JPWO2016024507A1 - 摩擦撹拌接合装置、摩擦撹拌接合システム及び摩擦撹拌接合方法 - Google Patents

摩擦撹拌接合装置、摩擦撹拌接合システム及び摩擦撹拌接合方法 Download PDF

Info

Publication number
JPWO2016024507A1
JPWO2016024507A1 JP2016542544A JP2016542544A JPWO2016024507A1 JP WO2016024507 A1 JPWO2016024507 A1 JP WO2016024507A1 JP 2016542544 A JP2016542544 A JP 2016542544A JP 2016542544 A JP2016542544 A JP 2016542544A JP WO2016024507 A1 JPWO2016024507 A1 JP WO2016024507A1
Authority
JP
Japan
Prior art keywords
friction stir
stir welding
reaction force
welding apparatus
processing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016542544A
Other languages
English (en)
Other versions
JP6259523B2 (ja
Inventor
佐山 満
満 佐山
小田 勝
小田  勝
好丈 古屋
好丈 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Fanuc Corp
Original Assignee
Honda Motor Co Ltd
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Fanuc Corp filed Critical Honda Motor Co Ltd
Publication of JPWO2016024507A1 publication Critical patent/JPWO2016024507A1/ja
Application granted granted Critical
Publication of JP6259523B2 publication Critical patent/JP6259523B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/125Rotary tool drive mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45146Inertia friction welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manipulator (AREA)

Abstract

加工精度を高めつつ、摩擦撹拌接合(FSW)の用途を拡張することが可能なFSW装置、FSWシステム及びFSW方法を提供する。FSW装置(12)において、第1被接合材(W1)及び第2被接合材(W2)に対して、回転中の加工ツール(20)をその軸方向に押し付けた状態で、加工ツール(20)を直線的又は曲線的に移動させて第1被接合材(W1)及び第2被接合材(W2)を連続的に接合させる際、制御装置(32)は、加工ツール(20)の回転に伴って加工ツール(20)に作用する反力(Fr)を打ち消すように支持部材アクチュエータ(44a〜44f)の出力を制御する反力補正制御を実行する。

