JPWO2017138338A1 - Surface-treated copper foil and copper-clad laminate produced using the same - Google Patents

Surface-treated copper foil and copper-clad laminate produced using the same Download PDF

Info

Publication number
JPWO2017138338A1
JPWO2017138338A1 JP2017520558A JP2017520558A JPWO2017138338A1 JP WO2017138338 A1 JPWO2017138338 A1 JP WO2017138338A1 JP 2017520558 A JP2017520558 A JP 2017520558A JP 2017520558 A JP2017520558 A JP 2017520558A JP WO2017138338 A1 JPWO2017138338 A1 JP WO2017138338A1
Authority
JP
Japan
Prior art keywords
copper foil
layer
silane
roughened
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017520558A
Other languages
Japanese (ja)
Other versions
JP6248231B1 (en
Inventor
佐藤 章
章 佐藤
岳夫 宇野
岳夫 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Application granted granted Critical
Publication of JP6248231B1 publication Critical patent/JP6248231B1/en
Publication of JPWO2017138338A1 publication Critical patent/JPWO2017138338A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、絶縁基板との十分な密着性を確保しつつ、リフロー耐熱性と伝送特性とを高いレベルで両立させた表面処理銅箔等を提供する。本発明の表面処理銅箔は、銅箔基体(110)上に、粗面化層(120)が設けられてなる表面処理銅箔であって、該粗面化層(120)は、粗化粒子により凹凸表面が形成されたものであり、該銅箔基体面と直交する断面において、前記銅箔基体面に沿って測定した沿面長さ(Db)に対する、前記粗面化層(120)の凹凸表面に沿って測定した沿面長さ(Da)の比(Da/Db)が、1.05〜4.00倍の範囲であり、前記凹凸表面における凹凸の平均高低差Hが0.2〜1.3μmの範囲であり、さらに前記粗面化層(120)上に、直接、または中間層を介して0.0003〜0.0300mg/dm2のシラン付着量で形成されたシランカップリング剤層を有することを特徴とする。The present invention provides a surface-treated copper foil or the like that achieves both reflow heat resistance and transmission characteristics at a high level while ensuring sufficient adhesion to an insulating substrate. The surface-treated copper foil of the present invention is a surface-treated copper foil in which a roughened layer (120) is provided on a copper foil substrate (110), and the roughened layer (120) is roughened. The roughened layer (120) has a rough surface formed by particles, and the surface of the roughened layer (120) with respect to a creeping length (Db) measured along the copper foil substrate surface in a cross section orthogonal to the copper foil substrate surface. The ratio (Da / Db) of the creeping length (Da) measured along the uneven surface is in the range of 1.05 to 4.00 times, and the average height difference H of the unevenness on the uneven surface is 0.2 to A silane coupling agent layer having a silane adhesion amount of 0.0003 to 0.0300 mg / dm2 on the roughened layer (120) directly or via an intermediate layer in the range of 1.3 μm. It is characterized by having.

Description

本発明は、絶縁基板との十分な密着性を確保しつつ、リフロー耐熱性と伝送特性とを高いレベルで両立させた表面処理銅箔及びこれを用いて製造される銅張積層板に関するものである。   The present invention relates to a surface-treated copper foil that achieves a high level of both reflow heat resistance and transmission characteristics while ensuring sufficient adhesion to an insulating substrate, and a copper-clad laminate manufactured using the same. is there.

近年、コンピューターや情報通信機器が高性能・高機能化し、またネットワーク化の進展に伴い、大容量の情報を高速で伝達処理するために信号はますます高周波化する傾向にある。このような情報通信機器には、銅張積層板が使用されている。銅張積層板は、絶縁基板(樹脂基板)と銅箔を加熱し、加圧して作製する。 一般に、高周波対応の銅張積層板を構成する絶縁基板には、誘電特性に優れた樹脂を用いなければならないが、比誘電率や誘電正接が低い樹脂は、銅箔との接着に寄与する極性の高い官能基が少なく、銅箔との接着特性は低下する傾向にある。   In recent years, as computers and information communication devices become more sophisticated and functional, and with the progress of networking, signals tend to become higher and higher in order to transmit large volumes of information at high speed. Copper clad laminates are used for such information communication devices. The copper clad laminate is produced by heating and pressing an insulating substrate (resin substrate) and a copper foil. In general, a resin with excellent dielectric properties must be used for an insulating substrate that constitutes a copper clad laminate for high frequencies, but a resin with a low relative dielectric constant or dielectric loss tangent has a polarity that contributes to adhesion to copper foil. There are few functional groups with high and there exists a tendency for an adhesive characteristic with copper foil to fall.

また、高周波対応銅張積層板用の導電層となる銅箔には、可能な限り表面粗さを小さくすることが望まれている。このような銅箔のロープロファイル化が求められているのは、高周波になるに従い、銅箔の表面部分に電流が集中して流れるようになるためで、銅箔の表面粗さが大きくなるほど、伝送損失が大きくなる傾向があるからである。
銅張積層板を構成する銅箔の絶縁基板に対する密着性を改善するために、銅箔基体上に、粗化粒子の電析により形成した微細な凹凸表面(以下、単に凹凸表面という。)をもつ粗面化層を形成し、物理的な効果(アンカー効果)により密着力を向上させるのが一般的である。凹凸表面の高低差(表面粗さ)を大きくすれば、密着力は向上するが、伝送損失は、前記の理由により増加してしまうにもかかわらず、現状では、銅箔基体上に形成した粗面化層の表面を、凹凸表面にして、密着力を確保することを優先し、凹凸表面にすることによるある程度の伝送損失の低下については容認されてきた。しかし、最近では、対応周波数が20GHz以上である次世代の高周波回路基板の開発が進んでおり、かかる基板では、従来以上に伝送損失の低減を図ることが望まれている。
Further, it is desired that the surface roughness of the copper foil serving as the conductive layer for the high-frequency copper-clad laminate be as small as possible. The reason why low profile of such a copper foil is required is that current becomes concentrated and flows on the surface portion of the copper foil as the frequency becomes high, so that the surface roughness of the copper foil increases, This is because the transmission loss tends to increase.
In order to improve the adhesion of the copper foil constituting the copper clad laminate to the insulating substrate, a fine uneven surface (hereinafter simply referred to as an uneven surface) formed on the copper foil substrate by electrodeposition of roughened particles. In general, a roughened layer is formed and adhesion is improved by a physical effect (anchor effect). Increasing the height difference (surface roughness) of the uneven surface improves the adhesion, but the transmission loss increases due to the above reasons, but at present, the roughness formed on the copper foil substrate is increased. Prioritizing securing the adhesion by making the surface of the surface layer an uneven surface has been accepted for some reduction in transmission loss due to the uneven surface. However, recently, the development of next-generation high-frequency circuit boards having a corresponding frequency of 20 GHz or more is progressing, and it is desired that such boards reduce transmission loss more than before.

一般に、伝送損失を低減させる為には、例えば粗面化層の表面凹凸の高低差(表面粗さ)を小さくした表面処理銅箔、または粗面化処理を行わない無粗化の平滑銅箔を用いることが望ましい。また、この様な表面粗さの小さい銅箔の密着性を確保する為には、銅箔と絶縁基板の間に、化学結合を形成するシランカップリング剤層を形成することが望ましい。   In general, in order to reduce transmission loss, for example, a surface-treated copper foil in which the level difference (surface roughness) of the surface roughness of the roughened layer is reduced, or a non-roughened smooth copper foil that is not subjected to a roughening treatment It is desirable to use Further, in order to ensure the adhesion of the copper foil having such a small surface roughness, it is desirable to form a silane coupling agent layer that forms a chemical bond between the copper foil and the insulating substrate.

前記銅箔を用いて高周波回路基板を製造する場合、上述した密着性および伝送特性に加えて、最近では、さらにリフロー耐熱性についても考慮することが必要になってきた。 ここで、「リフロー耐熱性」とは、高周波回路基板を製造する際に行なわれるはんだリフロー工程における耐熱性である。はんだリフロー工程とは、回路基板の配線と電子部品の接点にペースト状のはんだを付着させた状態で、リフロー炉を通して加熱し、はんだ付けする方法である。近年、環境負荷軽減の観点から、回路基板の電気接合部に用いられるはんだの鉛(Pb)フリー化が進んでいる。Pbフリーはんだは、従来のはんだよりも融点が高く、はんだリフロー工程に適用した場合、回路基板が、例えば260℃程度の高温に晒されることになるため、従来のはんだを用いた場合に比べて、高いレベルのリフロー耐熱性を具備することが必要になる。そこで、特に、このような用途に使用される銅箔に対しては、絶縁基板との十分な密着性を確保しつつ、リフロー耐熱性と伝送特性とを高いレベルで両立させることが新たな課題となっている。   In the case of manufacturing a high-frequency circuit board using the copper foil, it has recently become necessary to consider reflow heat resistance in addition to the adhesion and transmission characteristics described above. Here, “reflow heat resistance” is heat resistance in a solder reflow process performed when a high-frequency circuit board is manufactured. The solder reflow process is a method of heating and soldering through a reflow furnace in a state where paste-like solder is adhered to the wiring of the circuit board and the contact of the electronic component. In recent years, from the viewpoint of reducing environmental burden, lead (Pb) -free solder used for electrical joints of circuit boards has been advanced. Pb-free solder has a higher melting point than conventional solder, and when applied to a solder reflow process, the circuit board is exposed to a high temperature of, for example, about 260 ° C., so that compared to the case where conventional solder is used. It is necessary to have a high level of reflow heat resistance. Therefore, especially for copper foils used in such applications, it is a new challenge to achieve both high levels of reflow heat resistance and transmission characteristics while ensuring sufficient adhesion to the insulating substrate. It has become.

本出願人は、例えば特許文献1において、水酸化カリウム溶液を用い熱可塑性樹脂フィルム表面に微細な凹凸を形成した後に、無電解銅めっきと電解銅めっきを順に行い、熱可塑性樹脂フィルムの表面形状に起因した微細な凹凸を有する銅層を形成することにより、伝送特性と密着性に優れる回路基板である金属張積層体を作製する方法を提案した。しかしながら、本出願人が、特許文献1に記載の発明について、その後さらに検討を重ねた結果、リフロー耐熱性については十分に得られない場合があり、改善の余地があることが分った。   The present applicant, for example, in Patent Document 1, after forming fine irregularities on the surface of the thermoplastic resin film using a potassium hydroxide solution, electroless copper plating and electrolytic copper plating are sequentially performed, and the surface shape of the thermoplastic resin film is determined. We proposed a method for producing a metal-clad laminate, which is a circuit board with excellent transmission characteristics and adhesion, by forming a copper layer having fine irregularities due to the above. However, as a result of further studies on the invention described in Patent Document 1 by the present applicant, it has been found that reflow heat resistance may not be sufficiently obtained and there is room for improvement.

また、本出願人は、特許文献2において、少なくとも電解銅箔の片面に、粗化粒子から形成された突起物の高さが1〜5μmとなる粗化処理面を有する表面処理銅箔についても提案した。特許文献2に記載の表面処理銅箔は、突起物の高さが比較的高く、また、リフロー耐熱性の改善を意図しておらず、シランカップリング層の形成を任意としているため、液晶ポリマーフィルムに対する優れた密着性を有しているものの、粗化粒子を付着させることで表面粗さが増加するため、これに起因して伝送損失が大きくなる傾向があり、近年の20GHz以上の高周波対応絶縁基板に適用する場合には、十分に対応することができず、さらに、リフロー耐熱性についても十分に得られない場合があり、改善の余地があった。   In addition, in the patent document 2, the applicant of the present invention also relates to a surface-treated copper foil having a roughened surface on which at least one surface of the electrolytic copper foil has a projection of 1 to 5 μm formed from roughened particles. Proposed. The surface-treated copper foil described in Patent Document 2 has a relatively high height of protrusions, is not intended to improve reflow heat resistance, and is free to form a silane coupling layer. Although it has excellent adhesion to the film, it has a tendency to increase transmission loss due to increased surface roughness by attaching roughened particles. When applied to an insulating substrate, it is not possible to sufficiently cope with it, and there is a case where sufficient reflow heat resistance cannot be obtained, and there is room for improvement.

さらに、特許文献3には、銅−コバルト−ニッケル合金めっきを用いた粗化処理により、粗化粒子を形成した銅張積層板用表面処理銅箔が開示されている。この様な銅箔を、高周波用回路基板に適用した場合、銅箔と樹脂の接触面積が増える為に、良好な密着性は確保できるものの、銅箔の表面積が大きくなりすぎるため、伝送特性が劣ることが予想され、加えて、リフロー耐熱性については何ら考慮されていない。   Furthermore, Patent Document 3 discloses a surface-treated copper foil for copper-clad laminate in which roughened particles are formed by a roughening process using copper-cobalt-nickel alloy plating. When such a copper foil is applied to a high-frequency circuit board, the contact area between the copper foil and the resin increases, so that good adhesion can be ensured, but the surface area of the copper foil becomes too large, so the transmission characteristics are Inferior, and in addition, no consideration is given to reflow heat resistance.

特許文献4には、銅の粗化処理により伝送特性、密着性、耐熱性を向上させた銅箔が開示されている。この様な銅箔を使用した場合伝送特性の向上は期待できるが、リフロー試験における260℃付近の加熱条件においては、銅箔と絶縁基板(樹脂基板)の間でデラミネーションが発生してしまい、満足のいく特性を発揮できるものではない。
特許文献5においては、極薄プライマ樹脂層付表面処理銅箔について樹脂と銅箔の密着性を向上させるためにシラン処理を実施しており、常態の密着性の改善が成されている。しかし、この様なシラン処理を実施した場合、一般にシランの均一処理が不十分になる傾向にあり耐熱リフロー性に対して悪影響を及ぼしてしまう。
Patent Document 4 discloses a copper foil whose transmission characteristics, adhesion, and heat resistance are improved by a copper roughening treatment. When such a copper foil is used, an improvement in transmission characteristics can be expected, but delamination occurs between the copper foil and the insulating substrate (resin substrate) under heating conditions around 260 ° C in the reflow test. It is not possible to demonstrate satisfactory characteristics.
In Patent Document 5, the surface-treated copper foil with an ultrathin primer resin layer is subjected to silane treatment in order to improve the adhesion between the resin and the copper foil, and the normal adhesion is improved. However, when such a silane treatment is performed, the uniform treatment of silane generally tends to be insufficient, which adversely affects the heat resistance reflow property.

