JPWO2016017514A1 - 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置 Download PDF

Info

Publication number
JPWO2016017514A1
JPWO2016017514A1 JP2016538300A JP2016538300A JPWO2016017514A1 JP WO2016017514 A1 JPWO2016017514 A1 JP WO2016017514A1 JP 2016538300 A JP2016538300 A JP 2016538300A JP 2016538300 A JP2016538300 A JP 2016538300A JP WO2016017514 A1 JPWO2016017514 A1 JP WO2016017514A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
compound
organic
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016538300A
Other languages
English (en)
Inventor
周穂 谷本
周穂 谷本
池水 大
大 池水
鈴木 隆嗣
隆嗣 鈴木
康生 宮田
康生 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2016017514A1 publication Critical patent/JPWO2016017514A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Pyrrole Compounds (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の課題は、駆動電圧が低く、高い発光効率を実現できる有機エレクトロルミネッセンス素子を提供することである。また、本発明に係る共役系化合物を含有する発光性薄膜、当該有機エレクトロルミネッセンス素子が具備された表示装置及び照明装置を提供することである。本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有し、当該有機層群の少なくとも一層が、下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする。【化1】〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、特定構造で表される構造から選ばれる芳香族炭化水素基を表す。〕

Description

本発明は、有機エレクトロルミネッセンス素子、発光性薄膜、及び当該有機エレクトロルミネッセンス素子を具備した表示装置及び照明装置に関する。より詳しくは、発光効率が改良された有機エレクトロルミネッセンス素子等に関する。
有機材料のエレクトロルミネッセンス(Electro Luminescence:以下、「EL」と略記する。)を利用した有機エレクトロルミネッセンス素子(以下、「有機EL素子」又は「有機電界発光素子」ともいう。)は、平面発光を可能とする新しい発光システムとして既に実用化されている技術である。有機EL素子は、電子ディスプレイはもとより、最近では照明装置としても適用され、その発展が期待されている。
有機EL素子の発光方式としては、三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
有機EL素子に電界をかけると、陽極と陰極からそれぞれ正孔と電子が注入され、発光層、又はその界面領域において再結合し、励起子を生じる。このとき、一重項励起子と三重項励起子とが25%:75%の割合で生成するため、三重項励起子を利用するリン光発光の方が、蛍光発光に比べ、理論的に高い内部量子効率が得られることが知られている。
しかしながら、リン光発光方式において実際に高い量子効率を得るためには、中心金属にイリジウムや白金などの希少金属を用いた錯体を用いる必要があり、将来的に希少金属の埋蔵量や金属自体の価格が、産業上大きな問題となることが懸念される。
一方で、蛍光発光方式においても発光効率を向上させるために様々な開発がなされており、近年新しい動きが出てきた。