Description

本発明は、加工ツールを直線的又は曲線的に移動させて第1被接合材及び第2被接合材を連続的に接合する摩擦撹拌接合装置、摩擦撹拌接合システム及び摩擦撹拌接合方法に関する。
特開2003−205374号公報(以下「JP 2003−205374 A」という。)には、摩擦撹拌接合(FSW:Friction Stir Welding)によって被接合材をスポット接合するスポット接合システム10が開示されている(要約、[0001])。スポット接合システム10は、多関節ロボット11と、ロボットアーム先端に取り付けられるFSWヘッド12と、ワークWを水平に保持する定盤13とコントローラ14とから構成される。FSWヘッド12には、接合ツール15及び固定装置16が取り付けられる。固定装置16は、円筒状の押圧部材19とバネ18とを有する。接合時にバネ18で押圧部材19をワークW表面に押し付けることで、接合ツール15をワークWに一時的に固定する。これによって、接合ツール15の回転反力で横ブレが発生することが防がれる(要約)。
JP 2003−205374 Aのスポット接合システム10では、スポット接合を行うため、直線状又は曲線状に連続する溶接部を形成する用途には必ずしも適しておらず、用途が限定されてしまう。
本発明は上記のような課題を考慮してなされたものであり、加工精度を高めつつ、FSWの用途を拡張することが可能な摩擦撹拌接合装置、摩擦撹拌接合システム及び摩擦撹拌接合方法を提供することを目的とする。
本発明に係る摩擦撹拌接合装置(FSW装置)は、加工ツールと、前記加工ツールを回転させる回転駆動モータと、前記加工ツール及び前記回転駆動モータを支持する支持部材と、前記支持部材を変位させる支持部材アクチュエータと、前記回転駆動モータ及び前記支持部材アクチュエータを制御する制御装置とを備えるものであって、第1被接合材及び第2被接合材に対して、回転中の前記加工ツールをその軸方向に押し付けた状態で、前記加工ツールを直線的又は曲線的に移動させて前記第1被接合材及び前記第2被接合材を連続的に接合させる際、前記制御装置は、前記加工ツールの回転に伴って前記加工ツールに作用する反力を打ち消すように前記支持部材アクチュエータの出力を制御する反力補正制御を実行することを特徴とする。
本発明によれば、回転中の加工ツールを支持部材を介して直線状又は曲線状に移動させる際、加工ツールの回転に伴って加工ツールに作用する反力を打ち消すように支持部材アクチュエータの出力を制御する反力補正制御を実行する。これにより、加工ツールに作用する反力分のずれを補償しながら、加工ツールを移動させることで、加工ツールの変位を高精度に制御することが可能となる。従って、第1被接合材及び第2被接合材の摩擦撹拌接合(FSW)を高精度に行うことが可能となる。その結果、加工ツールを直線的又は曲線的に移動させてFSWを行う用途を拡張することができる。
前記制御装置は、前記加工ツールの回転方向と、前記加工ツールの目標進行方向又は実際の進行方向とに基づいて前記反力の方向を算出してもよい。これにより、補償すべき反力の方向を高精度に推定することが可能となる。従って、第1被接合材及び第2被接合材のFSWをさらに高精度に行うことができる。
前記制御装置は、前記回転駆動モータの実際の出力又は目標出力に基づいて前記反力の大きさを算出してもよい。これにより、補償すべき反力の大きさを高精度に推定することが可能となる。従って、第1被接合材及び第2被接合材のFSWをさらに高精度に行うことができる。
前記支持部材は、多関節アームと、前記加工ツール及び前記回転駆動モータを支持する治具とを含み、前記支持部材アクチュエータは、前記多関節アーム内に設けられる複数のアームモータを含み、前記治具は、前記多関節アームの先端に取り付けられてもよい。これにより、FSW装置の一部として、汎用品である多関節アームを利用可能となり、FSW装置全体でのコストを削減することが可能となる。
前記治具がC字状部材である場合、前記C字状部材の一端側には、前記加工ツール及び前記回転駆動モータが設けられ、前記C字状部材の他端側には、前記第1被接合材及び前記第2被接合材を支持する被接合材支持部に形成されたガイド部材に案内される被ガイド部材が設けられてもよい。上記によれば、回転駆動モータ、ガイド部材及び被ガイド部材の組合せにより加工ツールの位置決め精度を改善し、加工精度を向上することが可能となる。
また、治具がC字状部材であることから、回転駆動モータは、第1被接合材及び第2被接合材の境界を挟んでガイド部材及び被ガイド部材と対向することとなる。このため、回転駆動モータ又は支持部材アクチュエータからの力の一部は、ガイド部材、被ガイド部材及び治具において受けられることとなる。このため、FSW装置全体の小型化若しくは省コスト化又は加工ツールの位置決め精度若しくは加工精度の向上を図ることが可能となる。
前記多関節アームの先端は、前記C字状部材の中央に取り付けられてもよい。これにより、加工ツールの移動中にC字状部材に作用するモーメントを減少させることが可能となる。このため、FSW装置全体の小型化若しくは省コスト化又は加工ツールの位置決め精度若しくは加工精度の向上を図ることが可能となる。
前記制御装置は、前記回転駆動モータの出力が出力閾値を上回るとき、前記反力補正制御を実行し、前記回転駆動モータの出力が前記出力閾値を上回らないとき、前記反力補正制御を停止してもよい。これにより、反力補正制御を実行する場面を限定し、制御装置における演算負荷を軽減することが可能となる。その結果、加工精度を保ちつつ、作業の高速化を図ることが可能となる。
前記制御装置は、前記回転駆動モータの実際の電流値又は目標電流値を前記反力の大きさに換算し、前記反力の大きさを前記反力の方向における前記多関節アームの撓み補正量に換算し、前記撓み補正量に応じて前記多関節アームの姿勢を補正してもよい。これにより、反力を打ち消すための処理を簡易且つ高精度に行うことが可能となる。
前記第1被接合材及び前記第2被接合材を直線状に接合させる場合、前記制御装置は、前記加工ツールの目標開始点と目標終了点を設定し、前記目標開始点から前記目標終了点までの移動中は、前記加工ツールの現在位置に対する前記目標終了点の方向を算出し、前記目標終了点の方向に向かって前記加工ツールを移動させてもよい。
これにより、例えば、加工ツールの目標開始点と目標終了点に加え、目標開始点と目標終了点を結ぶ目標軌跡を算出し、さらに、加工ツールの現在位置と目標軌跡のずれを補正しながら加工ツールを移動させる場合と比較して、制御装置の演算負荷を軽減することが可能となる。これに伴い、加工の高速化又はティーチングの容易化を図ることが可能となる。