特許文献6においては銅箔の片面に微細粗化粒子からなる黒色乃至褐色処理層を設けた電磁波シールド用銅箔が開示されている。微細粗化粒子を形成する実施例として、例えばクエン酸三ナトリウムの様なキレート剤を添加した浴により電解を実施している。本実施例の銅箔を高周波基板に用いた場合、密着性等に優れているが、表面の微細な凹凸の影響により伝送損失特性が低下し特性が不十分となる。   Patent Document 6 discloses an electromagnetic shielding copper foil in which a black or brown treatment layer made of fine roughened particles is provided on one surface of a copper foil. As an example of forming finely roughened particles, electrolysis is performed in a bath to which a chelating agent such as trisodium citrate is added. When the copper foil of this example is used for a high-frequency substrate, the adhesiveness and the like are excellent, but the transmission loss characteristic is lowered due to the influence of fine irregularities on the surface, and the characteristic becomes insufficient.

特許文献7においては銅箔の少なくとも一方の面に銅の微細粗化粒子処理層を施した銅箔が開示されている。実施例においては、粗化めっき浴にキレート剤のジエチレントリアミン五酢酸五ナトリウムが添加させることで、粗化粒子を微細化させている。しかし、本実施例の銅箔を高周波基板に用いた場合、表面の微細な凹凸の影響により伝送損失特性が低下し特性が不十分となる。   In patent document 7, the copper foil which gave the copper fine roughening particle process layer to the at least one surface of copper foil is disclosed. In the examples, the roughening particles are refined by adding the chelating agent diethylenetriaminepentaacetic acid pentasodium to the roughening plating bath. However, when the copper foil of the present embodiment is used for a high-frequency substrate, the transmission loss characteristic is lowered due to the influence of fine irregularities on the surface, and the characteristic becomes insufficient.

特開2013−158935号公報JP 2013-158935 A 特許第4833556号公報Japanese Patent No. 4833556 特開2013−147688号公報JP 2013-147688 A 国際公開2011/090175号パンフレットInternational Publication 2011/090175 Pamphlet 国際公開2006/134868号パンフレットInternational Publication No. 2006/134868 Pamphlet 特開2006−278881号公報JP 2006-278881 A 特開2007−332418号公報JP 2007-332418 A

本発明は、大容量の情報を高速で伝達処理するために高周波化する情報通信機器の高性能・高機能化に対応し、比誘電率や誘電正接が低い誘電特性に優れた絶縁基板との十分な密着性を確保しつつ、リフロー耐熱性と伝送特性とを高いレベルで両立させた表面処理銅箔及びこれを用いて製造される銅張積層板を提供することを目的とする。   The present invention is compatible with high performance and high functionality of information communication equipment that increases the frequency in order to process high-capacity information at high speed, and provides an insulating substrate with excellent dielectric properties with low dielectric constant and dielectric loss tangent. An object of the present invention is to provide a surface-treated copper foil that achieves a high level of both reflow heat resistance and transmission characteristics while ensuring sufficient adhesion, and a copper-clad laminate produced using the surface-treated copper foil.

本発明者らは鋭意研究を重ねた結果、銅箔基体面と直交する断面において、前記銅箔基体面に沿って測定した沿面長さDbに対する、前記粗面化層の凹凸表面に沿って測定した沿面長さDaの比Da/Db(以下「線長比」とも呼ぶ。)が、リフロー耐熱性に大きく影響を及ぼすことを見出した。また、本発明者らは、銅箔基体上に、粗化粒子の電析により、凹凸表面をもつ粗面化層を形成するような粗面化処理を行う場合、凹凸表面における凹凸の平均高低差Hと、粗面化層上に、直接、または中間層を介して形成するシランカップリング剤層のシラン付着量を制御することにより、リフロー耐熱性、密着性及び伝送特性の全特性において優れた特性を示す銅箔が得られることも見出し、本発明を完成させるに至った。   As a result of intensive research, the present inventors have measured along the uneven surface of the roughened layer with respect to the creeping length Db measured along the copper foil substrate surface in a cross section orthogonal to the copper foil substrate surface. It was found that the ratio Da / Db (hereinafter also referred to as “wire length ratio”) of the creepage length Da greatly affects the reflow heat resistance. In addition, when performing a roughening treatment such as forming a roughened layer having a rough surface by electrodeposition of roughened particles on a copper foil substrate, the present inventors have found that the average height of the unevenness on the rough surface is low. By controlling the difference H and the silane adhesion amount of the silane coupling agent layer formed directly on the roughened layer or through the intermediate layer, it is excellent in all characteristics of reflow heat resistance, adhesion and transmission characteristics. The inventors have also found that a copper foil exhibiting the above characteristics can be obtained, and have completed the present invention.

すなわち、本発明の要旨構成は以下のとおりである。
(1)銅箔基体上に粗面化層が設けられてなる表面処理銅箔であって、該粗面化層は、粗化粒子により凹凸表面が形成されたものであり、該銅箔基体面と直交する断面において、前記銅箔基体面に沿って測定した沿面長さ(Db)に対する、前記粗面化層の凹凸表面に沿って測定した沿面長さ(Da)の比(Da/Db)が、1.05〜4.00の範囲であり、前記凹凸表面における凹凸の平均高低差(H)が0.2〜1.3μmの範囲であり、さらに前記粗面化層上に、直接、または中間層を介して0.0003〜0.0300mg/dmのシラン付着量で形成されたシランカップリング剤層を有していることを特徴とする表面処理銅箔。
That is, the gist configuration of the present invention is as follows.
(1) A surface-treated copper foil in which a roughened layer is provided on a copper foil substrate, wherein the roughened layer has an uneven surface formed by roughened particles, and the copper foil base The ratio (Da / Db) of the creeping length (Da) measured along the rough surface of the roughened layer to the creeping length (Db) measured along the copper foil substrate surface in a cross section orthogonal to the body surface ) Is in the range of 1.05 to 4.00, the average height difference (H) of the unevenness on the uneven surface is in the range of 0.2 to 1.3 μm, and further directly on the roughened layer. Or a surface-treated copper foil having a silane coupling agent layer formed with a silane adhesion amount of 0.0003 to 0.0300 mg / dm 2 via an intermediate layer.

(2)前記凹凸表面はクビレ形状を有することを特徴とする、上記表面処理銅箔。
(3)前記沿面長さの比(Da/Db)が1.05〜3.20の範囲であり、前記凹凸の平均高低差(H)が0.2〜0.8μmの範囲であり、且つ銅箔と絶縁基板を積層した際に前記銅箔基体上の前記銅箔の製造方向に垂直な方向である幅方向の2.54μmの線上において前記粗面化層と絶縁基板の界面の気泡数が2個以下上記表面処理銅箔。なお、銅箔の製造方向とは、電解銅箔の場合はロールの長手方向を意味し、圧延銅箔の場合は圧延方向を意味する。
(2) The said surface-treated copper foil characterized by the said uneven | corrugated surface having a round shape.
(3) The creeping length ratio (Da / Db) is in the range of 1.05 to 3.20, the average height difference (H) of the unevenness is in the range of 0.2 to 0.8 μm, and When the copper foil and the insulating substrate are laminated, the number of bubbles at the interface between the roughened layer and the insulating substrate is 2.54 μm in the width direction, which is a direction perpendicular to the manufacturing direction of the copper foil on the copper foil base. Two or less of the above surface-treated copper foils. In addition, the manufacturing direction of copper foil means the longitudinal direction of a roll in the case of electrolytic copper foil, and means the rolling direction in the case of rolled copper foil.

(4)前記沿面長さの比(Da/Db)が1.05〜1.60の範囲であり、前記凹凸の平均高低差(H)が0.2〜0.3μmの範囲であり、前記銅箔基体の幅方向の2.54μmの線上において前記粗面化層と絶縁基板の界面の気泡数が1個以下の上記表面処理銅箔。
(5)前記シランカップリング剤層のシラン付着量が、0.0005〜0.0120mg/dmである上記表面処理銅箔。
(4) The creeping length ratio (Da / Db) is in the range of 1.05 to 1.60, the average height difference (H) of the unevenness is in the range of 0.2 to 0.3 μm, and The surface-treated copper foil, wherein the number of bubbles at the interface between the roughened layer and the insulating substrate is 1 or less on a 2.54 μm line in the width direction of the copper foil substrate.
(5) The said surface-treated copper foil whose silane adhesion amount of the said silane coupling agent layer is 0.0005-0.0120 mg / dm < 2 >.

(6)前記中間層が、Niを含有する下地層、Znを含有する耐熱処理層およびCrを含有する防錆処理層の中から選択される少なくとも1層で構成される上記表面処理銅箔。
(7)前記シランカップリング剤層は、エポキシ系シラン、アミノ系シラン、ビニル系シラン、メタクリル系シラン、アクリル系シラン、スチリル系シラン、ウレイド系シラン、メルカプト系シラン、スルフィド系シランおよびイソシアネート系シランの中から選択される少なくとも1種からなる上記表面処理銅箔。
(8)上記の表面処理銅箔を用いて製造され、該表面処理銅箔の粗面化層側の面に、絶縁基板を有する銅張積層板。
(6) The said surface-treated copper foil in which the said intermediate | middle layer is comprised by at least 1 layer selected from the base layer containing Ni, the heat-resistant process layer containing Zn, and the antirust process layer containing Cr.
(7) The silane coupling agent layer is composed of epoxy silane, amino silane, vinyl silane, methacryl silane, acrylic silane, styryl silane, ureido silane, mercapto silane, sulfide silane and isocyanate silane. The said surface-treated copper foil which consists of at least 1 sort (s) selected from inside.
(8) A copper clad laminate produced using the surface-treated copper foil and having an insulating substrate on the surface of the surface-treated copper foil on the roughened layer side.

(9)銅箔基体上に粗面化層が設けられてなる表面処理銅箔の前記粗面化層側に絶縁基板を有する銅張積層板であって、該銅箔基体面と直交する断面において、前記銅箔基体面に沿って測定した沿面長さ(Db)に対する、前記粗面化層と前記絶縁基板との界面に沿って測定した界面長さ(Da’)の比(Da’/Db)が、1.05〜4.00の範囲であり、前記界面における凹凸の平均高低差(H’)が0.2〜1.3μmの範囲であり、さらに前記粗面化層と前記絶縁基板との間に、直接、または中間層を介して0.0003〜0.0300mg/dmのシラン付着量のシランカップリング剤層を有していることを特徴とする銅張積層板。
(10)前記銅箔基体の幅方向の2.54μm線上において、粗面化層と絶縁基板との界面の気泡数が2個以下である上記の銅張積層板。
(9) A copper clad laminate having an insulating substrate on the roughened layer side of a surface-treated copper foil provided with a roughened layer on a copper foil substrate, the cross section being orthogonal to the copper foil substrate surface The ratio of the interface length (Da ′) measured along the interface between the roughened layer and the insulating substrate to the creepage length (Db) measured along the copper foil substrate surface (Da ′ / Db) is in the range of 1.05 to 4.00, the average height difference (H ′) of the irregularities at the interface is in the range of 0.2 to 1.3 μm, and the roughened layer and the insulation A copper-clad laminate comprising a silane coupling agent layer having a silane adhesion amount of 0.0003 to 0.0300 mg / dm 2 directly or via an intermediate layer between the substrate and the substrate.
(10) The copper clad laminate described above, wherein the number of bubbles at the interface between the roughened layer and the insulating substrate is 2 or less on the 2.54 μm line in the width direction of the copper foil substrate.

本発明により、大容量の情報を高速で伝達処理する高周波化対応情報通信機器の高性能・高機能化に対応でき、比誘電率や誘電正接が低い誘電特性に優れた絶縁基板との十分な密着性を確保しつつ、リフロー耐熱性と伝送特性とを高いレベルで両立させた表面処理銅箔を提供することができる。また、該表面処理銅箔を用いて製造される銅張積層板を提供することができる。   According to the present invention, it is possible to cope with high-performance and high-performance information communication equipment that transmits high-capacity information at high speed, and it is sufficient to have an insulating substrate excellent in dielectric characteristics with low relative permittivity and dielectric loss tangent. It is possible to provide a surface-treated copper foil that ensures both reflow heat resistance and transmission characteristics at a high level while ensuring adhesion. Moreover, the copper clad laminated board manufactured using this surface treatment copper foil can be provided.

図1(a)は、本発明のクビレ形状を有する粗面化層の状態を示す断面図である。クビレ形状とは、図1の様に粗化粒子の最大幅と比較して、粗化粒子の根元の幅が狭くなっており、粗化粒子の根元に凹みを有する様な形状である。図2(b)は、従来の粗面化層の状態を示す断面図である。Fig.1 (a) is sectional drawing which shows the state of the roughening layer which has a neck shape of this invention. As shown in FIG. 1, the neck shape is a shape in which the root width of the roughened particles is narrower than the maximum width of the roughened particles, and the root of the roughened particles has a dent. FIG. 2B is a cross-sectional view showing a state of a conventional roughened layer. 図2は、粗面化層を構成する凹凸表面を構成する凹凸の平均高低差Hを模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the average height difference H of the unevenness constituting the uneven surface constituting the roughened layer. 図1に示される粗面化層の凹凸表面における沿面長さDaを模式的に示す断面図である。It is sectional drawing which shows typically the creeping length Da in the uneven | corrugated surface of the roughening layer shown by FIG. 図4(a)は、粗面化層を構成する凹凸表面を構成する凹凸の平均高低差Hを測定するためのベース線BL1を示す断面図である。図4(b)は同様にベース線BL2を示す断面図である。FIG. 4A is a cross-sectional view showing the base line BL1 for measuring the average height difference H of the unevenness constituting the uneven surface constituting the roughened layer. FIG. 4B is a cross-sectional view similarly showing the base line BL2. 図5は、粗面化層と絶縁基板界面に存在する気泡を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing bubbles present at the interface between the roughened layer and the insulating substrate.

以下、本発明に従う表面処理銅箔の実施形態を、図面を参照しながら説明する。図1(a)は、本発明に従う代表的な表面処理銅箔を構成する銅箔の表面に粗面化層を形成したときの断面構造を示したものである。
本発明の表面処理銅箔は、銅箔110、粗面化層120およびシランカップリング剤層(図示せず)で主に構成されている。すなわち、本発明においては、銅箔110上に、表面処理として粗面化層120を形成し、さらに表面処理としてシランカップリング剤層(図示せず)を形成したものを表面処理銅箔という。
Hereinafter, embodiments of a surface-treated copper foil according to the present invention will be described with reference to the drawings. FIG. 1A shows a cross-sectional structure when a roughened layer is formed on the surface of a copper foil constituting a typical surface-treated copper foil according to the present invention.
The surface-treated copper foil of the present invention is mainly composed of a copper foil 110, a roughened layer 120, and a silane coupling agent layer (not shown). That is, in the present invention, a surface-treated copper foil is formed by forming a roughened layer 120 as a surface treatment on a copper foil 110 and further forming a silane coupling agent layer (not shown) as a surface treatment.

銅箔110は、電解銅箔、電解銅合金箔、圧延銅箔又は圧延同合金箔のうちから、用途等に応じて適宜選択することができる。
粗面化層120は、銅箔基体110上に粗面化処理を施すことによって設けられ、表面が略粒状の微細な凹凸をなしている。当該粗面化処理においては、限界電流密度を上回る電流密度で水素発生を伴いながら銅電析を行うことにより、いわゆるヤケめっきの状態となり、粒状の電析物が形成されて、ミクロンオーダの微細な凹凸表面をなす。本発明において、このような微細な凹凸表面を単に凹凸表面という。また、本発明における粗化粒子とは、この粒状の電析物を指すものとする。
The copper foil 110 can be appropriately selected from an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, or a rolled same alloy foil according to the application.
The roughened layer 120 is provided by performing a roughening process on the copper foil substrate 110, and the surface has fine irregularities with a substantially granular shape. In the surface roughening treatment, copper electrodeposition is performed while generating hydrogen at a current density exceeding the limit current density, so that a so-called burnt plating state is formed, and granular electrodeposits are formed. Make a rough surface. In the present invention, such a fine uneven surface is simply referred to as an uneven surface. Moreover, the roughening particle | grains in this invention shall point out this granular electrodeposit.

そして、本発明では、銅箔基体面と直交する断面において、前記銅箔基体面に沿って測定した沿面長さDbに対する、前記粗面化層120の凹凸表面に沿って測定した沿面長さDaの(線長)比Da/Dbを1.05〜4.00の範囲とする。線長比Da/Dbは、1.05〜3.20の範囲であってもよく、線長比Da/Dbは1.05〜1.60の範囲であってもよい。   And in this invention, in the cross section orthogonal to a copper foil base | substrate surface, creeping length Da measured along the uneven | corrugated surface of the said roughening layer 120 with respect to the creeping length Db measured along the said copper foil base | substrate surface. The (line length) ratio Da / Db is in the range of 1.05 to 4.00. The line length ratio Da / Db may be in the range of 1.05 to 3.20, and the line length ratio Da / Db may be in the range of 1.05 to 1.60.

線長比Da/Dbが1.05未満の場合にはリフロー耐熱性が低下し満足な性能が得られない。線長比Da/Dbが4.00超えの場合は、表面の凹凸が過度に増加しすぎるため表皮効果により伝送損失が大きくなって伝送特性が悪化することから、線長比Da/Dbは1.05〜4.00の範囲とした。なお、線長比Da/Dbの測定法については後述する。   When the line length ratio Da / Db is less than 1.05, the reflow heat resistance is lowered and satisfactory performance cannot be obtained. When the line length ratio Da / Db is more than 4.00, the surface unevenness is excessively increased, so that the transmission loss is increased due to the skin effect and the transmission characteristics are deteriorated. Therefore, the line length ratio Da / Db is 1 The range was from .05 to 4.00. A method for measuring the line length ratio Da / Db will be described later.

線長比Da/Dbがリフロー耐熱性に影響を及ぼす理由について鋭意調査を行った結果、新たに下記の知見を得た。先ず、リフロー耐熱試験の試験片の作製方法を説明する。両面に銅箔を積層した絶縁基板(基材)をコア層とする。コア層は、塩化銅(II)溶液等によりエッチングされ、全ての銅箔が溶解除去される。次に、コア層をエッチングして残った絶縁基板(基材)の両面に、絶縁材料からなるプリプレグ層と銅箔を積層しリフロー試験片を作製する。このリフロー試験片の断面を観察した結果、コア層の絶縁基板(基材)とプリプレグ層とが接触する界面に、コア層を構成していた銅箔の表面形状がレプリカされていることを確認した。またリフロー耐熱試験においては、260℃前後の高温にサンプル(試験片)が晒される為、絶縁基板(基材)中の低分子量の成分が揮発して、絶縁基板とプリプレグ層との間における密着性が弱い領域に揮発したガスが溜り、層間剥離の原因となることを確認した。よって、線長比Da/Dbを1.05未満にすると、エッチングによりレプリカされる領域が少なくなり、その結果、絶縁基板(基材)とプリプレグ層が接触する領域が減少することで、両層間の密着性が低い領域が生じ、加熱した際に層間で該領域に基材から揮発したガスが溜り剥離が発生し易くなるものと考えられる。   As a result of intensive investigations on the reason why the line length ratio Da / Db affects the reflow heat resistance, the following findings were newly obtained. First, a method for producing a reflow heat test specimen will be described. An insulating substrate (base material) in which copper foil is laminated on both surfaces is used as a core layer. The core layer is etched with a copper (II) chloride solution or the like, and all the copper foil is dissolved and removed. Next, a reflow test piece is prepared by laminating a prepreg layer made of an insulating material and a copper foil on both surfaces of an insulating substrate (base material) remaining after etching the core layer. As a result of observing the cross section of this reflow test piece, it was confirmed that the surface shape of the copper foil constituting the core layer was replicated at the interface where the insulating substrate (base material) of the core layer and the prepreg layer were in contact with each other. did. In the reflow heat test, the sample (test piece) is exposed to a high temperature of about 260 ° C., so that the low molecular weight component in the insulating substrate (base material) is volatilized and adhesion between the insulating substrate and the prepreg layer is achieved. It was confirmed that the volatilized gas accumulated in the weak region, causing delamination. Therefore, when the line length ratio Da / Db is less than 1.05, the area that is replicated by etching decreases, and as a result, the area where the insulating substrate (base material) and the prepreg layer are in contact with each other decreases. It is considered that a region with low adhesion is generated, and when heated, gas volatilized from the base material accumulates in the region between layers, and peeling is likely to occur.

本発明では、鋭意研究した結果、線長比Da/Db及び凹凸の平均高低差Hを適切な範囲に制御することで、クビレ形状を有する粗化形状が得られ、公知例の様に表面積で制御した銅箔と比較して、耐熱性が著しく向上することを見出した。即ち本件の凹凸の平均高低差Hの範囲内において、伝送特性が低下しない程度にDa/Dbを増加させると、粗化層の輪郭長さが長くなり、結果としてクビレ形状を多く有する粗化形状が得られるのである。クビレ形状が多くなることで、粗化が微細であるにもかかわらず、強力なアンカー効果が発現し、銅箔と絶縁基板(樹脂基板)の密着性が高まり耐熱性が向上する。従って本件の請求範囲においてDa/Dbと平均高低差Hを制御することで、伝送特性を高水準で維持したまま公知例と比較して著しく耐熱性が向上するのである。   In the present invention, as a result of earnest research, by controlling the line length ratio Da / Db and the average height difference H of the unevenness to an appropriate range, a roughened shape having a constricted shape can be obtained. It has been found that the heat resistance is remarkably improved as compared with the controlled copper foil. That is, when Da / Db is increased within a range of the average height difference H of the unevenness of the present case to such an extent that the transmission characteristics are not deteriorated, the contour length of the roughened layer becomes longer, and as a result, the roughened shape having many constricted shapes. Is obtained. By increasing the shape of the neck, a strong anchor effect is manifested even though the roughening is fine, and the adhesiveness between the copper foil and the insulating substrate (resin substrate) is increased and the heat resistance is improved. Therefore, by controlling the Da / Db and the average height difference H in the claims of this case, the heat resistance is remarkably improved as compared with the known examples while maintaining the transmission characteristics at a high level.

粗化形状を定量化するパラメータとして特許文献4(WO2011-090175)に示す様にレーザーマイクロスコープにより測定した表面積比が知られている。しかし問題点として、例えば図1の様に、(a)クビレ形状11のある粗化と(b)クビレ形状のない粗化が存在する場合、原理上レーザーマイクロスコープの表面積では銅箔の垂直方向からレーザーを当てて高さを測定する為に、図1(a)及び図1(b)のクビレ形状の有無の差を測定することが困難である。即ち、レーザー光が直接当たる表面は形状を測定することが可能であるが、クビレ部の様に垂直方向からレーザー光を当てた場合に、影になり直接レーザー光が当たらない部分は形状を測定することが不可能である。   As a parameter for quantifying the roughened shape, a surface area ratio measured by a laser microscope is known as shown in Patent Document 4 (WO2011-090175). However, as a problem, for example, as shown in FIG. 1, when (a) roughening with a constricted shape 11 and (b) roughening without a constricted shape exist, in principle, the surface area of the laser microscope is perpendicular to the copper foil. Therefore, it is difficult to measure the difference in the presence or absence of the neck shape in FIGS. 1 (a) and 1 (b). In other words, it is possible to measure the shape of the surface that is directly exposed to the laser beam, but when the laser beam is applied from the vertical direction, such as a constricted portion, the shape that is shaded and not directly exposed to the laser beam is measured. Is impossible to do.

その為、特許文献4で実施されている様にレーザーマイクロスコープで表面積比を測定した場合、クビレ形状の有無を測定値に反映することができないことから、レーザーマイクロスコープで測定した表面積比により銅箔の表面形状を制御することは本件に対しては不適当である。加えて特許文献4に示されるアスペクト比は、単に粗化粒子の「高さ」と「幅」の比を表すものであり、クビレ形状については全く考慮されていない。   For this reason, when the surface area ratio is measured with a laser microscope as in Patent Document 4, the presence or absence of a wedge shape cannot be reflected in the measured value. Controlling the surface shape of the foil is inappropriate for this case. In addition, the aspect ratio shown in Patent Document 4 simply represents the ratio between the “height” and “width” of the roughened particles, and no constriction shape is taken into consideration.

なお、上記の実施形態により得られた粗面化層を有する銅箔の粗面化層側に絶縁基板を密着させて銅張積層板を形成すると、粗面化層と絶縁基板との界面に沿って測定した界面長さ(Da’)は絶縁基板との加圧密着によって若干縮小する傾向にある。このため、絶縁基板密着後においても上記線長比が上記範囲に維持されていることが必要であり、絶縁基板密着後の該銅箔基体面と直交する断面において、前記銅箔基体面に沿って測定した沿面長さ(Db)に対する、前記粗面化層と前記絶縁基板との界面に沿って測定した界面長さ(Da’)の比(Da’/Db)を1.05〜4.00の範囲となるようにすることによって、上記(Da/Db)の場合と同様の効果を得ることができる。   In addition, when a copper clad laminate is formed by bringing an insulating substrate into close contact with the roughened layer side of the copper foil having the roughened layer obtained by the above embodiment, the interface between the roughened layer and the insulating substrate is formed. The interface length (Da ′) measured along the line tends to be slightly reduced due to pressure contact with the insulating substrate. For this reason, it is necessary that the line length ratio is maintained in the above range even after the insulating substrate is in close contact, and the cross section perpendicular to the copper foil base surface after the insulating substrate is in close contact with the copper foil base surface. The ratio (Da ′ / Db) of the interface length (Da ′) measured along the interface between the roughened layer and the insulating substrate to the creepage length (Db) measured in step 1.05-4. By making it be in the range of 00, the same effect as in the case of (Da / Db) can be obtained.

よって、本発明では、銅箔の凹凸表面における凹凸の平均高低差(粗化粒子の平均高さに相当する。)Hを0.2〜1.3μmの範囲にする。凹凸表面における凹凸の平均高低差Hが0.2μm未満であると、アンカー効果が弱い為、銅箔と絶縁基板の充分な密着性が得られない。また、凹凸表面における凹凸の平均高低差Hが1.3μm超えると、表面凹凸が大きくなりすぎて、表皮効果により伝送損失が大きくなる。なお、凹凸表面における凹凸の平均高低差Hは0.2〜0.8μmの範囲であってもよく、凹凸表面における凹凸の平均高低差Hは0.2〜0.3μmの範囲であってもよい。   Therefore, in this invention, the average height difference (equivalent to the average height of the roughening particle | grains) H in the uneven | corrugated surface of copper foil is made into the range of 0.2-1.3 micrometers. When the average height difference H of the unevenness on the uneven surface is less than 0.2 μm, the anchor effect is weak, so that sufficient adhesion between the copper foil and the insulating substrate cannot be obtained. Moreover, when the average height difference H of the unevenness on the uneven surface exceeds 1.3 μm, the unevenness on the surface becomes too large, and the transmission loss increases due to the skin effect. In addition, the average height difference H of the unevenness on the uneven surface may be in the range of 0.2 to 0.8 μm, and the average height difference H of the unevenness on the uneven surface may be in the range of 0.2 to 0.3 μm. Good.

なお、上記の実施形態により得られた粗面化層を有する銅箔の粗面化層側に絶縁基板を密着させて銅張積層板を形成すると、粗面化層の凹凸差Hは絶縁基板との加圧密着によって若干低下する傾向にある。このため、絶縁基板密着後においても凹凸の平均高さが上記範囲に維持されている必要があり、絶縁基板密着後の該銅箔基体面と直交する断面において、凹凸表面における凹凸の平均高低差(粗化粒子の平均高さに相当する。)H’を0.2〜1.3μmの範囲にすることによって、上記Hの場合と同様の効果を得ることができる。   When the copper-clad laminate is formed by bringing the insulating substrate into close contact with the roughened layer side of the copper foil having the roughened layer obtained by the above embodiment, the unevenness difference H of the roughened layer is the insulating substrate. There is a tendency to decrease slightly due to the pressure contact with. For this reason, the average height of the irregularities needs to be maintained in the above range even after the insulating substrate adheres, and the average height difference of the irregularities on the irregular surface in the cross section orthogonal to the copper foil substrate surface after the insulating substrate adheres. (This corresponds to the average height of the roughened particles.) By setting H ′ in the range of 0.2 to 1.3 μm, the same effect as in the case of H can be obtained.

本発明者らは、適切な凹凸の平均高低差(H)の範囲の中で、Da/Dbを制御する方法について調査した結果、文献6や文献7の様な粗化方法ではキレート剤の濃度が高い為に、多数の微細な粗化粒子が銅箔表面に形成されることでDa/Dbが増加し過ぎてしまい、その結果伝送損失が悪化することを見出した。この対策を鋭意研究した結果、従来よりもキレート剤の濃度を低濃度とすることで、粒子が適度な大きさとなり、Da/Dbを最適な範囲に制御し、密着性と耐熱性を高い水準で保ちつつ、伝送損失特性が向上することが分った。具体的には、メッキ浴に添加するキレート剤の濃度は0.1〜5g/Lの範囲とするとよい。   As a result of investigating a method for controlling Da / Db within an appropriate average height difference (H) range of the unevenness, the present inventors have found that the concentration of the chelating agent in the roughening methods such as Reference 6 and Reference 7 Therefore, it has been found that Da / Db increases excessively when a large number of fine roughened particles are formed on the surface of the copper foil, resulting in a deterioration in transmission loss. As a result of diligent research on this measure, by making the concentration of the chelating agent lower than before, the particles have an appropriate size, Da / Db is controlled within the optimum range, and the adhesion and heat resistance are high. It was found that the transmission loss characteristics were improved while maintaining the above. Specifically, the concentration of the chelating agent added to the plating bath is preferably in the range of 0.1 to 5 g / L.

反応のメカニズムとしては、キレート剤を低濃度とすることで、高濃度条件よりも電解時の過電圧が低下することにより核生成頻度が低下し、微細化効果が適度に抑制され、適度な大きさの粗化粒子が形成されたものと推察される。また、キレート剤が低濃度の場合、浴中のキレート分子の数が少ない為に、キレートが多く配位している金属イオン(Cuなど)とキレートが配位していない金属イオンが浴中で混在した状態となり、キレートの配位状態の違いにより析出モードの異なる粒子が同時に形成されることで、クビレ形状を有する複雑な粒子形状となり、適当なDa/Dbの範囲においても耐熱性と密着性が高い水準で両立できたと考えられる。またキレート剤を低濃度とすると、粗化粒子の高さ方向の成長が適度に抑制され、凹凸の平均高低差Hが適切な範囲となる。前記のキレートが多く配位している金属イオン(Cuなど)とキレートが配位していない金属イオンが浴中で混在した状態下における析出モードにより、析出の配向がランダムとなり高さ方向の成長が抑制されたものと考えられる。   The reaction mechanism is that the chelating agent has a low concentration, and the overvoltage at the time of electrolysis lowers than the high concentration condition, so that the frequency of nucleation is reduced, the effect of miniaturization is moderately suppressed, and the size is moderate. It is inferred that roughened particles were formed. In addition, when the chelating agent is at a low concentration, the number of chelating molecules in the bath is small, so that metal ions with a lot of chelate coordination (such as Cu) and metal ions with no chelate coordination in the bath It becomes a mixed state, and particles with different precipitation modes are formed at the same time due to the difference in the coordination state of the chelate, resulting in a complicated particle shape having a constricted shape, and heat resistance and adhesion even in an appropriate Da / Db range However, it is thought that both have been achieved at a high level. Further, when the chelating agent is at a low concentration, the growth in the height direction of the roughened particles is moderately suppressed, and the average height difference H of the unevenness falls within an appropriate range. Precipitation mode in the state where metal ions (such as Cu) with a lot of chelates coordinated and metal ions without chelates are mixed in the bath, the orientation of the precipitation becomes random, and the growth in the height direction Is considered to be suppressed.

またDa/Dbを適切に制御する方法として、粗面化処理浴に2種類のキレート剤を添加する方法も有効であることを見出した。2種類のキレート剤を添加することで、キレートの配位状態が異なる金属が同時に電解され、形状の異なる粒子が同時に析出することにより粗化粒子形状が複雑になり、アンカー効果が発現し易くなるものと推察される。
他にDa/Dbを適切に管理する方法として、従来は粉落ち等の不具合により用いられていない70〜90A/dm2の電流密度で粗化粒子を形成することも有効である。但し処理時間が長いと粒子が鉛直方向に成長し過ぎて粉落ちしやすくなる為、処理時間は短くする必要がある。高電流密度とすると、カソード上における水素ガスの発生量が増加する。水素がカソードから液中へ離脱するまでの間はめっきできないスポットとなるために、粗化の析出のタイミングが不連続となり、結果凹凸が適度に多い表面形状が得られるものと推察される。
Moreover, it discovered that the method of adding two types of chelating agents to a roughening bath was also effective as a method for appropriately controlling Da / Db. By adding two types of chelating agents, metals with different coordination states of the chelate are electrolyzed at the same time, and particles with different shapes are precipitated at the same time, so that the roughened particle shape becomes complicated and the anchor effect is easily exhibited. Inferred.
In addition, as a method for appropriately managing Da / Db, it is also effective to form roughened particles with a current density of 70 to 90 A / dm 2 which has not been used conventionally due to problems such as powder falling. However, if the treatment time is long, the particles grow too much in the vertical direction and are liable to fall off, so the treatment time needs to be shortened. When the current density is high, the amount of hydrogen gas generated on the cathode increases. It is presumed that the surface shape with moderately large irregularities can be obtained because the roughening deposition timing becomes discontinuous because the spots are not plated until the hydrogen is released from the cathode into the liquid.

さらに、本発明では、粗面化層120上に、直接、または中間層を介して0.0003〜0.0300mg/dmのシラン付着量で形成されたシランカップリング剤層を有する。シランカップリング剤層を構成するシランカップリング剤のシラン付着量が0.0003mg/dm未満の場合は、リフロー耐熱性が低下する。また、0.0300mg/dm超えの場合は、シランカップリング剤層が厚くなり過ぎて、密着強度が却って低下する。なお、シランカップリング剤層を構成するシランカップリング剤のシラン付着量は、0.0005〜0.0120mg/dmであってもよい。Furthermore, in this invention, it has the silane coupling agent layer formed with the silane adhesion amount of 0.0003-0.0300 mg / dm < 2 > on the roughening layer 120 directly or via the intermediate | middle layer. When the silane adhesion amount of the silane coupling agent constituting the silane coupling agent layer is less than 0.0003 mg / dm 2 , the reflow heat resistance is lowered. On the other hand, when it exceeds 0.0300 mg / dm 2 , the silane coupling agent layer becomes too thick, and the adhesion strength decreases on the contrary. In addition, 0.0005-0.0120 mg / dm < 2 > may be sufficient as the silane adhesion amount of the silane coupling agent which comprises a silane coupling agent layer.

なお、シランカップリング剤層の形成方法としては、例えば、粗面化層120の凹凸表面上に、直接または中間層を介して間接的にシランカップリング剤溶液を塗布した後、風乾又は加熱乾燥して形成する方法が挙げられる。塗布したカップリング剤層の乾燥は、水が蒸発すれば、本発明の効果を十分に発揮するが、50〜180℃で加熱乾燥すると、シランカップリング剤と銅箔の反応が促進される点で好適である。   In addition, as a formation method of a silane coupling agent layer, after apply | coating a silane coupling agent solution directly or indirectly through an intermediate | middle layer on the uneven | corrugated surface of the roughening layer 120, it air-drys or heat-drys, for example. And forming it. When the applied coupling agent layer is dried, if the water evaporates, the effect of the present invention can be fully exerted. However, when heated and dried at 50 to 180 ° C., the reaction between the silane coupling agent and the copper foil is promoted. It is suitable.

シランカップリング剤層は、好ましくは、エポキシ系シラン、アミノ系シラン、ビニル系シラン、メタクリル系シラン、アクリル系シラン、スチリル系シラン、ウレイド系シラン、メルカプト系シラン、スルフィド系シラン、イソシアネート系シランのいずれか1種以上を含有する。
本発明の凹凸表面は多数のクビレ形状を有していることが好ましい。クビレ形状を多数有することにより、粗化が微細であるにもかかわらず、強力なアンカー効果が発現し、銅箔と絶縁基板の密着性が高まり耐熱性を向上させることができる。多数のクビレ形状を有する凹凸表面を形成するには、上述したように凹凸の平均高低差Hを0.2〜1.3μmの範囲内とし、Da/Dbを1.4〜4.0の範囲内に制御することにより、粗化層の輪郭長さが長くなり、結果としてクビレ形状を多く有する粗化形状を得ることができる。
The silane coupling agent layer is preferably an epoxy silane, amino silane, vinyl silane, methacrylic silane, acrylic silane, styryl silane, ureido silane, mercapto silane, sulfide silane, or isocyanate silane. Contains any one or more.
The concavo-convex surface of the present invention preferably has a number of constricted shapes. By having a large number of constricted shapes, a strong anchor effect is exhibited despite the fact that the roughening is fine, and the adhesiveness between the copper foil and the insulating substrate is increased and the heat resistance can be improved. In order to form a concavo-convex surface having a large number of constricted shapes, as described above, the average height difference H of the concavo-convex is in the range of 0.2 to 1.3 μm, and Da / Db is in the range of 1.4 to 4.0. By controlling inward, the contour length of the roughened layer becomes long, and as a result, a roughened shape having a lot of constricted shapes can be obtained.

また、本発明においては、銅箔と絶縁基板を積層した際に前記粗面化層と絶縁基板の界面の気泡数が基板の幅、例えば2.54μm上において2個以下であることが好ましい。本件ではリフロー耐熱性に影響を及ぼす因子を調査するなかで、上記の線長比Da/Db、平均高低差Hの他に、リフロー試験片における銅箔の粗面化層と絶縁基板の界面の気泡数の影響が大きいことを見出した。ここで、本件における気泡とは、粗面化層と絶縁基板の界面において絶縁基板が充填されていない領域を指しており、その大きさは長径で1.0μm以下のものである。銅箔の粗面化層と絶縁基板の界面の気泡数が多い場合、リフロー試験における加熱時に前記絶縁基板中から揮発したガスが気泡部に集まり、気泡内のガス圧が高くなることで層間剥離し易くなる。   In the present invention, when the copper foil and the insulating substrate are laminated, the number of bubbles at the interface between the roughened layer and the insulating substrate is preferably 2 or less on the width of the substrate, for example, 2.54 μm. In this case, while investigating the factors affecting the reflow heat resistance, in addition to the above-mentioned line length ratio Da / Db and average height difference H, the roughening layer of the copper foil in the reflow test piece and the interface of the insulating substrate It was found that the influence of the number of bubbles was large. Here, the bubble in this case refers to the area | region where the insulating substrate is not filled in the interface of a roughening layer and an insulating substrate, The magnitude | size is 1.0 micrometer or less with a major axis. When the number of bubbles at the interface between the roughened layer of copper foil and the insulating substrate is large, the gas volatilized from the insulating substrate during heating in the reflow test gathers in the bubble portion, and the gas pressure inside the bubbles increases, resulting in delamination It becomes easy to do.

そこで粗面化層と基板の界面の気泡数を減らす方法を鋭意調査した結果、シランカップリング剤の処理条件を適正にコントロールすることが有効であることが分った。具体的には先ず、シランカップリング剤水溶液にアルコールを添加する方法である。アルコールとしてはメタノール、エタノール、イソプロピルアルコール、n-プロピルアルコールなどが挙げられる。アルコールの添加により溶液中のシラン分子の分散性が良くなり、銅箔の粗面化層に均一にシランカップリング剤が処理されることで樹脂に対する濡れ性が向上すると考えられる。そして基板と銅箔を高温でプレスする際に溶融樹脂が粗面化層に対して樹脂が良く濡れることで充填性がよくなり、粗面化層と基板の界面の気泡数が減少するものと推察される。また、銅箔をシラン水溶液で処理してから温風で乾燥させるまでの時間を長くする方法も有効である。シラン水溶液で処理してから温風で乾燥させるまでの時間を長くすることで、銅箔の粗面化層の表面にシラン分子が規則的に配向して樹脂に対する濡れ性が向上し、結果として粗面化層と絶縁基板の界面の気泡数が減少するものと推察される。例えば、特許文献4で紹介される様なシラン処理の場合は、粗面化層に対する樹脂の濡れ性が考慮されておらず、粗面化層と絶縁基板の界面の気泡数が増加し易い。   Therefore, as a result of intensive investigations on a method for reducing the number of bubbles at the interface between the roughened layer and the substrate, it has been found that it is effective to appropriately control the treatment conditions of the silane coupling agent. Specifically, first, the alcohol is added to the aqueous silane coupling agent solution. Examples of the alcohol include methanol, ethanol, isopropyl alcohol, and n-propyl alcohol. It is considered that the addition of alcohol improves the dispersibility of silane molecules in the solution and improves the wettability to the resin by uniformly treating the roughened layer of the copper foil with the silane coupling agent. When the substrate and copper foil are pressed at a high temperature, the molten resin gets wet well with the roughened layer, so that the filling property is improved, and the number of bubbles at the interface between the roughened layer and the substrate is reduced. Inferred. It is also effective to increase the time from treating the copper foil with an aqueous silane solution to drying it with warm air. By increasing the time from treatment with a silane aqueous solution to drying with warm air, the silane molecules are regularly oriented on the surface of the roughened layer of copper foil, improving the wettability to the resin, and as a result It is assumed that the number of bubbles at the interface between the roughened layer and the insulating substrate decreases. For example, in the case of silane treatment as introduced in Patent Document 4, the wettability of the resin with respect to the roughened layer is not considered, and the number of bubbles at the interface between the roughened layer and the insulating substrate tends to increase.

銅箔の粗面化層と絶縁基板の界面の気泡数は基板の幅方向において、2.54μmの線上に2個以下であればよい。気泡の数は、同線上に1個以下、または0個であってもよい。銅箔の粗面化層と絶縁基板の界面の気泡数が同線上に3個以上の場合は、リフロー試験時に絶縁基板中から発生したガスが気泡部に集中し、相間剥離が生じ易くなりリフロー耐熱性(銅箔とプリプレグ層との間)が低下する傾向にある。   The number of bubbles at the interface between the roughened layer of the copper foil and the insulating substrate may be two or less on the 2.54 μm line in the width direction of the substrate. The number of bubbles may be 1 or less or 0 on the same line. When the number of bubbles at the interface between the roughened layer of copper foil and the insulating substrate is 3 or more on the same line, the gas generated from the insulating substrate during the reflow test concentrates on the bubbles and reflow is likely to occur. Heat resistance (between the copper foil and the prepreg layer) tends to decrease.

その他の実施形態として、粗面化層120とシランカップリング剤層との間に、Niを含有する下地層、Znを含有する耐熱処理層およびCrを含有する防錆処理層の中から選択される少なくとも1層の中間層をさらに有してもよい。
ニッケル(Ni)を含有する下地層は、例えば銅箔基体110や粗面化層120中の銅(Cu)が、絶縁基板側に拡散し銅害が発生して密着性が低下することがある場合に、粗面化層120とシランカップリング剤層との間に形成することが好ましい。Niを含有する下地層は、ニッケル(Ni)、ニッケル(Ni)−りん(P)、ニッケル(Ni)−亜鉛(Zn)のうち少なくとも1種以上を含有する。このうち、回路配線形成時における銅箔エッチング時のニッケル残りを抑制できるという観点で好ましいのはニッケル−りんである。
As other embodiments, it is selected from a base layer containing Ni, a heat-resistant treatment layer containing Zn, and a rust prevention treatment layer containing Cr between the roughening layer 120 and the silane coupling agent layer. It may further have at least one intermediate layer.
In the base layer containing nickel (Ni), for example, copper (Cu) in the copper foil base 110 or the roughened layer 120 may diffuse to the insulating substrate side, causing copper damage and lowering adhesion. In this case, it is preferable to form between the roughening layer 120 and the silane coupling agent layer. The underlayer containing Ni contains at least one of nickel (Ni), nickel (Ni) -phosphorus (P), and nickel (Ni) -zinc (Zn). Among these, nickel-phosphorus is preferable from the viewpoint that the remaining nickel at the time of etching the copper foil during circuit wiring formation can be suppressed.

亜鉛(Zn)を含有する耐熱処理層は、耐熱性をさらに向上させる必要がある場合に形成することが好ましい。耐熱処理層は、例えば亜鉛、または亜鉛を含有する合金、即ち、亜鉛(Zn)−錫(Sn)、亜鉛(Zn)−ニッケル(Ni)、亜鉛(Zn)−コバルト(Co)、亜鉛(Zn)−銅(Cu)、亜鉛(Zn)−クロム(Cr)および亜鉛(Zn)−バナジウム(V)のうちから選択される少なくとも1種類以上の亜鉛を含有する合金で形成することが好ましい。上記のうち、回路配線形成の際のエッチング時のアンダーカットを抑制するという観点から、特に好ましいのは亜鉛−バナジウムである。なお、ここでいう「耐熱性」とは、表面処理銅箔に絶縁基板を積層し、加熱して樹脂を硬化させた後に表面処理銅箔と絶縁基板との間の密着強度が低下しにくい性質を意味し、リフロー耐熱性とは異なる特性である。   The heat-resistant treatment layer containing zinc (Zn) is preferably formed when heat resistance needs to be further improved. The heat-resistant treatment layer is made of, for example, zinc or an alloy containing zinc, that is, zinc (Zn) -tin (Sn), zinc (Zn) -nickel (Ni), zinc (Zn) -cobalt (Co), zinc (Zn ) -Copper (Cu), zinc (Zn) -chromium (Cr), and zinc (Zn) -vanadium (V), preferably an alloy containing at least one kind of zinc. Among these, zinc-vanadium is particularly preferable from the viewpoint of suppressing undercut during etching when forming circuit wiring. “Heat resistance” as used herein refers to the property that the adhesion strength between the surface-treated copper foil and the insulating substrate is less likely to decrease after the insulating substrate is laminated on the surface-treated copper foil and the resin is cured by heating. This is a characteristic different from reflow heat resistance.

Crを含有する防錆処理層は、耐食性をさらに向上させる必要がある場合に形成してもよい。防錆処理層としては、例えばクロムめっきによるクロム層、クロメート処理により形成するクロメート層が挙げられる。
上記の下地層、耐熱処理層及び防錆処理層は、これらの三層の全てを形成する場合には、粗面化層上に、この順序で形成してもよく、また、用途や目的とする特性に応じて、いずれか一層または二層のみを形成してもよい。
The antirust treatment layer containing Cr may be formed when it is necessary to further improve the corrosion resistance. Examples of the antirust treatment layer include a chromium layer formed by chromium plating and a chromate layer formed by chromate treatment.
In the case of forming all of these three layers, the base layer, the heat-resistant treatment layer, and the rust-proofing treatment layer may be formed in this order on the roughened layer. Any one layer or only two layers may be formed depending on the characteristics to be performed.

また、本発明の表面処理銅箔は、銅張積層板の製造に用いるのが好適である。銅張積層板は、表面処理銅箔の粗面化層側の面に、絶縁基板を有している。
銅張積層板に用いる絶縁基板は、熱硬化性ポリフェニレンエーテル樹脂、ポリスチレン系重合体を含む熱硬化性ポリフェニレンエーテル樹脂、トリアリルシアヌレートの重合体や共重合体を含む樹脂組成物、メタクリル又はアクリル変性したエポキシ樹脂組成物、フェノール類付加ブタジエン重合体、ジアリルフタレート樹脂、ジビニルベンゼン樹脂、多官能性メタクリロイル樹脂、不飽和ポリエステル樹脂、ポリブタジエン樹脂、スチレン−ブタジエン、スチレン−ブタジエン・スチレン−ブタジエンの架橋ポリマーなどから選ばれる絶縁樹脂が用いられる。
銅張積層板を製造する場合には、シランカップリング剤層を有する表面処理銅箔と、絶縁基板を加熱プレスして密着させることによって製造すればよい。なお、絶縁基板上にシランカップリング剤を塗布し、最表面に防錆処理層を有する銅箔と加熱プレスによって密着させることにより作製された銅張積層板も、本発明と同等の効果を有する。
Moreover, it is suitable to use the surface-treated copper foil of this invention for manufacture of a copper clad laminated board. The copper clad laminate has an insulating substrate on the surface of the surface-treated copper foil on the roughened layer side.
Insulating substrates used for copper-clad laminates are thermosetting polyphenylene ether resins, thermosetting polyphenylene ether resins including polystyrene-based polymers, resin compositions containing triallyl cyanurate polymers and copolymers, methacrylic or acrylic Modified epoxy resin composition, phenolic addition butadiene polymer, diallyl phthalate resin, divinylbenzene resin, polyfunctional methacryloyl resin, unsaturated polyester resin, polybutadiene resin, styrene-butadiene, styrene-butadiene / styrene-butadiene cross-linked polymer An insulating resin selected from the above is used.
When producing a copper-clad laminate, the surface-treated copper foil having a silane coupling agent layer and an insulating substrate may be produced by heat-pressing and adhering. In addition, the copper clad laminated board produced by apply | coating a silane coupling agent on an insulated substrate, and making it adhere with a copper foil which has a rust prevention process layer on the outermost surface with a heat press also has an effect equivalent to this invention. .

〔表面処理銅箔の作製〕
(1)粗面化層の形成工程
銅箔上に、粗化粒子の電析により、凹凸表面をもつ粗面化層を形成する。
線長比Da/Dbを制御するうえでは、(i)粗化粒子の大きさを適切に制御すること、(ii)形状の異なる粗化粒子が同時に析出し易くすること、が好ましい。
(i)の観点からは、例えば、核生成頻度を小さくするために電解時の過電圧を小さくする手法を採ることができ、その具体例としては、キレート剤を低濃度とすることが挙げられる。あるいは、粗化処理を行う際の電流密度を70〜90A/dm2と高くし、処理時間を短くする手法を採ることもできる。
[Production of surface-treated copper foil]
(1) Roughening layer forming step A roughening layer having an uneven surface is formed on a copper foil by electrodeposition of roughening particles.
In controlling the line length ratio Da / Db, it is preferable to (i) appropriately control the size of the roughened particles, and (ii) to easily precipitate the roughened particles having different shapes at the same time.
From the viewpoint of (i), for example, a technique of reducing the overvoltage during electrolysis in order to reduce the nucleation frequency can be taken, and a specific example thereof is a low concentration of the chelating agent. Alternatively, it is possible to adopt a technique in which the current density during the roughening treatment is increased to 70 to 90 A / dm 2 and the treatment time is shortened.

ここで粗面化処理のメッキ浴に添加するキレート剤の濃度は0.1〜5g/Lが適当である。キレート剤としてはDL-りんご酸、EDTAナトリウム溶液、グルコン酸ナトリウム、ジエチレントリアミン五酢酸五ナトリウム(DTPA)などのキレート剤などが挙げられる。
また、(ii)の観点からは、例えばキレートの配位状態が異なる金属が同時に電解されるようにする手法を採ることができ、その具体例としては、粗面化処理浴に2種類のキレート剤を添加することが挙げられる。例として、DL-りんご酸とDTPAとの組合せがある。
Here, the concentration of the chelating agent added to the plating bath for surface roughening is suitably 0.1 to 5 g / L. Examples of chelating agents include DL-malic acid, sodium EDTA solution, sodium gluconate, and diethylenetriaminepentaacetic acid pentasodium (DTPA).
Further, from the viewpoint of (ii), for example, a technique in which metals having different coordination states of chelates can be electrolyzed at the same time can be taken. Specific examples thereof include two types of chelates in a roughening treatment bath. Adding an agent. An example is a combination of DL-malic acid and DTPA.

また、銅箔基体の幅方向の2.54μmの線上において粗面化層と絶縁基板との界面における気泡数が2個以下となるようにするために、粗面化層の絶縁基板表面に対する濡れ性を向上させるような方法を採ることができる。そのためには、例えば(i)粗面化層にシランカップリング剤層が均一に形成されるようにシランカップリング処理を行うこと、(ii)シランカップリング剤層中のシラン分子が規則的に配向するようにシランカップリング処理を行うこと、等の手段がある。(i)の具体例としては、シランカップリング剤水溶液にアルコールを添加する手法、(ii)の具体例としては、粗化処理銅箔をシラン水溶液で処理してから温風で乾燥させるまえの時間を長くする手法、等が挙げられる。   In addition, the wettability of the roughened layer to the insulating substrate surface so that the number of bubbles at the interface between the roughened layer and the insulating substrate is 2 or less on the 2.54 μm line in the width direction of the copper foil substrate. It is possible to adopt a method for improving the above. For this purpose, for example, (i) silane coupling treatment is performed so that the silane coupling agent layer is uniformly formed on the roughened layer, and (ii) silane molecules in the silane coupling agent layer are regularly formed. There are means such as performing a silane coupling treatment so as to be oriented. As a specific example of (i), a method of adding alcohol to a silane coupling agent aqueous solution, and as a specific example of (ii), a roughened copper foil is treated with a silane aqueous solution and then dried with warm air. For example, a method of extending the time.

(2)下地層の形成工程
粗面化層上に、必要によりNiを含有する下地層を形成する。
(3)耐熱処理層の形成工程
粗面化層上または下地層上に、必要によりZnを含有する耐熱処理層を形成する。
(4)防錆処理層の形成工程
上記層を形成した銅箔を、必要により、pHが3.5未満のCr化合物を含有する水溶液に浸し、0.3A/dm以上の電流密度でクロムめっき処理することによって、粗面化層上、下地層上または耐熱処理層上に防錆処理層を形成する。
(5)シランカップリング剤層の形成工程
粗面化層上、下地層上、耐熱処理層上または防錆処理層上に、シランカップリング剤層を形成する。
(2) Forming process of base layer A base layer containing Ni is formed as necessary on the roughened layer.
(3) Formation process of heat-resistant treatment layer A heat-resistant treatment layer containing Zn is formed as necessary on the roughened layer or the underlayer.
(4) Rust-proofing layer forming step The copper foil on which the above layer is formed is immersed in an aqueous solution containing a Cr compound having a pH of less than 3.5, if necessary, and chromium at a current density of 0.3 A / dm 2 or more. By carrying out plating treatment, a rust-proofing layer is formed on the roughened layer, the underlayer or the heat-resistant layer.
(5) Formation process of a silane coupling agent layer A silane coupling agent layer is formed on a roughening layer, an underlayer, a heat-resistant treatment layer, or a rust prevention treatment layer.

〔銅張積層板の製造〕
本実施形態の銅張積層板は、次のような工程で製造する。
(1)表面処理銅箔の作製
上記(1)〜(5)に従い、表面処理銅箔を作製する。
(2)銅張積層板の製造(積層)工程
上記で作製した表面処理銅箔と絶縁基板とを、表面処理銅箔を構成するシランカップリング剤層の表面が絶縁基板の貼合せ面と向かい合うように重ね合わせた後、加熱・加圧処理して両者を密着させることによって、銅張積層板を製造する。
なお、上述したところは、本発明の実施形態の例を示したにすぎず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
[Manufacture of copper-clad laminate]
The copper clad laminate of this embodiment is manufactured by the following process.
(1) Production of surface-treated copper foil A surface-treated copper foil is produced according to the above (1) to (5).
(2) Manufacturing (laminating) step of copper clad laminate The surface-treated copper foil and insulating substrate produced above are the surfaces of the silane coupling agent layer constituting the surface-treated copper foil facing the bonding surface of the insulating substrate. After being superposed, a copper clad laminate is produced by heating and pressurizing to bring them into close contact.
In addition, the place mentioned above only showed the example of embodiment of this invention, and can make a various change in the range which does not deviate from the meaning of this invention.

(実施例1)
厚さ18μmの無粗化(表面粗さRzは約0.8μm)の銅箔基体に下記条件で表面処理銅箔を作製した。
(1)粗面化層の形成
銅箔基体の表面への粗面化処理は、表1の条件で粗面化めっき処理1を行い、次に下記に示す粗面化めっき処理2の手順で行い、粗面化層を形成した。
Example 1
A surface-treated copper foil was prepared under the following conditions on a copper foil substrate having a thickness of 18 μm and no roughening (surface roughness Rz was about 0.8 μm).
(1) Formation of roughening layer The roughening process to the surface of a copper foil base | substrate performs the roughening plating process 1 on the conditions of Table 1, and then follows the procedure of the roughening plating process 2 shown below. And a roughened layer was formed.

Figure 2017138338
Figure 2017138338

(粗面化めっき処理2)
硫酸銅:銅濃度として13〜72g/L
硫酸濃度:26〜133g/L
液温:18〜67℃
電流密度:3〜67A/dm
処理時間:1秒〜1分55秒
(Roughening plating process 2)
Copper sulfate: 13-72 g / L as copper concentration
Sulfuric acid concentration: 26-133 g / L
Liquid temperature: 18-67 degreeC
Current density: 3 to 67 A / dm 2
Processing time: 1 second-1 minute 55 seconds

(2)Niを含有する下地層の形成
銅箔基体の表面への粗面化層の形成後、粗面化層上に、下記に示すNiめっき条件で電解めっきすることにより下地層(Niの付着量0.06mg/dm)を形成した。
<Niめっき条件>
硫酸ニッケル: ニッケル金属として5.0g/L
過硫酸アンモニウム40.0g/L
ほう酸28.5g/L
電流密度1.5A/dm
pH 3.8
温度28.5℃
時間1秒〜2分
(2) Formation of Ni-containing foundation layer After the formation of the roughened layer on the surface of the copper foil substrate, the underlying layer (Ni) is formed on the roughened layer by electrolytic plating under the Ni plating conditions shown below. A deposit amount of 0.06 mg / dm 2 ) was formed.
<Ni plating conditions>
Nickel sulfate: 5.0 g / L as nickel metal
Ammonium persulfate 40.0 g / L
Boric acid 28.5g / L
Current density 1.5 A / dm 2
pH 3.8
Temperature 28.5 ° C
Time 1 second-2 minutes

(3)Znを含有する耐熱処理層の形成
下地層の形成後、この下地層上に、下記に示すZnめっき条件で電解めっきすることにより耐熱処理層(Znの付着量:0.05mg/dm)を形成した。
<Znめっき条件>
硫酸亜鉛7水和物1〜30g/L
水酸化ナトリウム10〜300g/L
電流密度0.1〜10A/dm
温度5〜60℃
時間1秒〜2分
(3) Formation of heat-resistant treatment layer containing Zn After the formation of the underlayer, the undercoat layer is subjected to electrolytic plating under the following Zn plating conditions to form a heat-resistant treatment layer (Zn adhesion amount: 0.05 mg / dm 2 ) was formed.
<Zn plating conditions>
Zinc sulfate heptahydrate 1-30g / L
Sodium hydroxide 10-300g / L
Current density 0.1-10 A / dm 2
Temperature 5-60 ° C
Time 1 second-2 minutes

(4)Crを含有する防錆処理層の形成耐熱処理層の形成後、この耐熱処理層上に、下記に示すクロムめっき処理条件で処理することにより防錆処理層(Crの付着量:0.02mg/dm)を形成した。
<クロムめっき条件>
(クロムめっき浴)
無水クロム酸CrO 2.5g/L
pH 2.5
電流密度0.5A/dm
温度15〜45℃
時間1秒〜2分
(4) Formation of a rust-proofing layer containing Cr After the heat-resistant layer is formed, the rust-proofing layer (Cr adhesion amount: 0) is formed on the heat-resistant layer under the following chromium plating conditions. 0.02 mg / dm 2 ).
<Chrome plating conditions>
(Chromium plating bath)
Chromic anhydride CrO 3 2.5 g / L
pH 2.5
Current density 0.5 A / dm 2
Temperature 15-45 ° C
Time 1 second-2 minutes

(5)シランカップリング剤層の形成
防錆処理層の形成後、この防錆処理層上に、表2に示す条件で、シランカップリング剤水溶液にメタノールまたはエタノールを添加し、所定のpHに調整した処理液を塗布した。その後、所定の時間保持してから温風で乾燥させることにより、表3に示すシラン付着量のシランカップリング剤層を形成した。なお、表3中の下線部の数値は、本発明の適正範囲外の数値であることを示す。
(5) Formation of Silane Coupling Agent Layer After the formation of the antirust treatment layer, methanol or ethanol is added to the silane coupling agent aqueous solution on the antirust treatment layer under the conditions shown in Table 2 to obtain a predetermined pH. The adjusted treatment liquid was applied. Thereafter, the silane coupling agent layer having the silane adhesion amount shown in Table 3 was formed by holding it for a predetermined time and drying it with warm air. In addition, the numerical value of the underline part in Table 3 shows that it is a numerical value outside the appropriate range of this invention.

Figure 2017138338
Figure 2017138338

Figure 2017138338
Figure 2017138338

(実施例2〜18)
粗面化めっき処理1は表1の内容で、シランカップリング剤処理は表2の内容で其々行い、それ以外は実施例1と同じ処理を実施した。
(比較例1〜7及び9〜14)
粗面化めっき処理1は表1の内容で、シランカップリング剤処理は表2の内容で其々行い、それ以外は実施例1と同じ処理を実施した。
(Examples 2 to 18)
The roughening plating treatment 1 was carried out in accordance with the contents of Table 1, the silane coupling agent treatment was carried out in accordance with the contents of Table 2, and the other treatments were carried out in the same manner as in Example 1.
(Comparative Examples 1-7 and 9-14)
The roughening plating treatment 1 was carried out in accordance with the contents of Table 1, the silane coupling agent treatment was carried out in accordance with the contents of Table 2, and the other treatments were carried out in the same manner as in Example 1.

(比較例8)
ロール状液晶ポリマーフィルム(クラレ(株)製のVecster(登録商標)CT−Z)を用いて、水酸化カリウム溶液(液温80℃)に処理時間10分間浸してエッチングし粗面化処理を行った。続いて、粗面化処理した熱可塑性樹脂フィルムに下記の無電解銅めっき浴により無電解銅めっきを形成した。
(Comparative Example 8)
Using a roll-shaped liquid crystal polymer film (Vecster (registered trademark) CT-Z manufactured by Kuraray Co., Ltd.), it is immersed in a potassium hydroxide solution (liquid temperature 80 ° C.) for a treatment time of 10 minutes for etching and roughening treatment. It was. Subsequently, electroless copper plating was formed on the roughened thermoplastic resin film by the following electroless copper plating bath.

<無電解銅めっき浴>
硫酸銅・5水和物(銅成分として) 19g/L
HEEDTA(キレート剤) 50g/L
ホスフィン酸ナトリウム(還元剤) 30g/L
塩化ナトリウム20g/L
リン酸水素二ナトリウム15g/L
その後、硫酸銅浴を用いて、熱可塑性樹脂フィルム上に形成される無電解銅めっき層を含めた銅めっき層全体の厚さが20μmになるように電解銅めっき層を形成した。なお、比較例8は、特許文献1に記載された発明の範囲を満足する条件で作製したものである。
<Electroless copper plating bath>
Copper sulfate pentahydrate (as copper component) 19g / L
HEEDTA (chelating agent) 50g / L
Sodium phosphinate (reducing agent) 30g / L
Sodium chloride 20g / L
Disodium hydrogen phosphate 15g / L
Then, the electrolytic copper plating layer was formed so that the thickness of the whole copper plating layer including the electroless copper plating layer formed on a thermoplastic resin film might be set to 20 micrometers using a copper sulfate bath. Note that Comparative Example 8 was produced under conditions that satisfy the scope of the invention described in Patent Document 1.

試験片の特性評価
各試験片につき各種測定、評価を行い、その結果を表3に示した。
(1)線長比Da/Db及び凹凸表面における凹凸の平均高低差Hの測定
図3中に両矢印で示す銅箔基体面(面方向P)と直交する断面において、前記銅箔基体110の面に沿って測定した沿面長さDbに対する、前記粗面化層の凹凸表面120に沿って測定した沿面長さDaの比Da/Dbを線長比とする。当該断面における粗面化層の凹凸表面が、より多くの、あるいは、より大きな凹凸を有する形状をなす場合に線長比は大きくなる。
Characteristic Evaluation of Test Pieces Various measurements and evaluations were performed for each test piece, and the results are shown in Table 3.
(1) Measurement of the line length ratio Da / Db and the average height difference H of the unevenness on the uneven surface In the cross section orthogonal to the copper foil substrate surface (plane direction P) indicated by the double arrow in FIG. A ratio Da / Db of the creeping length Da measured along the uneven surface 120 of the roughened layer to the creeping length Db measured along the surface is defined as a line length ratio. The line length ratio increases when the uneven surface of the roughened layer in the cross section has a shape with more or larger unevenness.

上記のような線長比Da/Dbは、イオンミリング装置(日立製作所製:IM4000)により処理した各試験片の断面を、走査型電子顕微鏡(SEM:日立製作所製:SU8020)を用いて観察し、以下に示す手順によって測定した。倍率を10000倍(本件の画像内視野の実際の幅が12.7μmである。)に拡大した観察画像から算出した。粗面化層の凹凸表面における沿面長さDaは、SEMによる観察画像を画像解析ソフトウェアWinroof(三谷商事)にて、図3に示す太線のように測定した。なお、他の画像解析ソフトを用いても同様に測定可能である。SEMの倍率については、SEM画像の幅が5〜15μmの範囲となるような倍率が望ましい。本件では10箇所の視野でそれぞれDan/Dbnを測定し(n=1〜10)、それらの平均値をDa/Dbとした。   The line length ratio Da / Db as described above is obtained by observing the cross section of each test piece processed by an ion milling device (manufactured by Hitachi, Ltd .: IM4000) using a scanning electron microscope (SEM: manufactured by Hitachi, Ltd .: SU8020). The measurement was performed according to the following procedure. The magnification was calculated from an observed image enlarged to 10000 times (the actual width of the visual field in the present image is 12.7 μm). The creeping length Da on the uneven surface of the roughened layer was measured by image analysis software Winroof (Mitani Corporation) as shown by the thick line in FIG. Note that the same measurement is possible using other image analysis software. As for the magnification of the SEM, a magnification such that the width of the SEM image is in the range of 5 to 15 μm is desirable. In this case, Dan / Dbn was measured in each of ten visual fields (n = 1 to 10), and the average value thereof was defined as Da / Db.

次に、凹凸表面の平均高低差を、以下のように測定した。まず、観察倍率を200倍(本件の画像内視野の実際の幅が63.5μmである。)に拡大し、任意の位置で、凹凸表面の延在方向と画面の水平方向とが±1°の範囲になるように合わせる。次に、観察倍率を10,000倍(本件の画像内視野の実際の幅が12.7μmである。)に拡大し、任意の位置でSEM画像内に映し出されている凹凸表面を形成する凹凸のうち、最下点位置となる底位置を有する第1凹部の底位置をA点とする。次いで、第1凹部およびこの第1凹部に隣接する凹部を除いた残りの凹部の中で、最下点位置となる底位置を有する第2凹部の底位置をB点とする。そして、A点とB点を結んだ直線をベース線BL1とする(図4(a))。その後、50,000倍(本件の画像内視野の実際の幅が2.54μmである。)のSEM画像で、任意の位置で凹凸表面を形成する凹凸のうち、最下点位置となる底位置を有する第3凹部の底位置を通る様に、ベース線BL1と平行にベース線BL2を引き、ベース線BL2から垂直方向に最も離れた凸部の頂点までの距離を、高低差Hとして測定する(図4(b))。本実施例では、5箇所の視野でそれぞれ高低差を測定しそれらの平均値を平均高低差Hとした。   Next, the average height difference of the uneven surface was measured as follows. First, the observation magnification is increased to 200 times (the actual width of the visual field in the image is 63.5 μm), and the extending direction of the uneven surface and the horizontal direction of the screen are ± 1 ° at an arbitrary position. Adjust to be in the range of. Next, the observation magnification is increased to 10,000 times (the actual width of the visual field in the present image is 12.7 μm), and the unevenness forming the uneven surface projected in the SEM image at an arbitrary position. Among these, the bottom position of the first recess having the bottom position serving as the lowest point position is defined as A point. Next, in the remaining recesses except for the first recess and the recess adjacent to the first recess, the bottom position of the second recess having the bottom position serving as the lowest point position is defined as B point. A straight line connecting points A and B is defined as a base line BL1 (FIG. 4A). After that, in the SEM image of 50,000 times (the actual width of the visual field in the present image is 2.54 μm), the bottom position that is the lowest point position among the unevenness forming the uneven surface at an arbitrary position The base line BL2 is drawn in parallel with the base line BL1 so as to pass through the bottom position of the third concave part having a height, and the distance from the base line BL2 to the apex of the convex part farthest in the vertical direction is measured as the height difference H. (FIG. 4B). In this example, the height difference was measured in each of the five visual fields, and the average value thereof was defined as the average height difference H.

(2)粗面化層と絶縁基板の界面の気泡数
図5に示したように、粗面化層43と絶縁基板42の界面の気泡数は以下に示す手順によって測定した。始めにプレス機を用い絶縁基板メーカーが推奨する標準のプレス条件で絶縁基板42(プリプレグ層)と銅箔43をプレスし積層体を作製する(本件では、絶縁基板42としてパナソニック株式会社のMEGTRON6:R-5670を使用し、プレス温度:200℃、プレス圧力:35kgf/cm2、プレス時間:160分のプレス条件で積層した。次に前記イオンミリング装置にて処理した前記積層体の断面を前記走査型電子顕微鏡で、50000倍(本件の画像内視野の実際の幅が2.54μmである。)に拡大し、積層体の粗面化層43と絶縁基板42の界面を観察した。図5の様に、幅が2.54μmの線上における粗面化層43と絶縁基板42の界面に存在する気泡41の数を10箇所でそれぞれ測定し、10箇所の気泡の数の平均値を粗面化層43と絶縁基板42の界面の気泡数Viとした。本件における気泡とは、粗面化層と絶縁基板の界面において絶縁基板が充填されていない領域を指しており、その大きさは長径で1.0μm以下のものである。
(2) Number of bubbles at the interface between the roughened layer and the insulating substrate As shown in FIG. 5, the number of bubbles at the interface between the roughened layer 43 and the insulating substrate 42 was measured by the following procedure. First, using a press machine, press the insulating substrate 42 (prepreg layer) and the copper foil 43 under the standard pressing conditions recommended by the insulating substrate manufacturer to produce a laminate (in this case, the MEGTRON6 of Panasonic Corporation as the insulating substrate 42: Using R-5670, lamination was performed under a press temperature of 200 ° C., a press pressure of 35 kgf / cm 2, a press time of 160 minutes, and the cross section of the laminate processed by the ion milling apparatus was scanned. With a scanning electron microscope, it was magnified 50000 times (the actual width of the visual field in this image is 2.54 μm), and the interface between the roughened layer 43 and the insulating substrate 42 of the laminate was observed, as shown in FIG. Similarly, the number of bubbles 41 existing at the interface between the roughened layer 43 and the insulating substrate 42 on the line having a width of 2.54 μm is measured at 10 locations, and the average value of the number of bubbles at 10 locations is roughened. Layer 43 and absolute The number of bubbles Vi at the interface of the substrate 42. The bubble in this case refers to a region where the insulating substrate is not filled at the interface between the roughened layer and the insulating substrate, and the size is 1.0 μm or less in the major axis. Is.

(3)シラン付着量の測定
蛍光X線分析装置((株)リガク製ZSXPrimus、分析径:Φ35mmにて分析した。
(4)絶縁基板密着後の線長比Da’/Db及び凹凸表面における凹凸の平均高低差H’の測定
各銅箔を絶縁基板と接着後に、線長比Da’/Db及び凹凸表面における凹凸の平均高低差H’は、上記Da/DbおよびHの測定と同様の方法によって行った。
(3) Measurement of silane adhesion amount It analyzed with the fluorescent X ray analyzer (ZSX Primus by Rigaku Co., Ltd., analysis diameter: (PHI) 35mm.
(4) Measurement of line length ratio Da ′ / Db after contact with insulating substrate and average height difference H ′ of unevenness on uneven surface After bonding each copper foil to the insulating substrate, line length ratio Da ′ / Db and unevenness on uneven surface The average height difference H ′ was determined by the same method as the measurement of Da / Db and H described above.

(5)伝送特性(高周波での伝送損失の測定)
各銅箔を絶縁基板と接着後に、伝送特性測定用のサンプルを作製し高周波帯域における伝送損失を測定した。絶縁基板としては市販のポリフェニレンエーテル系絶縁(パナソニック(株)製メグトロン6)を使用した。伝送損失測定用の基板は、構造をストリップライン構造とし導体長さ400mm、導体厚さ18μm、導体幅を0.14mm、全体の厚さを0.31mm、特性インピーダンスが50Ωになる様に調整した。評価は、ベクトルネットワークアナライザE8363B(KEYSIGHT TECHNOLOGIES)を用いて、10GHzおよび40GHzにおける伝送損失を測定した。導体長さが400mm場合に測定した伝送損失を、導体長さが1000mmの場合に換算した値を伝送損失の測定結果とし、単位はdB/mとした。具体的には導体長さ400mmで測定した伝送損失の値に2.5を掛けた値を伝送損失の測定値とした。結果を表3に示したが、伝送特性は、10GHzで伝送損失が19.5dB/m未満を合格、40GHzで伝送損失が66.0dB/m未満を合格とした。
(5) Transmission characteristics (measurement of transmission loss at high frequency)
After bonding each copper foil to the insulating substrate, a sample for measuring transmission characteristics was prepared, and the transmission loss in the high frequency band was measured. As the insulating substrate, a commercially available polyphenylene ether-based insulating material (Megtron 6 manufactured by Panasonic Corporation) was used. The substrate for transmission loss measurement was adjusted to have a stripline structure, a conductor length of 400 mm, a conductor thickness of 18 μm, a conductor width of 0.14 mm, an overall thickness of 0.31 mm, and a characteristic impedance of 50Ω. In the evaluation, transmission loss at 10 GHz and 40 GHz was measured using a vector network analyzer E8363B (KEYSIGHT TECHNOLOGIES). The transmission loss measured when the conductor length was 400 mm and the value converted when the conductor length was 1000 mm was taken as the transmission loss measurement result, and the unit was dB / m. Specifically, a value obtained by multiplying the value of the transmission loss measured at the conductor length of 400 mm by 2.5 was set as the measured value of the transmission loss. The results are shown in Table 3. As for the transmission characteristics, the transmission loss was less than 19.5 dB / m at 10 GHz, and the transmission loss was less than 66.0 dB / m at 40 GHz.

(6)密着強度
表面処理銅箔と絶縁基板との密着強度を測定した。絶縁基板としては市販のポリフェニレンエーテル基板を使用した。絶縁(樹脂)基板の硬化条件は、210℃、1時間とした。密着強度は、万能材料試験機(テンシロン、株式会社エー・アンド・デイ製)を使用して、銅箔と絶縁基板とを接着後、試験片を10mm幅の回路配線にエッチング加工し、絶縁側を両面テープによりステンレス板に固定し、回路配線を90度方向に50mm/分の速度で剥離して求めた。初期密着性は、剥離強度が0.4kN/m以上である場合を合格とし、剥離強度が0.4kN/m未満である場合を不合格と判定した。
(6) Adhesion strength The adhesion strength between the surface-treated copper foil and the insulating substrate was measured. A commercially available polyphenylene ether substrate was used as the insulating substrate. The curing conditions for the insulating (resin) substrate were 210 ° C. and 1 hour. For adhesion strength, use a universal material testing machine (Tensilon, manufactured by A & D Co., Ltd.) to bond the copper foil and the insulating substrate, and then etch the test piece into a 10 mm wide circuit wiring. Was fixed to a stainless steel plate with a double-sided tape, and the circuit wiring was peeled off at a speed of 50 mm / min in the 90-degree direction. The initial adhesion was determined to be acceptable when the peel strength was 0.4 kN / m or higher, and rejected when the peel strength was less than 0.4 kN / m.

(7)リフロー耐熱性(銅箔とプリプレグ層との間)
先ず、リフロー耐熱試験(銅箔とプリプレグ層との間)の試験片の作製方法を説明する。両面に銅箔を積層しリフロー試験片(銅箔とプリプレグ層との間)を作製した。本件ではリフロー試験片(銅箔とプリプレグ層との間)のサイズは100mm×100mmであった。次に作製した試験片をリフロー炉に通し、トップ温度260℃で10秒間の加熱条件で10回通した。前記条件で加熱した後に、フクレが生じたものはフクレの領域の断面をマイクロスコープで観察し銅箔とプリプレグ層との間に層間剥離があるか確認した。銅箔とプリプレグ層との間で層間剥離が生じなかったものを「○(合格)」、銅箔とプリプレグ層の間で層間剥離が1箇所のものを「△(合格)」、銅箔とプリプレグ層との間の層間剥離が2箇所以上のものを「×(不合格)」と判定した。尚、リフロー試験の内容はJIS C 60068-2-58に準拠した。
(7) Reflow heat resistance (between copper foil and prepreg layer)
First, a method for producing a test piece for a reflow heat resistance test (between a copper foil and a prepreg layer) will be described. Copper foil was laminated on both sides to prepare a reflow test piece (between the copper foil and the prepreg layer). In this case, the size of the reflow test piece (between the copper foil and the prepreg layer) was 100 mm × 100 mm. Next, the produced test piece was passed through a reflow furnace and passed 10 times under a heating condition of 10 seconds at a top temperature of 260 ° C. After heating under the above-mentioned conditions, in the case where blisters occurred, the cross section of the blister region was observed with a microscope to confirm whether there was delamination between the copper foil and the prepreg layer. “○ (pass)” indicates that no delamination occurs between the copper foil and the prepreg layer, “△ (pass)” indicates that there is one delamination between the copper foil and the prepreg layer, Those having two or more delaminations between the prepreg layers were judged as “x (failed)”. The content of the reflow test was based on JIS C 60068-2-58.

(8)リフロー耐熱性(コア層とプリプレグ層との間)
リフロー耐熱試験(コア層とプリプレグ層との間)の試験片の作製方法を説明する。両面に銅箔を積層した絶縁基板をコア層とする。コア層は塩化銅(II)溶液等によりエッチングされ全ての銅箔が溶解される。エッチングしたコア層の両面に絶縁基板であるプリプレグ層と銅箔を積層することにより、リフロー試験片を作製した。本件ではリフロー試験片(コア層とプリプレグ層との間)のサイズは100mm×100mmであった。
(8) Reflow heat resistance (between core layer and prepreg layer)
A method for producing a test piece for the reflow heat resistance test (between the core layer and the prepreg layer) will be described. An insulating substrate having copper foil laminated on both sides is used as a core layer. The core layer is etched with a copper (II) chloride solution or the like to dissolve all the copper foil. A reflow test piece was prepared by laminating a prepreg layer, which is an insulating substrate, and a copper foil on both surfaces of the etched core layer. In this case, the size of the reflow test piece (between the core layer and the prepreg layer) was 100 mm × 100 mm.

次に作製した試験片をリフロー炉に通し、トップ温度260℃で10秒間の加熱条件で10回通す。前記条件で加熱した後に、コア層とプリプレグ層との間で層間剥離が生じなかったものを「○(合格)」、コア層とプリプレグ層の間で層間剥離が1箇所のものを「△(合格)」、コア層とプリプレグ層との間の層間剥離が2箇所以上のものを「×(不合格)」と判定した。尚、リフロー試験の内容はJIS C 60068-2-58に準拠した。   Next, the produced test piece is passed through a reflow oven and passed 10 times under a heating condition of 10 seconds at a top temperature of 260 ° C. After the heating under the above conditions, “○ (pass)” indicates that no delamination occurred between the core layer and the prepreg layer, and “△ ( “Accepted” ”and those having two or more delaminations between the core layer and the prepreg layer were judged as“ x (failed) ”. The content of the reflow test was based on JIS C 60068-2-58.

表3から明らかなように、実施例1〜18は、いずれも絶縁基板との密着性、伝送特性およびリフロー耐熱性の全ての性能とも、合格レベルであった。一方、比較例1は、線長比Da/Db及びDa’/Dbが小さく、凹凸表面における凹凸の平均高低差H及びH’も低い為に密着強度が低く、リフロー耐熱性も劣っていた。比較例2は、線長比Da/Db及びDa’/Dbが大きく、凹凸表面における凹凸の平均高低差H及びH’も高い為に伝送損失が大きく、伝送特性が劣っていた。比較例3は、線長比Da/Db及びDa/Db’が小さく、シラン付着量も少ない為に、リフロー耐熱性が劣っていた。比較例4は、線長比Da/Db及びDa’/Dbが小さく、凹凸表面における凹凸の平均高低差H及びH’が低く、シラン付着量が多い為に、密着強度が低かった。比較例5〜7は、線長比Da/Db及びDa/Db’が大きく、平均高低差H及びH’が大きく、加えて粗面化層と絶縁基板の界面の気泡数が多い為に、リフロー耐熱性が劣っていた。比較例8は、線長比Da/Db及びDa’/Dbが小さく、凹凸表面における凹凸の平均高低差Hが低い為に、密着強度が低かった。比較例9〜14は線長比Da/Db及びDa’/Dbが大きく、特に比較例9〜11は凹凸表面における凹凸の平均高低差H及びH’も高いために伝送損失が大きく、伝送特性が劣っていた。   As is clear from Table 3, Examples 1 to 18 were all acceptable in terms of all the performances of adhesion to the insulating substrate, transmission characteristics, and reflow heat resistance. On the other hand, in Comparative Example 1, the line length ratios Da / Db and Da '/ Db were small, the average height differences H and H' of the unevenness on the uneven surface were also low, so the adhesion strength was low and the reflow heat resistance was also inferior. In Comparative Example 2, the line length ratios Da / Db and Da ′ / Db were large, and the average height differences H and H ′ of the unevenness on the uneven surface were high, so that the transmission loss was large and the transmission characteristics were inferior. In Comparative Example 3, the reflow heat resistance was inferior because the line length ratios Da / Db and Da / Db 'were small and the amount of silane adhered was small. In Comparative Example 4, the line length ratios Da / Db and Da ′ / Db were small, the average height differences H and H ′ of the unevenness on the uneven surface were low, and the adhesion amount was low because of the large amount of silane adhesion. In Comparative Examples 5 to 7, the line length ratios Da / Db and Da / Db ′ are large, the average height differences H and H ′ are large, and in addition, the number of bubbles at the interface between the roughened layer and the insulating substrate is large. The reflow heat resistance was poor. In Comparative Example 8, the line length ratios Da / Db and Da '/ Db were small, and the average height difference H of the unevenness on the uneven surface was low, so the adhesion strength was low. Comparative Examples 9 to 14 have large line length ratios Da / Db and Da ′ / Db. In particular, Comparative Examples 9 to 11 have high transmission loss due to high average height differences H and H ′ of the unevenness on the uneven surface, and thus transmission characteristics. Was inferior.

本発明により、大容量の情報を高速で伝達処理する高周波化対応情報通信機器の高性能・高機能化に対応でき、比誘電率や誘電正接が低い誘電特性に優れた絶縁基板との十分な密着性を確保しつつ、リフロー耐熱性と伝送特性とを高いレベルで両立させた表面処理銅箔の提供、及び該表面処理銅箔を用いて製造される銅張積層板の提供が可能になった。   According to the present invention, it is possible to cope with high-performance and high-performance information communication equipment that transmits high-capacity information at high speed, and it is sufficient to have an insulating substrate excellent in dielectric characteristics with low relative permittivity and dielectric loss tangent. It is possible to provide a surface-treated copper foil that achieves a high level of both reflow heat resistance and transmission characteristics while ensuring adhesion, and to provide a copper-clad laminate manufactured using the surface-treated copper foil. It was.

11 くびれ形状
110 銅箔基体
120 粗面化層
Da 粗面化層の凹凸表面に沿って測定した沿面長さ
Db 前記銅箔基体面に沿って測定した沿面長さ
P 基板の幅
41 気泡
42 絶縁基板
43 粗面化層
11 Constricted shape 110 Copper foil substrate 120 Roughened layer Da Creepage length Db measured along the rugged surface of the roughened layer Creepage length P measured along the copper foil substrate surface Substrate width 41 Bubble 42 Insulation Substrate 43 Roughening layer

Claims (10)

銅箔基体上に粗面化層が設けられてなる表面処理銅箔であって、前記粗面化層は、複数の粗化粒子を有し、前記粗面化層の表面は凹凸表面として構成され、前記銅箔基体面と直交する断面において、前記銅箔基体面に沿って測定した沿面長さ(Db)に対する、前記粗面化層の凹凸表面に沿って測定した沿面長さ(Da)の比(Da/Db)が、1.05〜4.00の範囲であり、前記凹凸表面における凹凸の平均高低差(H)が0.2〜1.3μmの範囲であり、さらに前記粗面化層上に、直接、または中間層を介して0.0003〜0.0300mg/dmのシラン付着量で形成されたシランカップリング剤層を有することを特徴とする、表面処理銅箔。A surface-treated copper foil in which a roughened layer is provided on a copper foil substrate, wherein the roughened layer has a plurality of roughened particles, and the surface of the roughened layer is configured as an uneven surface. And a creepage length (Da) measured along the concavo-convex surface of the roughened layer with respect to a creepage length (Db) measured along the copper foil substrate surface in a cross section orthogonal to the copper foil substrate surface. Ratio (Da / Db) is in the range of 1.05 to 4.00, the average height difference (H) of the unevenness on the uneven surface is in the range of 0.2 to 1.3 μm, and the rough surface A surface-treated copper foil characterized by having a silane coupling agent layer formed with a silane adhesion amount of 0.0003 to 0.0300 mg / dm 2 directly or via an intermediate layer on the chemical layer. 前記凹凸表面はクビレ形状を有することを特徴とする、請求項1に記載の表面処理銅箔。   The surface-treated copper foil according to claim 1, wherein the uneven surface has a constricted shape. 前記沿面長さの比(Da/Db)が1.05〜3.20倍の範囲であり、前記凹凸の平均高低差(H)が0.2〜0.8μmの範囲であり、且つ銅箔と絶縁基板を積層した際に前記銅箔基体上の前記銅箔の製造方向に垂直な方向である幅方向の2.54μmの線上において前記粗面化層と絶縁基板の界面の気泡数が2個以下である請求項1または2に記載の表面処理銅箔。   The creepage length ratio (Da / Db) is in the range of 1.05 to 3.20 times, the average height difference (H) of the irregularities is in the range of 0.2 to 0.8 μm, and the copper foil The number of bubbles at the interface between the roughened layer and the insulating substrate is 2 on a 2.54 μm line in the width direction, which is a direction perpendicular to the manufacturing direction of the copper foil on the copper foil base, The surface-treated copper foil according to claim 1 or 2, wherein: 前記沿面長さの比(Da/Db)が1.05〜1.60倍の範囲であり、前記凹凸の平均高低差(H)が0.2〜0.3μmの範囲であり、且つ銅箔と絶縁基板を積層した際に前記銅箔基体の幅方向の2.54μmの線上において前記粗面化層と絶縁基板の界面の気泡数が1個以下である請求項1〜3のいずれか1項に記載の表面処理銅箔。   The creepage length ratio (Da / Db) is in the range of 1.05 to 1.60 times, the average height difference (H) of the irregularities is in the range of 0.2 to 0.3 μm, and the copper foil 4. The number of bubbles at the interface between the roughened layer and the insulating substrate is 1 or less on a 2.54 μm line in the width direction of the copper foil substrate when the substrate and the insulating substrate are laminated. The surface-treated copper foil of description. 前記シランカップリング剤層のシラン付着量が、0.0005〜0.0120mg/dmである請求項1〜4のいずれか1項に記載の表面処理銅箔。Silane adhesion amount of the silane coupling agent layer, a surface-treated copper foil according to claim 1 which is 0.0005~0.0120mg / dm 2. 前記中間層が、Niを含有する下地層、Znを含有する耐熱処理層およびCrを含有する防錆処理層の中から選択される少なくとも1層で構成される請求項1〜5のいずれか1項に記載の表面処理銅箔。   The said intermediate | middle layer is comprised by at least 1 layer selected from the base layer containing Ni, the heat-resistant process layer containing Zn, and the antirust process layer containing Cr. The surface-treated copper foil as described in the item. 前記シランカップリング剤層は、エポキシ系シラン、アミノ系シラン、ビニル系シラン、メタクリル系シラン、アクリル系シラン、スチリル系シラン、ウレイド系シラン、メルカプト系シラン、スルフィド系シランおよびイソシアネート系シランの中から選択される少なくとも1種からなる請求項1〜6のいずれか1項に記載の表面処理銅箔。   The silane coupling agent layer is selected from epoxy silane, amino silane, vinyl silane, methacryl silane, acrylic silane, styryl silane, ureido silane, mercapto silane, sulfide silane and isocyanate silane. The surface-treated copper foil according to any one of claims 1 to 6, comprising at least one selected. 請求項1〜7のいずれか1項に記載の表面処理銅箔の粗面化層側の面に、絶縁基板を有する銅張積層板。   The copper clad laminated board which has an insulating substrate in the surface by the side of the roughening layer of the surface treatment copper foil of any one of Claims 1-7. 銅箔基体上に粗面化層が設けられてなる表面処理銅箔の前記粗面化層側に絶縁基板を有する銅張積層板であって、該銅箔基体面と直交する断面において、前記銅箔基体面に沿って測定した沿面長さ(Db)に対する、前記粗面化層と前記絶縁基板との界面に沿って測定した界面長さ(Da’)の比(Da’/Db)が、1.05〜4.00倍の範囲であり、前記界面における凹凸の平均高低差(H’)が0.2〜1.3μmの範囲であり、さらに前記粗面化層と前記絶縁基板との間に、直接、または中間層を介して0.0003〜0.0300mg/dmのシラン付着量のシランカップリング剤層を有していることを特徴とする銅張積層板。A copper clad laminate having an insulating substrate on the roughened layer side of a surface-treated copper foil provided with a roughened layer on a copper foil substrate, wherein the cross section is orthogonal to the copper foil substrate surface, The ratio (Da ′ / Db) of the interface length (Da ′) measured along the interface between the roughened layer and the insulating substrate to the creepage length (Db) measured along the copper foil substrate surface is 1.05 to 4.00 times, the average height difference (H ′) of the irregularities at the interface is in the range of 0.2 to 1.3 μm, and the roughened layer and the insulating substrate A copper-clad laminate having a silane coupling agent layer having a silane adhesion amount of 0.0003 to 0.0300 mg / dm 2 directly or via an intermediate layer. 前記銅箔基体の幅方向の2.54μmの線上において、前記粗面化層と前記絶縁基板との界面の気泡数が2個以下である請求項9に記載の銅張積層板。   The copper clad laminate according to claim 9, wherein the number of bubbles at the interface between the roughened layer and the insulating substrate is 2 or less on a 2.54 μm line in the width direction of the copper foil substrate.
JP2017520558A 2016-02-10 2017-01-23 Surface-treated copper foil and copper-clad laminate produced using the same Active JP6248231B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016024121 2016-02-10
JP2016024121 2016-02-10
JP2016095049 2016-05-11
JP2016095049 2016-05-11
PCT/JP2017/002145 WO2017138338A1 (en) 2016-02-10 2017-01-23 Surface-treated copper foil and copper-clad laminate produced using same

Publications (2)

Publication Number Publication Date
JP6248231B1 JP6248231B1 (en) 2017-12-13
JPWO2017138338A1 true JPWO2017138338A1 (en) 2018-02-22

Family

ID=59563015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017520558A Active JP6248231B1 (en) 2016-02-10 2017-01-23 Surface-treated copper foil and copper-clad laminate produced using the same

Country Status (5)

Country Link
JP (1) JP6248231B1 (en)
KR (1) KR102230999B1 (en)
CN (1) CN108603303B (en)
TW (1) TWI704048B (en)
WO (1) WO2017138338A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886367B (en) * 2018-03-27 2023-05-16 三井金属矿业株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
TWI668333B (en) 2018-09-17 2019-08-11 金居開發股份有限公司 Micro-rough electrolytic copper foil and copper foil substrate
TWI669032B (en) * 2018-09-26 2019-08-11 金居開發股份有限公司 Micro-rough electrolytic copper foil and copper foil substrate
CN112054308A (en) 2019-06-05 2020-12-08 广州方邦电子股份有限公司 Electromagnetic scattering film and electronic device comprising same
JP7270579B2 (en) * 2019-06-19 2023-05-10 金居開發股▲分▼有限公司 Micro-roughened electrodeposited copper foil and copper-clad laminate
TWI776168B (en) * 2019-06-19 2022-09-01 金居開發股份有限公司 Advanced reverse-treated electrodeposited copper foil and copper clad laminate using the same
JP2021021137A (en) * 2019-06-19 2021-02-18 金居開發股▲分▼有限公司 Advanced treated electrodeposited copper foil having long and island-shaped structures and copper clad laminate using the same
CN110838408A (en) * 2019-10-10 2020-02-25 深圳市峰泳科技有限公司 Planar capacitor with high stripping force and high dielectric constant and preparation method thereof
KR102349377B1 (en) 2019-12-19 2022-01-12 일진머티리얼즈 주식회사 Surface-treated copper foil, preparing method thereof, copper foil laminate including the same, and printed wiring board including the same
JP7273883B2 (en) * 2021-04-09 2023-05-15 福田金属箔粉工業株式会社 Surface-treated copper foil and copper-clad laminate and printed wiring board using the surface-treated copper foil
CN113099605B (en) * 2021-06-08 2022-07-12 广州方邦电子股份有限公司 Metal foil, metal foil with carrier, copper-clad laminate, and printed wiring board
CN114199806B (en) * 2021-12-10 2024-04-09 南京大学 Method for detecting organic matter distribution on micro-nano roughened copper foil surface by AFM-IR

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833556B1 (en) 1968-10-12 1973-10-15
KR100654737B1 (en) * 2004-07-16 2006-12-08 일진소재산업주식회사 Method of manufacturing Surface-treated Copper Foil for PCB having fine-circuit pattern and Surface-treated Copper Foil thereof
JP4398894B2 (en) 2005-03-30 2010-01-13 古河電気工業株式会社 Copper foil for electromagnetic wave shielding, and electromagnetic wave shield made with the copper foil
TW200704833A (en) * 2005-06-13 2007-02-01 Mitsui Mining & Smelting Co Surface treated copper foil, process for producing surface treated copper foil, and surface treated copper foil with very thin primer resin layer
US7700533B2 (en) 2005-06-23 2010-04-20 Air Products And Chemicals, Inc. Composition for removal of residue comprising cationic salts and methods using same
JP2007332418A (en) 2006-06-15 2007-12-27 Fukuda Metal Foil & Powder Co Ltd Surface treated copper foil
JP5448616B2 (en) * 2009-07-14 2014-03-19 古河電気工業株式会社 Copper foil with resistance layer, method for producing the copper foil, and laminated substrate
JP4948579B2 (en) * 2009-08-14 2012-06-06 古河電気工業株式会社 Heat-resistant copper foil having excellent high-frequency transmission characteristics and manufacturing method thereof, circuit board, copper-clad laminate and manufacturing method thereof
JP5242710B2 (en) * 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
KR20110090175A (en) 2010-02-03 2011-08-10 베스비시스템(주) Class bulb coated with silicon, manufacturing method thereof and led lamp using the same
JP5634103B2 (en) * 2010-04-06 2014-12-03 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
JP5497808B2 (en) 2012-01-18 2014-05-21 Jx日鉱日石金属株式会社 Surface-treated copper foil and copper-clad laminate using the same
JP5916404B2 (en) 2012-02-01 2016-05-11 古河電気工業株式会社 Metal-clad laminate, circuit board and manufacturing method thereof
CN104160068B (en) * 2012-03-01 2017-05-24 三井金属矿业株式会社 Copper foil having carrier foil, manufacturing method for producing the copper foil having carrier foil, and copper clad laminate for laser opening processing using the copper foil having carrier foil
CN104120471B (en) * 2013-04-26 2018-06-08 Jx日矿日石金属株式会社 High-frequency circuit copper foil, copper-clad plate, printing distributing board, the copper foil with carrier, electronic equipment and printing distributing board manufacturing method
CN105002496B (en) * 2015-07-28 2017-11-28 灵宝华鑫铜箔有限责任公司 A kind of electrolytic copper foil black surface processing method

Also Published As

Publication number Publication date
TW201800242A (en) 2018-01-01
TWI704048B (en) 2020-09-11
WO2017138338A1 (en) 2017-08-17
KR102230999B1 (en) 2021-03-22
CN108603303A (en) 2018-09-28
JP6248231B1 (en) 2017-12-13
KR20180112769A (en) 2018-10-12
CN108603303B (en) 2020-11-13

Similar Documents

Publication Publication Date Title
JP6248231B1 (en) Surface-treated copper foil and copper-clad laminate produced using the same
CN102884228B (en) Copper foil for printed circuit
TWI479958B (en) Copper foil for printed wiring board and manufacturing method thereof
JP5885054B2 (en) A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.
WO2011090175A1 (en) Roughened copper foil, method for producing same, and copper clad laminate and printed circuit board
JP6479254B2 (en) Copper foil and copper-clad laminate having the same
TWI627307B (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
WO2012043182A1 (en) Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
TW200535259A (en) Treated copper foil and circuit board
JP2013199082A (en) Copper foil with carrier, method of manufacturing the same, copper foil with carrier for printed wiring board, and printed wiring board
JP2013155415A (en) Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission
WO2010093009A1 (en) Metal foil, method for producing same, insulating substrate, and wiring board
JP6261037B2 (en) Copper foil for high frequency circuit, copper clad laminate and printed wiring board
LU101698B1 (en) Surface-treated copper foil for high-frequency circuit and method for producing same
JP2017508890A (en) Copper foil, electrical parts including the same, and battery
CN111194362B (en) Surface-treated copper foil, and copper-clad plate and printed wiring board using same
JP7019876B1 (en) Surface-treated copper foil for printed wiring boards, and copper-clad laminates and printed wiring boards for printed wiring boards using this
JP2013243396A (en) Copper foil with carrier, manufacturing method therefor, copper foil with carrier for printed wiring board and printed wiring board
TW201509246A (en) Copper foil for printed circuit
JP6210580B2 (en) Surface-treated copper foil and copper-clad laminate or printed wiring board manufactured using the same
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
JP6845382B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP7325000B2 (en) Surface-treated copper foil, and copper-clad laminate, resin-coated copper foil and circuit board using the same
TWI746910B (en) Surface-treated copper foil, and copper clad laminate and printed wiring board using it
CN113005484A (en) Surface-treated copper foil, method for producing same, copper foil laminate comprising same, and printed wiring board comprising copper foil laminate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R151 Written notification of patent or utility model registration

Ref document number: 6248231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350