例えば、二つの三重項励起子の衝突により一重項励起子が生成する現象(以下、Triplet−Triplet Annihilation:適宜「TTA」と略記する。また、Triplet−Triplet Fusion:「TTF」ともいう。)に着目し、TTAを効率的に起こして蛍光素子の高効率化を図る技術が開示されている(例えば、特許文献1参照。)。この技術により、蛍光発光材料(以下、蛍光発光性材料、蛍光材料ともいう。)の電力効率は、従来の蛍光発光材料の2〜3倍まで向上しているが、TTAにおける理論的な一重項励起子生成効率は40%程度にとどまるため、依然としてリン光発光に比べ高発光効率化の課題を有している。
さらに近年では、三重項励起子から一重項励起子への逆項間交差(Reverse Intersystem Crossing:以下、適宜「RISC」と略記する。)が生じる特性を利用した現象である熱活性型遅延蛍光(以下、「熱励起型遅延蛍光」ともいう:Thermally Activated Delayed Fluorescence:適宜「TADF」と略記する。)を適用した蛍光発光材料と、その有機EL素子への利用の可能性が報告されている(例えば、特許文献2、非特許文献1、及び非特許文献2参照。)。このTADF機構による遅延蛍光を利用すると、電界励起による蛍光発光においても、理論的にはリン光発光と同等の100%の内部量子効率が可能となる。
TADF現象発現のためには、室温又は発光素子中の発光層温度で電界励起により生じた75%の三重項励起子から一重項励起子への逆項間交差を生じさせる必要がある。さらに、逆項間交差により生じた一重項励起子が、直接励起により生じた25%の一重項励起子と同様に蛍光発光することにより、100%の内部量子効率が理論上可能となる。この逆項間交差が起こるためには、最低励起一重項エネルギー準位(S)と最低励起三重項エネルギー準位(T)の差の絶対値(以下、ΔEstと称す。)が極めて小さいことが必須である。
さらに、ホスト化合物と発光性化合物より構成される発光層に、TADF性を示す化合物を第三成分(以下、アシストドーパントともいう。)として発光層に含有させると、高発光効率発現に有効であることが知られている(例えば、非特許文献3参照。)。アシストドーパント上に25%の一重項励起子と75%の三重項励起子を電界励起により発生させることによって、三重項励起子は逆項間交差(RISC)を伴って一重項励起子を生成することができる。一重項励起子のエネルギーは、発光性化合物へエネルギー移動し、当該発光性化合物が発光することが可能となる。従って、理論上100%の励起子エネルギーを利用して、発光性化合物を発光させることが可能となり、高発光効率が発現する。
TADF機構は、図1Aに示すように、通常の蛍光発光性化合物材料に比べ、一重項励起エネルギー準位と三重項励起エネルギー準位の差(ΔEst)が小さい化合物(図1Aでは、ΔEst(TADF)がΔEst(F)よりも小さい。)を用いた場合に、三重項励起子から一重項励起子への逆項間交差が生じる現象を利用した発光機構である。すなわち、ΔEstが小さいことによって、電界励起により75%の確率で発生する三重項励起子が、本来なら発光に寄与できないところ、有機EL素子駆動時の熱エネルギーなどで一重項励起状態に遷移し、その状態から基底状態へ輻射失活(「輻射遷移」又は「放射失活」ともいう。)し蛍光発光を起こすものである。このTADF機構による遅延蛍光を利用すると、蛍光発光においても、理論的には100%の内部量子効率が可能となると考えられている。
このように高い発光効率を実現するための様々な開発研究が行われているが、得られる性能は、未だ実用化に対しては十分ではない。
また、カルバゾール構造、ジベンゾチオフェン構造、ジベンゾフラン構造等を有する芳香族炭化水素材料が高い電荷輸送性を有するため、当該材料を使用することにより有機エレクトロルミネッセンス素子の性能が向上することが開示されている(例えば、特許文献3参照。)。しかし、その技術思想は、カルバゾールの電荷輸送性に着目したものであり、本明細書で開示されるような化合物の両極性(バイポーラー性)を重視する思想については一切記述されていない。
国際公開第2010/134350号 特開2013−116975号公報 特開2012−107005号公報
H.Uoyama,et al.,Nature,2012,492,234−238 Q.Zhang et al.,Nature,Photonics,2014,8,326−332 H.Nakanоtani,et al.,Nature Communicaion,2014,5,4016−4022.
