects, the Mo content needs to be 0.30% or less. Therefore, the Mo content is in the range of 0.02% to 0.30%. The Mo content is preferably 0.04% or more. Further, the Mo content is preferably 0.10% or less.

Cu:0.02%以上0.40%以下
Cuは、ε−Cuとして微細に析出することで鋼を強化して熱疲労特性を向上させるとともに、耐硫酸腐食性を向上させることで耐凝縮水腐食性を向上させる効果を有する。それらの効果を得るためには、0.02%以上Cuを含有することが必要である。一方、0.40%を超えてCuを含有すると、酸化スケール密着性が低下し耐繰り返し酸化性が低下する。さらに、ε−Cuが粗大に析出しやすくなり耐凝縮水腐食性も低下する。このため、Cu含有量は0.40%以下とする。従って、Cu含有量は0.02%以上0.40%以下の範囲とする。Cu含有量は、好ましくは0.04%以上である。また、Cu含有量は、好ましくは0.10%以下である。
Cu: 0.02% or more and 0.40% or less Cu precipitates finely as ε-Cu, strengthens the steel to improve thermal fatigue characteristics, and improves sulfuric acid corrosion resistance to condensate water Has the effect of improving corrosivity. In order to acquire those effects, it is necessary to contain 0.02% or more of Cu. On the other hand, if Cu is contained in excess of 0.40%, the oxide scale adhesion decreases and the repeated oxidation resistance decreases. Furthermore, ε-Cu tends to precipitate coarsely, and the resistance to condensed water corrosion also decreases. For this reason, Cu content shall be 0.40% or less. Therefore, the Cu content is in the range of 0.02% to 0.40%. The Cu content is preferably 0.04% or more. Further, the Cu content is preferably 0.10% or less.

本発明においては、MoとCuが、それぞれ耐塩害腐食性、耐硫酸腐食性を向上させることで耐凝縮水腐食性を向上させるため、MoまたはCuの単独の含有では十分な耐凝縮水腐食性は得られない。本発明においては、MoとCuの両方を適量含有するからこそ優れた耐凝縮水腐食性が得られる。   In the present invention, Mo and Cu improve condensation water corrosion resistance by improving salt corrosion corrosion resistance and sulfuric acid corrosion resistance, respectively. Therefore, the inclusion of Mo or Cu alone is sufficient. Cannot be obtained. In the present invention, excellent resistance to condensed water corrosion can be obtained because it contains both Mo and Cu in appropriate amounts.

C%+N%:0.018%以下 ・・・(1)
式(1)中、C%、N%は、それぞれC、Nの含有量(質量%)を表す。
前述したように、CとNは、靭性、加工性、耐スケール剥離性の観点から、それぞれの含有量を0.010%以下、0.015%以下とする。さらに、本発明では、熱疲労特性の観点からC%+N%を、上記式(1)のように0.018%以下に限定する。C%+N%が0.018%を超える場合、粗大なTi窒化物(TiN)が多量に生成し、それに付随してNbCがTiNの周囲に析出するため、NbCの析出量が多くなる。NbCの析出量が多くなると、鋼中に固溶しているNb量が減少し、鋼の高温強度が低下するため、熱疲労特性向上効果が十分に得られなくなる。したがって、NbとTiを複合添加している本発明において、Nbの固溶強化量を十分に得るため、C%+N%を0.018%以下とする。好ましくは、C%+N%は0.015%以下である。C%+N%が0.015%以下の場合、析出するTiNやNbCは微細なものになり、さらにTiNが微細化することでその周囲に析出するNbCの析出量が低減し、鋼中固溶Nb量が増加する。さらに、NbC自身が微細に析出することによって析出強化効果も得られる。これらの効果によって、熱疲労特性が向上する。より好ましくは、C%+N%は0.013%以下とする。
C% + N%: 0.018% or less (1)
In the formula (1), C% and N% represent C and N contents (% by mass), respectively.
As described above, the contents of C and N are 0.010% or less and 0.015% or less from the viewpoints of toughness, workability, and scale peel resistance. Furthermore, in the present invention, from the viewpoint of thermal fatigue characteristics, C% + N% is limited to 0.018% or less as in the above formula (1). When C% + N% exceeds 0.018%, a large amount of coarse Ti nitride (TiN) is generated, and NbC precipitates around TiN concomitantly, so that the amount of NbC deposited increases. When the precipitation amount of NbC increases, the amount of Nb dissolved in the steel decreases and the high temperature strength of the steel decreases, so that the effect of improving thermal fatigue characteristics cannot be sufficiently obtained. Therefore, in the present invention in which Nb and Ti are added in combination, C% + N% is set to 0.018% or less in order to sufficiently obtain the solid solution strengthening amount of Nb. Preferably, C% + N% is 0.015% or less. When C% + N% is 0.015% or less, the precipitated TiN and NbC become finer, and further, the amount of NbC precipitated around the TiN is reduced, so that the solid solution in the steel is reduced. Nb amount increases. Furthermore, the precipitation strengthening effect is also obtained by the fine precipitation of NbC itself. These effects improve thermal fatigue characteristics. More preferably, C% + N% is 0.013% or less.

