JPWO2017037884A1 - Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module using the same - Google Patents

Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module using the same Download PDF

Info

Publication number
JPWO2017037884A1
JPWO2017037884A1 JP2017537132A JP2017537132A JPWO2017037884A1 JP WO2017037884 A1 JPWO2017037884 A1 JP WO2017037884A1 JP 2017537132 A JP2017537132 A JP 2017537132A JP 2017537132 A JP2017537132 A JP 2017537132A JP WO2017037884 A1 JPWO2017037884 A1 JP WO2017037884A1
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
phase
carrier supply
particles
supply phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017537132A
Other languages
Japanese (ja)
Inventor
早川 純
純 早川
健 黒崎
健 黒崎
ユスフ エクバル
ユスフ エクバル
伸介 山中
伸介 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2017037884A1 publication Critical patent/JPWO2017037884A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Abstract

比抵抗低減と熱伝導率低減とが両立可能な熱電変換材料およびそれを用いた熱電変換効率の高い熱電変換素子並びに熱電変換モジュールを提供するために、イオン化不純物30を含むキャリア供給相20と、キャリア供給相20よりもイオン化不純物濃度が低い母相10とを含み、母相10とキャリア供給相20の粒径が100nm以下で、キャリア供給相20で生じるキャリア40は母相内へ注入されキャリア41として母相内を伝導する熱電変換材料とする。In order to provide a thermoelectric conversion material in which specific resistance reduction and thermal conductivity reduction are compatible, a thermoelectric conversion element having high thermoelectric conversion efficiency, and a thermoelectric conversion module using the thermoelectric conversion material, a carrier supply phase 20 containing ionized impurities 30; Including a mother phase 10 having a lower ionized impurity concentration than the carrier supply phase 20, the particle size of the mother phase 10 and the carrier supply phase 20 is 100 nm or less, and the carrier 40 generated in the carrier supply phase 20 is injected into the mother phase. 41 is a thermoelectric conversion material that conducts in the matrix.

Description

本発明は、熱電変換材料及びそれを用いた熱電変換素子並びに熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion material, a thermoelectric conversion element using the material, and a thermoelectric conversion module.

近年、再生可能エネルギー利用に注目が集まる中、産業排熱を電気エネルギーとして利用する発電技術に注目が集まっている。特に熱密度の薄い領域や空間的にタービンの設計が難しい領域に対しては、ゼーベック効果を利用した熱電変換材料・熱電変換素子・熱電変換モジュールが提案されている。   In recent years, attention has been focused on power generation technology that uses industrial waste heat as electrical energy, while attention has been focused on the use of renewable energy. In particular, thermoelectric conversion materials, thermoelectric conversion elements, and thermoelectric conversion modules using the Seebeck effect have been proposed for regions where the heat density is low or where it is difficult to design the turbine spatially.

このゼーベック効果を利用した熱電変換材料の性能は、一般に下式(1)で表わされる無次元単位の性能指数ZTにて評価される。   The performance of the thermoelectric conversion material using the Seebeck effect is generally evaluated by a dimensionless figure of merit ZT represented by the following formula (1).

ZT=ST/(ρκ) (1)
上式(1)において、Sはゼーベック係数を、Tは絶対温度を、ρは比抵抗、κは熱伝導率を表わす。
ZT = S 2 T / (ρκ) (1)
In the above equation (1), S represents the Seebeck coefficient, T represents the absolute temperature, ρ represents the specific resistance, and κ represents the thermal conductivity.

上式(1)から、熱電性能を向上させるためには、ゼーベック係数Sを大きくし、比抵抗ρおよび熱伝導率κを小さくすれば良いことがわかる。   From the above equation (1), it can be seen that in order to improve the thermoelectric performance, the Seebeck coefficient S may be increased, and the specific resistance ρ and the thermal conductivity κ may be decreased.

このような熱電材料としては、
(1)Bi−Te系、Pb−Te系の化合物
(2)NaCoO(0.3≦x≦0.8)、(ZnO)mIn(1≦m≦19)系の酸化物材料
(3)Zn−Sb系、Co−Sb
系、Fe−Sb系等のスクッテルダイト化合物
(4)ZrNiSn等のハーフホイスラー化合物
(5)Si−GeやMg−Siなどのシリサイド及びシリコン半導体化合物
などが知られている。
As such a thermoelectric material,
(1) Bi-Te and Pb-Te compounds (2) Na x CoO 2 (0.3 ≦ x ≦ 0.8), (ZnO) mIn 2 O 3 (1 ≦ m ≦ 19) oxidation Material (3) Zn-Sb, Co-Sb
Known are skutterudite compounds such as Fe-Sb type, (4) half-Heusler compounds such as ZrNiSn, (5) silicides such as Si-Ge and Mg-Si, and silicon semiconductor compounds.

特に(5)のシリサイドやシリコン化合物は、資源量が豊富かつ無毒なSiを用いるため非常に注目されている。Siは、比較的ゼーベック係数Sが大きく、ドーピングによるキャリア数の変調による比抵抗の制御が容易という利点がある(例えば特許文献1)。また、熱伝導率を低減するために結晶粒径をナノスケールにした構造が適用される事例がある。(例えば、特許文献2、3)具体的には、Siに他元素をドープしたMgSi、MnSi、FeSi、CaSi、CaSi、BaSi、MoSi、WSi、CrSiなどのシリサイドと、LiSi23、NaSi23などを母材料としたシリコン系クラスレートなどが挙げられる。しかし、ドーピングによりキャリア数を増加すると、イオン化不純物濃度が増加し伝導電子(あるいはホール)の散乱確率が増大し、比抵抗が増大しZTが減少する傾向を示し十分な性能が得られない。また、結晶粒径をナノスケールにした場合、結晶粒界数が増加しキャリアの粒界散乱が生じ、十分な比抵抗低減を実現できない。このようにシリサイドに代表される熱電変換材料においてZTを向上されるためには、比抵抗低減と熱伝導率低減の両立が必要となっている。In particular, the silicide and silicon compound of (5) are attracting a great deal of attention because they use abundant and non-toxic Si. Si has an advantage that the Seebeck coefficient S is relatively large and the resistivity can be easily controlled by modulating the number of carriers by doping (for example, Patent Document 1). In addition, there is a case where a structure having a crystal grain size of nanoscale is applied in order to reduce the thermal conductivity. (For example, Patent Documents 2 and 3) Specifically, Mg 2 Si, MnSi a , FeSi 2 , Ca 2 Si, Ca 3 Si 4 , BaSi 2 , MoSi 2 , WSi 2 , CrSi doped with other elements in Si 2 and the like, and silicon-based clathrate using, as a base material, Li 4 Si 23 , Na 4 Si 23, or the like. However, when the number of carriers is increased by doping, the ionized impurity concentration increases, the conduction electron (or hole) scattering probability increases, the specific resistance increases, and ZT tends to decrease, and sufficient performance cannot be obtained. In addition, when the crystal grain size is made nanoscale, the number of crystal grain boundaries increases and carrier grain boundary scattering occurs, and a sufficient reduction in specific resistance cannot be realized. Thus, in order to improve ZT in a thermoelectric conversion material typified by silicide, it is necessary to achieve both reduction in specific resistance and reduction in thermal conductivity.

