JPWO2017110620A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JPWO2017110620A1
JPWO2017110620A1 JP2017558059A JP2017558059A JPWO2017110620A1 JP WO2017110620 A1 JPWO2017110620 A1 JP WO2017110620A1 JP 2017558059 A JP2017558059 A JP 2017558059A JP 2017558059 A JP2017558059 A JP 2017558059A JP WO2017110620 A1 JPWO2017110620 A1 JP WO2017110620A1
Authority
JP
Japan
Prior art keywords
power generation
sealing material
substrate
solar cell
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017558059A
Other languages
Japanese (ja)
Other versions
JP7077017B2 (en
Inventor
公子 井村
公子 井村
英治 駒山
英治 駒山
祐輔 田島
祐輔 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solar Frontier KK
Original Assignee
Solar Frontier KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Frontier KK filed Critical Solar Frontier KK
Publication of JPWO2017110620A1 publication Critical patent/JPWO2017110620A1/en
Application granted granted Critical
Publication of JP7077017B2 publication Critical patent/JP7077017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

本太陽電池モジュールは、第一の基板と、第一の基板上に形成された発電部であって、光吸収層、及び光吸収層の上部に設けられた電極を含む発電セルと、発電セルに接続された接続用電極と、を有する発電部と、接続用電極に接続された配線と、接続用電極上に設けられ、発電セルと配線との間に位置する緩衝部材と、発電セルを封止する封止材と、封止材上に積層された第二の基板と、封止材の外側面を覆うように形成されたシール材と、を備え、封止材とシール材の界面は緩衝部材上に位置する。  The solar cell module includes a first substrate, a power generation unit formed on the first substrate, the power generation cell including a light absorption layer, and an electrode provided on the light absorption layer, and the power generation cell A power generation unit having a connection electrode connected to the connection electrode, a wiring connected to the connection electrode, a buffer member provided on the connection electrode and positioned between the power generation cell and the wiring, and a power generation cell. A sealing material to be sealed; a second substrate laminated on the sealing material; and a sealing material formed so as to cover an outer surface of the sealing material; an interface between the sealing material and the sealing material Is located on the cushioning member.

Description

本発明は、太陽電池モジュールに関する。   The present invention relates to a solar cell module.

太陽電池モジュールは、一般に、基板上の発電セル(光電変換部)が形成された面側に、カバーガラス等の保護部材をEVA等の透光性の封止材によって接着して形成される。更に、ブチルゴム等からなる遮光性のシール材が、封止材の外側面を覆うと共に、太陽電池モジュールの外縁部上で配線を封止する構造が採られる場合もある(例えば特許文献1)。   In general, a solar cell module is formed by bonding a protective member such as a cover glass with a light-transmitting sealing material such as EVA on the surface side on which a power generation cell (photoelectric conversion unit) on a substrate is formed. Furthermore, a structure in which a light-shielding sealing material made of butyl rubber or the like covers the outer surface of the sealing material and seals the wiring on the outer edge of the solar cell module may be employed (for example, Patent Document 1).

このようなシール材を備えた構成により、発電セルへの水分の侵入を低減し、太陽電池モジュールの耐湿信頼性を向上させている。   With the configuration including such a sealing material, moisture intrusion into the power generation cell is reduced, and the moisture resistance reliability of the solar cell module is improved.

特開2014−135377号公報JP 2014-135377 A

しかしながら、上記特許文献1に開示されている太陽電池モジュールの構造の場合、封止材に温度勾配が加わった際の収縮により生じる応力が発電セルを構成する光吸収層と透明電極の界面に加わり、透明電極が剥離するおそれがある。又、太陽電池モジュールの構造によっては、透明電極とは反対側に位置する金属電極が剥離するおそれがある。又、遮光性のシール材がラミネート工程で押しつぶされて発電セルの上に重なると、発電性能の低下や、電流集中による局所的な温度上昇が懸念される。   However, in the case of the structure of the solar cell module disclosed in Patent Document 1, stress generated by contraction when a temperature gradient is applied to the sealing material is applied to the interface between the light absorption layer and the transparent electrode constituting the power generation cell. The transparent electrode may be peeled off. Further, depending on the structure of the solar cell module, the metal electrode located on the side opposite to the transparent electrode may be peeled off. In addition, when the light-shielding sealing material is crushed in the laminating process and overlaps the power generation cell, there is a concern that the power generation performance is deteriorated or the temperature rises locally due to current concentration.