本発明に係る摩擦撹拌接合システムは、上述の摩擦撹拌接合装置と、前記第1被接合材及び前記第2被接合材を支持する被接合材支持部とを備えることを特徴とする。
本発明に係る摩擦撹拌接合方法は、加工ツールと、前記加工ツールを回転させる回転駆動モータと、前記加工ツール及び前記回転駆動モータを支持する支持部材と、前記支持部材を変位させる支持部材アクチュエータと、前記回転駆動モータ及び前記支持部材アクチュエータを制御する制御装置とを備える摩擦撹拌接合装置を用いるものであって、第1被接合材及び第2被接合材に対して、回転中の前記加工ツールをその軸方向に押し付けた状態で、前記加工ツールを直線的又は曲線的に移動させて前記第1被接合材及び前記第2被接合材を連続的に接合させる際、前記制御装置は、前記加工ツールの回転に伴って前記加工ツールに作用する反力を打ち消すように前記支持部材アクチュエータの出力を制御する反力補正制御を実行することを特徴とする。
本発明の一実施形態に係る摩擦撹拌接合システムの外観を簡略的に示す外観図である。 前記実施形態に係る摩擦撹拌接合装置の構成を簡略的に示すブロック図である。 前記実施形態におけるFSW制御のフローチャートである。 加工ツールの回転方向及び目標進行方向と、加工ツールに作用する反力と、反力補正制御を実行した場合の加工ツールの実際の進行方向と、反力補正制御を実行しなかった場合の加工ツールの実際の進行方向との関係を説明する平面図である。 前記実施形態における反力補正制御のフローチャート(図3のS7の詳細)である。
A.一実施形態
[A1.摩擦撹拌接合システム10の構成]
(A1−1.全体構成)
図1は、本発明の一実施形態に係る摩擦撹拌接合システム10(以下「FSWシステム10」という。)の外観を簡略的に示す外観図である。FSWシステム10は、摩擦撹拌接合装置12(以下「FSW装置12」という。)と、被接合材支持部14(以下「支持部14」ともいう。)とを備える。
(A1−2.FSW装置12)
(A1−2−1.FSW装置12の全体)
図2は、本実施形態に係るFSW装置12の構成を簡略的に示すブロック図である。FSW装置12は、第1被接合材W1(以下「第1ワークW1」又は「ワークW1」ともいう。)及び第2被接合材W2(以下「第2ワークW2」又は「ワークW2」ともいう。)に対してFSWを行う。図1及び図2に示すように、FSW装置12は、加工ツール20、多関節ロボット22(以下「ロボット22」ともいう。)、保持治具24、昇降モータ26、回転駆動モータ28(以下「モータ28」ともいう。)、電流センサ30a〜30h及び制御装置32を備える。
(A1−2−2.加工ツール20)
加工ツール20は、円筒状の本体の先端に突起(プローブ)が形成された部材であり、第1ワークW1及び第2ワークW2の境界に回転状態で押し付けられて第1ワークW1及び第2ワークW2を接合させる。
(A1−2−3.多関節ロボット22)
多関節ロボット22は、加工ツール20をワークW1、W2に対して変位させる。図1に示すように、ロボット22は、ベース40と、ベース40上に固定された多関節アーム42(支持部材アクチュエータ)とを備える。多関節アーム42(以下「アーム42」ともいう。)の先端には、保持治具24が連結されており、アーム42が変位することにより保持治具24を移動させることが可能である。アーム42の各関節部には、第1〜第6モータ44a〜44f(以下「アームモータ44a〜44f」ともいう。)(図2)が組み込まれている。
(A1−2−4.保持治具24)
図1に示すように、保持治具24(支持部材)は、その中央において多関節アーム42の先端に取り付けられて、加工ツール20、昇降モータ26及び回転駆動モータ28を支持する。図1に示すように、保持治具24は、C字状部材である。保持治具24の一端側(本実施形態では上側)には、加工ツール20、昇降モータ26及び回転駆動モータ28が設けられ、他端側には、被ガイド部材46が設けられる。被ガイド部材46は、後述するガイド部材70(図1)に案内される。図1に示すように、本実施形態の被ガイド部材46は、例えば金属製であり、先端側(ガイド部材70側)が半球状である。
(A1−2−5.昇降モータ26及び回転駆動モータ28)
昇降モータ26は、制御装置32からの指令に応じて、加工ツール20を上下方向(Z方向)に変位させる。回転駆動モータ28は、制御装置32からの指令に応じて、加工ツール20を回転させる。
(A1−2−6.電流センサ30a〜30h)
電流センサ30a〜30fは、図示しない電源から各アームモータ44a〜44fへの入力電流Im1〜Im6(以下「消費電流Im1〜Im6」ともいう。)[A]を検出して制御装置32に出力する。電流センサ30gは、昇降モータ26への入力電流Ime(以下「消費電流Ime」ともいう。)[A]を検出して制御装置32に出力する。電流センサ30hは、回転駆動モータ28への入力電流Imd(以下「消費電流Imd」ともいう。)[A]を検出して制御装置32に出力する。
(A1−2−7.制御装置32)
制御装置32は、昇降モータ26、回転駆動モータ28及び多関節アーム42(アームモータ44a〜44f)を制御して摩擦撹拌接合制御(FSW制御)を実行する。本実施形態のFSW制御は、第1ワークW1及び第2ワークW2に対して、回転中の加工ツール20をその軸方向に押し付けた状態で、加工ツール20を直線的又は曲線的に移動させて第1ワークW1及び第2ワークW2を連続的に接合させる。
図2に示すように、制御装置32は、入出力部50、演算部52及び記憶部54を備える。入出力部50は、図示しない電源と各モータ26、28、44a〜44fの間に配置された図示しないインバータへの制御信号の出力、電流センサ30a〜30fからの入力等を行う。演算部52は、各モータ26、28、44a〜44fを制御する。演算部52は、アームモータ44a〜44fを介してアーム42を制御するアーム制御部60と、昇降モータ26及び回転駆動モータ28を介して加工ツール20を制御するツール制御部62とを有する。
アーム制御部60は、XYZ方向(図1)におけるアーム42の撓み量Qa[mm]を算出し、当該撓み量Qaを補正する撓み補正制御を実行する。撓み補正制御の基本的な内容については、例えば、米国特許出願公開第2004/0193293号公報又は特開2000−183128号公報に記載のものを用いることが可能である。但し、後述するように、本実施形態では、加工ツール20に作用する反力Frに基づいて撓み量Qaを補正する反力補正制御を、撓み補正制御の一部として実行する。FSW制御(反力補正制御を含む。)の詳細は、図3等を参照して後述する。
