JPWO2017221913A1 - Method of manufacturing three-dimensional shaped object - Google Patents

Method of manufacturing three-dimensional shaped object Download PDF

Info

Publication number
JPWO2017221913A1
JPWO2017221913A1 JP2018524103A JP2018524103A JPWO2017221913A1 JP WO2017221913 A1 JPWO2017221913 A1 JP WO2017221913A1 JP 2018524103 A JP2018524103 A JP 2018524103A JP 2018524103 A JP2018524103 A JP 2018524103A JP WO2017221913 A1 JPWO2017221913 A1 JP WO2017221913A1
Authority
JP
Japan
Prior art keywords
powder
solidified layer
layer
dimensional shaped
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018524103A
Other languages
Japanese (ja)
Other versions
JP6643644B2 (en
Inventor
暁史 中村
暁史 中村
吉田 徳雄
徳雄 吉田
阿部 諭
諭 阿部
不破 勲
勲 不破
雅憲 森本
雅憲 森本
功康 中島
功康 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2017221913A1 publication Critical patent/JPWO2017221913A1/en
Application granted granted Critical
Publication of JP6643644B2 publication Critical patent/JP6643644B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

三次元形状造形物の反りまたはクラックをより好適に減じることができる粉末床溶融結合法を提供する。粉末層形成および固化層形成を交互に繰り返して行う三次元形状造形物の製造方法を提供する。本発明の製造方法では、固化層形成のために、造形プレートまたは最直近で形成された固化層の表面の濡れ性を高くする濡れ性処理を行う。A powder bed fusion bonding method is provided that can reduce warpage or cracks of a three-dimensional shaped object more suitably. Provided is a method for producing a three-dimensional shaped object, wherein powder layer formation and solidified layer formation are alternately repeated. In the manufacturing method of the present invention, in order to form a solidified layer, a wettability treatment is performed to increase the wettability of the surface of the shaping plate or the most recently formed solidified layer.

Description

本開示は、三次元形状造形物の製造方法に関する。より詳細には、本開示は、粉末層への光ビーム照射によって固化層を形成する三次元形状造形物の製造方法に関する。   The present disclosure relates to a method of manufacturing a three-dimensional shaped object. More specifically, the present disclosure relates to a method for producing a three-dimensional shaped object in which a solidified layer is formed by light beam irradiation on a powder layer.

光ビームを粉末材料に照射することを通じて三次元形状造形物を製造する方法(一般的には「粉末床溶融結合法」と称される)は、従来より知られている。かかる方法は、以下の工程(i)および(ii)に基づいて粉末層形成と固化層形成とを交互に繰り返し実施して三次元形状造形物を製造する(特許文献1または特許文献2参照)。
(i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
(ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
Methods for producing three-dimensional shaped objects by irradiating a powder material with a light beam (generally referred to as "powder bed melt bonding method") are known in the art. This method alternately performs powder layer formation and solidified layer formation based on the following steps (i) and (ii) to produce a three-dimensional shaped object (see Patent Document 1 or Patent Document 2) .
(I) A step of irradiating a predetermined portion of the powder layer with a light beam and sintering or solidifying the powder of the predetermined portion to form a solidified layer.
(Ii) forming a new powder layer on the obtained solidified layer, and similarly irradiating a light beam to form a further solidified layer.

このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を金型として使用することができる。一方、粉末材料として有機質の樹脂粉末を用いる場合、得られる三次元形状造形物を各種モデルとして使用することができる。   According to such a manufacturing technique, it is possible to manufacture a complex three-dimensional shaped object in a short time. When using inorganic metal powder as a powder material, the three-dimensional shaped object obtained can be used as a mold. On the other hand, in the case of using an organic resin powder as the powder material, the three-dimensional shaped object obtained can be used as various models.

粉末材料として金属粉末を用い、それによって得られる三次元形状造形物を金型として使用する場合を例にとる。図9に示すように、まず、スキージング・ブレード23を動かして粉末19を移送させて造形プレート21上に所定厚みの粉末層22を形成する(図9(a)参照)。次いで、粉末層の所定箇所に光ビームLを照射して粉末層から固化層24を形成する(図9(b)参照)。引き続いて、得られた固化層の上に新たな粉末層を形成して再度光ビームを照射して新たな固化層を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図9(c)参照)、最終的には積層化した固化層から成る三次元形状造形物を得ることができる。最下層として形成される固化層24は造形プレート21と結合した状態になるので、三次元形状造形物と造形プレートとは一体化物を成すことになり、その一体化物を金型として使用することができる。   The case where a metal powder is used as a powder material and the three-dimensional shaped object obtained thereby is used as a mold is taken as an example. As shown in FIG. 9, first, the squeegeeing blade 23 is moved to transfer the powder 19 to form a powder layer 22 of a predetermined thickness on the shaping plate 21 (see FIG. 9A). Next, a predetermined portion of the powder layer is irradiated with a light beam L to form a solidified layer 24 from the powder layer (see FIG. 9B). Subsequently, a new powder layer is formed on the obtained solidified layer, and the light beam is irradiated again to form a new solidified layer. Thus, when the powder layer formation and the solidified layer formation are alternately repeated, the solidified layer 24 is laminated (see FIG. 9C), and finally, a three-dimensional shape formed of the laminated solidified layer A shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is in a state of being bonded to the shaping plate 21, the three-dimensional shaped article and the shaping plate form an integral body, and the integral is used as a mold it can.

特表平1−502890号公報Japanese Patent Publication No. 1-502890 特開2000−73108号公報JP 2000-73108 A

上記のような粉末床溶融結合法において、本願発明者らは、三次元形状造形物が光ビームの照射を通じて製造されるものであるため、三次元形状造形物およびそれを支える造形プレートは光ビームによる熱の影響を少なからず受けることを見出した。具体的には、固化層形成時の入熱量が過度になると、三次元形状造形物に内部応力が生じてしまうことを見出した。つまり、光ビームの照射に起因した粉末溶融物、それから得られる固化層、またはそれらの土台となる造形プレートへの入熱が過度になると、三次元形状造形物またはそれと造形プレートとの一体化物に内部応力が発生し得る。それゆえ、造形プレートを固定しているボルトを外すと内部応力に起因してプレートごと三次元形状造形物が反る現象が生じ得る。また、三次元形状造形物に対して放電加工または切削加工などの後処理を施す場合では内部応力に起因して三次元形状造形物にクラックが発生し得る。   In the powder bed fusion bonding method as described above, since the three-dimensional shaped object is manufactured through irradiation of a light beam, the inventors of the present invention have three-dimensional shaped object and a forming plate for supporting the three-dimensional shaped object. I found that I was a little affected by the heat caused by Specifically, it has been found that internal stress is generated in the three-dimensional shaped object when the amount of heat input at the time of forming the solidified layer becomes excessive. That is, when the heat input to the powder melt resulting from the irradiation of the light beam, the solidified layer obtained therefrom, or the modeling plate serving as the base thereof becomes excessive, the three-dimensional shaped article or the integrated article with the modeling plate Internal stresses can occur. Therefore, when the bolt fixing the shaping plate is removed, a phenomenon may occur in which the three-dimensional shaped object warps together with the plate due to the internal stress. In the case where the three-dimensional shaped object is subjected to post-processing such as electric discharge machining or cutting, cracks may occur in the three-dimensional shaped object due to internal stress.