本発明は、上記の点に鑑みてなされたものであり、発電性能を低下させずに発電セルを構成する電極の剥離を抑制可能な太陽電池モジュールを提供することを目的とする。   This invention is made | formed in view of said point, and it aims at providing the solar cell module which can suppress peeling of the electrode which comprises a power generation cell, without reducing electric power generation performance.

本発明の実施形態に係る太陽電池モジュールは、第一の基板と、第一の基板上に形成された発電部であって、光吸収層、及び光吸収層の上部に設けられた電極を含む発電セルと、発電セルに接続された接続用電極と、を有する発電部と、接続用電極に接続された配線と、接続用電極上に設けられ、発電セルと配線との間に位置する緩衝部材と、発電セルを封止する封止材と、封止材上に積層された第二の基板と、封止材の外側面を覆うように形成されたシール材と、を備え、封止材とシール材の界面は緩衝部材上に位置する。   A solar cell module according to an embodiment of the present invention is a first substrate and a power generation unit formed on the first substrate, and includes a light absorption layer and an electrode provided on the light absorption layer. A power generation unit having a power generation cell, a connection electrode connected to the power generation cell, a wiring connected to the connection electrode, and a buffer provided on the connection electrode and positioned between the power generation cell and the wiring A member, a sealing material that seals the power generation cell, a second substrate laminated on the sealing material, and a sealing material that is formed so as to cover the outer surface of the sealing material. The interface between the material and the sealing material is located on the buffer member.

開示の技術によれば、発電性能を低下させずに発電セルを構成する電極の剥離を抑制可能な太陽電池モジュールを提供できる。   According to the disclosed technology, it is possible to provide a solar cell module capable of suppressing the peeling of the electrodes constituting the power generation cell without reducing the power generation performance.

実施形態に係る太陽電池モジュールの概略平面図である。It is a schematic plan view of the solar cell module according to the embodiment. 実施形態に係る太陽電池モジュールの概略断面図である。It is a schematic sectional drawing of the solar cell module which concerns on embodiment. 実施形態に係る太陽電池モジュールの製造工程を例示する図(その1)である。It is a figure (the 1) which illustrates the manufacturing process of the solar cell module which concerns on embodiment. 実施形態に係る太陽電池モジュールの製造工程を例示する図(その2)である。It is a figure (the 2) which illustrates the manufacturing process of the solar cell module which concerns on embodiment. 実施形態に係る太陽電池モジュールの製造工程を例示する図(その3)である。It is a figure (the 3) which illustrates the manufacturing process of the solar cell module which concerns on embodiment.

以下、図面を参照して発明を実施するための形態について説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and the overlapping description may be abbreviate | omitted.

[太陽電池モジュールの構造]
図1は、本発明の実施形態に係る太陽電池モジュール10の概略平面図である。図2は、本発明の実施形態に係る太陽電池モジュール10の概略断面図である。なお、図1において、図2に示す封止材14、第二の基板15、シール材16、及び緩衝部材17の図示は省略されている。
[Structure of solar cell module]
FIG. 1 is a schematic plan view of a solar cell module 10 according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the solar cell module 10 according to the embodiment of the present invention. 1, illustration of the sealing material 14, the second substrate 15, the sealing material 16, and the buffer member 17 shown in FIG. 2 is omitted.

図1及び図2を参照するに、太陽電池モジュール10は、第一の基板11と、発電セル12と、配線13と、封止材14と、第二の基板15と、シール材16と、緩衝部材17とを有している。   1 and 2, the solar cell module 10 includes a first substrate 11, a power generation cell 12, a wiring 13, a sealing material 14, a second substrate 15, a sealing material 16, And a buffer member 17.

第一の基板11は、発電セル12等を形成する基体となる部分である。第一の基板11としては、例えば、青板ガラス(ソーダライムガラス)、低アルカリガラス、樹脂及び金属等を用いることができる。第一の基板11の厚さは、例えば、1.8mm程度とすることができる。   The 1st board | substrate 11 is a part used as the base | substrate which forms the electric power generation cell 12 grade | etc.,. As the first substrate 11, for example, blue plate glass (soda lime glass), low alkali glass, resin, metal, or the like can be used. The thickness of the first substrate 11 can be about 1.8 mm, for example.