本発明は、上記必須成分を含有し、残部がFeおよび不可避的不純物からなることを特徴とする、スケール密着性と熱疲労特性に優れるとともに耐凝縮水腐食性にも優れたフェライト系ステンレス鋼である。さらに、必要に応じて、Ca、MgおよびBのうちから選ばれる1種または2種以上、ならびに/または、V、WおよびZrのうちから選ばれる1種または2種以上を、下記の範囲で含有することができる。   The present invention is a ferritic stainless steel which contains the above-mentioned essential components and the balance consists of Fe and inevitable impurities, and is excellent in scale adhesion and thermal fatigue properties and also in anti-condensation water corrosion resistance. is there. Furthermore, if necessary, one or more selected from Ca, Mg and B, and / or one or more selected from V, W and Zr are within the following ranges. Can be contained.

Ca:0.0005%以上0.0030%以下
Caは、連続鋳造の際に発生しやすいTi系介在物析出によるノズルの閉塞を防止するのに有効な成分である。その効果は0.0005%以上のCaの含有で得られる。一方、表面欠陥を発生させず良好な表面性状を得るためには、Ca含有量は0.0030%以下とすることが好ましい。従って、Caを含有する場合は、Ca含有量は0.0005%以上0.0030%以下の範囲とすることが好ましい。より好ましくは、Ca含有量は0.0005%以上0.0020%以下の範囲である。さらに好ましくは、Ca含有量は0.0005%以上0.0015%以下の範囲である。
Ca: 0.0005% or more and 0.0030% or less Ca is an effective component for preventing nozzle clogging due to precipitation of Ti-based inclusions that are likely to occur during continuous casting. The effect is obtained when the Ca content is 0.0005% or more. On the other hand, in order to obtain good surface properties without generating surface defects, the Ca content is preferably 0.0030% or less. Therefore, when Ca is contained, the Ca content is preferably in the range of 0.0005% to 0.0030%. More preferably, the Ca content is in the range of 0.0005% to 0.0020%. More preferably, the Ca content is in the range of 0.0005% to 0.0015%.

Mg:0.0002%以上0.0020%以下
Mgは、加工性や靱性を向上させるのに有効な元素である。さらに、Mgは、NbやTiの炭窒化物の粗大化を抑制するのに有効な元素である。Ti炭窒化物が粗大化すると、脆性割れの起点となるため靱性が低下する。また、Nb炭窒化物が粗大化すると、Nbの鋼中の固溶量が低下するため、熱疲労特性の低下につながる。上記の加工性および靭性を向上させたり、NbおよびTiの炭窒化物の粗大化を抑制したりするといった効果は、0.0002%以上のMgの含有で得られる。一方、Mg含有量が0.0020%を超えると、鋼の表面性状を悪化させてしまう場合がある。従って、Mgを含有する場合は、Mg含有量は0.0002%以上0.0020%以下の範囲とすることが好ましい。Mg含有量は、より好ましくは0.0004%以上である。また、Mg含有量は、より好ましくは0.0015%以下であり、さらにより好ましくは0.0010%以下である。
Mg: 0.0002% to 0.0020% Mg is an element effective for improving workability and toughness. Furthermore, Mg is an effective element for suppressing the coarsening of Nb and Ti carbonitrides. When the Ti carbonitride becomes coarse, it becomes a starting point for brittle cracks, so that toughness decreases. Further, when the Nb carbonitride is coarsened, the amount of Nb solid solution in the steel is reduced, which leads to a decrease in thermal fatigue characteristics. The effects of improving the workability and toughness and suppressing the coarsening of Nb and Ti carbonitrides can be obtained with a Mg content of 0.0002% or more. On the other hand, if the Mg content exceeds 0.0020%, the surface properties of the steel may be deteriorated. Therefore, when it contains Mg, it is preferable to make Mg content into the range of 0.0002% or more and 0.0020% or less. The Mg content is more preferably 0.0004% or more. Further, the Mg content is more preferably 0.0015% or less, and even more preferably 0.0010% or less.

B:0.0002%以上0.0020%以下
Bは、加工性、特に二次加工性を向上させるのに有効な元素である。それらの効果は0.0002%以上のBの含有で得られる。一方、0.0020%を超えてBを含有すると鋼の加工性、靭性が低下する場合があるため、B含有量は0.0020%以下とする。従って、Bを含有する場合は、B含有量は0.0002%以上0.0020%以下の範囲とすることが好ましい。B含有量は、より好ましくは0.0003%以上である。また、B含有量は、より好ましくは0.0010%以下である。
B: 0.0002% or more and 0.0020% or less B is an element effective for improving workability, particularly secondary workability. These effects can be obtained with a B content of 0.0002% or more. On the other hand, if the content of B exceeds 0.0020%, the workability and toughness of the steel may decrease, so the B content is set to 0.0020% or less. Therefore, when it contains B, it is preferable to make B content into 0.0002% or more and 0.0020% or less of range. The B content is more preferably 0.0003% or more. Further, the B content is more preferably 0.0010% or less.

V:0.01%以上0.50%以下
Vは、高温強度の向上に有効な元素である。また、TiやNbの炭窒化物が粗大化するのを抑制する効果も有する。その効果は、0.01%以上のVの含有で得られる。一方、0.50%を超えてVを含有すると、粗大なV(C、N)が析出して靭性が低下する場合がある。従って、Vを含有する場合は、V含有量は0.01%以上0.50%以下の範囲とすることが好ましい。V含有量は、より好ましくは0.02%以上である。また、V含有量は、より好ましくは0.20%以下である。
V: 0.01% or more and 0.50% or less V is an element effective for improving high-temperature strength. Moreover, it has the effect which suppresses that the carbonitride of Ti and Nb coarsens. The effect is obtained with a V content of 0.01% or more. On the other hand, when V is contained exceeding 0.50%, coarse V (C, N) may precipitate and toughness may fall. Therefore, when V is contained, the V content is preferably in the range of 0.01% to 0.50%. The V content is more preferably 0.02% or more. Further, the V content is more preferably 0.20% or less.