本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の主たる課題は、三次元形状造形物の反りまたはクラックをより好適に減じることができる粉末床溶融結合法を提供することである。   The present invention has been made in view of such circumstances. That is, the main object of the present invention is to provide a powder bed fusion bonding method which can reduce warpage or cracks of a three-dimensional shaped object more suitably.

上記課題を解決するために、本発明の一態様では、
(i)造形プレート上の粉末層の所定箇所に光ビームを照射して当該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、その新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層形成および固化層形成を交互に繰り返して行う三次元形状造形物の製造方法であって、
固化層形成のために、造形プレートまたは最直近で形成された固化層の表面の濡れ性を高くする濡れ性処理を行うことを含む、三次元形状造形物の製造方法が提供される。
In order to solve the above-mentioned subject, in one mode of the present invention,
(I) a step of irradiating a predetermined portion of the powder layer on the shaping plate with a light beam to sinter or solidify the powder of the predetermined portion to form a solidified layer; and (ii) on the obtained solidified layer Forming a new powder layer, and irradiating the light beam to a predetermined portion of the new powder layer to form a further solidified layer, thereby alternately repeating the powder layer formation and the solidified layer formation. Manufacturing method of the object,
There is provided a method of producing a three-dimensional shaped object, which comprises performing a wettability treatment to increase the wettability of the surface of the shaping plate or the most recently formed solidified layer for forming the solidified layer.

本発明の製造方法の一態様では、三次元形状造形物の反りまたはクラックをより好適に減じることができる。より具体的には、“濡れ性処理”によって固化層形成時の入熱量を減じることができる。したがって、本発明の一態様では、三次元形状造形物に発生し得る内部応力を減じることができ、三次元形状造形物の反りまたはクラックの発生をより抑制できる。   In one aspect of the manufacturing method of the present invention, warpage or cracking of the three-dimensional shaped object can be reduced more suitably. More specifically, the heat input during the formation of the solidified layer can be reduced by the "wetting treatment". Therefore, in one aspect of the present invention, the internal stress that can be generated in the three-dimensional shaped object can be reduced, and the occurrence of warpage or cracks in the three-dimensional shaped object can be further suppressed.

表面の濡れ性を高くする濡れ性処理を説明するための模式的平面図A schematic plan view for explaining the wettability treatment for enhancing the wettability of the surface 表面に部分的に行われる濡れ性処理を説明するための模式的平面図A schematic plan view for explaining the wettability treatment partially applied to the surface 高濡れ性領域における粉末溶融物の濡れ広がりを説明するための模式的断面図A schematic sectional view for explaining the wetting and spreading of the powdery melt in the high wettability region 本発明の製造方法の一態様における概念を模式的に示した工程断面図(図4(a):造形プレートの表面、図4(b):表面への濡れ性処理、図4(c):高濡れ性領域上での光ビーム照射、図4(d):粉末溶融物の発生、図4(e):粉末溶融物の濡れ広がり)Process sectional drawing which showed the concept in 1 aspect of the manufacturing method of this invention typically (FIG. 4 (a): The surface of a modeling plate, FIG.4 (b): the wettability process to a surface, FIG.4 (c): Light beam irradiation on high wettability area, Fig. 4 (d): generation of powder melt, Fig. 4 (e): wet spread of powder melt) 濡れ性処理が行われた表面上で固化層が形成される態様を模式的に示した断面図Sectional view schematically showing an aspect in which a solidified layer is formed on the surface subjected to the wettability treatment 表面の高温化の一態様を説明するための模式的断面図A schematic cross-sectional view for explaining one aspect of raising the surface temperature 表面の還元処理を説明するための模式的断面図A schematic cross-sectional view for explaining the surface reduction treatment 本願発明者らが見出した事項を説明するためのグラフGraph for explaining the matters found out by the present inventors 粉末床溶融結合法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図9(a):粉末層形成、図9(b):固化層形成、図9(c):固化層の積層化)Sectional drawing which showed typically the process aspect of the photo formation compound processing in which the powder bed fusion bonding method is implemented (FIG. 9 (a): powder layer formation, FIG.9 (b): solidification layer formation, FIG.9 (c) : Stacking of solidified layer) 光造形複合加工機の構成を模式的に示した斜視図The perspective view which showed the structure of the optical shaping compound processing machine typically 光造形複合加工機の一般的な動作を示すフローチャートFlow chart showing the general operation of the stereolithography compound processing machine 濡れ性処理が行われていない条件下の粉末溶融物の態様を模式的に示した断面図Cross-sectional view schematically showing an aspect of a powder melt under the condition that wetting treatment is not performed

以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。   Hereinafter, an embodiment of the present invention will be described in more detail with reference to the drawings. The forms and dimensions of various elements in the drawings are merely illustrative and do not reflect the actual forms and dimensions.

本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」を意味している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に指している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。更に「固化層」とは、粉末層が金属粉末層である場合には「焼結層」を意味し、粉末層が樹脂粉末層である場合には「硬化層」を意味している。   In the present specification, “powder layer” means, for example, “metal powder layer composed of metal powder” or “resin powder layer composed of resin powder”. Also, "a predetermined portion of the powder layer" substantially refers to a region of the three-dimensional shaped object to be manufactured. Therefore, by irradiating a light beam to the powder present at such a predetermined location, the powder is sintered or solidified to form a three-dimensional shaped object. Furthermore, "solidified layer" means "sintered layer" when the powder layer is a metal powder layer, and means "hardened layer" when the powder layer is a resin powder layer.

また、本明細書で直接的または間接的に説明される“上下”の方向は、例えば三次元形状造形物の製造時における造形プレートと三次元形状造形物との位置関係に基づいている。具体的には、造形プレートを基準にして三次元形状造形物が製造される側を「上方向」とし、その反対側を「下方向」としている。   Further, the “upper and lower” directions described directly or indirectly in the present specification are based on, for example, the positional relationship between the shaping plate and the three-dimensional shaped article at the time of manufacturing the three-dimensional shaped article. Specifically, the side on which the three-dimensional shaped object is manufactured with reference to the forming plate is referred to as "upper direction", and the opposite side is referred to as "down direction".

[粉末床溶融結合法]
まず、本発明の製造方法の前提となる粉末床溶融結合法について説明する。特に粉末床溶融結合法において三次元形状造形物に対して切削処理を付加的に行う光造形複合加工を例として挙げる。図9は、光造形複合加工のプロセス態様を模式的に示している。図10および図11は、粉末床溶融結合法と切削処理とを実施できる光造形複合加工機の主たる構成および動作のフローチャートをそれぞれ示している。
Powder bed fusion bonding method
First, a powder bed fusion bonding method, which is a premise of the manufacturing method of the present invention, will be described. In particular, in the powder bed fusion bonding method, an optical shaping composite processing in which a cutting process is additionally performed on a three-dimensional shaped object is taken as an example. FIG. 9 schematically shows a process aspect of the optical shaping composite processing. FIGS. 10 and 11 respectively show flow charts of the main configuration and operation of the stereolithography compound processing machine capable of performing the powder bed fusion bonding method and the cutting process.

光造形複合加工機1は、図10に示すように、粉末層形成手段2、光ビーム照射手段3および切削手段4を備えている。   The optical shaping combined processing machine 1 is provided with a powder layer forming means 2, a light beam irradiation means 3 and a cutting means 4 as shown in FIG. 10.