(A1−3.被接合材支持部14)
被接合材支持部14は、第1ワークW1及び第2ワークW2を支持する。図1の支持部14は、空中に浮いているように図示されているが、例えば、加工ツール20の加工開始点Pst(目標開始点)及び加工終了点Pgoal(目標終了点)近傍における両端が地面に固定されている。
図1に示すように、支持部14には、下方に面するガイド部材70が設けられている。ガイド部材70は、加工開始点Pst(目標開始点)及び加工終了点Pgoal(目標終了点)を結ぶ仮想線に垂直な仮想平面における断面がV字状であるV字状溝72が形成されており、保持治具24に設けられた被ガイド部材46を案内する。
[A2.FSW制御]
(A2−1.FSW制御の概要)
上記のように、制御装置32は、昇降モータ26、回転駆動モータ28及び多関節アーム42(アームモータ44a〜44f)を制御してFSW制御を実行する。FSW制御は、ワークW1、W2に対して、回転中の加工ツール20をその軸方向(図1ではZ方向)に押し付けた状態で、加工ツール20を直線的又は曲線的に移動させてワークW1、W2を連続的に接合させる。このため、スポット接合にFSWを用いるよりも用途を広げることが可能となる。
図3は、本実施形態におけるFSW制御のフローチャートである。図3の処理を開始する前に、加工ツール20の加工開始点Pst(目標開始点)及び加工終了点Pgoal(目標終了点)の座標、加工ツール20からワークW1、W2に対して加えられる力(目標押圧力Fptar)、ワークW1、W2の厚み等の設定が行われる。
図3のステップS1、S8は、制御装置32のアーム制御部60が実行し、ステップS2、S10はツール制御部62が実行し、ステップS3〜S9は、アーム制御部60及びツール制御部62が実行する。
ステップS1において、制御装置32は、アーム42(アームモータ44a〜44f)を制御して、加工ツール20を加工開始点Pstの上方に移動させる。この時点において、アーム42は、加工開始点Pstに対応する位置に移動する。ステップS2において、制御装置32は、回転駆動モータ28を制御して、加工ツール20の回転を開始させる。
ステップS3において、制御装置32は、昇降モータ26及びアーム42(アームモータ44a〜44f)を制御して、加工開始点Pstにおいて加工ツール20をワークW1、W2に押し当てさせる。なお、ステップS3〜S8においては、事前に設定された目標押圧力Fptar[kg・mm/s2]を実現するようにアームモータ44a〜44f及び昇降モータ26が制御される。但し、ワークW1、W2の厚みのばらつき、アーム42によるワークW1、W2への接触等の要因により、加工ツール20による実際の押圧力Fpは変化する。
なお、加工ツール20による実際の押圧力Fp[kg・mm/s2]は、次の式(1)により算出される。
Fp=k×Ip×t×9800.0 (1)
上記式(1)において、kは、係数を示す。Ipは、加圧軸に対応するモータの消費電流[A]を示す。tは、加圧軸に対応するモータのトルク定数[kg・mm/A]を示す。9800.0は、重力加速度[mm/s2]を示す。ここにいう加圧軸は、加工ツール20からワークW1、W2への加圧方向(Z方向)の軸を意味する。このため、加圧軸に対応するモータは、アームモータ44a〜44f及び昇降モータ26のいずれか1つ又は複数となる。
ステップS4において、制御装置32は、アーム42(アームモータ44a〜44f)を制御して、加工終了点Pgoalに向かって加工ツール20を移動させる。上記のように、アーム42の移動時には、撓み補正制御が実行される。
撓み補正制御では、アーム42の位置(特に先端基準位置)を制御するにあたり、アーム42が支持している被支持部材及びアーム42自身の重量に伴って生じるアーム42の撓み量Qaを考慮する。
撓み補正制御では、アーム42(又はロボット22)の動作領域内の複数の位置において、重量及び/又は重心位置の異なる複数の荷重条件下で測定されたアーム42の先端位置及び/又は姿勢ずれの撓み量Qaを記憶部54に事前に記憶する。
また、撓み補正制御では、ロボット22の使用時において、アーム42の先端に取り付ける被支持部材(ここでは、加工ツール20、保持治具24、昇降モータ26及び回転駆動モータ28等)の重量及び/又は重心位置が近い撓み量Qaのデータを、作業者が入出力部50を介して指定する。さらに、制御装置32は、ロボット22の動作プログラムの各教示点位置における撓み量Qaを、指定された撓み量Qaのデータを用いて算出する。さらにまた、制御装置32は、動作プログラムの各教示点位置を、算出された撓み量Qaの分補正して変更する。
ステップS5において、制御装置32は、回転駆動モータ28の消費電流Imdを取得する。ステップS6において、制御装置32は、反力補正制御を実行するか否かを判定する。具体的には、消費電流Imdが、電流閾値THimd以上であるか否かを判定する。
反力補正制御を実行する場合(S6:YES)、ステップS7において、制御装置32は、反力補正制御を実行する(詳細は、図4、図5等を参照して後述する。)。反力補正制御を実行しない場合(S6:NO)、ステップS7を経ずにステップS8に進む。
ステップS8において、制御装置32は、加工ツール20が加工終了点Pgoalに到達したか否かを判定する。加工ツール20が加工終了点Pgoalに到達していない場合(S8:NO)、ステップS4に戻る。加工ツール20が加工終了点Pgoalに到達した場合(S8:YES)、ステップS9に進む。
ステップS9において、制御装置32は、昇降モータ26及びアーム42を制御して加工ツール20をワークW1、W2から離間させる。なお、この時点では、少なくとも今回の処理で目標としていた接合部分については、ワークW1、W2が一体化している。
ステップS10において、制御装置32は、回転駆動モータ28を制御して加工ツール20の回転を停止させる。その後、さらに別の接合部分が存在する場合、制御装置32は、図3の処理を繰り返す。全ての接合部分についてFSWが終了した場合、制御装置32は、昇降モータ26及びアーム42を制御して加工ツール20を初期位置に戻す。
(A2−2.反力補正制御)
(A2−2−1.反力補正制御の概要)