発電セル12は、第一の基板11上に形成されている。発電セル12は、第一の基板11側から裏面電極121、光吸収層122、及び透明電極123が順に積層された構造である。発電セル12と、発電セル12の側部の第一の基板11上に設けられた接続用電極18とにより発電部が構成されている。   The power generation cell 12 is formed on the first substrate 11. The power generation cell 12 has a structure in which a back electrode 121, a light absorption layer 122, and a transparent electrode 123 are sequentially laminated from the first substrate 11 side. The power generation unit is configured by the power generation cell 12 and the connection electrode 18 provided on the first substrate 11 on the side of the power generation cell 12.

裏面電極121は、第一の基板11上に形成されている。裏面電極121としては、例えば、モリブデン(Mo)やモリブデンを少なくとも含む金属を用いることができる。裏面電極121は、所定方向に沿って設けられた分割溝12xにより分割されている。裏面電極121の厚さは、例えば、数10nm〜数μm程度とすることができる。なお、接続用電極18は、裏面電極121と同様の材料から形成することができる。又、接続用電極18は、裏面電極121と同様の厚さとすることができる。   The back electrode 121 is formed on the first substrate 11. As the back electrode 121, for example, molybdenum (Mo) or a metal containing at least molybdenum can be used. The back electrode 121 is divided by dividing grooves 12x provided along a predetermined direction. The thickness of the back electrode 121 can be, for example, about several tens of nm to several μm. The connection electrode 18 can be formed of the same material as the back electrode 121. The connection electrode 18 can have the same thickness as the back electrode 121.

光吸収層122は、p型半導体からなる層であり、裏面電極121上及び分割溝12x内に形成されている。光吸収層122は、所定方向に沿って設けられた分割溝12yにより分割されている。光吸収層122は、照射された太陽光等を光電変換する部分である。光吸収層122が光電変換することにより発生した起電力は、接続用電極18上に設けられた配線13から外部に電流として取り出すことができる。   The light absorption layer 122 is a layer made of a p-type semiconductor, and is formed on the back electrode 121 and in the dividing groove 12x. The light absorbing layer 122 is divided by dividing grooves 12y provided along a predetermined direction. The light absorption layer 122 is a part that photoelectrically converts irradiated sunlight. The electromotive force generated by photoelectric conversion of the light absorption layer 122 can be taken out as current from the wiring 13 provided on the connection electrode 18.

例えば、配線13は、第一の基板11に設けられた孔20を介して裏面に導出され、図示しない端子ボックスを介して外部に電流が取り出される。   For example, the wiring 13 is led out to the back surface through a hole 20 provided in the first substrate 11, and current is taken out to the outside through a terminal box (not shown).

光吸収層122としては、例えば、銅(Cu),インジウム(In),セレン(Se)からなる化合物や、銅(Cu),インジウム(In),ガリウム(Ga),セレン(Se),硫黄(S)からなる化合物やアモルファスシリコン等を用いることができる。前記化合物の一例を挙げれば、CuInSe、Cu(InGa)Se、Cu(InGa)(SSe)等である。光吸収層122の厚さは、例えば、数μm〜数10μm程度とすることができる。As the light absorption layer 122, for example, a compound made of copper (Cu), indium (In), selenium (Se), copper (Cu), indium (In), gallium (Ga), selenium (Se), sulfur ( A compound made of S), amorphous silicon, or the like can be used. In one example of the compound, a CuInSe 2, Cu (InGa) Se 2, Cu (InGa) (SSe) 2 or the like. The thickness of the light absorption layer 122 can be, for example, about several μm to several tens of μm.

なお、光吸収層122の表面にバッファ層(図示せず)を形成してもよい。バッファ層は、光吸収層122からの電流の漏出を防止する機能を有する高抵抗の層である。バッファ層の材料としては、例えば、亜鉛化合物、硫化亜鉛(ZnS)、硫化カドミウム(CdS)、硫化インジウム(InS)等を用いることができる。バッファ層の厚さは、例えば、5〜50nm程度とすることができる。   Note that a buffer layer (not shown) may be formed on the surface of the light absorption layer 122. The buffer layer is a high-resistance layer having a function of preventing current leakage from the light absorption layer 122. As a material of the buffer layer, for example, a zinc compound, zinc sulfide (ZnS), cadmium sulfide (CdS), indium sulfide (InS), or the like can be used. The thickness of the buffer layer can be, for example, about 5 to 50 nm.

透明電極123は、n型半導体からなる透明な層であり、光吸収層122上及び分割溝12y内に形成されている。透明電極123としては、例えば、酸化亜鉛系薄膜(ZnO)やITO薄膜等を用いることができる。酸化亜鉛系薄膜(ZnO)を用いる場合には、硼素(B)やアルミニウム(Al)やガリウム(Ga)等をドーパントとして添加することにより、低抵抗化でき好適である。透明電極123の厚さは、例えば、数μm〜数10μm程度とすることができる。光吸収層122と透明電極123とは、pn接合を形成している。   The transparent electrode 123 is a transparent layer made of an n-type semiconductor, and is formed on the light absorption layer 122 and in the dividing groove 12y. As the transparent electrode 123, for example, a zinc oxide thin film (ZnO), an ITO thin film, or the like can be used. In the case of using a zinc oxide-based thin film (ZnO), the resistance can be reduced by adding boron (B), aluminum (Al), gallium (Ga), or the like as a dopant. The thickness of the transparent electrode 123 can be, for example, about several μm to several tens of μm. The light absorption layer 122 and the transparent electrode 123 form a pn junction.

光吸収層122及び透明電極123は、所定方向に沿って設けられた分割溝12zにより分割されている。分割溝12zにより分割された各部分は複数の発電セル12を構成している。所定の発電セル12の分割溝12y内に形成されている透明電極123は、分割溝12yを介して隣接する発電セル12の裏面電極121と電気的に接続されている。つまり、分割溝12zにより分割された複数のセルは、直列に接続されている。   The light absorbing layer 122 and the transparent electrode 123 are divided by dividing grooves 12z provided along a predetermined direction. Each part divided | segmented by the division | segmentation groove | channel 12z comprises the several electric power generation cell 12. FIG. The transparent electrode 123 formed in the division groove 12y of the predetermined power generation cell 12 is electrically connected to the back electrode 121 of the adjacent power generation cell 12 through the division groove 12y. That is, the plurality of cells divided by the dividing groove 12z are connected in series.

第一の基板11の発電セル12が形成されている面には、発電セル12の受光面側を封止する封止材14が設けられ、封止材14上には第二の基板15が積層されている。封止材14としては、例えば、エチレンビニルアセテート(EVA:Ethylene-vinyl acetate)樹脂やポリビニルブチラール(PVB:Polyvinyl butyral)樹脂等の透光性の材料を用いることができる。封止材14の厚さは、例えば、0.2〜1.0mm程度とすることができる。第二の基板15としては、例えば、厚さが0.5〜4.0mm程度の白板強化ガラス板等を用いることができる。   On the surface of the first substrate 11 where the power generation cells 12 are formed, a sealing material 14 for sealing the light receiving surface side of the power generation cells 12 is provided, and on the sealing material 14 a second substrate 15 is provided. Are stacked. As the sealing material 14, for example, a translucent material such as an ethylene vinyl acetate (EVA) resin or a polyvinyl butyral (PVB) resin can be used. The thickness of the sealing material 14 can be about 0.2 to 1.0 mm, for example. As the 2nd board | substrate 15, a white board tempered glass board etc. whose thickness is about 0.5-4.0 mm can be used, for example.

第一の基板11の発電セル12が形成されている面の外縁領域には、配線13を被覆するシール材16が設けられている。言い換えれば、配線13は、例えば、シール材16内に通すことができる。   A sealing material 16 that covers the wiring 13 is provided in the outer edge region of the surface of the first substrate 11 where the power generation cells 12 are formed. In other words, the wiring 13 can be passed through the sealing material 16, for example.

シール材16は、第一の基板11の外縁領域と第二の基板15の外縁領域との間に、封止材14の外側面を覆うように形成され、第一の基板11と第二の基板15の互いに対向する面を接着している。シール材16としては、例えば、ブチルゴムやシリコーン系樹脂等を用いることができる。シール材16を設けることにより、発電セル12への水分等の侵入を低減し、太陽電池モジュール10の耐湿信頼性等を向上させることができる。   The sealing material 16 is formed between the outer edge region of the first substrate 11 and the outer edge region of the second substrate 15 so as to cover the outer surface of the sealing material 14. The mutually opposing surfaces of the substrate 15 are bonded. As the sealing material 16, for example, butyl rubber, silicone resin, or the like can be used. By providing the sealing material 16, the intrusion of moisture or the like into the power generation cell 12 can be reduced, and the moisture resistance reliability of the solar cell module 10 can be improved.

緩衝部材17は、接続用電極18上に設けられ、平面視において(第一の基板11の法線方向から視て)、第一の基板11上の発電セル12と配線13との間に位置している。緩衝部材17は、発電セル12の端部(封止材14とシール材16の界面付近)の応力を緩衝する機能を備えている。封止材14とシール材16の界面は、緩衝部材17上に位置している。緩衝部材17は、層構成は発電セルと同様であるが、発電には寄与しない非発電セルである。緩衝部材17は、発電セル12に隣接して形成されている。   The buffer member 17 is provided on the connection electrode 18, and is positioned between the power generation cell 12 and the wiring 13 on the first substrate 11 in a plan view (viewed from the normal direction of the first substrate 11). doing. The buffer member 17 has a function of buffering stress at the end of the power generation cell 12 (near the interface between the sealing material 14 and the sealing material 16). The interface between the sealing material 14 and the sealing material 16 is located on the buffer member 17. The buffer member 17 is a non-power generation cell that has the same layer structure as the power generation cell but does not contribute to power generation. The buffer member 17 is formed adjacent to the power generation cell 12.

このように、太陽電池モジュール10では、第一の基板11上に緩衝部材17を設け、封止材14とシール材16の界面を緩衝部材17上に位置させている。   Thus, in the solar cell module 10, the buffer member 17 is provided on the first substrate 11, and the interface between the sealing material 14 and the sealing material 16 is positioned on the buffer member 17.

例えば、封止材14とシール材16の界面が配線13上に位置したりすると、封止材14とシール材16の界面の近傍において封止材14の厚さが変化する(段差が生じる)ことになる。   For example, when the interface between the sealing material 14 and the sealing material 16 is positioned on the wiring 13, the thickness of the sealing material 14 changes near the interface between the sealing material 14 and the sealing material 16 (a step is generated). It will be.

この場合、封止材14に温度勾配が加わった際の収縮具合が場所により異なることにより応力が生じ、光吸収層122と透明電極123との界面に応力が加わる。結果として、透明電極123が光吸収層122から剥離するおそれがある。   In this case, a stress is generated when the degree of shrinkage when the temperature gradient is applied to the sealing material 14 varies depending on the location, and the stress is applied to the interface between the light absorption layer 122 and the transparent electrode 123. As a result, the transparent electrode 123 may be peeled off from the light absorption layer 122.

これに対して、太陽電池モジュール10のように、封止材14とシール材16の界面を緩衝部材17上に位置させることにより、封止材14とシール材16の界面の近傍における封止材14の厚さがほぼ一定となる。これにより、封止材14に温度勾配が加わった際の収縮具合も、封止材14とシール材16の界面の近傍においてほぼ一定となるため応力が生じ難い。その結果、発電セル12の最上面を構成する透明電極123の光吸収層122からの剥離を防ぐことができる。   On the other hand, the sealing material in the vicinity of the interface between the sealing material 14 and the sealing material 16 is provided by positioning the interface between the sealing material 14 and the sealing material 16 on the buffer member 17 like the solar cell module 10. The thickness of 14 is substantially constant. As a result, the degree of shrinkage when a temperature gradient is applied to the sealing material 14 becomes substantially constant in the vicinity of the interface between the sealing material 14 and the sealing material 16, so that stress is hardly generated. As a result, it is possible to prevent peeling of the transparent electrode 123 constituting the uppermost surface of the power generation cell 12 from the light absorption layer 122.

又、太陽電池モジュール10では、封止材14とシール材16の界面が緩衝部材17上に位置しており、シール材16が発電セル12の上に重なることがないため、発電性能の低下や、電流集中による局所的な温度上昇を防ぐことができる。なお、電流集中による局所的な温度上昇とは、シール材16が発電セル12の上に重なった場合に、その部分の発電セルの抵抗値が上がるため、その部分以外の発電セルの抵抗値の低い部分に電流が集中的に流れて局所的に温度が上昇することである。   In the solar cell module 10, the interface between the sealing material 14 and the sealing material 16 is located on the buffer member 17, and the sealing material 16 does not overlap the power generation cell 12. The local temperature rise due to current concentration can be prevented. Note that the local temperature rise due to current concentration means that when the sealing material 16 is overlaid on the power generation cell 12, the resistance value of the power generation cell in that portion increases, so the resistance value of the power generation cells other than that portion The current is concentrated in the lower part and the temperature rises locally.

又、特許文献1に開示されている太陽電池モジュールでは、ガラス基板のサイズを変えずに、シール材がラミネート工程で押しつぶされても発電セルの上に重ならないように発電セルと配線の位置を離すと、発電セルの面積が小さくなり、発電性能が低くなる。つまり、特許文献1に開示されている太陽電池モジュールでは、ガラス基板のサイズを変えずに、発電性能の低下を防ぐことができない。これに対して、本実施の形態に係る太陽電池モジュール10では、ガラス基板等である第一の基板11のサイズを変えずに、発電性能の低下を防ぐことができる。   In addition, in the solar cell module disclosed in Patent Document 1, the position of the power generation cell and the wiring is set so that the sealing material does not overlap the power generation cell even if the sealing material is crushed in the laminating process without changing the size of the glass substrate. When separated, the area of the power generation cell is reduced and the power generation performance is reduced. That is, the solar cell module disclosed in Patent Document 1 cannot prevent the power generation performance from being lowered without changing the size of the glass substrate. On the other hand, in the solar cell module 10 according to the present embodiment, it is possible to prevent a decrease in power generation performance without changing the size of the first substrate 11 that is a glass substrate or the like.

[太陽電池モジュールの製造方法]
図3〜図5は、太陽電池モジュールの製造工程を例示する図である。まず、図3に示す工程では、周知の方法により、第一の基板11上に発電セル12、分割溝12x及び12yを形成する。なお、Bは、発電セル12の外縁領域を示している(以降、外縁領域Bとする)。
[Method for manufacturing solar cell module]
3-5 is a figure which illustrates the manufacturing process of a solar cell module. First, in the process shown in FIG. 3, the power generation cell 12 and the dividing grooves 12x and 12y are formed on the first substrate 11 by a known method. In addition, B has shown the outer edge area | region of the electric power generation cell 12 (henceforth the outer edge area | region B).

次に、図4に示す工程では、光吸収層122及び透明電極123を所定方向に沿って分割する分割溝12zを形成して発電セル12をパターニングすると共に、発電セル12の外縁領域Bに位置する光吸収層122及び透明電極123を除去する。これにより、分割溝12z内及び外縁領域Bに接続用電極18が形成され、発電セル12の外縁領域B側の接続用電極18の上面に緩衝部材17が形成される。緩衝部材17は、層構成は発電セルと同様であるが、発電には寄与しない非発電セルである。   Next, in the step shown in FIG. 4, the power generation cell 12 is patterned by forming a division groove 12 z that divides the light absorption layer 122 and the transparent electrode 123 along a predetermined direction, and is positioned in the outer edge region B of the power generation cell 12. The light absorption layer 122 and the transparent electrode 123 to be removed are removed. Thereby, the connection electrode 18 is formed in the dividing groove 12z and in the outer edge region B, and the buffer member 17 is formed on the upper surface of the connection electrode 18 on the outer edge region B side of the power generation cell 12. The buffer member 17 is a non-power generation cell that has the same layer structure as the power generation cell but does not contribute to power generation.

光吸収層122及び透明電極123の除去は、例えば、YAGレーザ等を用い、パルス状のレーザ光を、除去したい領域の光吸収層122及び透明電極123に照射すればよい。或いは、レーザを用いずに、針等を用いて機械的に光吸収層122及び透明電極123を除去してもよい(メカニカルスクライブ)。   The light absorption layer 122 and the transparent electrode 123 may be removed by using, for example, a YAG laser or the like and irradiating the light absorption layer 122 and the transparent electrode 123 in a region to be removed with a pulsed laser beam. Alternatively, the light absorption layer 122 and the transparent electrode 123 may be mechanically removed using a needle or the like without using a laser (mechanical scribe).

次に、図5に示す工程では、外縁領域Bに露出する接続用電極18の上面に、はんだ等を用いて配線13を接合する。配線13としては、例えば、銅からなる電極リボン等を用いることができる。   Next, in the process shown in FIG. 5, the wiring 13 is joined to the upper surface of the connection electrode 18 exposed in the outer edge region B using solder or the like. As the wiring 13, for example, an electrode ribbon made of copper or the like can be used.

この後、第二の基板15の所定領域に封止材14及びシール材16を形成した構造体を、図5に示す構造体の所定領域に、第一の基板11及び第二の基板15を外側にして接着することにより、図1及び図2に示した太陽電池モジュール10が完成する。この際、封止材14とシール材16の界面が緩衝部材17上に位置するように接着することにより、発電セル12の最上面を構成する透明電極123の剥離を防ぐことができる。   Thereafter, the structure in which the sealing material 14 and the sealing material 16 are formed in a predetermined region of the second substrate 15 is used, and the first substrate 11 and the second substrate 15 are provided in the predetermined region of the structure shown in FIG. By bonding outside, the solar cell module 10 shown in FIGS. 1 and 2 is completed. At this time, the transparent electrode 123 constituting the uppermost surface of the power generation cell 12 can be prevented from being peeled off by bonding so that the interface between the sealing material 14 and the sealing material 16 is located on the buffer member 17.