粉末層形成手段2は、金属粉末または樹脂粉末などの粉末を所定厚みで敷くことによって粉末層を形成するための手段である。光ビーム照射手段3は、粉末層の所定箇所に光ビームLを照射するための手段である。切削手段4は、積層化した固化層の側面、すなわち、三次元形状造形物の表面を削るための手段である。   The powder layer forming means 2 is a means for forming a powder layer by laying a powder such as a metal powder or a resin powder with a predetermined thickness. The light beam irradiation means 3 is a means for irradiating the light beam L to a predetermined portion of the powder layer. The cutting means 4 is a means for shaving the side surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.

粉末層形成手段2は、図9に示すように、粉末テーブル25、スキージング・ブレード23、支持テーブル20および造形プレート21を主に有して成る。粉末テーブル25は、外周が壁26で囲まれた粉末材料タンク28内にて上下に昇降できるテーブルである。スキージング・ブレード23は、粉末テーブル25上の粉末19を支持テーブル20上へと供して粉末層22を得るべく水平方向に移動できるブレードである。支持テーブル20は、外周が壁27で囲まれた造形タンク29内にて上下に昇降できるテーブルである。そして、造形プレート21は、支持テーブル20上に配され、三次元形状造形物の土台となるプレートである。   The powder layer forming means 2 mainly comprises a powder table 25, a squeezing blade 23, a support table 20 and a shaping plate 21 as shown in FIG. The powder table 25 is a table which can move up and down in the powder material tank 28 whose outer periphery is surrounded by the wall 26. The squeegee blade 23 is a blade that can be moved horizontally to provide powder 19 on powder table 25 onto support table 20 to obtain powder layer 22. The support table 20 is a table that can move up and down in the modeling tank 29 whose outer periphery is surrounded by the wall 27. And the modeling plate 21 is a plate which is distribute | arranged on the support table 20 and becomes a base of a three-dimensional-shaped molded article.

光ビーム照射手段3は、図10に示すように、光ビーム発振器30およびガルバノミラー31を主に有して成る。光ビーム発振器30は、光ビームLを発する機器である。ガルバノミラー31は、発せられた光ビームLを粉末層22にスキャニングする手段、すなわち、光ビームLの走査手段である。   The light beam irradiating means 3 mainly comprises a light beam oscillator 30 and a galvano mirror 31 as shown in FIG. The light beam oscillator 30 is a device that emits a light beam L. The galvano mirror 31 is a means for scanning the emitted light beam L onto the powder layer 22, that is, a means for scanning the light beam L.

切削手段4は、図10に示すように、エンドミル40および駆動機構41を主に有して成る。エンドミル40は、積層化した固化層の側面、すなわち、三次元形状造形物の表面を削るための切削工具である。駆動機構41は、エンドミル40を所望の切削すべき箇所へと移動させる手段である。   The cutting means 4 mainly comprises an end mill 40 and a drive mechanism 41, as shown in FIG. The end mill 40 is a cutting tool for shaving the side of the laminated solidified layer, that is, the surface of the three-dimensional shaped object. The drive mechanism 41 is a means for moving the end mill 40 to a desired cutting position.

光造形複合加工機1の動作について詳述する。光造形複合加工機1の動作は、図11のフローチャートに示すように、粉末層形成ステップ(S1)、固化層形成ステップ(S2)および切削ステップ(S3)から構成されている。粉末層形成ステップ(S1)は、粉末層22を形成するためのステップである。かかる粉末層形成ステップ(S1)では、まず支持テーブル20をΔt下げ(S11)、造形プレート21の上面と造形タンク29の上端面とのレベル差がΔtとなるようにする。次いで、粉末テーブル25をΔt上げた後、図9(a)に示すようにスキージング・ブレード23を粉末材料タンク28から造形タンク29に向かって水平方向に移動させる。これによって、粉末テーブル25に配されていた粉末19を造形プレート21上へと移送させることができ(S12)、粉末層22の形成が行われる(S13)。粉末層22を形成するための粉末材料としては、例えば「平均粒径5μm〜100μm程度の金属粉末」および「平均粒径30μm〜100μm程度のナイロン、ポリプロピレンまたはABS等の樹脂粉末」を挙げることができる。粉末層22が形成されたら、固化層形成ステップ(S2)へと移行する。固化層形成ステップ(S2)は、光ビーム照射によって固化層24を形成するステップである。かかる固化層形成ステップ(S2)においては、光ビーム発振器30から光ビームLを発し(S21)、ガルバノミラー31によって粉末層22上の所定箇所へと光ビームLをスキャニングする(S22)。これによって、粉末層22の所定箇所の粉末を焼結又は溶融固化させ、図9(b)に示すように固化層24を形成する(S23)。光ビームLとしては、炭酸ガスレーザ、Nd:YAGレーザ、ファイバレーザまたは紫外線などを用いてよい。   The operation of the optical forming combined processing machine 1 will be described in detail. The operation of the optical forming combined processing machine 1 includes a powder layer forming step (S1), a solidified layer forming step (S2), and a cutting step (S3) as shown in the flowchart of FIG. The powder layer forming step (S1) is a step for forming the powder layer 22. In the powder layer forming step (S1), first, the support table 20 is lowered by Δt (S11) so that the level difference between the upper surface of the shaping plate 21 and the upper end surface of the shaping tank 29 becomes Δt. Then, after raising the powder table 25 by Δt, the squeezing blade 23 is moved horizontally from the powder material tank 28 toward the shaping tank 29 as shown in FIG. 9A. As a result, the powder 19 disposed on the powder table 25 can be transferred onto the shaping plate 21 (S12), and the formation of the powder layer 22 is performed (S13). As a powder material for forming the powder layer 22, for example, "metal powder with an average particle diameter of about 5 μm to 100 μm" and "resin powder such as nylon, polypropylene or ABS with an average particle diameter of about 30 μm to 100 μm" may be mentioned. it can. After the powder layer 22 is formed, the process proceeds to the solidified layer forming step (S2). The solidified layer forming step (S2) is a step of forming the solidified layer 24 by light beam irradiation. In the solidified layer forming step (S2), the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined place on the powder layer 22 by the galvano mirror 31 (S22). By this, the powder of the predetermined part of the powder layer 22 is sintered or melted and solidified to form a solidified layer 24 as shown in FIG. 9B (S23). As the light beam L, a carbon dioxide gas laser, an Nd: YAG laser, a fiber laser or ultraviolet light may be used.

粉末層形成ステップ(S1)および固化層形成ステップ(S2)は、交互に繰り返して実施する。これにより、図9(c)に示すように複数の固化層24が積層化する。   The powder layer forming step (S1) and the solidified layer forming step (S2) are alternately repeated. Thereby, as shown in FIG. 9C, a plurality of solidified layers 24 are laminated.