W:0.02%以上0.30%以下
Wは、Moと同様に、固溶強化により鋼の強度を増加させる元素であり、その効果は0.02%以上のWを含有することで得られる。しかし、Wは高価な元素であり、また多量にWを含有すると表面欠陥が生じるのみならず、靭性などの加工性が大きく低下する。良好な表面性状を得るために、W含有量は0.30%以下とすることが好ましい。従って、Wを含有する場合は、W含有量は0.02%以上0.30%以下の範囲とすることが好ましい。
W: 0.02% or more and 0.30% or less W, like Mo, is an element that increases the strength of steel by solid solution strengthening, and the effect is obtained by containing 0.02% or more of W. It is done. However, W is an expensive element. If a large amount of W is contained, not only surface defects are generated, but workability such as toughness is greatly reduced. In order to obtain good surface properties, the W content is preferably 0.30% or less. Therefore, when it contains W, it is preferable to make W content into the range of 0.02% or more and 0.30% or less.

Zr:0.005%以上0.50%以下
Zrは、耐酸化性を向上させる元素である。その効果を得るためには、Zr含有量を0.005%以上にすることが好ましい。一方、Zr含有量が0.50%を超えると、Zr金属間化合物が析出して、鋼が脆化しやすくなる。よって、Zrを含有する場合は、Zr含有量は0.005%以上0.50%以下とすることが好ましい。
Zr: 0.005% to 0.50% Zr is an element that improves oxidation resistance. In order to obtain the effect, the Zr content is preferably 0.005% or more. On the other hand, when the Zr content exceeds 0.50%, the Zr intermetallic compound is precipitated, and the steel is easily embrittled. Therefore, when Zr is contained, the Zr content is preferably 0.005% or more and 0.50% or less.

次に、本発明のフェライト系ステンレス鋼の製造方法について説明する。   Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.

本発明のフェライト系ステンレス鋼は、通常のステンレス鋼の製造方法を用いることができる。上記成分組成からなる鋼を転炉、電気炉等の溶解炉で溶製し、さらに取鍋精錬、真空精錬等の2次精錬を経て、連続鋳造法あるいは造塊−分塊圧延法で鋼片(スラブ)とし、熱間圧延、熱延板焼鈍、酸洗を施し熱延焼鈍酸洗板とする。さらに、冷間圧延、仕上焼鈍、酸洗等の各工程を経て冷延焼鈍板とする方法が推奨される。一例は以下の通りである。   For the ferritic stainless steel of the present invention, an ordinary method for producing stainless steel can be used. Steel having the above composition is melted in a melting furnace such as a converter or electric furnace, and further subjected to secondary refining such as ladle refining, vacuum refining, etc., and then steel slab by continuous casting or ingot-bundling rolling (Slab), hot-rolled, hot-rolled sheet annealed and pickled to give a hot-rolled annealed pickled sheet. Furthermore, a method of forming a cold-rolled annealed plate through each process such as cold rolling, finish annealing, pickling and the like is recommended. An example is as follows.

転炉あるいは電気炉等で溶製し、AOD法あるいはVOD法により二次精錬を行い上記成分組成の溶鋼を溶製し、連続鋳造法によりスラブにする。このスラブを1000〜1250℃に加熱して、熱間圧延により所望の板厚の熱延板とする。この熱延板を900℃〜1100℃の温度で連続焼鈍を施した後、ショットブラストと酸洗により脱スケールを行って熱延焼鈍酸洗板とする。この熱延焼鈍酸洗板をそのままエキゾーストマニホールドやフランジ、パイプやマフラー等の本発明が対象とする用途に用いることも可能であるが、さらに、冷間圧延と焼鈍・酸洗を行って冷延焼鈍酸洗板とすることもできる。この冷間圧延工程では、必要に応じて中間焼鈍を含む2回以上の冷間圧延を行ってもよい。1回または2回以上の冷間圧延からなる冷延工程の総圧下率は60%以上、好ましくは70%以上とする。冷延板焼鈍温度は、900〜1150℃、好ましくは950〜1100℃である。また、用途によっては、酸洗後に軽度の圧延(スキンパス圧延等)を加えて、鋼板の形状、品質調整を行うこともできる。また、水素を含む還元雰囲気で焼鈍して酸洗を省略したBA仕上げとすることもできる。   It is melted in a converter or electric furnace, etc., secondary refining is performed by AOD method or VOD method to melt molten steel having the above composition, and slab is formed by continuous casting method. This slab is heated to 1000 to 1250 ° C., and hot rolled into a desired thickness by hot rolling. The hot-rolled sheet is subjected to continuous annealing at a temperature of 900 ° C. to 1100 ° C., and then descaled by shot blasting and pickling to obtain a hot-rolled annealed pickled sheet. This hot-rolled annealed pickling plate can be used as it is for the applications targeted by the present invention, such as exhaust manifolds, flanges, pipes, and mufflers, but it is further subjected to cold rolling and annealing / pickling. An annealed pickling plate can also be used. In this cold rolling process, two or more cold rolling processes including intermediate annealing may be performed as necessary. The total rolling reduction in the cold rolling process comprising one or more cold rollings is 60% or more, preferably 70% or more. Cold-rolled sheet annealing temperature is 900-1150 degreeC, Preferably it is 950-1100 degreeC. Depending on the application, the shape and quality of the steel sheet can be adjusted by adding mild rolling (skin pass rolling or the like) after pickling. Moreover, it can also be set to BA finishing which annealed in the reducing atmosphere containing hydrogen and abbreviated the pickling.