一方、へテロ接合薄膜を用いた2次元電子ガス生成による比抵抗低減と熱伝導率低減の両立する技術の事例がある(例えば、特許文献4、非特許文献1)が、電力規模が小さく3次元バルク形態での実現が課題である。   On the other hand, there are examples of techniques that achieve both reduction of specific resistance and reduction of thermal conductivity by generating a two-dimensional electron gas using a heterojunction thin film (for example, Patent Document 4 and Non-Patent Document 1). Realization in a dimensional bulk form is an issue.

特開2013−179322号公報JP 2013-179322 A 特開2009−194085号公報JP 2009-194085 A 特開2013−8747号公報JP 2013-8747 A 特許第4998897号公報Japanese Patent No. 4999897

L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B47, 12727 (1993).L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B47, 12727 (1993).

前述のとおり、シリサイド、シリコン半導体化合物では、比抵抗低減を目的に他元素ドーピングによるキャリア数増大を行うとイオン化不純物濃度の増大によるキャリアの散乱が増し十分な比抵抗低減が得られない。また、熱伝導率低減するために結晶粒径のナノスケール化を行った場合、キャリアの結晶粒界散乱が増加し十分な比抵抗低減に限界がある。   As described above, in silicide and silicon semiconductor compounds, if the number of carriers is increased by doping other elements for the purpose of reducing specific resistance, carrier scattering increases due to increase in ionized impurity concentration, and sufficient specific resistance cannot be reduced. In addition, when the crystal grain size is made nanoscale in order to reduce the thermal conductivity, the crystal grain boundary scattering of the carrier increases, and there is a limit to a sufficient specific resistance reduction.

本発明の目的は、比抵抗低減と熱伝導率低減とが両立可能な熱電変換材料及びそれを用いた熱電変換効率の高い熱電変換素子並びに熱電変換モジュールを提供することにある。   An object of the present invention is to provide a thermoelectric conversion material capable of achieving both a reduction in specific resistance and a reduction in thermal conductivity, a thermoelectric conversion element using the thermoelectric conversion element, and a thermoelectric conversion module using the thermoelectric conversion efficiency.

上記目的を達成するための一実施形態として、イオン化不純物を含むキャリア供給相からなる第1粒子と、
前記キャリア供給相よりもイオン化不純物濃度が低い母相からなる第2粒子と、を含む熱電変換材料であって、
前記第1粒子と前記第2粒子の粒径は、共に100nm以下であり、
前記キャリア供給相に含まれた不純物により生じるキャリアは、前記母相内へ注入され前記母相内を伝導するものであることを特徴とする熱電変換材料とする。
As one embodiment for achieving the above object, first particles comprising a carrier supply phase containing ionized impurities,
A thermoelectric conversion material comprising: second particles composed of a parent phase having a lower ionized impurity concentration than the carrier supply phase,
The particle diameters of the first particles and the second particles are both 100 nm or less,
Carriers generated by impurities contained in the carrier supply phase are injected into the mother phase and conducted in the mother phase, thereby providing a thermoelectric conversion material.

また、他の実施形態として、電力を取り出すための電極で接続されたn型熱電変換材料とp型熱電変換材料との一対で構成され、ゼーベック効果を用いて発電する熱電変換素子において、
前記n型およびp型熱電変換材料の少なくとも一者は、
イオン化不純物を含むキャリア供給相からなる第1粒子と、
前記キャリア供給相よりもイオン化不純物濃度が低い母相からなる第2粒子と、を含み、
前記第1粒子と前記第2粒子の粒径は、共に100nm以下であり、
前記キャリア供給相に含まれた不純物により生じるキャリアは、前記母相内へ注入され前記母相内を伝導するものであることを特徴とする熱電変換素子とする。
Further, as another embodiment, in a thermoelectric conversion element configured by a pair of an n-type thermoelectric conversion material and a p-type thermoelectric conversion material connected by an electrode for extracting electric power, and generating electric power using the Seebeck effect,
At least one of the n-type and p-type thermoelectric conversion materials is:
First particles comprising a carrier supply phase containing ionized impurities;
Second particles composed of a parent phase having a lower ionized impurity concentration than the carrier supply phase,
The particle diameters of the first particles and the second particles are both 100 nm or less,
Carriers generated by impurities contained in the carrier supply phase are injected into the mother phase and conducted in the mother phase, thereby providing a thermoelectric conversion element.

また、他の実施形態として、電力を取り出すための電極で接続されたn型熱電変換材料とp型熱電変換材料の複数対で構成され、ゼーベック効果を用いて発電する熱電変換モジュールにおいて、
前記n型およびp型熱電変換材料の少なくとも一者は、
イオン化不純物を含むキャリア供給相からなる第1粒子と、
前記キャリア供給相よりもイオン化不純物濃度が低い母相からなる第2粒子と、を含み、
前記第1粒子と前記第2粒子の粒径は、共に100nm以下であり、
前記キャリア供給相に含まれた不純物により生じるキャリアは、前記母相内へ注入され前記母相内を伝導するものであることを特徴とする熱電変換モジュールとする。
Further, as another embodiment, in a thermoelectric conversion module configured by a plurality of pairs of an n-type thermoelectric conversion material and a p-type thermoelectric conversion material connected by an electrode for extracting electric power, and generating electric power using the Seebeck effect,
At least one of the n-type and p-type thermoelectric conversion materials is:
First particles comprising a carrier supply phase containing ionized impurities;
Second particles composed of a parent phase having a lower ionized impurity concentration than the carrier supply phase,
The particle diameters of the first particles and the second particles are both 100 nm or less,
Carriers generated by impurities contained in the carrier supply phase are injected into the mother phase and conducted in the mother phase, thereby providing a thermoelectric conversion module.

本発明によれば、比抵抗低減と熱伝導率低減とが両立可能な熱電変換材料及びそれを用いた熱電変換効率の高い熱電変換素子並びに熱電変換モジュールを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion material in which specific resistance reduction and thermal conductivity reduction are compatible, a thermoelectric conversion element using the same, and a thermoelectric conversion module and a thermoelectric conversion module can be provided.