積層化した固化層24が所定厚みに達すると(S24)、切削ステップ(S3)へと移行する。切削ステップ(S3)は、積層化した固化層24の側面、すなわち、三次元形状造形物の表面を削るためのステップである。エンドミル40(図9(c)および図10参照)を駆動させることによって切削ステップが開始される(S31)。例えば、エンドミル40が3mmの有効刃長さを有する場合、三次元形状造形物の高さ方向に沿って3mmの切削処理を行うことができるので、Δtが0.05mmであれば60層分の固化層24が積層した時点でエンドミル40を駆動させる。具体的には駆動機構41によってエンドミル40を移動させながら、積層化した固化層24の側面に対して切削処理を施すことになる(S32)。このような切削ステップ(S3)の最終では、所望の三次元形状造形物が得られているか否かを判断する(S33)。所望の三次元形状造形物が依然得られていない場合では、粉末層形成ステップ(S1)へと戻る。以降、粉末層形成ステップ(S1)〜切削ステップ(S3)を繰り返し実施して更なる固化層の積層化および切削処理を実施することによって、最終的に所望の三次元形状造形物が得られる。   When the solidified layer 24 which has been laminated reaches a predetermined thickness (S24), the process proceeds to the cutting step (S3). The cutting step (S3) is a step for scraping the side surface of the solidified layer 24, ie, the surface of the three-dimensional shaped object. The cutting step is started by driving the end mill 40 (see FIGS. 9C and 10) (S31). For example, when the end mill 40 has an effective blade length of 3 mm, a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object, so if Δt is 0.05 mm, 60 layers When the solidified layer 24 is laminated, the end mill 40 is driven. Specifically, while moving the end mill 40 by the drive mechanism 41, the side surface of the laminated solidified layer 24 is cut (S32). At the end of such a cutting step (S3), it is determined whether a desired three-dimensional shaped object is obtained (S33). If the desired three-dimensional shaped object is not yet obtained, the process returns to the powder layer forming step (S1). Thereafter, the powder layer forming step (S1) to the cutting step (S3) are repeatedly performed to carry out the lamination of the solidified layer and the cutting process to finally obtain a desired three-dimensional shaped object.

[本発明の製造方法]
本発明の製造方法の一態様は、上述した粉末床溶融結合法につき、固化層の形成態様に特徴を有している。
[Production method of the present invention]
One aspect of the production method of the present invention is characterized in the formation aspect of the solidified layer with respect to the powder bed fusion bonding method described above.

具体的には、固化層形成のために“濡れ性”に関連する処理を行ってから、光ビームの照射を行う。特に、固化層形成のために「造形プレート」または「最直近で形成された固化層」の表面の濡れ性を高くする濡れ性処理を行う。   Specifically, the treatment related to “wettability” is performed to form a solidified layer, and then light beam irradiation is performed. In particular, in order to form a solidified layer, a wettability treatment is performed to increase the wettability of the surface of the “shaped plate” or the “solidified layer most recently formed”.

本明細書にいう「濡れ性」は、広義には、固化層形成のための土台面の濡れ性のことを指している。狭義には、「濡れ性」は、造形プレートまたは最直近で形成された固化層の表面の濡れ性であって、特に粉末層への光ビーム照射で生じ得る粉末溶融物に対する濡れ性を意味している。なお、「最直近で形成された固化層」とは、固化層形成時において既に形成された先行の固化層のうち最も上層に位置する固化層のことを指している。   The term "wettability" as used herein refers broadly to the wettability of a base surface for the formation of a solidified layer. In a narrow sense, "wettability" refers to the wettability of the surface of the shaped plate or of the most recently formed solidified layer, and in particular the wettability to the powder melt that can be generated by light beam irradiation of the powder layer. ing. The “solidified layer most recently formed” refers to the solidified layer located at the uppermost layer among the preceding solidified layers already formed at the time of forming the solidified layer.

本発明の製造方法では固化層形成のための土台面(すなわち、「造形プレート」または「最直近で形成された固化層の表面」)に対して濡れ性を高くする濡れ性処理を行う。あくまでも例示にすぎないが、図1に示すように、造形プレートまたは最直近で形成された固化層の表面21',24'に高濡れ性領域60が全体的に形成されるように濡れ性処理を行ってよい。あるいは、造形プレートまたは最直近で形成された固化層の表面21',24'に対して部分的に濡れ性処理を行ってもよい。例えば、造形プレートまたは最直近で形成された固化層の表面21',24'のなかでも固化層が形成される領域、すなわち、三次元形状造形物の造形領域にのみ高濡れ性領域60が形成されるように濡れ性処理を行ってよい(図2参照)。つまり、三次元形状造形物のための造形領域が高濡れ性領域60に相当するようにしてよい。   In the manufacturing method of the present invention, the wettability treatment is performed to increase the wettability to the base surface for forming the solidified layer (that is, “the shaped plate” or “the surface of the most recently formed solidified layer”). For the purpose of illustration only, as shown in FIG. 1, the wettability treatment is carried out so that the high wettability region 60 is entirely formed on the surface 21 ', 24' of the shaping plate or the most recently formed solidified layer. You may Alternatively, the wettability treatment may be partially performed on the surface 21 ', 24' of the shaping plate or the most recently formed solidified layer. For example, the high wettability region 60 is formed only in the region where the solidified layer is formed among the surfaces 21 ′ and 24 ′ of the formed plate or the most recently formed solidified layer, ie, the formed region of the three-dimensional shaped object Wetting treatment may be performed as described (see FIG. 2). That is, the shaping region for the three-dimensional shaped object may correspond to the high wettability region 60.

濡れ性処理が行われた場合、粉末層への光ビーム照射時に生じる粉末溶融物が影響を受けることになる。より具体的には、光ビーム照射時に生じる粉末溶融物62は高濡れ性領域60において濡れ広がり易くなり、比較的短時間で固化層が形成される(図3参照)。粉末床溶融結合法で粉末層から所望の固化層が形成される際には、粉末溶融物62は球状化を経た後で厚みを減じつつ広がって固化し得る。「造形プレートまたは最直近で形成された固化層の表面21',24'」の濡れ性が高くないと、粉末溶融物62の球状化が相対的に維持され易くなり粉末溶融物62が広がるまでに時間を要し、結果として光ビーム照射のエネルギーが増してしまう。一方、本発明の如く「造形プレートまたは最直近で形成された固化層の表面21',24'」の濡れ性が高いと、粉末溶融物62の球状化は相対的に維持され難くなり粉末溶融物62が広がるまでの時間が短く、結果として光ビーム照射のエネルギーの低減を図ることができる。これは、光ビーム照射時に生じる粉末溶融物62は高濡れ性領域60では濡れ広がりやすく、光ビームのパワー(より具体的には「単位時間当たりのエネルギー量」)が同じであっても、高濡れ性領域60で光ビームの走査スピードを速くすることができ、比較的短時間で固化層を形成できることを意味している(図3参照)。従って、本発明の製造方法では固化層形成時の光ビーム照射に起因する入熱量が減じられることになる。換言すれば、濡れ性処理が行われない条件下では粉末溶融物62は特に表面張力によって球状化が維持される傾向があり(図12参照)、そのような球状化に起因して固化層形成は比較的長い時間を要することになる。これに対して、本発明に従って濡れ性処理が行われると、球状化を一旦経り得るものの直ぐに濡れ広がる粉末溶融物62に起因して比較的短い時間で固化層が形成されるので(図3参照)、光ビーム照射に起因する入熱量を減じることができる。   In the case of the wettability treatment, the powder melt produced during the light beam irradiation of the powder layer is affected. More specifically, the powder melt 62 generated at the time of light beam irradiation tends to wet and spread in the high wettability region 60, and a solidified layer is formed in a relatively short time (see FIG. 3). When the desired solidified layer is formed from the powder layer by the powder bed fusion bonding method, the powder melt 62 may spread and solidify with a reduced thickness after undergoing spheroidization. Unless the wettability of "the shaped plate or the surface 21 ', 24' of the most recently formed solidified layer" is high, the spheroidization of the powder melt 62 is relatively easily maintained, and the powder melt 62 is spread Time, and as a result, the energy of light beam irradiation increases. On the other hand, when the wettability of “the shaped plate or the surface 21 ′, 24 ′ of the solidified layer formed most recently” is high as in the present invention, the spheroidization of the powder melt 62 is relatively difficult to maintain and the powder melt The time until the object 62 spreads is short, and as a result, the energy of light beam irradiation can be reduced. This is because the powder melt 62 generated at the time of light beam irradiation tends to wet and spread in the high wettability region 60, and is high even if the power of the light beam (more specifically, the "amount of energy per unit time") is the same. The wettability region 60 can increase the scanning speed of the light beam, which means that a solidified layer can be formed in a relatively short time (see FIG. 3). Therefore, in the manufacturing method of the present invention, the amount of heat input resulting from the light beam irradiation at the time of forming the solidified layer is reduced. In other words, under conditions where no wetting treatment takes place, the powder melt 62 tends to remain spheronized, in particular by surface tension (see FIG. 12), and solidified layer formation due to such spheroidization Will take a relatively long time. On the other hand, when the wettability treatment is performed according to the present invention, the solidified layer is formed in a relatively short time due to the powder melt 62 which spreads immediately although it may go through the spheroidization (FIG. 3). Reference), it is possible to reduce the amount of heat input due to light beam irradiation.