このようにして製造して得た熱延焼鈍板製品あるいは冷延焼鈍板製品を用い、それぞれの用途に応じた曲げ加工等を施し、自動車やオートバイの排気管、触媒外筒材および火力発電プラントの排気ダクトあるいは燃料電池関連部材に成形される。これらの部材を溶接するための溶接方法は、特に限定されるものではなく、TIG、MIG、MAG等の各種アーク溶接方法や、スポット溶接、シーム溶接等の抵抗溶接方法、および電縫溶接方法などの高周波抵抗溶接、高周波誘導溶接が適用可能である。   Using the hot-rolled annealed sheet product or cold-rolled annealed sheet product obtained in this way, it is subjected to bending processing according to each application, and the exhaust pipe, catalyst outer cylinder material, and thermal power plant for automobiles and motorcycles. It is formed into an exhaust duct or a fuel cell related member. The welding method for welding these members is not particularly limited, and various arc welding methods such as TIG, MIG, and MAG, resistance welding methods such as spot welding and seam welding, and electric resistance welding methods, etc. High frequency resistance welding and high frequency induction welding can be applied.

表1に示す成分組成を有するNo.1〜40の鋼を真空溶解炉で溶製・鋳造して30kg鋼塊にした。次いで、1170℃に加熱後、熱間圧延を行って厚さ35mm×幅150mmのシートバーとした。このシートバーを二分割した。その一つを鍛造により断面が30mm×30mmの角棒とし、950〜1050℃の範囲内で焼鈍後、機械加工し、図1に示した熱疲労試験片を作製した。この試験片を用いて後述の熱疲労試験を行った。焼鈍温度については950〜1050℃の温度範囲内で組織を確認しながら成分ごとに設定した。以降の焼鈍についても同様である。   No. having the component composition shown in Table 1. 1 to 40 steels were melted and cast in a vacuum melting furnace to form 30 kg steel ingots. Next, after heating to 1170 ° C., hot rolling was performed to obtain a sheet bar having a thickness of 35 mm × width of 150 mm. This sheet bar was divided into two. One of them was formed into a square bar having a cross section of 30 mm × 30 mm by forging, and was annealed within a range of 950 to 1050 ° C. and then machined to produce a thermal fatigue test piece shown in FIG. The thermal fatigue test described later was performed using this test piece. About annealing temperature, it set for every component, confirming a structure within the temperature range of 950-1050 degreeC. The same applies to the subsequent annealing.

上記二分割したもう一方のシートバーを用い、1050℃に加熱後、熱間圧延して板厚5mmの熱延板とした。その後900〜1050℃の温度範囲で熱延板焼鈍し、酸洗して熱延焼鈍酸洗板を製作した。この段階で、鋼板の表面性状を肉眼で観察した。これを冷間圧延により板厚を2mmとし、900〜1050℃の温度範囲内で仕上げ焼鈍して冷延焼鈍板とした。これを下記の繰り返し酸化試験および凝縮水浸漬試験に供した。   Using the other sheet bar divided into two, the sheet bar was heated to 1050 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 5 mm. Thereafter, hot-rolled sheet annealing was performed in a temperature range of 900 to 1050 ° C. and pickled to produce a hot-rolled annealed pickled board. At this stage, the surface properties of the steel sheet were observed with the naked eye. This was cold-rolled to a sheet thickness of 2 mm and finish-annealed in a temperature range of 900 to 1050 ° C. to obtain a cold-rolled annealed sheet. This was subjected to the following repeated oxidation test and condensed water immersion test.

<繰り返し酸化試験>
上記の冷延焼鈍板から20mm幅×30mm長さの寸法に切り出し、全6面を#320エメリー紙で研磨して試験に供した。酸化試験条件は、大気中において、1000℃で20min保持と100℃で1min保持を400サイクル繰り返した。加熱速度および冷却速度は、それぞれ5℃/sec、1.5℃/secで行った。試験後にスケールの剥離の有無を目視観察してスケール密着性を評価した。得られた結果を表1に併せて示す。
<Repetitive oxidation test>
The cold-rolled annealed plate was cut into a dimension of 20 mm width × 30 mm length, and all six surfaces were polished with # 320 emery paper and used for the test. The oxidation test conditions were 400 cycles of holding 20 minutes at 1000 ° C. and holding 1 minute at 100 ° C. in the atmosphere. The heating rate and the cooling rate were 5 ° C./sec and 1.5 ° C./sec, respectively. After the test, the scale adhesion was evaluated by visually observing the presence or absence of scale peeling. The obtained results are also shown in Table 1.