以上の工程では、発電セル12のパターニング工程(分割溝12zを形成する工程)と緩衝部材17を形成する工程を兼ねることができるため、緩衝部材17を形成することによる太陽電池モジュール10の製造に要する時間の増加を防ぐことができる。   In the above steps, the patterning step of the power generation cell 12 (step of forming the dividing grooves 12z) and the step of forming the buffer member 17 can be combined, so that the solar cell module 10 can be manufactured by forming the buffer member 17. An increase in time required can be prevented.

以上、好ましい実施の形態について詳説したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。   The preferred embodiment has been described in detail above. However, the present invention is not limited to the above-described embodiment, and various modifications and replacements are made to the above-described embodiment without departing from the scope described in the claims. Can be added.

例えば、上記の実施の形態ではサブストレート構造の太陽電池モジュールについて説明したが、本発明はスーパーストレート構造の太陽電池モジュールにも適用可能である。なお、スーパーストレート構造の場合には、透明電極とは反対側に位置する金属電極が剥離するおそれを抑制することができる。   For example, although the substrate structure solar cell module has been described in the above embodiment, the present invention can also be applied to a super straight structure solar cell module. In the case of the super straight structure, it is possible to suppress the possibility that the metal electrode located on the side opposite to the transparent electrode is peeled off.

又、上記の実施の形態では、配線13を接続用電極18上に直接配置したが、接続用電極18上に緩衝部材17と離間した光吸収層122及び透明電極123を積層し、透明電極123上に配線13を配置してもよい。この場合、透明電極123は、分割溝12yを介して接続用電極18と接続されるため、透明電極123上の配線13も接続用電極18と接続される。   In the above embodiment, the wiring 13 is directly disposed on the connection electrode 18. However, the light absorption layer 122 and the transparent electrode 123 separated from the buffer member 17 are stacked on the connection electrode 18, and the transparent electrode 123 is stacked. The wiring 13 may be arranged on the top. In this case, since the transparent electrode 123 is connected to the connection electrode 18 via the dividing groove 12y, the wiring 13 on the transparent electrode 123 is also connected to the connection electrode 18.

本国際出願は2015年12月24日に出願した日本国特許出願2015−252206号に基づく優先権を主張するものであり、日本国特許出願2015−252206号の全内容を本国際出願に援用する。   This international application claims priority based on Japanese Patent Application No. 2015-252206 filed on December 24, 2015, and the entire contents of Japanese Patent Application No. 2015-252206 are incorporated into this International Application. .

10 太陽電池モジュール
11 第一の基板
12 発電セル
12x、12y、12z 分割溝
13 配線
14 封止材
15 第二の基板
16 シール材
17 緩衝部材
18 接続用電極
20 孔
121 裏面電極
122 光吸収層
123 透明電極
DESCRIPTION OF SYMBOLS 10 Solar cell module 11 1st board | substrate 12 Power generation cell 12x, 12y, 12z Dividing groove 13 Wiring 14 Sealing material 15 2nd board | substrate 16 Sealing material 17 Buffer member 18 Electrode for connection 20 Hole 121 Back surface electrode 122 Light absorption layer 123 Transparent electrode

Claims (4)

第一の基板と、
前記第一の基板上に形成された発電部であって、光吸収層、及び前記光吸収層の上部に設けられた電極を含む発電セルと、前記発電セルに接続された接続用電極と、を有する発電部と、
前記接続用電極に接続された配線と、
前記接続用電極上に設けられ、前記発電セルと前記配線との間に位置する緩衝部材と、
前記発電セルを封止する封止材と、
前記封止材上に積層された第二の基板と、
前記封止材の外側面を覆うように形成されたシール材と、を備え、
前記封止材と前記シール材の界面は前記緩衝部材上に位置する、太陽電池モジュール。
A first substrate;
A power generation unit formed on the first substrate, a light absorption layer, a power generation cell including an electrode provided on the light absorption layer, a connection electrode connected to the power generation cell, A power generation unit having
Wiring connected to the connection electrode;
A buffer member provided on the connection electrode and positioned between the power generation cell and the wiring;
A sealing material for sealing the power generation cell;
A second substrate laminated on the sealing material;
A sealing material formed so as to cover the outer surface of the sealing material,
The solar cell module, wherein an interface between the sealing material and the sealing material is located on the buffer member.
前記緩衝部材は非発電セルである、請求項1に記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the buffer member is a non-power generation cell. 前記緩衝部材は前記発電セルに隣接して形成されている、請求項1又は2に記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the buffer member is formed adjacent to the power generation cell. 前記封止材はエチレンビニルアセテート樹脂からなり、前記シール材がブチルゴムからなる、請求項1乃至3の何れか一項に記載の太陽電池モジュール。   The solar cell module according to any one of claims 1 to 3, wherein the sealing material is made of ethylene vinyl acetate resin, and the sealing material is made of butyl rubber.
JP2017558059A 2015-12-24 2016-12-14 Solar cell module Active JP7077017B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015252206 2015-12-24
JP2015252206 2015-12-24
PCT/JP2016/087232 WO2017110620A1 (en) 2015-12-24 2016-12-14 Solar cell module