このように光ビーム照射に起因する入熱量が減じられるので、本発明の製造方法の一態様では、三次元形状造形物の反りまたは三次元形状造形物におけるクラックの発生をより抑制することができる。つまり、光ビーム照射に起因して固化層またはその土台の造形プレートにもたらされる熱が過度になる場合では三次元形状造形物に内部応力が発生し得るところ、本発明ではそのような過度な熱を回避できる。特に本発明ではそのような過度な熱を濡れ性処理を通じて減じることができるので、三次元形状造形物に発生し得る内部応力をより好適に減じることができる。結果として三次元形状造形物の反りまたは三次元形状造形物におけるクラックをより好適に防止できる。   Thus, since the heat input amount caused by the light beam irradiation is reduced, in one aspect of the manufacturing method of the present invention, it is possible to further suppress warpage of the three-dimensional shaped object or generation of cracks in the three-dimensional shaped object. . That is, in the present invention, the internal stress may be generated in the three-dimensional shaped object when the heat provided to the solidified layer or the shaping plate of the base thereof is excessive due to the light beam irradiation. Can be avoided. In particular, in the present invention, such excessive heat can be reduced through the wettability treatment, so that the internal stress that can be generated in the three-dimensional shaped object can be reduced more suitably. As a result, it is possible to more preferably prevent warping of the three-dimensional shaped object or cracking in the three-dimensional shaped object.

図4を参照して本発明の製造方法の例示的な態様を経時的に説明する。まず、図4(a)および4(b)に示すように、造形プレート21の表面21'に対して濡れ性処理を施す。つまり、かかる表面21'の濡れ性をより高くするための濡れ性処理を行って高濡れ性領域60を形成する。濡れ性処理は表面全体に施してよく、あるいは、固化層が形成される表面領域にのみ限定して施してもよい。次いで、高濡れ性領域60上に粉末層22を形成して光ビームLを照射する(図4(c)参照)。光ビームLの照射によって生じる粉末溶融物62は、図4(d)および4(e)に示すように、濡れ性処理が行われた表面領域(すなわち、高濡れ性領域60)で濡れ広がることになる。つまり、より短時間でかかる表面領域の全体に粉末溶融物62が行き渡るので、入熱量を減じた状態で固化層が形成される。それ以降は、同様にして、形成された固化層の表面に対して濡れ性をより高くする濡れ性処理を行うことが好ましい。これによって、以降の固化層形成時においても同様に比較的短時間で粉末溶融物の濡れ広がりが生じ、入熱量を減じて固化層の形成を行うことができる。   An exemplary embodiment of the manufacturing method of the present invention will be described over time with reference to FIG. First, as shown in FIGS. 4A and 4B, the surface 21 ′ of the shaping plate 21 is subjected to the wettability treatment. That is, the wettability treatment for increasing the wettability of the surface 21 ′ is performed to form the high wettability region 60. The wettability treatment may be applied to the entire surface, or may be limited to only the surface area where the solidified layer is formed. Next, the powder layer 22 is formed on the high wettability region 60, and the light beam L is irradiated (see FIG. 4C). The powder melt 62 produced by the irradiation of the light beam L wets and spreads on the surface area subjected to the wettability treatment (ie, the high wettability region 60) as shown in FIGS. 4 (d) and 4 (e). become. That is, since the powder melt 62 spreads over the entire surface area in a shorter time, a solidified layer is formed in a state in which the amount of heat input is reduced. After that, in the same manner, it is preferable to perform a wettability treatment to make the surface of the formed solidified layer more wettable. As a result, also during the subsequent formation of the solidified layer, wetting and spreading of the powder melt occurs similarly in a relatively short time, and the amount of heat input can be reduced to form the solidified layer.

本発明の製造方法では、光ビーム照射時に生じる粉末溶融物は高濡れ性領域で濡れ広がってから固化層を成すことになるので、その固化層は粉末層よりも薄くなり得る。つまり、本発明のある態様では、濡れ性処理が行われた表面上において粉末層から形成される固化層24は、その粉末層22よりも小さい厚みを有する(図5参照)。これに対して、濡れ性処理が行われていない条件下では粉末溶融物は表面張力によって球状化がより長く維持される傾向があり(図12参照)、そのような球状化に起因して固化層は薄くなり難い。従って、固化層が粉末層よりも薄くなり得ることは本発明の特徴の1つといえる。   In the manufacturing method of the present invention, the powder melt produced at the time of light beam irradiation wets and spreads in the high wettability region to form a solidified layer, so the solidified layer can be thinner than the powder layer. That is, in one embodiment of the present invention, the solidified layer 24 formed from the powder layer on the surface subjected to the wettability treatment has a smaller thickness than the powder layer 22 (see FIG. 5). On the other hand, under conditions where wetting treatment is not carried out, the powder melt tends to keep the spheroidization longer due to surface tension (see FIG. 12) and solidifies due to such spheroidisation Layers are difficult to thin. Therefore, it can be said that one of the features of the present invention is that the solidified layer can be thinner than the powder layer.

本発明の製造方法においては、濡れ性処理として“表面の滑面化”または“表面の昇温”を行ってよい。   In the production method of the present invention, "smooth surface" or "temperature rise" may be performed as the wettability treatment.

“表面の滑面化”の場合、滑面は高い濡れ性を呈する高濡れ性領域を成し得るので、「造形プレートまたは最直近で形成された固化層の表面」を滑面化することが好ましい。滑面化処理としては、例えば研磨処理を行ってよい。特に制限するわけではないが、研磨処理はバフ研磨であってよい。   In the case of "smooth surface", since the smooth surface can form a high wettability area exhibiting high wettability, it is possible to "smooth the surface of the shaping plate or the most recently formed solidified layer". preferable. As the surface-smoothing process, for example, a polishing process may be performed. Although not particularly limited, the polishing process may be buffing.