本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)の断面模式図であり、(a)は複数の母相の粒子とキャリア供給相の粒子を含む組織構成例を、(b)は母相の粒子とキャリア供給相の粒子との界面15におけるキャリアの移動の例を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram of the thermoelectric conversion material (including a modulation dope structure) according to the first embodiment of the present invention, (a) is a structural configuration example including a plurality of mother phase particles and carrier supply phase particles, (B) shows an example of carrier movement at the interface 15 between the mother phase particles and the carrier supply phase particles. (a)は本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)において母相10とキャリア供給相20がともにn型材料で構成される両相の界面のエネルギーバンド図を、(b)は本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)において母相10とキャリア供給相20がともにp型材料で構成される両相の界面のエネルギーバンド図を、(c)は変調ドープ構造をもたない単物質においてドーピングしたときの伝導状態の模式図を示す。(A) is an energy band diagram of an interface between both phases in which the parent phase 10 and the carrier supply phase 20 are both made of an n-type material in the thermoelectric conversion material (including the modulation dope structure) according to the first embodiment of the present invention. (B) is the energy of the interface between both phases in which the parent phase 10 and the carrier supply phase 20 are both made of p-type material in the thermoelectric conversion material (including the modulation dope structure) according to the first embodiment of the present invention. A band diagram is shown, and (c) is a schematic diagram of a conduction state when doping is performed on a single material having no modulation doping structure. 本発明の第1の実施例に係る熱電変換材料の母相10とキャリア供給相20に使用する材料の最適な組み合わせを示す。The optimal combination of the material used for the parent | base phase 10 and the carrier supply phase 20 of the thermoelectric conversion material which concerns on 1st Example of this invention is shown. 本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)の作製プロセスフローの一例を示す。1 shows an example of a manufacturing process flow of a thermoelectric conversion material (including a modulation dope structure) according to a first embodiment of the present invention. 本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)のX線回折結果の一例を示す。An example of the X-ray-diffraction result of the thermoelectric conversion material (a modulation | alteration dope structure is included) which concerns on the 1st Example of this invention is shown. 上図は図1(a)に示す組織構成における粒径の一例を示す断面模式図、下図は本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)の母相10にSiを選択した場合において、結晶粒径を変化させたときの熱伝導率の温度依存性を示す。The upper figure is a schematic cross-sectional view showing an example of the particle diameter in the structure shown in FIG. 1 (a), and the lower figure shows the matrix 10 of the thermoelectric conversion material (including the modulation dope structure) according to the first embodiment of the present invention. In the case where Si is selected, the temperature dependence of the thermal conductivity when the crystal grain size is changed is shown. 本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)の母相10にSiを選択場合において、結晶粒径を変化させたときのZTの温度依存性の一例を示す。An example of temperature dependence of ZT when the crystal grain size is changed in the case where Si is selected as the parent phase 10 of the thermoelectric conversion material (including the modulation dope structure) according to the first embodiment of the present invention will be shown. 本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)の母相10にGeを選択場合において、結晶粒径を変化させたときのZTの温度依存性の一例を示す。An example of temperature dependence of ZT when the crystal grain size is changed in the case where Ge is selected for the parent phase 10 of the thermoelectric conversion material (including the modulation dope structure) according to the first embodiment of the present invention will be shown. 本発明の第2の実施例に係る熱電変換素子の構成例を示す模式斜視図である。It is a model perspective view which shows the structural example of the thermoelectric conversion element which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係る熱電変換モジュールの構成例を示す模式斜視図である。It is a model perspective view which shows the structural example of the thermoelectric conversion module which concerns on the 3rd Example of this invention.

本実施の形態では、ドーピングによりキャリアを供給する相(キャリア供給相と呼ぶ)と供給されたキャリアが伝導する相(母相と呼ぶ)を分離した変調ドープ構造を含む熱電変換材料(以下、変調ドープ型熱電変換材料と呼ぶ場合有り)を提供する。前記キャリア供給相には、GaN、SiC、SrTiO、Geなどを使用し前記母相にはSiまたはGeの少なくとも一つの元素を含む材料を用いることができる。また、キャリア供給相と母相の結晶粒径は100nm以下であることが望ましい。さらに、本実施の形態の変調ドープ型熱電変換材料を用いた熱電変換素子及び熱電変換モジュールを提供する。In the present embodiment, a thermoelectric conversion material (hereinafter referred to as modulation) including a modulation dope structure in which a phase for supplying carriers by doping (referred to as a carrier supply phase) and a phase through which the supplied carriers conduct (referred to as a parent phase) is separated. May be referred to as a doped thermoelectric conversion material). GaN, SiC, SrTiO 3 , Ge, or the like can be used for the carrier supply phase, and a material containing at least one element of Si or Ge can be used for the parent phase. The crystal grain size of the carrier supply phase and the parent phase is desirably 100 nm or less. Furthermore, the thermoelectric conversion element and thermoelectric conversion module using the modulation dope type thermoelectric conversion material of this Embodiment are provided.

以下、本発明について実施例により説明する。なお、同一符号は同一構成要素を示す。   Hereinafter, the present invention will be described with reference to examples. In addition, the same code | symbol shows the same component.

本発明の第1の実施例に係る熱電変換材料について、図1〜図6を用いて説明する。
図1は本実施例に係る変調ドープ型熱電変換材料の断面模式図であり、図1(a)は複数の母相の粒子とキャリア供給相の粒子を含む組織構成例を示す。この熱電変換材料は、母相10とキャリア供給相20の粒子の凝集体で構成される。特に、各相の粒子径は熱伝導率の低減と変調ドープ効果を両立するために100nm以下であることが望ましい。
The thermoelectric conversion material according to the first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic cross-sectional view of a modulation-doped thermoelectric conversion material according to the present embodiment, and FIG. 1 (a) shows a structural configuration example including a plurality of mother phase particles and carrier supply phase particles. This thermoelectric conversion material is composed of an aggregate of particles of the parent phase 10 and the carrier supply phase 20. In particular, the particle diameter of each phase is preferably 100 nm or less in order to achieve both a reduction in thermal conductivity and a modulation doping effect.

図1(b)は、図1(a)に示した変調ドープ型熱電変換材料の母相の粒子とキャリア供給相の粒子との界面15におけるキャリアの移動の例を示す。本図では、キャリア供給相20においてドーピングした不純物によりイオン化不純物30とキャリア40が生成され、そのキャリア40が母相10にキャリア41として伝導する状態を示している。その原理を図2(a)、(b)に示すエネルギーバンド図を使って説明する。   FIG. 1B shows an example of carrier movement at the interface 15 between the mother phase particles and the carrier supply phase particles of the modulation-doped thermoelectric conversion material shown in FIG. In the drawing, ionized impurities 30 and carriers 40 are generated by impurities doped in the carrier supply phase 20, and the carriers 40 are conducted to the mother phase 10 as carriers 41. The principle will be described with reference to energy band diagrams shown in FIGS.

図2(a)は、母相10とキャリア供給相20がともにn型材料で構成される両相の界面のエネルギーバンド図を示す。n型であるためキャリアは電子であり伝導帯(CB)に存在する。キャリア供給相20は、その伝導帯エネルギーが母相10の伝導帯エネルギーよりもΔEcだけ高いエネルギーになるように物質を選択する。この場合、キャリア供給相20の電子40は、ΔEcだけエネルギーの低い母相10の伝導帯エネルギーへ移動し、電子41は母相10内を伝導する。   FIG. 2A shows an energy band diagram of an interface between both phases in which the parent phase 10 and the carrier supply phase 20 are both made of an n-type material. Since it is n-type, carriers are electrons and exist in the conduction band (CB). The carrier supply phase 20 selects a material such that its conduction band energy is higher than that of the parent phase 10 by ΔEc. In this case, the electrons 40 of the carrier supply phase 20 move to the conduction band energy of the mother phase 10 whose energy is lower by ΔEc, and the electrons 41 are conducted in the mother phase 10.

図2(b)は、母相10とキャリア供給相20がともにp型材料で構成される場合を示す。この場合キャリア供給相20のキャリアはホールであり価電子帯(VB)に存在する。本構成においては、キャリア供給相20として、その価電子帯エネルギーが母相10の荷電子帯エネルギーよりもΔEvだけ低いエネルギーとなるように物質を選択する。この場合、キャリア供給相20のホール40は、ΔEvだけエネルギーの高い母相10の荷電子帯へ移動し、ホール41は母相10内を伝導する。   FIG. 2B shows a case where both the parent phase 10 and the carrier supply phase 20 are made of a p-type material. In this case, the carrier of the carrier supply phase 20 is a hole and exists in the valence band (VB). In this configuration, a substance is selected as the carrier supply phase 20 so that its valence band energy is lower by ΔEv than the valence band energy of the parent phase 10. In this case, the hole 40 of the carrier supply phase 20 moves to the valence band of the parent phase 10 whose energy is higher by ΔEv, and the hole 41 is conducted in the mother phase 10.