<熱疲労試験>
上記熱疲労試験用試験片について、200〜900℃間で加熱・冷却を繰り返すと同時に、図2に示したような拘束率0.6で歪を繰り返し付与し、熱疲労寿命を測定した。測定方法は日本材料学会標準 高温低サイクル試験法(JSMS−SD−7−03)に準拠した。まず、各サイクルの200℃において検出された荷重を、図1に示した試験片均熱平行部の断面積(50.3mm2)で割って、そのサイクルの応力とした。そのサイクルにおける応力が、挙動が安定する5サイクル目の応力に対して75%まで低下したサイクル数を熱疲労寿命とした。この寿命サイクル数で熱疲労特性を評価した。得られた結果を表1に併せて示す。
<Thermal fatigue test>
About the said test piece for thermal fatigue tests, simultaneously with heating and cooling between 200-900 degreeC, distortion was repeatedly provided with the restraint factor 0.6 as shown in FIG. 2, and the thermal fatigue life was measured. The measurement method was in accordance with the Japan Society of Materials Standard High Temperature Low Cycle Test Method (JSMS-SD-7-03). First, the load detected at 200 ° C. in each cycle was divided by the cross-sectional area (50.3 mm 2 ) of the test piece soaking parallel portion shown in FIG. The number of cycles in which the stress in the cycle was reduced to 75% with respect to the stress in the fifth cycle where the behavior was stable was defined as the thermal fatigue life. Thermal fatigue characteristics were evaluated based on the number of life cycles. The obtained results are also shown in Table 1.

なお、上記の拘束率については、図2に示すように、拘束率η=a/(a+b)、aは(自由熱膨張歪み量−制御歪み量)/2、bは制御歪み量/2である。また、自由熱膨張歪み量とは機械的な応力を一切与えずに昇温した場合の歪量であり、制御歪み量とは室温で何も応力を負荷しない状態に対する歪量を示す。拘束により材料に生じる実質的な拘束歪み量は、(自由熱膨張歪み量−制御歪み量)、すなわち、自由熱膨張歪み量に対する歪量である。   As shown in FIG. 2, the above-mentioned constraint rate is as follows: constraint rate η = a / (a + b), a is (free thermal expansion strain amount−control strain amount) / 2, and b is control strain amount / 2. is there. The free thermal expansion strain amount is a strain amount when the temperature is raised without applying any mechanical stress, and the control strain amount is a strain amount with respect to a state where no stress is applied at room temperature. The substantial restraint strain amount generated in the material due to restraint is (free thermal expansion strain amount−control strain amount), that is, the strain amount with respect to the free thermal expansion strain amount.

<凝縮水浸漬試験>
上記で作製した冷延焼鈍板から、60mm幅×80mm長の寸法に切り出し、全6面を#320エメリー紙で研磨して試験に供した。試験時には端部を保護テープで被覆した。試験溶液は凝縮水を模擬し、Cl:500ppm、SO 2−:1000ppmを含み、pH:4に調整した。温度は80℃となるよう恒温槽内に保持した。試験は溶液浸漬2時間と乾燥6時間を1セットとし、30セット行った。試験後、腐食生成物を除去し、試験前後の重量を測定することで腐食減量を算出した。
<Condensed water immersion test>
The cold-rolled annealed plate produced above was cut into a dimension of 60 mm width × 80 mm length, and all six surfaces were polished with # 320 emery paper and used for the test. During the test, the edge was covered with a protective tape. The test solution simulated condensed water and contained Cl : 500 ppm, SO 4 2− : 1000 ppm, and was adjusted to pH: 4. The temperature was kept in a thermostat so that the temperature would be 80 ° C. The test was performed for 30 sets, with 2 hours of solution immersion and 6 hours of drying as one set. After the test, the corrosion products were removed, and the weight loss before and after the test was measured to calculate the corrosion weight loss.

Figure 2018116792
Figure 2018116792

なお、表1において、各試験の判定基準は以下の通りである。
(1)スケール密着性:繰り返し酸化試験後の試験片表面でスケールが剥離した面積が0%(目視観察でスケール剥離が見つからなかった)のものを◎(合格)、0%超え5%未満のものを○(合格)、5%以上のものを×(不合格)と判定した。
(2)熱疲労特性:熱疲労寿命が750サイクル以上のものを◎(合格)、660サイクル以上750サイクル未満のものを○(合格)、660サイクル未満を×(不合格)と判定した。
(3)耐凝縮水腐食性:腐食減量が5g/m以下のものを◎(合格)、5g/m超え10g/m以下のものを○(合格)、10g/mを超えたものを×(不合格)とした。
In Table 1, the criteria for each test are as follows.
(1) Scale adhesion: ◎ (accepted) when the area where the scale peeled off on the surface of the test piece after repeated oxidation tests was 0% (no scale peeling was found by visual observation), greater than 0% and less than 5% A thing was judged as ○ (pass), and 5% or more was judged as x (fail).
(2) Thermal fatigue properties: those having a thermal fatigue life of 750 cycles or more were evaluated as ◎ (passed), those having 660 cycles or more and less than 750 cycles were evaluated as ◯ (passed), and those having less than 660 cycles were evaluated as × (failed).
(3) Condensed water corrosion resistance: Corrosion weight loss of 5 g / m 2 or less ◎ (pass), 5 g / m 2 over 10 g / m 2 or less ○ (pass), over 10 g / m 2 The thing was made into x (failed).