“表面の昇温”の場合、より高温化された面は高い濡れ性を呈し得るので、「造形プレートまたは最直近で形成された固化層の表面」を昇温することが好ましい。例えば、「造形プレートまたは最直近で形成された固化層の表面」を比較的小さい照射エネルギーの光ビーム照射に付し、かかる光ビーム照射に起因してもたらされる熱でもって表面を昇温させてよい。あくまでも例示にすぎないが、昇温によって表面温度を昇温前よりも例えば1〜100℃高くしてよい。   In the case of “temperature rise of surface”, it is preferable to raise the temperature of “the surface of the shaping plate or the most recently formed solidified layer” since the surface heated to a higher temperature may exhibit high wettability. For example, "the surface of the shaping plate or the most recently formed solidified layer" is subjected to light beam irradiation of relatively small irradiation energy, and the surface is heated with the heat produced by the light beam irradiation. Good. The surface temperature may be raised, for example, by 1 to 100 ° C. by raising the temperature by, for example, raising the temperature.

なお、表面の昇温は、光ビーム照射による固化層形成時に粉末層への光ビームの入射を斜めに行うことによって実施してもよい。具体的には、図6に示すように、鉛直下向き方向から角度を成すように光ビーム照射を斜めにして固化層24を形成する場合、光ビームLの入射方向の延長線上の表面部分が光ビームLの影響を受けるので、その部分を高温化させることができる。よって、そのように斜めの光ビーム照射を行うと、固化層24の形成を行いつつ表面(造形プレートまたは最直近で形成された固化層の表面21',24')の昇温を行って高濡れ性領域を形成できる。   The surface temperature may be raised by obliquely impinging the light beam on the powder layer when forming the solidified layer by light beam irradiation. Specifically, as shown in FIG. 6, when forming the solidified layer 24 by making the light beam irradiation oblique so as to form an angle from the vertically downward direction, the surface portion on the extension line of the incident direction of the light beam L As it is affected by the beam L, that portion can be heated. Therefore, when the oblique light beam irradiation is performed in this manner, the temperature (the surface 21 ′, 24 ′ of the shaping plate or the most recently formed solidification layer) of the surface is raised while the formation of the solidification layer 24 is performed. A wettable area can be formed.

本発明の製造方法では、所望の高濡れ性領域の形成のために酸化処理または還元処理を行ってもよい。   In the manufacturing method of the present invention, oxidation treatment or reduction treatment may be performed to form a desired high wettability region.

(酸化処理)
「造形プレートまたは最直近で形成された固化層の表面」に対する処理について、酸化処理された表面領域が、そのように酸化処理がされていない領域と比べて高い濡れ性を呈することになる場合、本発明における“濡れ性処理”として酸化処理を実施してよい。かかる場合、固化層形成時の光ビーム照射で生じる粉末溶融物は酸化処理された表面領域で濡れ広がり易くなり、その結果、固化層形成時における入熱量を減じることができる。
(Oxidation treatment)
For the treatment of “the surface of the shaping plate or of the most recently formed solidified layer”, if the oxidized surface area is to exhibit higher wettability compared to the area not so oxidized: An oxidation treatment may be carried out as the "wettability treatment" in the present invention. In such a case, the powder melt produced by the light beam irradiation at the time of forming the solidified layer tends to wet and spread in the oxidized surface area, and as a result, the amount of heat input at the time of forming the solidified layer can be reduced.

酸化処理は種々の態様で実施することができる。例えば、造形プレートまたは最直近で形成された固化層の表面に対して酸化剤を塗布することによって、酸化処理を行ってもよい。つまり、所望の表面領域にのみ酸化剤を塗布して、その塗布部分に酸化膜を形成してよい。このような酸化剤の塗布のために、例えばインクジェット法を用いてよい。つまり、インクジェットプリントヘッドから酸化剤を表面に対して吹き付けることによって酸化剤を塗布してよい。これにより、比較的精度良く選択的な酸化を施すことができる。酸化剤としては、特に制限するわけではないが、例えば過酸化水素水を用いてよい。   The oxidation treatment can be carried out in various ways. For example, the oxidation treatment may be performed by applying an oxidizing agent to the surface of the shaping plate or the most recently formed solidified layer. That is, the oxidizing agent may be applied only to the desired surface area to form an oxide film on the applied portion. For example, an inkjet method may be used to apply such an oxidizing agent. That is, the oxidant may be applied by spraying the oxidant against the surface from an inkjet printhead. Thereby, selective oxidation can be performed with relatively high accuracy. The oxidizing agent is not particularly limited, and for example, hydrogen peroxide solution may be used.

また、造形プレートまたは最直近で形成された固化層の表面を酸化ガス雰囲気下で局所的な加熱に付すことによって行ってもよい。例えば、図7に示すように、光透過性の天面を備えた可動式覆い部材80で「造形プレートまたは最直近で形成された固化層の表面」の近傍雰囲気を囲い、その可動式覆い部材80内を酸化ガスで満たし、その状態で表面に光ビームを照射してよい。光ビームが照射された箇所は加熱されるので、その箇所のみ選択的に酸化膜が形成され、酸化がなされることになる。かかる態様では、光ビームの照射を制御することによって、比較的精度良く局所的な酸化処理を行うことができる。酸化ガスとしては、特に制限するわけではないが、例えば酸素ガスを用いてよい(可動式覆い部材80内の雰囲気ガスの全てを酸素ガスにする必要はなく、他のガス成分が付加的に含まれていてもよい)。   Alternatively, the surface of the shaping plate or the most recently formed solidified layer may be subjected to local heating in an oxidizing gas atmosphere. For example, as shown in FIG. 7, the movable covering member 80 having a light transmitting top surface encloses the atmosphere in the vicinity of "the surface of the shaping plate or the most recently formed solidified layer", and the movable covering member The inside of 80 may be filled with an oxidizing gas, and the surface may be irradiated with a light beam in that state. Since the portion irradiated with the light beam is heated, an oxide film is selectively formed only at that portion and oxidation is performed. In this aspect, by controlling the irradiation of the light beam, local oxidation processing can be performed with relatively high accuracy. The oxidizing gas is not particularly limited, but may be, for example, oxygen gas (it is not necessary to make all the atmosphere gas in the movable covering member 80 oxygen gas, and other gas components are additionally included) May be

(還元処理)
「造形プレートまたは最直近で形成された固化層の表面」に対する処理について、還元処理された表面領域が、そのような処理がされていない領域と比べて高い濡れ性を呈することになる場合、本発明における“濡れ性処理”として還元処理を実施してよい。かかる場合、固化層形成時の光ビーム照射で生じる粉末溶融物は還元処理された表面領域で濡れ広がり易くなり、その結果、固化層形成時における入熱量を減じることができる。
(Reduction treatment)
For the treatment of “the surface of the shaping plate or the most recently formed solidified layer”, if the surface area subjected to the reduction treatment is to exhibit higher wettability than the area not subjected to such treatment, A reduction treatment may be performed as the "wettability treatment" in the invention. In such a case, the powder melt produced by the light beam irradiation at the time of forming the solidified layer tends to wet and spread on the surface area subjected to the reduction treatment, and as a result, the amount of heat input at the time of forming the solidified layer can be reduced.