このように、変調ドープ型熱電変換材料において母相10とキャリア供給相20を最適なエネルギー準位関係をもつ物質を選択組み合わせることにより、n型、p型両極性の変調ドープ型熱電変換材料を実現し、そのキャリアはイオン化不純物が多く存在するキャリア供給相20からイオン化不純物の存在しない母相10へ移動し母相10内を大きな移動度で伝導できる。例えば、その移動度は変調ドープ構造をもたない従来単物質に比べて最大10倍の移動度を実現し、比抵抗として一桁低減可能である。なお、母相にはイオン化不純物が存在しない方が望ましいが、キャリア供給相よりもイオン化不純物濃度を低くすることにより従来よりも良好な特性を得ることができる。また、母相を構成する材料はキャリア供給相を構成する材料よりもゼーベック係数が大きいことが望ましい。   As described above, by selectively combining the base phase 10 and the carrier supply phase 20 with substances having an optimum energy level relationship in the modulation-doped thermoelectric conversion material, the n-type and p-type bipolar modulation-doped thermoelectric conversion materials can be obtained. As a result, the carriers move from the carrier supply phase 20 in which many ionized impurities are present to the mother phase 10 in which no ionized impurities are present and can be conducted in the mother phase 10 with high mobility. For example, the mobility is up to 10 times that of a conventional single material having no modulation dope structure, and can be reduced by one digit as a specific resistance. Although it is desirable that the mother phase does not contain ionized impurities, it is possible to obtain better characteristics than before by making the ionized impurity concentration lower than that of the carrier supply phase. Further, it is desirable that the material constituting the parent phase has a larger Seebeck coefficient than the material constituting the carrier supply phase.

一方、図2(c)は、本実施例の熱電変換材料と異なり、変調ドープ構造をもたない単物質(熱電変換材料)21においてドーピングしたときの伝導状態の模式図を示す。ドープした不純物からイオン化不純物301とキャリア401が生成し、キャリア411が単物質21の中を伝導する。この場合、キャリア411は、イオン化不純物が多く存在する単物質21の中を伝導するためイオン化不純物との衝突により散乱され、移動度が小さくなり比抵抗は増加し、熱電変換の材料性能指数ZTの向上には限界がある。   On the other hand, FIG. 2C shows a schematic diagram of a conduction state when doping is performed in a single substance (thermoelectric conversion material) 21 having no modulation doping structure, unlike the thermoelectric conversion material of this example. Ionized impurities 301 and carriers 401 are generated from the doped impurities, and the carriers 411 are conducted through the single substance 21. In this case, the carrier 411 is scattered by collision with the ionized impurity because it conducts through the single substance 21 in which a large amount of ionized impurities are present, the mobility is decreased, the specific resistance is increased, and the material performance index ZT of the thermoelectric conversion is There are limits to improvement.

図3は、本実施例において母相10とキャリア供給相20に使用する材料の最適な組み合わせの代表例を示す。母相10には、Si、Ge、あるいはTiを用いることができ、キャリアをn型にするためにリン(P)などをドープ、さらにp型にするために硼素(B)などをドープすることができる。   FIG. 3 shows a representative example of an optimal combination of materials used for the parent phase 10 and the carrier supply phase 20 in this embodiment. The matrix 10 can be made of Si, Ge, or Ti, doped with phosphorus (P) or the like to make the carrier n-type, and further doped with boron (B) or the like to make the p-type. Can do.

母相10にSiを選択した場合、キャリア供給相20として、Siの伝導帯(n型の場合)や価電子帯(p型の場合)にエネルギー準位が近いSi(母相10よりもドープ量を変化させる)、Ge、SiC、GaN、SrTiO、TiSiδ、ZrTiδ、HfSiδ、VSiδ、MoSiδ、WSiδなどを選択することができる。これらのキャリア供給相20に選択された物質もキャリアをn型にするためにPなどをドープ、さらにp型にするためにBなどをドープすることができる。例えば、母相10にSi、キャリア供給相20にSiCを選択しn型の変調ドープ熱電変換材料を形成する場合、Si−PとSiC−Pを使用する。When Si is selected as the parent phase 10, the carrier supply phase 20 is Si that has an energy level close to the Si conduction band (in the case of n-type) or valence band (in the case of p-type) (dope more than the parent phase 10). Ge, SiC, GaN, SrTiO 3 , TiSi δ , ZrTi δ , HfSi δ , VSi δ , MoSi δ , WSi δ, etc. can be selected. The material selected for these carrier supply phases 20 can also be doped with P or the like to make the carrier n-type, and further doped with B or the like to make the carrier p-type. For example, when Si is selected for the parent phase 10 and SiC is selected for the carrier supply phase 20 to form an n-type modulation doped thermoelectric conversion material, Si-P and SiC-P are used.

一方、母相10にGeを選択した場合、キャリア供給相20としてGeの伝導帯(n型)や価電子帯(p型)にエネルギー準位が近いSi、Ge(母相10よりもドープ量を変化させる)、SiC、GaN、SrTiO、TiGeδ、ZrGeδ、HfGeδ、VGeδ、MoGeδ、WGeδなどを選択することができる。ここで、前述のSiを母相10とした場合と同様にn型の場合Pなどを、p型の場合Bなどを母相10とキャリア供給相20にドーピングする。On the other hand, when Ge is selected as the parent phase 10, Si, Ge (the doping amount is higher than that of the parent phase 10) as the carrier supply phase 20 is close to the energy level of Ge conduction band (n-type) or valence band (p-type). SiC, GaN, SrTiO 3 , TiGe δ , ZrGe δ , HfGe δ , VGe δ , MoGe δ , WGe δ and the like can be selected. Here, as in the case where Si is used as the parent phase 10, the parent phase 10 and the carrier supply phase 20 are doped with P or the like in the case of n-type, and B or the like in the case of p-type.

図4Aは、本実施例に係る変調ドープ型熱電変換材料の作製プロセスフローの一例を示す。ここでは、母相10にSi、キャリア供給相20にSi95Ge(以下SiGePと記載)をそれぞれ80:20の原子量比の変調ドープ型熱電変換材料の代表例について説明する。FIG. 4A shows an example of a manufacturing process flow of the modulation dope thermoelectric conversion material according to the present embodiment. Here, a typical example of a modulation-doped thermoelectric conversion material having an atomic weight ratio of 80:20 with Si as the parent phase 10 and Si 95 Ge 5 P 3 (hereinafter referred to as SiGeP) as the carrier supply phase 20 will be described.

SiGePは、アーク溶解により合成した後、ボールミル 20分実施して粉砕処理し、フッ酸(HF)処理を行った。ボールミルで粉砕処理後HF処理を行ったSi粉砕粉末と前記SiGePの粉砕粉末とを、目的とする原子量比になるように秤量する。母相10とキャリア供給相20の混合比は、それらの物質が共晶や共析など相互に固溶しない比率を選択することが望ましい。この際、原料粉末の酸化等を防ぐために原料粉末が暴露される雰囲気は原料の元素により制御することが望ましい。   SiGeP was synthesized by arc melting, then pulverized by ball milling for 20 minutes and hydrofluoric acid (HF) treatment. The pulverized Si powder after pulverization with a ball mill and the pulverized powder of SiGeP are weighed so as to have a desired atomic weight ratio. As a mixing ratio of the mother phase 10 and the carrier supply phase 20, it is desirable to select a ratio in which these substances do not form a solid solution such as eutectic or eutectoid. At this time, it is desirable to control the atmosphere to which the raw material powder is exposed in order to prevent the raw material powder from being oxidized.