表1より、本発明例であるNo.1〜20および36〜40は、全て、スケール密着性および熱疲労特性、耐凝縮水腐食性のいずれもが優れていた。SiとNiの含有量が好適な範囲(Si≧0.30%およびNi≧0.20%)である本発明例No.2〜4、6、9、10、12、14〜16、19、20、36〜40はスケール密着性が特に優れていた。C+Nと、Ti、Co、Mo、Cuの含有量が好適な範囲(C+N≦0.015%、Ti≧0.15%、Co≧0.02%、Mo≧0.04%、Cu≧0.04%)である本発明例No.1、2、6〜11、16、38は熱疲労特性が特に優れていた。MoとCuの含有量が好適な範囲(Mo≧0.04%およびCu≧0.04%)である本発明例No.1、2、6〜11、16、18、36〜40は耐凝縮水腐食性が特に優れていた。また、本発明例の全ての熱延焼鈍酸洗板の表面性状は、表面欠陥がなく良好であった。   From Table 1, No. which is an example of the present invention. All of Nos. 1 to 20 and 36 to 40 were excellent in scale adhesion, thermal fatigue characteristics, and resistance to condensed water corrosion. Inventive example No. in which the contents of Si and Ni are in a suitable range (Si ≧ 0.30% and Ni ≧ 0.20%). 2 to 4, 6, 9, 10, 12, 14 to 16, 19, 20, and 36 to 40 were particularly excellent in scale adhesion. C + N and Ti, Co, Mo, and Cu content in suitable ranges (C + N ≦ 0.015%, Ti ≧ 0.15%, Co ≧ 0.02%, Mo ≧ 0.04%, Cu ≧ 0. Inventive Example No. 4). 1, 2, 6-11, 16, and 38 were particularly excellent in thermal fatigue characteristics. Inventive Example No. in which the contents of Mo and Cu are in the preferred ranges (Mo ≧ 0.04% and Cu ≧ 0.04%). 1, 2, 6 to 11, 16, 18, and 36 to 40 were particularly excellent in resistance to condensed water corrosion. Moreover, the surface properties of all the hot-rolled annealed pickling plates of the examples of the present invention were good with no surface defects.

一方、MoとCuがいずれも本発明範囲の下限値未満である比較例No.21、24、Cuが本発明範囲の下限値未満である比較例No.22、Moが本発明範囲の下限値未満である比較例No.23は、いずれも耐凝縮水腐食性が不合格となった。   On the other hand, comparative example No. whose Mo and Cu are both less than the lower limit of the range of the present invention. Comparative Examples No. 21, 24, and Cu are less than the lower limit of the range of the present invention. 22, Comparative Example No. in which Mo is less than the lower limit of the range of the present invention. As for 23, the condensate corrosion resistance was rejected.

C+Nが本発明範囲の上限値超えである比較例No.25は、熱疲労特性が不合格となった。Coが本発明範囲の下限値未満である比較例No.26は、熱疲労特性が不合格となった。Niが本発明範囲の下限値未満である比較例No.27は、スケール密着性と熱疲労特性が不合格となった。   In Comparative Example No. C + N exceeding the upper limit of the range of the present invention. No. 25 failed in thermal fatigue characteristics. In Comparative Example No. Co in which Co is less than the lower limit of the range of the present invention. No. 26 failed in thermal fatigue characteristics. Comparative Example No. Ni in which Ni is less than the lower limit of the range of the present invention. No. 27 failed in scale adhesion and thermal fatigue characteristics.

NiとCoがともに本発明範囲の下限値未満である比較例No.28は、スケール密着性と熱疲労特性が不合格となった。Cuが本発明範囲の上限値超えである比較例No.29は、スケール密着性、耐凝縮水腐食性が不合格となった。   Comparative Example No. 2 in which both Ni and Co are less than the lower limit of the range of the present invention. No. 28 failed in scale adhesion and thermal fatigue characteristics. Comparative Example No. Cu in which Cu exceeds the upper limit of the range of the present invention. No. 29 failed in scale adhesion and condensed water corrosion resistance.

Tiが本発明範囲の上限値超えである比較例No.30は、スケール密着性、熱疲労特性、耐凝縮水腐食性のいずれもが不合格となった。Cが本発明範囲の上限値超えである比較例No.31はスケール密着性と熱疲労特性が、Nが本発明範囲の上限値超えである比較例No.32はスケール密着性と熱疲労特性が不合格となった。   Comparative Example No. in which Ti exceeds the upper limit of the range of the present invention. No. 30 failed in all of scale adhesion, thermal fatigue characteristics, and condensation water corrosion resistance. Comparative Example No. C in which C exceeds the upper limit of the range of the present invention. No. 31 is Comparative Example No. 31 in which the scale adhesion and thermal fatigue characteristics are such that N exceeds the upper limit of the range of the present invention. No. 32 failed in scale adhesion and thermal fatigue characteristics.

Crが本発明範囲の下限値未満である比較例No.33は、スケール密着性、熱疲労特性、凝縮水腐食性のいずれもが不合格となった。Nbが本発明範囲の下限値未満である比較例No.34およびTiが本発明範囲の下限値未満である比較例No.35は、いずれも熱疲労特性が不合格となった。   Comparative Example No. Cr in which Cr is less than the lower limit of the range of the present invention. No. 33 failed in all of scale adhesion, thermal fatigue characteristics, and condensed water corrosiveness. Comparative Example No. Nb is less than the lower limit of the range of the present invention. Comparative Example No. 34 in which 34 and Ti are less than the lower limit of the range of the present invention. No. 35 failed in the thermal fatigue characteristics.

以上より、本発明範囲の鋼が、スケール密着性、熱疲労特性、耐凝縮水腐食性のいずれにも優れていることは明らかである。   From the above, it is clear that the steels within the scope of the present invention are excellent in all of scale adhesion, thermal fatigue characteristics and condensed water corrosion resistance.