還元処理は種々の態様で実施することができる。例えば、「造形プレートまたは最直近で形成された固化層の表面」に対して還元剤を塗布することによって、還元処理を行ってよい。つまり、対象となる表面に空気などに起因して自然酸化膜が形成されている場合では還元剤を表面に塗布して、酸化膜を還元作用で除去してよい。このような還元剤の塗布のために、例えばインクジェット法を用いてよい。つまり、インクジェットプリントヘッドから酸化剤を表面に対して吹き付けることによって還元剤を塗布してよい。これにより、比較的精度良く還元処理を行うことができる。還元剤としては、特に制限するわけではないが、例えばアルデヒド剤またはフラックス剤などを用いてよい。   The reduction treatment can be carried out in various manners. For example, the reduction treatment may be performed by applying a reducing agent to “the surface of the shaped plate or the most recently formed solidified layer”. That is, in the case where a natural oxide film is formed on the target surface due to air or the like, a reducing agent may be applied to the surface to remove the oxide film by a reduction action. For example, an inkjet method may be used to apply such a reducing agent. That is, the reducing agent may be applied by spraying the oxidizing agent from the ink jet print head to the surface. Thereby, the reduction process can be performed with relatively high accuracy. The reducing agent is not particularly limited, and for example, an aldehyde agent or a fluxing agent may be used.

また、「造形プレートまたは最直近で形成された固化層の表面」を還元ガス雰囲気下で加熱に付すことによって表面の還元処理を行ってもよい。例えば、図7に示すように、光透過性の天面を備えた可動式覆い部材80で「造形プレートまたは最直近で形成された固化層の表面」の近傍雰囲気を囲み、その可動式覆い部材80内を還元ガスで満たし、その状態で表面に光ビームを照射してよい。光ビームが照射された表面領域は加熱されるので、その領域の酸化膜が除去され、還元がなされることになる。かかる場合、光ビームの照射を制御することによって、比較的精度良く還元処理を行うことができる。還元ガスとしては、特に制限するわけではないが、例えば水素ガスを用いてよい(可動式覆い部材80内の雰囲気ガスの全てを水素ガスにする必要はなく、他のガス成分が付加的に含まれていてもよい)。   Alternatively, the surface reduction treatment may be performed by heating “the surface of the shaped plate or the most recently formed solidified layer” in a reducing gas atmosphere. For example, as shown in FIG. 7, the movable covering member 80 having a light transmitting top surface surrounds the atmosphere in the vicinity of “the surface of the shaping plate or the most recently formed solidified layer”, and the movable covering member The inside of 80 may be filled with a reducing gas, and the surface may be irradiated with a light beam in that state. Since the surface area irradiated with the light beam is heated, the oxide film in that area is removed and reduction is performed. In such a case, the reduction process can be performed with relatively high accuracy by controlling the irradiation of the light beam. The reducing gas is not particularly limited. For example, hydrogen gas may be used (all of the atmosphere gas in the movable covering member 80 does not have to be hydrogen gas, and other gas components are additionally included May be

粉末床溶融結合法において三次元形状造形物に発生する内部応力について本願発明者らが見出した事項について付言しておく。典型的な粉末床溶融結合法では“造形プレートと三次元形状造形物との界面領域”の近傍に内部応力(特に三次元形状造形物に反りをもたらす内部応力)が発生して残留する傾向がある。具体的には、図8のグラフに示すように、典型的な粉末床溶融結合法では造形プレート上に固化層を約100層積層するまでの過程において内部応力が蓄積し易い。したがって、かかる事項を本発明の製造方法に好適に適用すれば、造形プレート上の第1層〜第100層に相当する固化層の少なくとも1つの形成で濡れ性処理を行うことが好ましいといえる。これによって、そのような界面近傍の固化層の形成で入熱量を減じることができ、結果として三次元形状造形物の反りをより効果的に抑制することができる。   The internal stress generated in the three-dimensional shaped object in the powder bed fusion bonding method will be added as to the matter found by the present inventors. In a typical powder bed fusion bonding method, internal stress (especially internal stress that causes warpage in a three-dimensional shaped object) tends to be generated in the vicinity of “the interface area between the shaped plate and the three-dimensional shaped object” and remains is there. Specifically, as shown in the graph of FIG. 8, in a typical powder bed fusion bonding method, internal stress tends to build up in the process of laminating about 100 solidified layers on the shaped plate. Therefore, if such matters are suitably applied to the manufacturing method of the present invention, it may be preferable to perform the wettability treatment in the formation of at least one of the solidified layers corresponding to the first to 100th layers on the shaped plate. Thereby, the amount of heat input can be reduced by the formation of the solidified layer in the vicinity of such an interface, and as a result, the warpage of the three-dimensional shaped object can be more effectively suppressed.

上記で言及した図8のグラフは、以下の粉末床溶融結合法で得られたものである:
・粉末:平均粒径50μmの鉄系混合粉末
・粉末層厚さ:約0.05mm
・光ビームの照射エネルギー密度:5J/mm〜15J/mm
・造形プレートの材質:炭素鋼(S50C)
・造形プレートの全体寸法:125mm(横幅寸法)×125mm(縦幅寸法)×8mm(高さ寸法)
The graph of FIG. 8 referred to above is obtained with the following powder bed melt bonding method:
Powder: Iron-based mixed powder with an average particle size of 50 μm Powder layer thickness: about 0.05 mm
・ Irradiated energy density of light beam: 5J / mm 2 to 15J / mm 2
-Material of modeling plate: carbon steel (S50C)
· Overall dimensions of the forming plate: 125 mm (horizontal width) × 125 mm (vertical width) × 8 mm (height)

以上、本発明の実施形態について説明してきたが、それは本発明の適用範囲のうちの典型例を示したに過ぎない。従って、本発明は、上記にて説明した実施形態に限定されず、種々の変更がなされ得ることを当業者は容易に理解されよう。   While the embodiments of the present invention have been described above, they are merely representative of the scope of the present invention. Therefore, those skilled in the art will readily understand that the present invention is not limited to the embodiments described above, and various modifications may be made.

例えば、光ビーム照射時に生じる粉末溶融物に対する表面の濡れ性(すなわち、造形プレートまたは最直近で形成された固化層の表面の濡れ性)の程度をより好適なものとするために、粉末を前処理に付しておいてもよい。例えば、粉末床溶融結合法に用いる粉末(すなわち、粉末層形成に用いられ、ひいては固化層形成に供される粉末)に対して酸化処理または還元処理などを予め施しておいてもよい。   For example, in order to make the surface wettability to the powder melt (i.e., the wettability of the surface of the shaped plate or the most recently formed solid layer) generated during light beam irradiation more favorable, It may be subjected to processing. For example, the powder used in the powder bed fusion bonding method (i.e., the powder used for forming the powder layer and hence the powder for forming the solidified layer) may be subjected to an oxidation treatment or a reduction treatment in advance.