その後、秤量した各原料粉末をボールミルにより30分粉砕混合する。混合粉砕した粉末の粒径をX線回折により評価した結果、平均粒径13nmの粉末が作製された。ボールミルについては、ボールに所定の粒径になるようにSUSやZrOなどのボールをそのボール径を選択する。また、遊星ボールミル装置を用いてミル後の粒径が所定の寸法になるように回転数を最適化する。このときに、自転、公転の回転する独立制御してもかまわない。その後、フッ酸(HF)等の酸により、ボールミル後の微細粒子の表面酸化膜やボールミルのボールとして使用したZrOなどの酸化膜を除去することが望ましいが、酸化が進行しない材料については実施しない。Then, each raw material powder weighed is pulverized and mixed for 30 minutes by a ball mill. As a result of evaluating the particle size of the mixed and pulverized powder by X-ray diffraction, a powder having an average particle size of 13 nm was produced. For the ball mill, the ball diameter of a ball such as SUS or ZrO 2 is selected so that the ball has a predetermined particle size. Further, the rotational speed is optimized using a planetary ball mill device so that the particle diameter after milling becomes a predetermined size. At this time, independent control of rotation and revolution may be performed. After that, it is desirable to remove the surface oxide film of fine particles after ball milling and an oxide film such as ZrO 2 used as a ball mill ball with an acid such as hydrofluoric acid (HF). do not do.

次に、13nmに微細化されたSi(母相10)とSiGeP(キャリア供給相20)の混合粉末を平均の結晶粒径が100nm以下になるように放電プラズマ焼結(SPS)により焼結体を作製する。温度は、Si(母相10)とSiGeP(キャリア供給相20)の融点以下の1080℃で設定し、相互に反応しない温度を選定する。また圧力は、焼結体としての密度が90%以上になるように100MPaで実施する。   Next, a sintered powder obtained by subjecting a mixed powder of Si (matrix phase 10) and SiGeP (carrier supply phase 20) refined to 13 nm to an average crystal grain size of 100 nm or less by spark plasma sintering (SPS). Is made. The temperature is set at 1080 ° C. below the melting points of Si (matrix phase 10) and SiGeP (carrier supply phase 20), and a temperature at which they do not react with each other is selected. The pressure is 100 MPa so that the density of the sintered body is 90% or more.

図4Bは作製した上記焼結体のX線回折の結果を示す。この結果(信号強度)から、平均結晶粒径は40〜70nmであった。放電プラズマ焼結(SPS)の条件は、使用する2つの物質の種類により平均結晶粒径と2つの相が反応しないように、焼結温度、圧力、時間を調整する。このように作製されたSi−SiGeP変調ドープ構造材料の移動度は、7cm/Vsであった。この移動度は、変調ドープ構造をもたないSiGeP単一材料の移動度1.5cm/Vsにくらべて約5倍増大した。FIG. 4B shows the result of X-ray diffraction of the produced sintered body. From this result (signal intensity), the average crystal grain size was 40 to 70 nm. The conditions of spark plasma sintering (SPS) adjust the sintering temperature, pressure, and time so that the average crystal grain size and the two phases do not react depending on the types of the two substances used. The mobility of the Si—SiGeP modulation doped structure material thus produced was 7 cm 2 / Vs. This mobility was increased by a factor of about 5 compared to the mobility of 1.5 cm 2 / Vs for the SiGeP single material without the modulation doped structure.

図5の上図は図1(a)に示す組織構成における粒径の一例を示す断面模式図、下図は本発明の第1の実施例に係る熱電変換材料(変調ドープ構造を含む)の母相10にSiを選択した場合において、結晶粒径を変化させたときの熱伝導率の温度依存性を示す。キャリア供給相20は、Si(母相10よりもドープ量を変化させる)、Ge、SiC、GaN、SrTiO、TiSiδ、ZrTiδ、HfSiδ、VSiδ、MoSiδ、WSiδなどの内から選択可能である。また母相10としてGeを選択したい場合も同様の結果を得ることが可能であり、その場合のキャリア供給相20は、Si、Ge(母相10よりもドープ量を変化させる)、SiC、GaN、SrTiO、TiGeδ、ZrGeδ、HfGeδ、VGeδ、MoGeδ、WGeδの内から選択される。The upper diagram of FIG. 5 is a schematic sectional view showing an example of the particle diameter in the structure shown in FIG. 1A, and the lower diagram is a mother of a thermoelectric conversion material (including a modulation dope structure) according to the first embodiment of the present invention. In the case where Si is selected as the phase 10, the temperature dependence of the thermal conductivity when the crystal grain size is changed is shown. The carrier supply phase 20 includes Si (which changes the doping amount as compared with the parent phase 10), Ge, SiC, GaN, SrTiO 3 , TiSi δ , ZrTi δ , HfSi δ , VSi δ , MoSi δ , WSi δ and the like. Selectable. Similar results can be obtained when Ge is selected as the parent phase 10, and the carrier supply phase 20 in that case is Si, Ge (the doping amount is changed as compared with the parent phase 10), SiC, GaN. , SrTiO 3 , TiGe δ , ZrGe δ , HfGe δ , VGe δ , MoGe δ , and WGe δ .

この結果から、どの結晶粒径においても熱伝導率は温度とともに減少することがわかる。さらに、結晶粒径を小さくするにつれて熱伝導率は減少し、結晶粒径が5nmでは5W/Kmと従来のシリコン化合物に比べて1/10以上低減可能である。一方で、ゼーベック係数と比抵抗の温度変化については本実施例の変調ドープ型熱電変換材料においては結晶粒径100nmの範囲に対して依存性は小さい。例えば結晶粒径が5nmのサンプルにおけるゼーベック係数は300Kで−266μV/Kであり温度上昇とともに増加し1100Kで−430μV/Kに達する。また、比抵抗は300Kで5μΩmであり、温度上昇とともに増加し1100Kにおいて14μΩmとなる。特に比抵抗は、従来のシリコン化合物に比べて1/2低減可能である。なお、本実施例における最小結晶粒径を5nmとしたが、結晶構造が得られる範囲でこれ以下の粒径とすることもできる。   From this result, it can be seen that the thermal conductivity decreases with temperature at any crystal grain size. Furthermore, as the crystal grain size is reduced, the thermal conductivity decreases, and when the crystal grain size is 5 nm, it is 5 W / Km, which can be reduced by 1/10 or more compared to conventional silicon compounds. On the other hand, the temperature change of the Seebeck coefficient and the specific resistance has little dependence on the range of the crystal grain size of 100 nm in the modulation doped thermoelectric conversion material of this example. For example, the Seebeck coefficient in a sample having a crystal grain size of 5 nm is −266 μV / K at 300 K, increases with increasing temperature, and reaches −430 μV / K at 1100 K. Further, the specific resistance is 5 μΩm at 300K, and increases as the temperature rises to 14 μΩm at 1100K. In particular, the specific resistance can be reduced by half compared to the conventional silicon compound. Although the minimum crystal grain size in this example is 5 nm, the grain size can be smaller than this within the range where the crystal structure can be obtained.