図1における矢印Daは、反力補正制御を実行した場合の加工ツール20の進行方向を示し、加工ツール20の目標進行方向Datarと略一致する。矢印Dacは、反力補正制御を実行しなかった場合の加工ツール20の進行方向を示す。また、矢印Dtrは、加工ツール20の回転方向Dtrを示す。矢印Frは、加工ツール20に作用する反力を示す。Fcは、反力補正制御において、アーム42を介して加工ツール20に加えられる補正力を示している。
図4は、加工ツール20の回転方向Dtr及び目標進行方向Datarと、加工ツール20に作用する反力Frと、反力補正制御を実行した場合の加工ツール20の実際の進行方向Daと、反力補正制御を実行しなかった場合の加工ツール20の実際の進行方向Dacとの関係を説明する平面図である。図4において、二点鎖線の矢印110は、ワークW1、W2の流れを示す。
回転中の加工ツール20が直線的に又は曲線的に移動する場合、ワークW1、W2は、摩擦熱により軟化する。その際、加工ツール20には、ワークW1、W2との関係で抗力、揚力及び圧縮力が作用する。このため、図4に示すように、ワークW1、W2の流れは、目標進行方向Datarに向かって見たとき、非対称となる。これに伴い、加工ツール20には、目標進行方向Datarに対して垂直な反力Frが発生する。従って、反力補正制御を実行しなかった場合、加工ツール20の実際の進行方向Dacは、目標進行方向Datarとずれを生じる。
そこで、本実施形態では、反力Frを打ち消すようにアーム42の出力を制御することにより、アーム42の実際の進行方向Daを目標進行方向Datarに近付ける。すなわち、回転中の加工ツール20をアーム42及び保持治具24を介して直線状又は曲線状に移動させる際、制御装置32は、加工ツール20に作用する反力Frを打ち消すようにアーム42の出力を制御する反力補正制御を実行する。
(A2−2−2.反力補正制御の具体的処理)
図5は、本実施形態における反力補正制御のフローチャート(図3のS7の詳細)である。図5のステップS21〜S23は、主として制御装置32のアーム制御部60が実行する。ステップS21において、制御装置32は、回転駆動モータ28の消費電流Imdを反力Frの大きさNrに換算する。消費電流Imdと反力Frの大きさNrの関係は、例えば、事前にマップを作成し、記憶部54に記憶しておく。
ステップS22において、制御装置32は、加工ツール20の回転方向Dtr及び目標進行方向Datarに基づいて反力Frの方向Dr(以下「反力方向Dr」ともいう。)を算出する。なお、ここでの目標進行方向Datarは、加工ツール20の現在位置を基準として加工終了点Pgoalに向かう方向とすることができる。
ステップS23において、制御装置32は、反力Frの大きさNrを反力方向Drにおけるアーム42の撓み補正量Qac(以下「補正量Qac」ともいう。)に換算する。補正量Qacは、上述した撓み補正制御の撓み量Qaを補正するための値である。従って、制御装置32は、算出した補正量Qacを用いて撓み量Qaを補正してアーム42の位置を制御する。なお、ここでの補正量Qacは、反力方向Drへの量であり、必ずしも鉛直方向の量とはならないことに留意されたい。
[A3.本実施形態における効果]
以上のような本実施形態によれば、回転中の加工ツール20を保持治具24及び多関節アーム42(支持部材)を介して直線状又は曲線状に移動させる際、加工ツール20の回転に伴って加工ツール20に作用する反力Frを打ち消すようにアームモータ44a〜44f(支持部材アクチュエータ)の出力を制御する反力補正制御を実行する(図3のS7、図5)。これにより、加工ツール20に作用する反力Fr分のずれを補償しながら、加工ツール20を移動させることで、加工ツール20の変位を高精度に制御することが可能となる。従って、第1ワークW1及び第2ワークW2のFSWを高精度に行うことが可能となる。その結果、加工ツール20を直線的又は曲線的に移動させてFSWを行う用途を拡張することができる。
本実施形態において、制御装置32は、加工ツール20の回転方向Dtr及び目標進行方向Datarに基づいて反力方向Drを算出する(図5のS22)。これにより、補償すべき反力Frの方向Drのずれを高精度に推定することが可能となる。従って、第1ワークW1及び第2ワークW2のFSWをさらに高精度に行うことができる。
本実施形態において、制御装置32は、回転駆動モータ28の消費電流Imd(実際の出力)に基づいて反力Frの大きさNrを算出する(図5のS21)。これにより、補償すべき反力Frの大きさNrを高精度に推定することが可能となる。従って、第1ワークW1及び第2ワークW2のFSWをさらに高精度に行うことができる。
本実施形態において、FSW装置12は、多関節アーム42と、加工ツール20及び回転駆動モータ28を支持する保持治具24と、多関節アーム42内に設けられる複数のアームモータ44a〜44fとを含む。保持治具24は、アーム42の先端に取り付けられる(図1)。これにより、汎用品である多関節アーム42を利用可能となり、FSW装置12全体でのコストを削減することが可能となる。
本実施形態において、保持治具24はC字状部材であり、保持治具24の一端側には、加工ツール20、昇降モータ26及び回転駆動モータ28が設けられ、他端側には、被ガイド部材46が設けられる(図1)。これにより、回転駆動モータ28、ガイド部材70及び被ガイド部材46の組合せにより加工ツール20の位置決め精度を改善し、加工精度を向上することが可能となる。
また、保持治具24がC字状部材であることから、昇降モータ26及び回転駆動モータ28は、第1被接合材W1及び第2被接合材W2の境界を挟んでガイド部材70及び被ガイド部材46と対向することとなる。このため、昇降モータ26、回転駆動モータ28又はアームモータ44a〜44fからの力の一部は、ガイド部材70、被ガイド部材46及び保持治具24(支持部材)において受けられることとなる。このため、FSW装置12全体の小型化若しくは省コスト化又は加工ツール20の位置決め精度若しくは加工精度の向上を図ることが可能となる。
本実施形態において、多関節アーム42の先端は、保持治具24(C字状部材)の中央に取り付けられる(図1)。これにより、加工ツール20の移動中に保持治具24に作用するモーメントを減少させることが可能となる。このため、FSW装置12全体の小型化若しくは省コスト化又は加工ツール20の位置決め精度若しくは加工精度の向上を図ることが可能となる。