尚、上述のような本発明は、次の好適な態様を包含している。
第1態様:(i)造形プレート上の粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層形成および固化層形成を交互に繰り返して行う三次元形状造形物の製造方法であって、
前記固化層形成のために、前記造形プレートまたは最直近で形成された前記固化層の表面の濡れ性を高くする濡れ性処理を行うことを含む、三次元形状造形物の製造方法。
第2態様:上記第1態様において、前記濡れ性処理として前記表面の滑面化または該表面の昇温を行う、三次元形状造形物の製造方法。
第3態様:上記第1態様または第2態様において、前記濡れ性処理として前記表面を酸化処理または還元処理する、三次元形状造形物の製造方法。
第4態様:上記第1態様〜第3態様のいずれかにおいて、前記濡れ性処理が行われた前記表面上において前記粉末層から形成される前記固化層は、該粉末層よりも小さい厚みを有する、三次元形状造形物の製造方法。
The present invention as described above includes the following preferred embodiments.
First embodiment : (i) a step of irradiating a predetermined portion of the powder layer on the shaping plate with a light beam to sinter or solidify the powder of the predetermined portion to form a solidified layer, and (ii) obtained Powder layer formation and solidified layer formation are alternately repeated by the process of forming a new powder layer on the solidified layer, and irradiating a predetermined position of the new powder layer with a light beam to form a further solidified layer. A method of manufacturing a three-dimensional shaped object,
A method for producing a three-dimensional shaped object, comprising performing wettability processing to increase the wettability of the surface of the shaped plate or the most recently formed solidified layer for forming the solidified layer.
Second aspect : A method for producing a three-dimensional shaped article according to the first aspect, wherein the surface is smoothed or the temperature is raised as the wettability treatment.
Third aspect : The method for producing a three-dimensional shaped article according to the first aspect or the second aspect, wherein the surface is subjected to oxidation treatment or reduction treatment as the wettability treatment.
Fourth aspect : in any one of the first to third aspects, the solidified layer formed from the powder layer on the surface on which the wettability treatment has been performed has a smaller thickness than the powder layer. , Three-dimensional shaped object manufacturing method.

本発明の三次元形状造形物の製造方法を実施することによって、種々の物品を製造することができる。例えば、三次元形状造形物が金属材料から成る場合、三次元形状造形物をプラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの金型として用いることができる。一方、三次元形状造形物が樹脂材料から成る場合、三次元形状造形物を樹脂成形品として用いることができる。   Various articles can be manufactured by implementing the manufacturing method of the three-dimensional shaped article of the present invention. For example, when the three-dimensional shaped object is made of a metal material, the three-dimensional shaped object may be used as a mold for plastic injection molding, a press mold, a die casting mold, a casting mold, a forging mold, etc. it can. On the other hand, when the three-dimensional shaped article is made of a resin material, the three-dimensional shaped article can be used as a resin molded article.

関連出願の相互参照Cross-reference to related applications

本出願は、日本国特許出願第2016−123864号(出願日:2016年6月22日、発明の名称:「三次元形状造形物の製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。   This application claims priority over the Paris Convention based on Japanese Patent Application No. 2016-123864 (filing date: June 22, 2016, title of the invention: "Method for producing three-dimensional shaped object"). . All the content disclosed in the said application shall be included in this specification by this reference.

21 造形プレート
22 粉末層
24 固化層
21',24' 造形プレートまたは最直近で形成された固化層の表面
L 光ビーム
21 shaping plate 22 powder layer 24 solidified layer 21 ', 24' shaped plate or surface L of the solidified layer formed most recently L light beam

Claims (3)

(i)造形プレート上の粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層形成および固化層形成を交互に繰り返して行う三次元形状造形物の製造方法であって、
前記固化層形成のために、前記造形プレートまたは最直近で形成された前記固化層の表面の濡れ性を高くする濡れ性処理を行うことを含む、三次元形状造形物の製造方法。
(I) a step of irradiating a predetermined portion of the powder layer on the shaping plate with a light beam to sinter or solidify the powder of the predetermined portion to form a solidified layer; and (ii) on the obtained solidified layer Forming a new powder layer, and irradiating the light beam to a predetermined portion of the new powder layer to form a further solidified layer, thereby alternately repeating the powder layer formation and the solidified layer formation. Manufacturing method of the object,
A method for producing a three-dimensional shaped object, comprising performing wettability processing to increase the wettability of the surface of the shaped plate or the most recently formed solidified layer for forming the solidified layer.
前記濡れ性処理として前記表面の滑面化または該表面の昇温を行う、請求項1に記載の三次元形状造形物の製造方法。 The manufacturing method of the three-dimensional shaped article according to claim 1, wherein the surface is smoothed or the temperature is raised as the wettability treatment. 前記濡れ性処理として前記表面を酸化処理または還元処理する、請求項1に記載の三次元形状造形物の製造方法。 The manufacturing method of the three-dimensional shaped article according to claim 1, wherein the surface is oxidized or reduced as the wettability treatment.
JP2018524103A 2016-06-22 2017-06-20 Manufacturing method of three-dimensional shaped object Expired - Fee Related JP6643644B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016123864 2016-06-22
JP2016123864 2016-06-22
PCT/JP2017/022607 WO2017221913A1 (en) 2016-06-22 2017-06-20 Production method for three-dimensional molded product

Publications (2)

Publication Number Publication Date
JPWO2017221913A1 true JPWO2017221913A1 (en) 2019-03-22
JP6643644B2 JP6643644B2 (en) 2020-02-12

Family

ID=60784608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524103A Expired - Fee Related JP6643644B2 (en) 2016-06-22 2017-06-20 Manufacturing method of three-dimensional shaped object

Country Status (2)

Country Link
JP (1) JP6643644B2 (en)
WO (1) WO2017221913A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124828A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Production method for three-dimensionally shaped object and three-dimensionally shaped object
WO2015145844A1 (en) * 2014-03-28 2015-10-01 株式会社日立製作所 Laser powder lamination shaping device, laser powder lamination shaping method, and 3d lamination shaping device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124828A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Production method for three-dimensionally shaped object and three-dimensionally shaped object
WO2015145844A1 (en) * 2014-03-28 2015-10-01 株式会社日立製作所 Laser powder lamination shaping device, laser powder lamination shaping method, and 3d lamination shaping device

Also Published As

Publication number Publication date
JP6643644B2 (en) 2020-02-12
WO2017221913A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP5599957B2 (en) Manufacturing method of three-dimensional shaped object
JP6443698B2 (en) Manufacturing method of three-dimensional shaped object
JP5776004B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5653657B2 (en) Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
WO2014010144A1 (en) Method for manufacturing three-dimensional molding
JP6512407B2 (en) Method of manufacturing three-dimensional shaped object
JP5612530B2 (en) Manufacturing method of three-dimensional shaped object
KR20180019747A (en) METHOD FOR MANUFACTURING 3-D DIMENSIONAL SCRAP
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
JP6643643B2 (en) Manufacturing method of three-dimensional shaped object
WO2018003798A1 (en) Method for manufacturing three-dimensionally shaped molding
JP6643644B2 (en) Manufacturing method of three-dimensional shaped object
JP6726858B2 (en) Method for manufacturing three-dimensional shaped object
KR102277612B1 (en) Manufacturing method of 3D shape sculpture
WO2019151540A1 (en) Method for manufacturing three-dimensional molded object
WO2020218449A1 (en) Method for manufacturing three-dimensionally shaped molded article, and device for manufacturing three-demonsionally shaped molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R150 Certificate of patent or registration of utility model

Ref document number: 6643644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees