JPWO2018051472A1 - Chlorine trifluoride cleaning residue removal method in SiC epitaxial growth reactor system - Google Patents

Chlorine trifluoride cleaning residue removal method in SiC epitaxial growth reactor system Download PDF

Info

Publication number
JPWO2018051472A1
JPWO2018051472A1 JP2018539461A JP2018539461A JPWO2018051472A1 JP WO2018051472 A1 JPWO2018051472 A1 JP WO2018051472A1 JP 2018539461 A JP2018539461 A JP 2018539461A JP 2018539461 A JP2018539461 A JP 2018539461A JP WO2018051472 A1 JPWO2018051472 A1 JP WO2018051472A1
Authority
JP
Japan
Prior art keywords
gas
epitaxial growth
chlorine trifluoride
cleaning
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018539461A
Other languages
Japanese (ja)
Other versions
JP6796652B2 (en
Inventor
真鍋 俊樹
俊樹 真鍋
良英 小野
良英 小野
正 荘所
正 荘所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Publication of JPWO2018051472A1 publication Critical patent/JPWO2018051472A1/en
Application granted granted Critical
Publication of JP6796652B2 publication Critical patent/JP6796652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Abstract

SiCエピタキシャル成長炉系におけるクリーニング時間を短縮するとともに、SiC成膜を促進する。SiC成膜を行うエピタキシャル成長炉とその排気配管とを含むSiCエピタキシャル成長炉系を三フッ化塩素ガスによりクリーニングした後に排気配管内に付着残留した三フッ化塩素クリーニング残渣を除去する方法である。三フッ化塩素ガスによるクリーニング終了後、SiC成膜工程においてエピタキシャル成長炉内に原料ガスとともに塩化水素ガスを導入する。これにより、SiCの成膜を行うとともに、その処理済みガスを排気配管に流す。この処理済みガスには、水素分子や水素ラジカル等が含まれているため、これらにより排気配管内の三フッ化塩素クリーニング残渣は除去されることになる。While shortening the cleaning time in the SiC epitaxial growth furnace system, the SiC film formation is promoted. After cleaning the SiC epitaxial growth furnace system including the epitaxial growth furnace for forming the SiC film and the exhaust piping thereof with chlorine trifluoride gas, this is a method of removing the chlorine trifluoride cleaning residue adhering and remaining in the exhaust piping. After cleaning with chlorine trifluoride gas, hydrogen chloride gas is introduced together with the source gas into the epitaxial growth furnace in the SiC film forming process. Thus, the film formation of SiC is performed, and the processed gas is flowed to the exhaust pipe. Since the treated gas contains hydrogen molecules, hydrogen radicals and the like, the chlorine trifluoride cleaning residue in the exhaust pipe is removed by these.

Description

本発明は、化学的気相成長法(以下、「CVD」という。)によりSiC膜をエピタキシャル成長させるエピタキシャル成長炉とその排気配管とを含むSiCエピタキシャル成長炉系を三フッ化塩素ガスによりクリーニングした後に排気配管内に付着残留する三フッ化塩素クリーニング残渣を除去する三フッ化塩素クリーニング残渣除去方法に関する。   The present invention is an exhaust pipe after cleaning an SiC epitaxial growth furnace system including an epitaxial growth furnace for epitaxially growing a SiC film by chemical vapor deposition (hereinafter referred to as "CVD") and its exhaust pipe with chlorine trifluoride gas. The present invention relates to a chlorine trifluoride cleaning residue removal method for removing chlorine trifluoride cleaning residue remaining inside.

炭化ケイ素(SiC)は、ケイ素(Si)に比べて、バンドギャップの広さ、絶縁破壊電界強度、熱伝導率などの物性値の点で優れているため、近年、半導体パワーデバイスの材料として注目されている。このような半導体素子に用いられるSiCエピタキシャルウエハは、通常、SiCバルク単結晶基板上にCVDによりSiC膜をエピタキシャル成長させることによって製造される。   Silicon carbide (SiC) is superior to silicon (Si) in terms of physical properties such as band width, dielectric breakdown field strength, thermal conductivity, etc. It is done. A SiC epitaxial wafer used for such a semiconductor device is usually manufactured by epitaxially growing a SiC film on a SiC bulk single crystal substrate by CVD.

具体的には、エピタキシャル成長炉内に処理対象である基板を保持したサセプタを配置し、Si供給用の原料ガスとしてモノシラン(SiH)やトリクロロシラン(SiHCl)等のシラン系ガスを、C供給用の原料ガスとしてプロパン(C)等の炭化水素系ガスをそれぞれ成長炉内に導入するとともに、基板温度をエピタキシャル成長に必要な成長温度にまで加熱して、基板上にSiC膜をエピタキシャル成長させるというものである。成膜処理が終わった処理済みガスは成長炉に設けられた排気配管を通じて系外に排出される。Specifically, a susceptor holding a substrate to be treated is disposed in an epitaxial growth furnace, and a silane-based gas such as monosilane (SiH 4 ) or trichlorosilane (SiHCl 3 ) is C-supplied as a source gas for Si supply. While introducing a hydrocarbon gas such as propane (C 3 H 8 ) as a raw material gas for growth into the growth reactor, the substrate temperature is heated to a growth temperature necessary for epitaxial growth to epitaxially grow a SiC film on the substrate It is something that The processed gas on which the film forming process has been completed is discharged out of the system through an exhaust pipe provided in the growth furnace.

ここで、CVDにより生成されたSiCは、基板表面だけでなく、エピタキシャル成長炉の内面やサセプタ表面、排気配管の内面にも付着堆積する。このため、成膜工程が終わった段階で、エピタキシャル成長炉及び排気配管を含むエピタキシャル成長炉系を定期的にクリーニングして、これらの堆積物を除去する必要があった。   Here, SiC generated by CVD adheres and deposits not only to the substrate surface but also to the inner surface of the epitaxial growth furnace, the susceptor surface, and the inner surface of the exhaust pipe. Therefore, it has been necessary to periodically clean the epitaxial growth furnace system including the epitaxial growth furnace and the exhaust pipe at the end of the film forming process to remove these deposits.

特公平3−48268号公報Japanese Examined Patent Publication 3-48268 特公平6−63097号公報Japanese Examined Patent Publication 6-63097 特許第4662034号公報Patent No. 4662034

このようなクリーニング方法には様々な方法があるが、本発明者らは、プラズマを使用しないノンプラズマクリーニングとして高いクリーニング能力を有する三フッ化塩素(ClF)ガスを使用してSiCエピタキシャル成長炉系をクリーニングすることを検討した。Although there are various methods for such a cleaning method, the inventors of the present invention have developed a SiC epitaxial growth furnace system using chlorine trifluoride (ClF 3 ) gas having high cleaning ability as non-plasma cleaning without using plasma. We considered cleaning.

しかしながら、SiCエピタキシャル成長炉系を三フッ化塩素ガスによりクリーニングした場合、エピタキシャル成長炉の内部は十分にクリーニングされるものの、排気配管中にクリーニング後の残渣(本明細書において「三フッ化塩素クリーニング残渣」という。)が付着残留するという問題が生じた。本発明者らが調べたところ、これは、主に両者の素材の相違に起因することが分かった。すなわち、耐熱性が要求されるエピタキシャル成長炉は表面ないし接ガス面をSiCでコーティングした部材を用いることが多いのに対し、そこまでの耐熱性が求められない排気配管は例えばステンレスを用いることが多く、これが三フッ化塩素クリーニング残渣を吸着しやすいという性質を有していたからである。   However, when the SiC epitaxial growth furnace system is cleaned with chlorine trifluoride gas, although the inside of the epitaxial growth furnace is sufficiently cleaned, the residue after cleaning in the exhaust pipe (herein, “chlorine trifluoride cleaning residue” The problem of the problem that the adhesion remains remains. As the inventors examined, it was found that this was mainly due to the difference between the two materials. That is, while an epitaxial growth furnace that requires heat resistance often uses a member whose surface or gas contact surface is coated with SiC, exhaust piping that does not require heat resistance up to that point often uses, for example, stainless steel. This is because it has the property of being easy to adsorb the chlorine trifluoride cleaning residue.

このような三フッ化塩素クリーニング残渣を除去する方法として、出願人は過去に特許文献1及び2を提案している。特許文献1に記載のものは、クリーニング終了後の処理操作系に全体が分子状態にある水素を流し、この水素分子で三フッ化塩素クリーニング残渣を除去するというものである。また、特許文献2に記載のものは、クリーニング終了後の処理操作系にシラン、ホスフィン、アルシン等の水素含有化合物のガスを流して、この水素含有化合物で三フッ化塩素クリーニング残渣を除去するというものである。   As a method for removing such chlorine trifluoride cleaning residue, the applicant has proposed Patent Documents 1 and 2 in the past. According to Patent Document 1, hydrogen which is in a molecular state as a whole is supplied to a processing operation system after completion of cleaning, and chlorine trifluoride cleaning residue is removed by the hydrogen molecules. Further, in the method described in Patent Document 2, a gas of a hydrogen-containing compound such as silane, phosphine, or arsine is flowed to a processing operation system after the cleaning is completed to remove chlorine trifluoride cleaning residue with the hydrogen-containing compound. It is a thing.

しかし、特許文献1及び2の従来技術はいずれも、三フッ化塩素ガスによるクリーニング終了後に第2のクリーニングガスとしてH又はSiH等を流すというものであり、実質的にクリーニングを2回行うに等しいため、クリーニングプロセスに時間を要し、ウエハの製造効率が低下するという問題があった。このため、特許文献1及び2の従来技術は依然改良の余地があった。However, in the prior arts of Patent Documents 1 and 2, either H 2 or SiH 4 or the like is allowed to flow as the second cleaning gas after cleaning with chlorine trifluoride gas, and the cleaning is substantially performed twice. Therefore, the cleaning process takes time, and the manufacturing efficiency of the wafer is reduced. For this reason, the prior art of patent documents 1 and 2 still has room for improvement.

本発明は、かかる課題を解決することを目的とするものであり、SiCエピタキシャル成長炉系を三フッ化塩素ガスによりクリーニングしたときに排気配管中に付着残留する三フッ化塩素クリーニング残渣を効率的に除去することができる方法を提供することを目的とする。   The present invention aims to solve such problems, and efficiently cleans the chlorine trifluoride cleaning residue remaining in the exhaust pipe when the SiC epitaxial growth furnace system is cleaned with chlorine trifluoride gas. The purpose is to provide a method that can be removed.

本発明者らは、SiC成膜工程においてエピタキシャル成長炉内に原料ガスとともに塩化水素(HCl)ガスを導入してSiCの成膜を行うと、その過程で発生した水素分子や水素ラジカル等の水素系物質により排気配管中の三フッ化塩素クリーニング残渣を除去できることを見出した。   The present inventors introduce hydrogen chloride (HCl) gas together with a source gas into the epitaxial growth furnace in the SiC film forming process to form a film of SiC, hydrogen compounds such as hydrogen molecules and hydrogen radicals generated in the process It has been found that the substance can remove chlorine trifluoride cleaning residue in the exhaust piping.

本発明は、かかる知見に基づいてなされたものであり、以下のような方法を採用したことを特徴とする。   The present invention has been made based on such findings, and is characterized in that the following method is adopted.

すなわち、本発明は、SiC成膜を行うエピタキシャル成長炉とその排気配管とを含むSiCエピタキシャル成長炉系を三フッ化塩素ガスによりクリーニングした後の排気配管内の三フッ化塩素クリーニング残渣を除去する方法であって、三フッ化塩素ガスによるクリーニング終了後、SiC成膜工程においてエピタキシャル成長炉内に原料ガスとともに塩化水素ガスを導入することによりSiCの成膜を行うとともに、その処理済みガスを排気配管を通じて排出することにより同排気配管内の三フッ化塩素クリーニング残渣を除去することを特徴とするものである。   That is, the present invention is a method for removing chlorine trifluoride cleaning residue in exhaust piping after cleaning an SiC epitaxial growth reactor system including an epitaxial growth furnace for forming SiC film and its exhaust piping with chlorine trifluoride gas. After the cleaning with chlorine trifluoride gas is completed, the SiC film is formed by introducing hydrogen chloride gas together with the source gas into the epitaxial growth furnace in the SiC film forming process, and the processed gas is discharged through the exhaust pipe. By removing the chlorine trifluoride cleaning residue in the exhaust pipe.

塩化水素は熱分解し難く、1800℃で0.22%程度しか分解しないとされている。しかし、Siと共存させることによりSiHCl等への変換が進行するとともに、Hが発生する。具体的には、SiC成膜工程においてエピタキシャル成長炉内に原料ガスとともに塩化水素ガスを導入してSiCの成膜を行うと、以下のような反応により、SiHClとともに、副次的にHが発生する。
Si+3HCl→SiHCl+H
Hydrogen chloride is difficult to be pyrolyzed and is believed to decompose only at about 0.22% at 1800 ° C. However, by coexistence with Si, conversion to SiHCl 3 or the like proceeds and H 2 is generated. Specifically, when a film of SiC is formed by introducing hydrogen chloride gas together with a source gas into the epitaxial growth furnace in the SiC film forming process, H 2 is incidentally added to the film together with SiHCl 3 by the following reaction. Occur.
Si + 3 HCl → Si HCl 3 + H 2

このうち、SiHClはSiC膜のエピタキシャル成長に不可欠の物質であるが、H自体は成膜には直接関与しない。しかし、特許文献1に示すとおり、H分子はフッ素系汚染物質を除去できるため、このH分子によって三フッ化塩素クリーニング残渣を同じプロセスの中で除去することができる。Among these, SiHCl 3 is an essential substance for epitaxial growth of a SiC film, but H 2 itself does not directly participate in film formation. However, as shown in Patent Document 1, since H 2 molecules can remove fluorine-based contaminants, these H 2 molecules can remove chlorine trifluoride cleaning residue in the same process.

なお、上記の反応式ではHの発生しか示されていないが、SiC成膜の過程で水素ラジカルや水素イオン等の活性種の発生も考えられる。このような活性種であってもフッ素系汚染物質を除去できることは、特許文献1の従来技術欄(第2欄第5〜最終行)に記載されているとおりである。したがって、本発明における三フッ化塩素クリーニング残渣の除去は、必ずしもH分子による場合のみに限定されるものではない。Although only the generation of H 2 is shown in the above reaction formula, the generation of active species such as hydrogen radicals and hydrogen ions may be considered in the process of SiC film formation. It is as having described in the prior art column (the 2nd column column 5-last line) of patent document 1 that a fluorine type contaminant can be removed even if it is such active species. Therefore, the removal of the chlorine trifluoride cleaning residue in the present invention is not necessarily limited to the case with H 2 molecules.

このように、本発明では、SiC成膜工程においてエピタキシャル成長炉内に原料ガスとともに塩化水素ガスを導入してSiCの成膜を行うことにより水素分子や水素ラジカル等の水素系物質が発生するので、これによって排気配管中の三フッ化塩素クリーニング残渣を同じプロセスの中で除去することができる。言い換えれば、三フッ化塩素ガスによりSiCエピタキシャル成長炉系をクリーニングした後、別のクリーニングガスにより三フッ化塩素クリーニング残渣を除去する必要がないため、クリーニングプロセスに要する時間を短縮することができ、ウエハの製造効率を上げることができる。   As described above, in the present invention, by introducing hydrogen chloride gas together with the source gas into the epitaxial growth furnace in the SiC film forming step to form a film of SiC, hydrogen-based substances such as hydrogen molecules and hydrogen radicals are generated. This allows the chlorine trifluoride cleaning residue in the exhaust piping to be removed in the same process. In other words, after cleaning the SiC epitaxial growth furnace system with chlorine trifluoride gas, it is not necessary to remove the chlorine trifluoride cleaning residue with another cleaning gas, so the time required for the cleaning process can be shortened. Production efficiency can be increased.

以上に加えて、本発明ではさらにSiC膜のエピタキシャル成長自体を促進することできるというメリットもある。特許文献3の段落[0045]に記載されているとおり、SiCエピタキシャル成長の原料ガス中にHClを混合することにより膜成長が促進されるからである。したがって、本発明は、この点でもウエハの生産性を向上させることができる。   In addition to the above, the present invention also has the advantage that the epitaxial growth itself of the SiC film can be promoted. As described in paragraph [0045] of Patent Document 3, the film growth is promoted by mixing HCl into the raw material gas for SiC epitaxial growth. Therefore, the present invention can improve wafer productivity also in this respect.

以上のとおり、本発明によれば、SiC成膜工程においてエピタキシャル成長炉内に原料ガスとともに塩化水素ガスを導入してSiC成膜を行うという簡単な方法によって、排気配管内に付着残留した三フッ化塩素クリーニング残渣を除去することができるので、クリーニング時間を短縮できるとともに、SiC膜のエピタキシャル成長自体を促進することできるという効果を奏する。
この結果、ウエハの生産性を向上させることができる。
As described above, according to the present invention, trifluoride adhering and remaining in the exhaust pipe is achieved by a simple method of introducing hydrogen chloride gas together with the source gas into the epitaxial growth furnace in the SiC film forming process to form SiC film. Since the chlorine cleaning residue can be removed, the cleaning time can be shortened, and the epitaxial growth itself of the SiC film can be promoted.
As a result, wafer productivity can be improved.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明は、三フッ化塩素ガスによるクリーニング終了後、SiC成膜工程において、エピタキシャル成長炉内に、SiC成膜に必要な原料ガスとともに塩化水素ガスを導入するというものである。   The present invention is to introduce hydrogen chloride gas together with a source gas necessary for SiC film formation into an epitaxial growth furnace in a SiC film forming process after cleaning with chlorine trifluoride gas is completed.

本発明に使用されるCVD装置は、主に、原料ガスを供給する原料ガス供給配管系と、膜形成を行うエピタキシャル成長炉と、膜形成終了後の処理済みガスを排出する排気配管系とを有する。   The CVD apparatus used in the present invention mainly has a source gas supply piping system for supplying a source gas, an epitaxial growth furnace for forming a film, and an exhaust piping system for discharging a processed gas after the film formation is completed. .

エピタキシャル成長炉の内部には、処理対象である基板を保持するためのサセプタが配置されており、加熱コイルやハロゲンランプ、赤外線ランプ等の加熱手段により成膜に必要な温度にまで加熱されるようになっている。   A susceptor for holding the substrate to be processed is disposed inside the epitaxial growth furnace, and is heated to a temperature required for film formation by a heating unit such as a heating coil, a halogen lamp, or an infrared lamp. It has become.

エピタキシャル成長炉の素材は特に限定されないが、一例として、表面ないし接ガス面をSiCでコーティングした部材を挙げることができる。また、排気配管の素材としては、一例としてステンレス製のものを挙げることができるが、それ以外のものであってもよい。ステンレス以外の素材としては、例えばNi合金や、ステンレスのフッ素樹脂コーティング、カーボンコーティングといった素材でも本発明が好適に適用できる。   Although the raw material of an epitaxial growth furnace is not specifically limited, As an example, the member which coated the surface thru | or the gas contact surface with SiC can be mentioned. Moreover, although the thing made of stainless steel can be mentioned as an example as a raw material of exhaust piping, it may be other than that. As materials other than stainless steel, for example, materials such as Ni alloy, fluorine resin coating of stainless steel, and carbon coating can be suitably applied.

原料ガスとしては、SiC膜をエピタキシャル成長させるものであれば特に限定されないが、好ましくは、Si供給用の原料ガスとして、モノシラン(SiH)、トリクロロシラン(SiHCl)等のシラン系ガスを挙げることができる。また、C供給用の原料ガスとして、メタン(CH)、エタン(C)、プロパン(C)、ネオペンタン(C12)等の炭化水素系ガスを挙げることができる。このうち、Si供給用の原料ガスとしてはモノシランガスが好ましく、C供給用の原料ガスとしてはプロパンガスが好ましい。本発明においては、さらにドーパントを添加するためにドーピングガスを供給してもよい。The source gas is not particularly limited as long as it can epitaxially grow a SiC film, but preferably, silane source gases such as monosilane (SiH 4 ) and trichlorosilane (SiHCl 3 ) are listed as source gases for Si supply. Can. In addition, hydrocarbon-based gases such as methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ) and neopentane (C 5 H 12 ) can be mentioned as source gases for C supply. . Among them, monosilane gas is preferable as a source gas for Si supply, and propane gas is preferable as a source gas for C supply. In the present invention, a doping gas may be supplied to further add a dopant.

本発明では、SiC成膜工程において、エピタキシャル成長炉内に原料ガスとともに塩化水素ガスを導入する。エピタキシャル成長炉内に塩化水素ガスを導入する方法は特に限定されない。成長炉の上流で予め両者を混合して成長炉内に供給してもよいし、別々の経路で成長炉に供給し、成長炉内で両者を混合してもよい。   In the present invention, in the SiC film forming step, hydrogen chloride gas is introduced into the epitaxial growth furnace together with the source gas. The method for introducing hydrogen chloride gas into the epitaxial growth reactor is not particularly limited. The two may be mixed in advance upstream of the growth reactor and supplied into the growth reactor, or may be supplied to the growth reactor through separate paths and both may be mixed in the growth reactor.

以上のようなCVD装置を使用して基板上にSiC膜を形成する。それには、サセプタに基板を装着し、原料供給配管を通して原料ガスを供給するとともに、加熱手段により基板を成長温度(一例としては1400〜1800℃。SiC成膜を促進する観点からは1500〜1800℃がさらに好ましい)まで加熱する。また、必要に応じて炉内圧力やガス流量等の他の成膜条件についても適宜調整する。このようにして基板表面に原料ガスを接触させることで、基板表面にSiC膜をエピタキシャル成長させることができる。成膜処理が終了した処理済みガスないし排ガスは排気配管を通じて排出する。   The SiC film is formed on the substrate using the CVD apparatus as described above. To that, the substrate is mounted on the susceptor, the source gas is supplied through the source supply piping, and the growth temperature (for example, 1400-1800 ° C. by the heating means. From the viewpoint of promoting SiC film formation, 1500-1800 ° C.). Is further preferred). In addition, other film forming conditions such as the pressure in the furnace and the gas flow rate may be appropriately adjusted as necessary. By contacting the source gas to the substrate surface in this manner, the SiC film can be epitaxially grown on the substrate surface. The processed gas or exhaust gas for which the film forming process has been completed is discharged through the exhaust pipe.

SiC成膜工程が終了すると、CVDにより生成されたSiCは、基板表面だけでなく、エピタキシャル成長炉の内面やサセプタ表面、排気配管の内面にも付着堆積する。そこで、成膜工程が終わった段階で、エピタキシャル成長炉及び排気配管を含むエピタキシャル成長炉系を適宜タイミングでクリーニングする。本発明では、かかる堆積物を三フッ化塩素ガスによってクリーニングする。   When the SiC film formation process is completed, SiC generated by CVD adheres and deposits not only to the substrate surface but also to the inner surface of the epitaxial growth furnace, the susceptor surface, and the inner surface of the exhaust pipe. Therefore, at the end of the film forming process, the epitaxial growth furnace system including the epitaxial growth furnace and the exhaust pipe is cleaned at an appropriate timing. In the present invention, such deposits are cleaned with chlorine trifluoride gas.

三フッ化塩素ガスによってクリーニングするに当たっては、成膜が完了した基板(ウエハ)を取り出した後、成長炉内に三フッ化塩素ガスを供給することによりクリーニングを行う。三フッ化塩素ガスは、適宜Ar等の不活性ガスで希釈させて使用してもよい。三フッ化塩素によるクリーニング時の温度の一例としては400℃以下である。但し、これに限定されない。   In cleaning with chlorine trifluoride gas, the substrate (wafer) on which film formation has been completed is taken out, and then cleaning is performed by supplying chlorine trifluoride gas into the growth furnace. Chlorine trifluoride gas may be suitably diluted with an inert gas such as Ar and used. As an example of the temperature at the time of cleaning with chlorine trifluoride, it is 400 ° C. or less. However, it is not limited to this.

このように、クリーニングガスとして三フッ化塩素ガスを使用して、これをエピタキシャル成長炉及び排気配管内に流通させることにより、エピタキシャル成長炉内の堆積物は除去されることになる。しかし、他方で、排気配管の内部には新たに三フッ化塩素ガスによるクリーニングの結果生じた三フッ化塩素クリーニング残渣が付着する。特に排気配管がステンレス製の場合は、三フッ化塩素クリーニング残渣が付着しやすい。   Thus, by using chlorine trifluoride gas as the cleaning gas and circulating it in the epitaxial growth furnace and the exhaust pipe, deposits in the epitaxial growth furnace are removed. However, on the other hand, chlorine trifluoride cleaning residue generated as a result of cleaning with chlorine trifluoride gas newly adheres to the inside of the exhaust pipe. In particular, when the exhaust pipe is made of stainless steel, chlorine trifluoride cleaning residue tends to adhere.

しかし、本発明では、かかる三フッ化塩素クリーニング残渣は次回のSiC成膜工程において除去されることになる。このため、本発明では、必要な時間クリーニングガスを流した後、次のウエハの製造(SiCエピタキシャル膜の形成)に取り掛かる。すなわち、新たな基板を成長炉内に配置して次回の成膜の準備を行い、すべての準備が整った後、改めてエピタキシャル成長炉内に原料ガスとともに塩化水素ガスを導入して基板上にSiCエピタキシャル膜を形成する。そして、成膜処理が終了した処理済みガスないし排ガスを排気配管を通じて炉外に排出する。   However, in the present invention, such chlorine trifluoride cleaning residue is removed in the next SiC film forming process. Therefore, in the present invention, after flowing the cleaning gas for a necessary time, the next wafer production (formation of the SiC epitaxial film) is started. That is, a new substrate is placed in the growth furnace to prepare for the next film formation, and after all preparations are made, hydrogen chloride gas is introduced into the epitaxial growth furnace together with the source gas, and SiC epitaxial growth is performed on the substrate. Form a film. Then, the processed gas or exhaust gas for which the film forming process has been completed is discharged out of the furnace through the exhaust pipe.

本発明では、このSiC成膜工程において水素分子や水素ラジカル等の水素系物質が副次的に発生する。この水素系物質を処理済みガスとともに排気配管に流すことにより、排気配管内の三フッ化塩素クリーニング残渣が除去されることになる。除去された三フッ化塩素クリーニング残渣は、排気配管の下流に設けられた除害装置において無害化されてから、系外に排出されることになる。   In the present invention, hydrogen-based substances such as hydrogen molecules and hydrogen radicals are generated secondary to this SiC film formation step. By flowing this hydrogen-based substance together with the treated gas into the exhaust pipe, the chlorine trifluoride cleaning residue in the exhaust pipe is removed. The removed chlorine trifluoride cleaning residue is detoxified in an abatement apparatus provided downstream of the exhaust pipe and then discharged out of the system.

このように、本発明では、エピタキシャル成長炉内に原料ガスとともに塩化水素ガスを供給してSiC膜をエピタキシャル成長させつつ、その成膜処理に使用した処理済みガスないし排ガスをそのまま排気配管に流すという簡単な方法により、前回のクリーニング時に排気配管内に付着残留した三フッ化塩素クリーニング残渣を除去することができる。   As described above, according to the present invention, the hydrogen chloride gas is supplied together with the source gas into the epitaxial growth furnace to epitaxially grow the SiC film, and the processed gas or exhaust gas used for the film formation process is directly flowed to the exhaust pipe. According to the method, it is possible to remove the chlorine trifluoride cleaning residue adhering and remaining in the exhaust pipe at the previous cleaning.

Claims (1)

SiC成膜を行うエピタキシャル成長炉とその排気配管とを含むSiCエピタキシャル成長炉系を三フッ化塩素ガスによりクリーニングした後の排気配管内の三フッ化塩素クリーニング残渣を除去する方法であって、
三フッ化塩素ガスによるクリーニング終了後、SiC成膜工程においてエピタキシャル成長炉内に原料ガスとともに塩化水素ガスを導入することによりSiCの成膜を行うとともに、その処理済みガスを排気配管を通じて排出することにより同排気配管内の三フッ化塩素クリーニング残渣を除去することを特徴とする、SiCエピタキシャル成長炉系における三フッ化塩素クリーニング残渣除去方法。
A method for removing chlorine trifluoride cleaning residue in an exhaust pipe after cleaning an SiC epitaxial growth furnace system including an epitaxial growth furnace for forming a SiC film and its exhaust pipe with chlorine trifluoride gas,
After the cleaning with chlorine trifluoride gas is completed, the SiC film is formed by introducing hydrogen chloride gas together with the source gas into the epitaxial growth furnace in the SiC film forming process, and the processed gas is discharged through the exhaust pipe. A chlorine trifluoride cleaning residue removal method in a SiC epitaxial growth furnace system, comprising removing chlorine trifluoride cleaning residue in the exhaust pipe.
JP2018539461A 2016-09-15 2016-09-15 Chlorine trifluoride cleaning residue removal method in SiC epitaxial growth furnace system Active JP6796652B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077330 WO2018051472A1 (en) 2016-09-15 2016-09-15 Method for removing chlorine trifluoride cleaning residues in sic epitaxial growth furnace system

Publications (2)

Publication Number Publication Date
JPWO2018051472A1 true JPWO2018051472A1 (en) 2019-06-27
JP6796652B2 JP6796652B2 (en) 2020-12-09

Family

ID=61618703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018539461A Active JP6796652B2 (en) 2016-09-15 2016-09-15 Chlorine trifluoride cleaning residue removal method in SiC epitaxial growth furnace system

Country Status (3)

Country Link
JP (1) JP6796652B2 (en)
SG (1) SG11201901641UA (en)
WO (1) WO2018051472A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959887A (en) * 2022-05-31 2022-08-30 云南临沧鑫圆锗业股份有限公司 Method for carrying out crystal growth by utilizing silicon carbide crystal growth excess material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080035A (en) * 2010-10-06 2012-04-19 Hitachi Kokusai Electric Inc Substrate processing device and substrate manufacturing method
JP2012175072A (en) * 2011-02-24 2012-09-10 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2014179550A (en) * 2013-03-15 2014-09-25 Hitachi Kokusai Electric Inc Substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959887A (en) * 2022-05-31 2022-08-30 云南临沧鑫圆锗业股份有限公司 Method for carrying out crystal growth by utilizing silicon carbide crystal growth excess material

Also Published As

Publication number Publication date
WO2018051472A1 (en) 2018-03-22
JP6796652B2 (en) 2020-12-09
SG11201901641UA (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US20200385861A1 (en) Method for cleaning quartz epitaxial chambers
US9476144B2 (en) Method and apparatus for the selective deposition of epitaxial germanium stressor alloys
TWI446409B (en) Cluster tool for epitaxial film formation
KR102293802B1 (en) Mocvd layer growth method with subsequent multi-stage cleaning step
JP6362266B2 (en) SiC epitaxial wafer manufacturing method and SiC epitaxial growth apparatus
TWI596229B (en) A method of in situ cleaning MOCVD reaction chamber
TWI768025B (en) Film forming apparatus and cleaning method thereof
JP2011233583A (en) Vapor-phase growth device and method of manufacturing silicon epitaxial wafer
JP6796652B2 (en) Chlorine trifluoride cleaning residue removal method in SiC epitaxial growth furnace system
CN108070842B (en) Method for growing single crystal diamond by using MPCVD method based on hair as carbon source
JP2013509701A (en) Deposit removal method
US9029264B2 (en) Methods for depositing a tin-containing layer on a substrate
JP5267361B2 (en) Epitaxial growth method
JP2012017502A (en) Carbon film deposition system
JP6677958B2 (en) Dry cleaning equipment for contaminated parts in vapor phase growth equipment
WO2013104200A1 (en) Method for using ald device to grow gallium nitride film
JP6085414B2 (en) Method for direct growth of germanium layers
JP5370209B2 (en) Manufacturing method of silicon epitaxial wafer
JP6671195B2 (en) Method for epitaxial growth of silicon carbide
JP2017504557A (en) Method for producing polycrystalline silicon
JP2006059858A (en) Method for manufacturing semiconductor device
TWI760918B (en) Attachment removal method and film formation method
US20150311069A1 (en) Method for manufacturing silicon carbide semiconductor substrate
JP6489478B2 (en) Manufacturing method of semiconductor device
WO2017047244A1 (en) Method for manufacturing silicon carbide epitaxial substrate and apparatus for silicon carbide epitaxial growth

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201116

R150 Certificate of patent or registration of utility model

Ref document number: 6796652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250