本発明のフェライト系ステンレス鋼板はスケール密着性、熱疲労特性、耐凝縮水腐食性のいずれにも優れるため、エキゾーストマニホールド、各種排気パイプ、フランジ、コンバーターケースやマフラー等の自動車等の排気系部品全てに好適であるのみならず、1つの鋼種で排気管部品を全て構成することも可能であり、鋼材の入手安定性や溶接性の面で効率化できる。さらに、火力発電システムの排気系部材や燃料電池用部材としても好適である。   The ferritic stainless steel sheet of the present invention is excellent in all of scale adhesion, thermal fatigue characteristics, and resistance to condensed water corrosion. In addition to being suitable for the above, it is also possible to configure all the exhaust pipe parts with one steel type, and it is possible to increase the efficiency in terms of the availability of steel and the weldability. Furthermore, it is also suitable as an exhaust system member or a fuel cell member of a thermal power generation system.

Claims (3)

質量%で、
C:0.010%以下、
Si:1.0%以下、
Mn:1.0%以下、
P:0.040%以下、
S:0.030%以下、
Cr:17.0%以上18.5%以下、
N:0.015%以下、
Nb:0.40%以上0.80%以下、
Ti:0.10%以上0.40%以下、
Al:0.20%以下、
Ni:0.05%以上0.40%以下、
Co:0.01%以上0.30%以下、
Mo:0.02%以上0.30%以下、
Cu:0.02%以上0.40%以下、
を含有し、かつ、以下の式(1)を満たし、残部がFeおよび不可避的不純物からなる組成を有するフェライト系ステンレス鋼。
C%+N%:0.018%以下 ・・・(1)
式(1)中、C%、N%は、それぞれC、Nの含有量(質量%)を表す。
% By mass
C: 0.010% or less,
Si: 1.0% or less,
Mn: 1.0% or less,
P: 0.040% or less,
S: 0.030% or less,
Cr: 17.0% or more and 18.5% or less,
N: 0.015% or less,
Nb: 0.40% or more and 0.80% or less,
Ti: 0.10% or more and 0.40% or less,
Al: 0.20% or less,
Ni: 0.05% or more and 0.40% or less,
Co: 0.01% or more and 0.30% or less,
Mo: 0.02% to 0.30%,
Cu: 0.02% to 0.40%,
And a ferritic stainless steel satisfying the following formula (1) and having the balance of Fe and inevitable impurities.
C% + N%: 0.018% or less (1)
In the formula (1), C% and N% represent C and N contents (% by mass), respectively.
質量%で、さらに、
Ca:0.0005%以上0.0030%以下、
Mg:0.0002%以上0.0020%以下、
B:0.0002%以上0.0020%以下、
のうちから選ばれる1種または2種以上を含有する請求項1に記載のフェライト系ステンレス鋼。
In mass%,
Ca: 0.0005% or more and 0.0030% or less,
Mg: 0.0002% or more and 0.0020% or less,
B: 0.0002% or more and 0.0020% or less,
The ferritic stainless steel according to claim 1, comprising one or more selected from among the above.
質量%で、さらに、
V:0.01%以上0.50%以下、
W:0.02%以上0.30%以下、
Zr:0.005%以上0.50%以下、
のうちから選ばれる1種または2種以上を含有する請求項1または2に記載のフェライト系ステンレス鋼。
In mass%,
V: 0.01% or more and 0.50% or less,
W: 0.02% to 0.30%,
Zr: 0.005% or more and 0.50% or less,
The ferritic stainless steel according to claim 1 or 2, containing one or more selected from among the above.
JP2018529681A 2016-12-21 2017-12-04 Ferritic stainless steel Active JP6665936B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016247334 2016-12-21
JP2016247334 2016-12-21
PCT/JP2017/043381 WO2018116792A1 (en) 2016-12-21 2017-12-04 Ferritic stainless steel

Publications (2)

Publication Number Publication Date
JPWO2018116792A1 true JPWO2018116792A1 (en) 2018-12-20
JP6665936B2 JP6665936B2 (en) 2020-03-13

Family

ID=62627709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529681A Active JP6665936B2 (en) 2016-12-21 2017-12-04 Ferritic stainless steel

Country Status (8)

Country Link
US (1) US20190316236A1 (en)
EP (1) EP3517647A4 (en)
JP (1) JP6665936B2 (en)
KR (2) KR20190085029A (en)
CN (1) CN110088324A (en)
MX (1) MX2019007483A (en)
TW (1) TWI645051B (en)
WO (1) WO2018116792A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112647073A (en) * 2020-12-30 2021-04-13 辽宁顺通高端装备科技有限公司 Material for honeycomb seal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209726A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Stainless Steel Corp Heat-resistant ferritic stainless cold rolled steel sheet excellent in workability, ferritic stainless hot rolled steel sheet for cold rolled raw material, and method for manufacturing them
WO2013179616A1 (en) * 2012-05-28 2013-12-05 Jfeスチール株式会社 Ferritic stainless steel
JP2014145097A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for automotive exhaust system member suitable for high temperature press molding and manufacturing method of ferritic stainless steel molding part
JP2015532681A (en) * 2012-09-03 2015-11-12 アペラム・ステンレス・フランス Ferritic stainless steel sheet, manufacturing method thereof, and particularly for use in exhaust pipes
US20150345361A1 (en) * 2012-12-24 2015-12-03 Posco Ferritic Stainless Steel for Automotive Exhaust System, Which Have Excellent Corrosion Resistance Against Condensate, Moldability, and High-Temperature Oxidation Resistance, and Method for Manufacturing Same
JP2016204714A (en) * 2015-04-24 2016-12-08 新日鐵住金ステンレス株式会社 Stainless steel for automobile exhaust system component fastening component

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215410A (en) 1975-07-26 1977-02-05 S Ii C:Kk Process for producing globular carbonization material for steel making
JPH0219447A (en) * 1988-07-05 1990-01-23 Toshiba Corp Ferritic stainless steel
JPH0735556B2 (en) 1990-12-26 1995-04-19 川崎製鉄株式会社 Ferritic stainless steel with excellent high temperature strength and toughness in the heat affected zone
JP3014822B2 (en) 1991-09-13 2000-02-28 川崎製鉄株式会社 High toughness, high temperature, high strength ferritic stainless steel
JP4309140B2 (en) 2003-01-15 2009-08-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel for automotive exhaust system equipment
EP1818421A1 (en) * 2006-02-08 2007-08-15 UGINE &amp; ALZ FRANCE Ferritic, niobium-stabilised 19% chromium stainless steel
JP5297630B2 (en) 2007-02-26 2013-09-25 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent heat resistance
JP5264199B2 (en) 2008-01-28 2013-08-14 日新製鋼株式会社 EGR cooler using ferritic stainless steel
JP5152387B2 (en) * 2010-10-14 2013-02-27 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and workability
JP5609571B2 (en) * 2010-11-11 2014-10-22 Jfeスチール株式会社 Ferritic stainless steel with excellent oxidation resistance
CN105764733B (en) * 2013-09-13 2018-09-07 新日铁住金不锈钢株式会社 Member for automobile and fuel feed pump cheap and with good salt tolerance
JP6075349B2 (en) * 2013-10-08 2017-02-08 Jfeスチール株式会社 Ferritic stainless steel
WO2015099459A1 (en) * 2013-12-24 2015-07-02 (주)포스코 Ferritic stainless steel with improved formability and ridging resistance, and manufacturing method therefor
JP6598478B2 (en) * 2015-03-12 2019-10-30 日鉄ステンレス株式会社 Oil supply pipe for automobiles with excellent salt damage resistance and reduced external appearance deterioration
US20190106775A1 (en) * 2016-03-29 2019-04-11 Jfe Steel Corporation Ferritic stainless steel sheet
CA3026612A1 (en) * 2016-06-10 2017-12-14 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
WO2017212905A1 (en) * 2016-06-10 2017-12-14 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators, and production method therefor
JP6418338B2 (en) * 2016-09-02 2018-11-07 Jfeスチール株式会社 Ferritic stainless steel
US11261512B2 (en) * 2016-09-02 2022-03-01 Jfe Steel Corporation Ferritic stainless steel
CN109689240B (en) * 2016-09-12 2020-10-16 杰富意钢铁株式会社 Composite welded pipe and manufacturing method thereof
MX2019008874A (en) * 2017-01-26 2019-09-18 Jfe Steel Corp Ferrite stainless hot-rolled steel sheet and production method therefor.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209726A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Stainless Steel Corp Heat-resistant ferritic stainless cold rolled steel sheet excellent in workability, ferritic stainless hot rolled steel sheet for cold rolled raw material, and method for manufacturing them
WO2013179616A1 (en) * 2012-05-28 2013-12-05 Jfeスチール株式会社 Ferritic stainless steel
JP2015532681A (en) * 2012-09-03 2015-11-12 アペラム・ステンレス・フランス Ferritic stainless steel sheet, manufacturing method thereof, and particularly for use in exhaust pipes
US20150345361A1 (en) * 2012-12-24 2015-12-03 Posco Ferritic Stainless Steel for Automotive Exhaust System, Which Have Excellent Corrosion Resistance Against Condensate, Moldability, and High-Temperature Oxidation Resistance, and Method for Manufacturing Same
JP2014145097A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for automotive exhaust system member suitable for high temperature press molding and manufacturing method of ferritic stainless steel molding part
JP2016204714A (en) * 2015-04-24 2016-12-08 新日鐵住金ステンレス株式会社 Stainless steel for automobile exhaust system component fastening component

Also Published As

Publication number Publication date
JP6665936B2 (en) 2020-03-13
CN110088324A (en) 2019-08-02
US20190316236A1 (en) 2019-10-17
EP3517647A1 (en) 2019-07-31
KR20190085029A (en) 2019-07-17
EP3517647A4 (en) 2019-12-04
TWI645051B (en) 2018-12-21
TW201827624A (en) 2018-08-01
WO2018116792A1 (en) 2018-06-28
KR102400403B1 (en) 2022-05-23
MX2019007483A (en) 2019-08-29
KR20210062721A (en) 2021-05-31

Similar Documents

Publication Publication Date Title
JP5700175B2 (en) Ferritic stainless steel
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
JP6075349B2 (en) Ferritic stainless steel
JP5304935B2 (en) Ferritic stainless steel
TWI460292B (en) Ferritic stainless steel
JP5505570B1 (en) Ferritic stainless steel
JP6123964B1 (en) Ferritic stainless steel
JP6665936B2 (en) Ferritic stainless steel
JP6624345B1 (en) Ferritic stainless steel
JP5958412B2 (en) Ferritic stainless steel with excellent thermal fatigue properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250