Publications (2)

Publication Number Publication Date
JPWO2017110620A1 true JPWO2017110620A1 (en) 2018-10-18
JP7077017B2 JP7077017B2 (en) 2022-05-30

Family

ID=59090182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558059A Active JP7077017B2 (en) 2015-12-24 2016-12-14 Solar cell module

Country Status (2)

Country Link
JP (1) JP7077017B2 (en)
WO (1) WO2017110620A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019214060A1 (en) * 2018-05-08 2019-11-14 北京汉能光伏投资有限公司 Power generation mechanism and preparation method therefor, and power generation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148496A (en) * 1999-11-19 2001-05-29 Kanegafuchi Chem Ind Co Ltd Solar cell module and method of manufacturing same
WO2007071703A1 (en) * 2005-12-22 2007-06-28 Shell Erneuerbare Energien Gmbh Photovoltaic device and method for encapsulating
US20120118357A1 (en) * 2010-11-15 2012-05-17 Lg Electronics Inc. Solar cell module
JP2012175079A (en) * 2011-02-24 2012-09-10 Honda Motor Co Ltd Solar battery module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438250B2 (en) * 2014-09-19 2018-12-12 ソーラーフロンティア株式会社 Solar cell module and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148496A (en) * 1999-11-19 2001-05-29 Kanegafuchi Chem Ind Co Ltd Solar cell module and method of manufacturing same
WO2007071703A1 (en) * 2005-12-22 2007-06-28 Shell Erneuerbare Energien Gmbh Photovoltaic device and method for encapsulating
US20120118357A1 (en) * 2010-11-15 2012-05-17 Lg Electronics Inc. Solar cell module
JP2012175079A (en) * 2011-02-24 2012-09-10 Honda Motor Co Ltd Solar battery module

Also Published As

Publication number Publication date
JP7077017B2 (en) 2022-05-30
WO2017110620A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP5901656B2 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF {SOLARCELLANDMANUFACTURERINGMETHODFOFTHEME
KR101210168B1 (en) Solar cell apparatus and method of fabricating the same
JP4966848B2 (en) Solar cell module and method for manufacturing solar cell module
WO2011024993A1 (en) Solar cell module
JP2013506990A (en) Photovoltaic power generation apparatus and manufacturing method thereof
US20120060890A1 (en) Solar cell module and method for manufacturing the same
JP2014011459A (en) Thin film solar cell module and manufacturing method therefor
US20120031458A1 (en) Solar cell module provided with an edge space
JP6867794B6 (en) Photoelectric conversion module
WO2011148930A1 (en) Solar cell module and method of producing same
WO2017110620A1 (en) Solar cell module
KR101550927B1 (en) Solar cell and method of fabircating the same
JP5602234B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP5274432B2 (en) Photoelectric conversion device
JP5342150B2 (en) Solar cell module
KR101502208B1 (en) Solar cell array and thin-film solar module and production method therefor
KR101091359B1 (en) Solar cell and mehtod of fabricating the same
KR101055019B1 (en) Photovoltaic device and its manufacturing method
WO2018110213A1 (en) Photoelectric conversion module
KR101063721B1 (en) Solar cell and manufacturing method thereof
US9166086B2 (en) Method for manufacturing solar cell module provided with an edge space
US11646386B2 (en) Solar module with an enlarged aperture area
JP2011233639A (en) Photoelectric conversion device
KR101856223B1 (en) Solar cell module and method of fabricating the same
JP5342151B2 (en) Solar cell module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7077017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150