図6Aは、変調ドープ型熱電変換材料の母相10にSiを選択した場合において、結晶粒径を変化させたときのZTの温度依存性の一例を示す。変調ドープ構造の有無に関わらず、どの結晶粒径においてもZTは温度とともに増加する。粒径100nmの変調ドープ型熱電変換材料と従来の単体Siを比較すると、変調ドープ構造のZTは約2倍大きなZTを得ることが可能となる。さらに、変調ドープ型熱電変換材料では粒径が小さくなるにつれてZTは増大し、粒径5nmにおいては1100KでZT=4以上を示すことが可能である。   FIG. 6A shows an example of temperature dependence of ZT when the crystal grain size is changed when Si is selected as the parent phase 10 of the modulation-doped thermoelectric conversion material. Regardless of the presence of the modulation doping structure, ZT increases with temperature at any crystal grain size. When a modulation doped thermoelectric conversion material having a particle size of 100 nm is compared with a conventional simple substance Si, it is possible to obtain a ZT having a modulation doping structure that is approximately twice as large. Furthermore, in the modulation-doped thermoelectric conversion material, ZT increases as the particle size decreases, and at a particle size of 5 nm, ZT = 4 or more can be exhibited at 1100 K.

図6Bは、変調ドープ型熱電変換材料の母相10にGeを選択した場合において、結晶粒径を変化させたときのZTの温度依存性の一例を示す。母相10としてGeを用いた場合も前述のSiの場合と同様に、変調ドープ構造を適用し粒径を小さくするにつれてZTの向上が可能となる。   FIG. 6B shows an example of the temperature dependence of ZT when the crystal grain size is changed when Ge is selected as the parent phase 10 of the modulation-doped thermoelectric conversion material. Even when Ge is used as the parent phase 10, ZT can be improved as the grain size is reduced by applying a modulation dope structure as in the case of Si described above.

以上、本実施例によれば、比抵抗低減と熱伝導率低減とが両立可能な熱電変換材料を提供することができる。また、比抵抗低減と熱伝導率低減とを両立させることにより、材料性能指数ZTを改善することができる。   As described above, according to this example, it is possible to provide a thermoelectric conversion material that can achieve both a reduction in specific resistance and a reduction in thermal conductivity. Moreover, the material performance index ZT can be improved by making both the specific resistance reduction and the thermal conductivity reduction compatible.

本発明の第2の実施例に係る熱電変換素子ついて、図7を用いて説明する。なお、実施例1に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。   A thermoelectric conversion element according to a second embodiment of the present invention will be described with reference to FIG. Note that the matters described in the first embodiment and not described in the present embodiment can be applied to the present embodiment as long as there is no special circumstances.

図7は、本実施例に係る熱電変換素子の構成例を示す模式図である。この熱電変換素子は、実施例1に記載した変調ドープ型熱電材料を用い、一対のp型の変調ドープ型熱電変換材料200とn型の変調ドープ型熱電変換材料201とそれらを接続する上部の電極100、さらにp型変調ドープ型熱電変換材料及びn型変調ドープ型熱電変換材料に接続する下部の電極101から構成される。ここで、本熱電変換素子の上部(電極100側)に高い温度T、下部(電極101側)にTよりも低い温度Tが与えられ、本熱電変換素子の両変調ドープ型熱電変換材料に上部電極100側から下部電極101側に温度差ΔT(=T−T)の勾配がかかったときに変調ドープ型熱電変換材料でゼーベック効果によって発生する電気を電力(電圧あるいは電流)として下部電極101(右側)と下部電極101(左側)との間から取り出す構成である。FIG. 7 is a schematic diagram illustrating a configuration example of the thermoelectric conversion element according to the present embodiment. This thermoelectric conversion element uses the modulation-doped thermoelectric material described in Example 1, and uses a pair of p-type modulation-doped thermoelectric conversion material 200 and n-type modulation-doped thermoelectric conversion material 201 and an upper portion connecting them. The electrode 100 further includes a lower electrode 101 connected to a p-type modulation doped thermoelectric conversion material and an n-type modulation doped thermoelectric conversion material. Here, a high temperature T H is applied to the upper part (electrode 100 side) of the thermoelectric conversion element, and a temperature TL lower than T H is applied to the lower part (electrode 101 side), and both modulation doped thermoelectric conversion of the thermoelectric conversion element is performed. Electricity (voltage or current) generated by the Seebeck effect in the modulation-doped thermoelectric conversion material when the material is subjected to a gradient of temperature difference ΔT (= T H −T L ) from the upper electrode 100 side to the lower electrode 101 side As shown in FIG.

本構成において、例えばp型変調ドープ型熱電材料として母相にSiB、キャリア供給相にGaNB、またn型変調ドープ型熱電材料として母相にSiP、キャリア供給相にGaNPを用いて熱源1100Kと室温の温度差を印加したときに、最大30%の変換効率を得ることが可能になる。   In this configuration, for example, the base phase is SiB as the p-type modulation doped thermoelectric material, the carrier supply phase is GANB, the base phase is SiP as the n-type modulation dope thermoelectric material, and the carrier supply phase is GANP. It is possible to obtain a conversion efficiency of 30% at the maximum when the temperature difference is applied.

なお、熱電変換素子としてはp型およびn型の両者に変調ドープ型熱電変換材料を用いることが好適であり、本実施例ではp型およびn型の熱電変換材料の両者に変調ドープ構造を有する材料を用いた。但し、p型およびn型の熱電変換材料の内の少なくとも一方を変調ドープ構造とすることにより、従来の熱電変換素子よりも良好な特性を得ることができる。   As the thermoelectric conversion element, it is preferable to use a modulation doped thermoelectric conversion material for both p-type and n-type. In this embodiment, both the p-type and n-type thermoelectric conversion materials have a modulation dope structure. Material was used. However, when at least one of the p-type and n-type thermoelectric conversion materials has a modulation dope structure, better characteristics than those of conventional thermoelectric conversion elements can be obtained.

以上、本実施例によれば、実施例1で示した熱電変換材料を用いることにより熱電変換効率の高い熱電変換素子を提供することができる。   As described above, according to this example, a thermoelectric conversion element having high thermoelectric conversion efficiency can be provided by using the thermoelectric conversion material shown in Example 1.

本発明の第3の実施例に係る熱電変換モジュールについて、図8を用いて説明する。なお、実施例1又は2に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。   A thermoelectric conversion module according to a third embodiment of the present invention will be described with reference to FIG. Note that matters described in the first or second embodiment but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.

図8は、本実施例に係る熱電変換モジュールの斜視図であり、図7に示した熱電変換素子を複数個平面状に配置して構成されている。図7に示した上部電極100および下部電極101が、各熱電変換素子を接続する電極となり、p型変調ドープ型熱電変換材料200とn型変調ドープ型熱電変換材料201がそれぞれ交互に接続されるように配置されている。Lは上部電極と下部電極との間の距離(熱電変換材料の高さ)を示す。ここで、実施例2で述べた熱源1100Kと室温の温度差を上部電極100と下部電極101に印加したときに本実施例の熱電変換モジュールでは最大30%の変換効率を得ることが可能となる。   FIG. 8 is a perspective view of the thermoelectric conversion module according to the present embodiment, and is configured by arranging a plurality of thermoelectric conversion elements shown in FIG. 7 in a planar shape. The upper electrode 100 and the lower electrode 101 shown in FIG. 7 serve as electrodes for connecting the thermoelectric conversion elements, and the p-type modulation doped thermoelectric conversion material 200 and the n-type modulation doped thermoelectric conversion material 201 are alternately connected to each other. Are arranged as follows. L represents the distance between the upper electrode and the lower electrode (the height of the thermoelectric conversion material). Here, when the temperature difference between the heat source 1100K and the room temperature described in the second embodiment is applied to the upper electrode 100 and the lower electrode 101, the thermoelectric conversion module of the present embodiment can obtain a conversion efficiency of 30% at the maximum. .

なお、熱電変換素子としてはp型およびn型の両者に変調ドープ型熱電変換材料を用いることが好適であり、本実施例ではp型およびn型の熱電変換材料の両者に変調ドープ構造を有する材料を用いた。但し、p型およびn型の熱電変換材料の内の少なくとも一方を変調ドープ構造とすることにより、従来の熱電変換素子よりも良好な特性を得ることができる。   As the thermoelectric conversion element, it is preferable to use a modulation doped thermoelectric conversion material for both p-type and n-type. In this embodiment, both the p-type and n-type thermoelectric conversion materials have a modulation dope structure. Material was used. However, when at least one of the p-type and n-type thermoelectric conversion materials has a modulation dope structure, better characteristics than those of conventional thermoelectric conversion elements can be obtained.

以上、本実施例によれば、実施例1で示した熱電変換材料と実施例2で示した熱電変換素子構造を用いることにより熱電変換効率の高い熱電変換素子を提供することができる。   As described above, according to this example, a thermoelectric conversion element having high thermoelectric conversion efficiency can be provided by using the thermoelectric conversion material shown in Example 1 and the thermoelectric conversion element structure shown in Example 2.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

10…母相、15…母相とキャリア供給相との界面、20…キャリア供給相、21…変調ドープ構造を有さない熱電変換材料、30…イオン化不純物、40…キャリア、41…キャリア、100…上部電極、101…下部電極、200…p型変調ドープ型熱電変換材料、201…n型変調ドープ熱電変換材料、301…イオン化不純物、401…キャリア、411…キャリア。 DESCRIPTION OF SYMBOLS 10 ... Mother phase, 15 ... Interface between mother phase and carrier supply phase, 20 ... Carrier supply phase, 21 ... Thermoelectric conversion material having no modulation dope structure, 30 ... Ionized impurities, 40 ... Carrier, 41 ... Carrier, 100 ... upper electrode, 101 ... lower electrode, 200 ... p-type modulation doped thermoelectric conversion material, 201 ... n-type modulation doped thermoelectric conversion material, 301 ... ionized impurities, 401 ... carrier, 411 ... carrier.

Claims (9)

イオン化不純物を含むキャリア供給相からなる第1粒子と、
前記キャリア供給相よりもイオン化不純物濃度が低い母相からなる第2粒子と、を含む熱電変換材料であって、
前記第1粒子と前記第2粒子の粒径は、共に100nm以下であり、
前記キャリア供給相に含まれた不純物により生じるキャリアは、前記母相内へ注入され前記母相内を伝導するものであることを特徴とする熱電変換材料。
First particles comprising a carrier supply phase containing ionized impurities;
A thermoelectric conversion material comprising: second particles composed of a parent phase having a lower ionized impurity concentration than the carrier supply phase,
The particle diameters of the first particles and the second particles are both 100 nm or less,
A carrier generated by impurities contained in the carrier supply phase is injected into the mother phase and conducts in the mother phase.
請求項1に記載の熱電変換材料において、
前記キャリア供給相は、
前記母相がSiで構成される場合には、Si、Ge、SiC、GaN、SrTiO、TiSiδ、ZrTiδ、HfSiδ、VSiδ、MoSiδ、WSiδ、の何れかで構成され、
前記母相がGeで構成される場合には、Si、Ge、SiC、GaN、SrTiO、TiGeδ、ZrGeδ、HfGeδ、VGeδ、MoGeδ、WGeδのいずれかで構成されることを特徴する熱電変換材料。
In the thermoelectric conversion material according to claim 1,
The carrier supply phase is
When the parent phase is composed of Si, it is composed of any of Si, Ge, SiC, GaN, SrTiO 3 , TiSi δ , ZrTi δ , HfSi δ , VSi δ , MoSi δ , WSi δ ,
When the matrix is composed of Ge, it is composed of any one of Si, Ge, SiC, GaN, SrTiO 3 , TiGe δ , ZrGe δ , HfGe δ , VGe δ , MoGe δ , and WGe δ. Characteristic thermoelectric conversion material.
請求項1に記載の熱電変換材料において、
前記母相と前記キャリア供給相の混合比は、それらの物質が共晶や共析など相互に固溶しない比率であることを特徴とする熱電変換材料。
In the thermoelectric conversion material according to claim 1,
The thermoelectric conversion material characterized in that the mixing ratio of the matrix phase and the carrier supply phase is such a ratio that these substances do not form a solid solution such as eutectic or eutectoid.
電力を取り出すための電極で接続されたn型熱電変換材料とp型熱電変換材料との一対で構成され、ゼーベック効果を用いて発電する熱電変換素子において、
前記n型およびp型熱電変換材料の少なくとも一者は、
イオン化不純物を含むキャリア供給相からなる第1粒子と、
前記キャリア供給相よりもイオン化不純物濃度が低い母相からなる第2粒子と、を含み、
前記第1粒子と前記第2粒子の粒径は、共に100nm以下であり、
前記キャリア供給相に含まれた不純物により生じるキャリアは、前記母相内へ注入され前記母相内を伝導するものであることを特徴とする熱電変換素子。
In a thermoelectric conversion element configured by a pair of an n-type thermoelectric conversion material and a p-type thermoelectric conversion material connected by an electrode for taking out electric power and generating electric power using the Seebeck effect,
At least one of the n-type and p-type thermoelectric conversion materials is:
First particles comprising a carrier supply phase containing ionized impurities;
Second particles composed of a parent phase having a lower ionized impurity concentration than the carrier supply phase,
The particle diameters of the first particles and the second particles are both 100 nm or less,
A carrier generated by impurities contained in the carrier supply phase is injected into the mother phase and conducts in the mother phase.
請求項4に記載の熱電変換素子において、
前記キャリア供給相は、
前記母相がSiで構成される場合には、Si、Ge、SiC、GaN、SrTiO、TiSiδ、ZrTiδ、HfSiδ、VSiδ、MoSiδ、WSiδ、の何れかで構成され、
前記母相がGeで構成される場合には、Si、Ge、SiC、GaN、SrTiO、TiGeδ、ZrGeδ、HfGeδ、VGeδ、MoGeδ、WGeδのいずれかで構成されることを特徴する熱電変換素子。
In the thermoelectric conversion element according to claim 4,
The carrier supply phase is
When the parent phase is composed of Si, it is composed of any of Si, Ge, SiC, GaN, SrTiO 3 , TiSi δ , ZrTi δ , HfSi δ , VSi δ , MoSi δ , WSi δ ,
When the matrix is composed of Ge, it is composed of any one of Si, Ge, SiC, GaN, SrTiO 3 , TiGe δ , ZrGe δ , HfGe δ , VGe δ , MoGe δ , and WGe δ. Characteristic thermoelectric conversion element.
請求項4に記載の熱電変換素子において、
前記母相と前記キャリア供給相の混合比は、それらの物質が共晶や共析など相互に固溶しない比率であることを特徴とする熱電変換素子。
In the thermoelectric conversion element according to claim 4,
The thermoelectric conversion element according to claim 1, wherein a mixing ratio of the matrix phase and the carrier supply phase is a ratio in which these substances do not form solid solutions such as eutectic or eutectoid.
電力を取り出すための電極で接続されたn型熱電変換材料とp型熱電変換材料の複数対で構成され、ゼーベック効果を用いて発電する熱電変換モジュールにおいて、
前記n型およびp型熱電変換材料の少なくとも一者は、
イオン化不純物を含むキャリア供給相からなる第1粒子と、
前記キャリア供給相よりもイオン化不純物濃度が低い母相からなる第2粒子と、を含み、
前記第1粒子と前記第2粒子の粒径は、共に100nm以下であり、
前記キャリア供給相に含まれた不純物により生じるキャリアは、前記母相内へ注入され前記母相内を伝導するものであることを特徴とする熱電変換モジュール。
In a thermoelectric conversion module configured by a plurality of pairs of an n-type thermoelectric conversion material and a p-type thermoelectric conversion material connected by an electrode for taking out electric power, and generating electric power using the Seebeck effect,
At least one of the n-type and p-type thermoelectric conversion materials is:
First particles comprising a carrier supply phase containing ionized impurities;
Second particles composed of a parent phase having a lower ionized impurity concentration than the carrier supply phase,
The particle diameters of the first particles and the second particles are both 100 nm or less,
Carriers generated by impurities contained in the carrier supply phase are injected into the mother phase and conducted in the mother phase.
請求項7に記載の熱電変換モジュールにおいて
前記キャリア供給相は、
前記母相がSiで構成される場合には、Si、Ge、SiC、GaN、SrTiO、TiSiδ、ZrTiδ、HfSiδ、VSiδ、MoSiδ、WSiδ、の何れかで構成され、
前記母相がGeで構成される場合には、Si、Ge、SiC、GaN、SrTiO、TiGeδ、ZrGeδ、HfGeδ、VGeδ、MoGeδ、WGeδのいずれかで構成されることを特徴する熱電変換モジュール。
The thermoelectric conversion module according to claim 7, wherein the carrier supply phase is
When the parent phase is composed of Si, it is composed of any of Si, Ge, SiC, GaN, SrTiO 3 , TiSi δ , ZrTi δ , HfSi δ , VSi δ , MoSi δ , WSi δ ,
When the matrix is composed of Ge, it is composed of any one of Si, Ge, SiC, GaN, SrTiO 3 , TiGe δ , ZrGe δ , HfGe δ , VGe δ , MoGe δ , and WGe δ. Characteristic thermoelectric conversion module.
請求項7に記載の熱電変換モジュールにおいて、
前記母相と前記キャリア供給相の混合比は、それらの物質が共晶や共析など相互に固溶しない比率であることを特徴とする熱電変換モジュール。
The thermoelectric conversion module according to claim 7,
The thermoelectric conversion module according to claim 1, wherein a mixing ratio of the matrix phase and the carrier supply phase is a ratio in which these substances do not form a solid solution such as eutectic or eutectoid.
JP2017537132A 2015-09-02 2015-09-02 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module using the same Pending JPWO2017037884A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074916 WO2017037884A1 (en) 2015-09-02 2015-09-02 Thermoelectric conversion material and thermoelectric conversion element in which same is used, and thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JPWO2017037884A1 true JPWO2017037884A1 (en) 2018-04-05