本実施形態において、制御装置32は、回転駆動モータ28の消費電流Imd(出力)が閾値THimd(出力閾値)を以上であるとき(図3のS6:YES)、反力補正制御を実行する(S7)。また、制御装置32は、消費電流Imdが閾値THimdを以上でないとき(S6:NO)、反力補正制御を行わない(換言すると、反力補正制御を停止する。)。これにより、反力補正制御を実行する場面を限定し、制御装置32における演算負荷を軽減することが可能となる。その結果、加工精度を保ちつつ、作業の高速化を図ることが可能となる。
本実施形態において、制御装置32は、回転駆動モータ28の消費電流Imd(実際の電流値)を反力Frの大きさNrに換算する(図5のS21)。そして、制御装置32は、加工ツール20の回転方向Dtr及び目標進行方向Datarに基づいて反力Frの方向Drを算出する(S22)。さらに、制御装置32は、反力Frの大きさNrを反力Frの方向Drにおける多関節アーム42の撓み補正量Qacに換算する(S23)。さらにまた、制御装置32は、撓み補正量Qacに応じてアーム42(支持部材アクチュエータ)又は保持治具24(支持部材)の姿勢を補正する。これにより、反力Frを打ち消すための処理を簡易且つ高精度に行うことが可能となる。
本実施形態において、第1被接合材W1及び第2被接合材W2を直線状に接合させる場合、制御装置32は、加工ツール20の加工開始点Pst(目標開始点)と加工終了点Pgoal(目標終了点)を設定する。そして、制御装置32は、加工開始点Pstから加工終了点Pgoalまでの移動中は、加工ツール20の現在位置に対する目標進行方向Datar(加工終了点Pgoalの方向)を算出し、目標進行方向Datarに向かって加工ツール20を移動させる(図3のS4)。これにより、例えば、加工ツール20の加工開始点Pstと加工終了点Pgoalに加え、加工開始点Pstと加工終了点Pgoalを結ぶ目標軌跡を算出し、さらに、加工ツール20の現在位置と目標軌跡のずれを補正しながら加工ツール20を移動させる場合と比較して、制御装置32の演算負荷を軽減することが可能となる。これに伴い、加工の高速化又はティーチングの容易化を図ることが可能となる。
B.変形例
なお、本発明は、上記実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
[B1.FSW装置12(適用対象)]
上記実施形態のFSW装置12は、多関節ロボット22を有した(図1)。しかしながら、例えば、FSWを行うに際し、加工ツール20に作用する反力Frを打ち消す観点からすれば、これに限らない。例えば、いわゆる門型のFSW装置に本発明を適用することも可能である。なお、加工ツール20及び回転駆動モータ28を変位させるアクチュエータ(支持部材アクチュエータ)は、加工ツール20の目標進行方向Datarと反力Frの方向Drに力を生成すればよいので、少なくとも2軸があればよい。
[B2.昇降モータ26、回転駆動モータ28及びアームモータ44a〜44f]
上記実施形態では、加工ツール20の制御のために、昇降モータ26、回転駆動モータ28及びアームモータ44a〜44fを用いた(図2)。しかしながら、例えば、加工ツール20を直線移動(又は曲線移動)及び回転させる観点からすれば、これに限らない。例えば、アームモータ44a〜44f(6軸モータ)のうち回転軸を構成するもの(例えば、アームモータ44f)を、回転駆動モータ28の代わりに加工ツール20を回転させるためとして用いることも可能である。或いは、昇降モータ26を省略してアームモータ44a〜44fにより加工ツール20を昇降させてもよい。或いは、JP 2003−205374 Aのように、アーム42の先端に加工ツール20を配置する構成も可能である。
[B3.保持治具24(支持部材)]
上記実施形態では、保持治具24をC字状部材とした(図1)。しかしながら、例えば、加工ツール20及び回転駆動モータ28を支持する観点からすれば、これに限らない。例えば、保持治具24をX字状部材とすることも可能である。
[B4.反力補正制御]
上記実施形態では、反力Frを打ち消すために撓み補正量Qacを制御した(図5のS23)。しかしながら、例えば、反力Frを打ち消す観点からすれば、これに限らない。例えば、加工ツール20の目標進行方向Datar又は目標移動位置を反力Frに応じて補正することも可能である。
上記実施形態では、目標進行方向Datarに基づいて補正を行ったが(S22)、例えば、反力Frを考慮する観点からすれば、実際の進行方向Daに基づいて補正をすることも可能である。例えば、目標進行方向Datarを最初から反力Frを考慮した値で仮目標進行方向Datarとしておき、実際の進行方向Daを目標進行方向Datarに一致又は近似させることにより最終的な目標進行方向Datarを実現することも可能である。
上記実施形態では、回転駆動モータ28の消費電流Imdを用いて反力Frの大きさNrを推定した(図5のS21)。しかしながら、例えば、反力Frの大きさを推定する観点からすれば、これに限らない。例えば、制御装置32は、回転駆動モータ28の目標電流に基づいて反力Frの大きさを算出してもよい。或いは、制御装置32は、回転駆動モータ28の消費電力又は目標電力に基づいて反力Frの大きさを算出することも可能である。
上記実施形態では、回転駆動モータ28の消費電流Imdが出力閾値THimd以上であるとき(図3のS6:YES)、反力補正制御を実行し(S7)、消費電流Imdが出力閾値THimdを以上でないとき(S6:NO)、反力補正制御を停止した。しかしながら、例えば、反力Frを打ち消す観点からすれば、加工ツール20がFSWを行っている間、常に反力補正制御を行うことも可能である。
上記実施形態では、加工ツール20を直線的に移動させるに際し、加工開始点Pst及び加工終了点Pgoalのみを設定し、途中における目標点を設定しなかった(図3参照)。しかしながら、例えば、反力Frを打ち消す観点からすれば、これに限らない。例えば、加工開始点Pstから加工終了点Pgoalに至るまでの目標軌跡(目標点の集合)を設定し、加工ツール20の現在位置と目標軌跡とのずれ(距離)を算出し、当該ずれを補うように加工ツール20の目標進行方向Datar又は目標進行位置を設定することも可能である。
上記実施形態では、加工ツール20を直線的に移動させる場合について説明した(図1)。しかしながら、例えば、加工ツール20の回転方向Dtr及び目標進行方向Datarに基づいて特定させる反力Frを打ち消す観点からすれば、加工ツール20を曲線的に移動させることも可能である。

Claims (11)

  1. 加工ツール(20)と、
    前記加工ツール(20)を回転させる回転駆動モータ(28)と、
    前記加工ツール(20)及び前記回転駆動モータ(28)を支持する支持部材と、
    前記支持部材を変位させる支持部材アクチュエータと、
    前記回転駆動モータ(28)及び前記支持部材アクチュエータを制御する制御装置(32)と
    を備える摩擦撹拌接合装置(12)であって、
    第1被接合材及び第2被接合材に対して、回転中の前記加工ツール(20)をその軸方向に押し付けた状態で、前記加工ツール(20)を直線的又は曲線的に移動させて前記第1被接合材及び前記第2被接合材を連続的に接合させる際、前記制御装置(32)は、前記加工ツール(20)の回転に伴って前記加工ツール(20)に作用する反力を打ち消すように前記支持部材アクチュエータの出力を制御する反力補正制御を実行する
    ことを特徴とする摩擦撹拌接合装置(12)。
  2. 請求項1記載の摩擦撹拌接合装置(12)において、
    前記制御装置(32)は、前記加工ツール(20)の回転方向と、前記加工ツール(20)の目標進行方向又は実際の進行方向とに基づいて前記反力の方向を算出する
    ことを特徴とする摩擦撹拌接合装置(12)。
  3. 請求項1又は2記載の摩擦撹拌接合装置(12)において、
    前記制御装置(32)は、前記回転駆動モータ(28)の実際の出力又は目標出力に基づいて前記反力の大きさを算出する
    ことを特徴とする摩擦撹拌接合装置(12)。
  4. 請求項1〜3のいずれか1項に記載の摩擦撹拌接合装置(12)において、
    前記支持部材は、多関節アーム(42)と、前記加工ツール(20)及び前記回転駆動モータ(28)を支持する治具(24)とを含み、
    前記支持部材アクチュエータは、前記多関節アーム(42)内に設けられる複数のアームモータ(44a〜44f)を含み、
    前記治具(24)は、前記多関節アーム(42)の先端に取り付けられる
    ことを特徴とする摩擦撹拌接合装置(12)。
  5. 請求項4記載の摩擦撹拌接合装置(12)において、
    前記治具(24)は、C字状部材であり、
    前記C字状部材の一端側には、前記加工ツール(20)及び前記回転駆動モータ(28)が設けられ、
    前記C字状部材の他端側には、前記第1被接合材及び前記第2被接合材を支持する被接合材支持部(14)に形成されたガイド部材(70)に案内される被ガイド部材(46)が設けられる
    ことを特徴とする摩擦撹拌接合装置(12)。
  6. 請求項5記載の摩擦撹拌接合装置(12)において、
    前記多関節アーム(42)の先端は、前記C字状部材の中央に取り付けられる
    ことを特徴とする摩擦撹拌接合装置(12)。
  7. 請求項1〜6のいずれか1項に記載の摩擦撹拌接合装置(12)において、
    前記制御装置(32)は、
    前記回転駆動モータ(28)の出力が出力閾値を上回るとき、前記反力補正制御を実行し、
    前記回転駆動モータ(28)の出力が前記出力閾値を上回らないとき、前記反力補正制御を停止する
    ことを特徴とする摩擦撹拌接合装置(12)。
  8. 請求項4〜6のいずれか1項に記載の摩擦撹拌接合装置(12)において、
    前記制御装置(32)は、
    前記回転駆動モータ(28)の実際の電流値又は目標電流値を前記反力の大きさに換算し、
    前記反力の大きさを前記反力の方向における前記多関節アーム(42)の撓み補正量に換算し、
    前記撓み補正量に応じて前記多関節アーム(42)の姿勢を補正する
    ことを特徴とする摩擦撹拌接合装置(12)。
  9. 請求項1〜8のいずれか1項に記載の摩擦撹拌接合装置(12)において、
    前記第1被接合材及び前記第2被接合材を直線状に接合させる場合、
    前記制御装置(32)は、
    前記加工ツール(20)の目標開始点と目標終了点を設定し、
    前記目標開始点から前記目標終了点までの移動中は、前記加工ツール(20)の現在位置に対する前記目標終了点の方向を算出し、
    前記目標終了点の方向に向かって前記加工ツール(20)を移動させる
    ことを特徴とする摩擦撹拌接合装置(12)。
  10. 請求項1〜4のいずれか1項に記載の摩擦撹拌接合装置(12)と、
    前記第1被接合材及び前記第2被接合材を支持する被接合材支持部(14)と
    を備える摩擦撹拌接合システム(10)。
  11. 加工ツール(20)と、前記加工ツール(20)を回転させる回転駆動モータ(28)と、前記加工ツール(20)及び前記回転駆動モータ(28)を支持する支持部材と、前記支持部材を変位させる支持部材アクチュエータと、前記回転駆動モータ(28)及び前記支持部材アクチュエータを制御する制御装置(32)とを備える摩擦撹拌接合装置(12)を用いる摩擦撹拌接合方法であって、
    第1被接合材及び第2被接合材に対して、回転中の前記加工ツール(20)をその軸方向に押し付けた状態で、前記加工ツール(20)を直線的又は曲線的に移動させて前記第1被接合材及び前記第2被接合材を連続的に接合させる際、前記制御装置(32)は、前記加工ツール(20)の回転に伴って前記加工ツール(20)に作用する反力を打ち消すように前記支持部材アクチュエータの出力を制御する反力補正制御を実行する
    ことを特徴とする摩擦撹拌接合方法。
JP2016542544A 2014-08-11 2015-08-05 摩擦撹拌接合システム及び摩擦撹拌接合方法 Active JP6259523B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014163449 2014-08-11
JP2014163449 2014-08-11
PCT/JP2015/072227 WO2016024507A1 (ja) 2014-08-11 2015-08-05 摩擦撹拌接合装置、摩擦撹拌接合システム及び摩擦撹拌接合方法

Publications (2)

Publication Number Publication Date
JPWO2016024507A1 true JPWO2016024507A1 (ja) 2017-04-27
JP6259523B2 JP6259523B2 (ja) 2018-01-10

Family

ID=55304136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016542544A Active JP6259523B2 (ja) 2014-08-11 2015-08-05 摩擦撹拌接合システム及び摩擦撹拌接合方法

Country Status (5)

Country Link
US (1) US20170216960A1 (ja)
JP (1) JP6259523B2 (ja)
CN (1) CN106573334A (ja)
DE (1) DE112015003729T5 (ja)
WO (1) WO2016024507A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554029B2 (ja) * 2015-11-24 2019-07-31 川崎重工業株式会社 摩擦撹拌点接合装置及び摩擦撹拌点接合方法
JP6408737B1 (ja) * 2018-03-29 2018-10-17 株式会社日立パワーソリューションズ 摩擦撹拌接合装置及び摩擦撹拌接合方法
US10456858B2 (en) 2018-03-30 2019-10-29 Esab Ab Welding head for friction stir welding
JP2020121360A (ja) * 2019-01-30 2020-08-13 株式会社安川電機 ロボットシステム
CN112894120B (zh) * 2020-10-27 2022-08-09 倪平涛 一种带4套辅助装置的双轴肩搅拌摩擦焊搅拌头及其焊接中厚钢件曲线对接焊缝的方法
JP7212124B1 (ja) 2021-10-25 2023-01-24 株式会社日立パワーソリューションズ 摩擦攪拌接合装置、摩擦攪拌接合方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001550A (ja) * 2000-06-19 2002-01-08 Kawasaki Heavy Ind Ltd 摩擦撹拌接合における倣い制御装置
JP2002103061A (ja) * 2000-10-02 2002-04-09 Hitachi Ltd 摩擦攪拌接合装置及びその接合方法
JP2009061479A (ja) * 2007-09-07 2009-03-26 Kawasaki Heavy Ind Ltd 摩擦攪拌接合装置
JP2011200880A (ja) * 2010-03-24 2011-10-13 Honda Motor Co Ltd 摩擦撹拌溶接方法および摩擦撹拌溶接装置
JP2014128824A (ja) * 2012-12-28 2014-07-10 F Tech Inc 摩擦撹拌接合装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066763A (ja) * 2000-09-01 2002-03-05 Honda Motor Co Ltd 摩擦撹拌接合装置
JP4050478B2 (ja) * 2001-03-29 2008-02-20 マツダ株式会社 摩擦撹拌を用いた加工制御方法、並びに当該方法を実行するコンピュータプログラム並びに当該コンピュータプログラムを格納した記憶媒体
JP2004136331A (ja) * 2002-10-18 2004-05-13 Hitachi Ltd 摩擦攪拌接合装置及び接合方法
US8052034B2 (en) * 2008-05-30 2011-11-08 Vanderbilt University Lateral position detection and control for friction stir systems
US8556156B1 (en) * 2012-08-30 2013-10-15 Apple Inc. Dynamic adjustment of friction stir welding process parameters based on weld temperature
JP5893533B2 (ja) * 2012-09-04 2016-03-23 株式会社エフテック 摩擦攪拌接合装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001550A (ja) * 2000-06-19 2002-01-08 Kawasaki Heavy Ind Ltd 摩擦撹拌接合における倣い制御装置
JP2002103061A (ja) * 2000-10-02 2002-04-09 Hitachi Ltd 摩擦攪拌接合装置及びその接合方法
JP2009061479A (ja) * 2007-09-07 2009-03-26 Kawasaki Heavy Ind Ltd 摩擦攪拌接合装置
JP2011200880A (ja) * 2010-03-24 2011-10-13 Honda Motor Co Ltd 摩擦撹拌溶接方法および摩擦撹拌溶接装置
JP2014128824A (ja) * 2012-12-28 2014-07-10 F Tech Inc 摩擦撹拌接合装置

Also Published As

Publication number Publication date
DE112015003729T5 (de) 2017-05-18
WO2016024507A1 (ja) 2016-02-18
US20170216960A1 (en) 2017-08-03
CN106573334A (zh) 2017-04-19
JP6259523B2 (ja) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6259523B2 (ja) 摩擦撹拌接合システム及び摩擦撹拌接合方法
JP5426443B2 (ja) 摩擦撹拌溶接方法および摩擦撹拌溶接装置
JP4795462B2 (ja) 力センサを搭載したロボットマニピュレータを用いたロールヘム加工装置
US8024071B2 (en) Robot, controlling device and controlling method for robot, and controlling program for robot-controlling device
JP5945348B1 (ja) 摩擦かく拌接合装置、及び、摩擦かく拌接合方法
JP2007167896A (ja) シーム溶接機、シーム溶接装置、シーム溶接ロボットシステム、シーム溶接方法及びローラ電極の回転駆動制御プログラム作成方法
JP2017052052A (ja) 荷役装置および荷役方法
JP2008296310A (ja) 加工ロボットの制御装置
JP2012011403A (ja) ロボットシステム
JP2008213119A (ja) 協調作業ロボットとその制御方法
US11298781B2 (en) Workpiece rotating appartus and robot system
JP2011005527A (ja) シーム溶接装置及びシーム溶接方法
JP2009202268A (ja) パワーアシスト装置およびその制御方法
JP2010231575A (ja) ロボットのオフライン教示装置、ロボットのオフライン教示方法、及びロボットシステム
JP3534735B2 (ja) スポット接合システムおよび固定装置
JP2016128177A (ja) 摩擦撹拌接合装置
WO2014175138A1 (ja) シーム溶接方法及びシステム
KR20120060659A (ko) 다관절 용접 로봇
JP3742297B2 (ja) イコライズ機構付きポータブル型リベットかしめ機
JP2007167895A (ja) シーム溶接装置、シーム溶接ロボットシステム及びシーム溶接方法
JP3359011B2 (ja) スポット溶接ロボット
JP5892168B2 (ja) ロボットシステム
CN213531353U (zh) 一种汽车机电自动化机械手
JP2013081987A (ja) シーム溶接システム
JP2003211376A (ja) ロボットの制御装置及び制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171208

R150 Certificate of patent or registration of utility model

Ref document number: 6259523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250