Family

ID=58188779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017537132A Pending JPWO2017037884A1 (en) 2015-09-02 2015-09-02 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module using the same

Country Status (2)

Country Link
JP (1) JPWO2017037884A1 (en)
WO (1) WO2017037884A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117045A1 (en) * 2016-12-19 2018-06-28 国立大学法人東北大学 Thermoelectric material and thermoelectric module
JP6951097B2 (en) * 2017-03-29 2021-10-20 株式会社日立製作所 Thermoelectric conversion element and thermoelectric conversion module
JP6536615B2 (en) * 2017-03-31 2019-07-03 トヨタ自動車株式会社 Thermoelectric conversion material and method for manufacturing the same
JP6892786B2 (en) * 2017-05-10 2021-06-23 株式会社日立製作所 Thermoelectric conversion material and thermoelectric conversion module
JP7296377B2 (en) 2018-06-18 2023-06-22 住友電気工業株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, optical sensor, and method for producing thermoelectric conversion material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523579A (en) * 2004-10-29 2008-07-03 マサチューセッツ・インスティチュート・オブ・テクノロジー(エムアイティー) Nanocomposites with high thermoelectric figure of merit
JP2010512011A (en) * 2006-12-01 2010-04-15 マサチユセツツ・インスチチユート・オブ・テクノロジイ A method for high explicit numbers in thermoelectric materials with nanostructures
JP2012084870A (en) * 2010-09-16 2012-04-26 National Institute Of Advanced Industrial & Technology Nanocrystal aggregated semiconductor material and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523579A (en) * 2004-10-29 2008-07-03 マサチューセッツ・インスティチュート・オブ・テクノロジー(エムアイティー) Nanocomposites with high thermoelectric figure of merit
JP2010512011A (en) * 2006-12-01 2010-04-15 マサチユセツツ・インスチチユート・オブ・テクノロジイ A method for high explicit numbers in thermoelectric materials with nanostructures
JP2012084870A (en) * 2010-09-16 2012-04-26 National Institute Of Advanced Industrial & Technology Nanocrystal aggregated semiconductor material and method for manufacturing the same

Also Published As

Publication number Publication date
WO2017037884A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
Li et al. Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity
Liu et al. Influence of Ag doping on thermoelectric properties of BiCuSeO
WO2017037884A1 (en) Thermoelectric conversion material and thermoelectric conversion element in which same is used, and thermoelectric conversion module
Bashir et al. Recent advances on Mg2Si1− xSnx materials for thermoelectric generation
Park et al. Thermoelectric energy-conversion characteristics of n-type Bi2 (Te, Se) 3 nanocomposites processed with carbon nanotube dispersion
JP4745183B2 (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP6188635B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP6401436B2 (en) Thermoelectric material having strained electronic density of state, manufacturing method thereof, thermoelectric module and thermoelectric device including the same
Shaabani et al. Thermoelectric performance of Na-doped GeSe
JP2009277735A (en) Method of manufacturing thermoelectric material
KR20140065721A (en) Thermoelectric material, thermoelectric device and apparatus comprising same, and preparation method thereof
Cheng et al. Synergistically enhanced thermoelectric performance of Cu2SnSe3-based composites via Ag doping balance
KR20200095861A (en) Thermoelectric composite, and thermoelectric element and device including the same
KR20110061751A (en) Organic-inorganic hybrid nanofibers for thermoelectric devices and method for forming the same
KR102109500B1 (en) Oxide nano particle dispersed and chalcogenide based composite thermoelectric material
JP6279639B2 (en) Thermoelectric conversion material and method for producing the same
JP2012174849A (en) Thermoelectric material
JP6635581B2 (en) Skutterudite thermoelectric semiconductor doped with silicon and tellurium, method for producing the same, and thermoelectric power generation element using the same
JP5201691B2 (en) Oxygen-containing intermetallic compound thermoelectric conversion material and thermoelectric conversion element to thermoelectric conversion module
KR101409404B1 (en) Manufacturing method for thermoelectric material and thermelectric material manufactured thereby
Sifi et al. Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0. 8W0. 2Al) against an oxide such as NaCO2O4
JPWO2018123899A1 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2008227321A (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP2021044424A (en) Thermoelectric conversion material
Zhou et al. Nanocomposite materials for thermoelectric energy conversion: A brief survey of recent patents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190507