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、低電圧で駆動が可能で、高い発光効率を実現できる有機エレクトロルミネッセンス素子を提供することである。また、本発明に係る共役系化合物を含有する発光性薄膜、当該有機エレクトロルミネッセンス素子が具備された表示装置及び照明装置を提供することである。
本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有し、当該有機層群の少なくとも一層に、前記一般式(1)で表される同一分子内に電子供与性基と電子吸引性基を有する芳香族炭化水素化合物であるπ共役系化合物を含有する有機エレクトロルミネッセンス素子により、低い駆動電圧で駆動でき、高い発光効率を得ることができる有機エレクトロルミネッセンス素子を実現することができることを見出し本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有する有機エレクトロルミネッセンス素子であって、
当該有機層群の少なくとも一層が、下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 2016017514
〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、下記一般式(1a)〜(1k)で表される構造から選ばれる芳香族炭化水素基を表す。〕
Figure 2016017514
〔上記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0〜4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。〕
2.前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(−SO;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、スルフェニル基(−SOR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、シアノ基(−CN)、ハロゲノ基、カルボニル基(−COR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(−C)、トリフルオロメチル基(−CF)、トリフルオロメチルフェニル基(−CCF)、及びボリル基(−BR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
3.前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3〜20の芳香族複素環基、アミノ基(−NH)、アリールアミノ基(−NHR又は−NR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20芳香族複素環基を表す。)、アルコキシ基(−OR;Rは炭素数1〜10の直鎖または環状の炭化水素基)、及びアリールオキシ基(−OR;Rは直鎖または環状の炭化水素基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
4.前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(−SO;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、スルフェニル基(−SOR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、シアノ基(−CN)、ハロゲノ基、カルボニル基(−COR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(−C)、トリフルオロメチル基(−CF)、トリフルオロメチルフェニル基(−CCF)、及びボリル基(−BR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとの1種であり、かつ前記一般式(1a)〜一般式(1k)におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3〜20の芳香族複素環基、アミノ基(−NH)、アリールアミノ基(−NHR又は−NR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20芳香族複素環基を表す。)、アルコキシ基(−OR;Rは炭素数1〜10の直鎖または環状の炭化水素基)、及びアリールオキシ基(−OR;Rは直鎖または環状の炭化水素基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
5.前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
6.前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であり、R、R、Ra、Rb、Rc及びRdのうちの少なくとも1つは電子吸引性基で、かつ少なくとも1つは電子供与性基であり、前記電子吸引性基及び前記電子供与性基に該当しないR、R、Ra、Rb、Rc及びRdのすべてが水素原子であることを特徴とする第5項に記載の有機エレクトロルミネッセンス素子。
7.前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
8.前記発光層が、前記一般式(1)で表される構造を有するπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種とを含有することを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
9.前記発光層が、π共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有することを特徴とする第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
10.下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする発光性薄膜。
Figure 2016017514
〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、下記一般式(1a)〜(1k)で表される構造から選ばれる芳香族炭化水素基を表す。〕
Figure 2016017514
〔上記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0〜4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。〕
11.前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする第10項に記載の発光性薄膜。
12.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。
13.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。
本発明の上記手段により、駆動電圧が低下し、高い発光効率を達成する有機エレクトロルミネッセンス素子を提供することができる。また、本発明に係る共役系化合物を含有する発光性薄膜と、当該有機エレクトロルミネッセンス素子が具備された表示装置及び照明装置を提供することができる。
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
従来の有機EL素子では、発光効率の改善が大きな課題となっている。有機EL素子は、電極間に存在する電荷移動性薄膜の物性やそれら材料同士の構成等によって、発光させるのに必要な電圧が大きく変化する。低電圧で駆動させることができる有機エレクトロルミネッセンス素子は、通電時の負荷が少ないことから、消費電力が低く抑えられることはもちろんのこと、素子の寿命も改善することが期待できる。また、電力に対する発光効率の向上も見込まれる。
有機EL素子に使用される有機薄膜の材料としては、電子や正孔といったキャリアを運搬できる特性を有するものが必要である。特に、発光層に用いられる材料は、上記電荷が再結合するために電子と正孔の両方を効率よく運搬する性質が求められる。そのため、化合物としては、バイポーラー性を有することが好ましい。
同一分子内に電子供与基と電子吸引性基を有することで化合物はバイポーラー性となり、薄膜内の電荷移動に対して有利であることから、駆動電圧低下の観点から好ましい。一方、バイポーラー性を有する化合物は、HOMOとLUMOが分離しやすく、発光のために必要なHOMO−LUMO間の電子遷移が禁制になりがちであることから、振動子強度が低くなり、発光しづらくなる傾向がある。これに対し、芳香族炭化水素化合物は、HOMO−LUMOの重なりを生じるための場として好適であり、電子供与性基及び電子吸引性基を有する化合物に組み込むことで、高い発光効率と高い電荷輸送性能を両立することが可能である。
一方、π共役面が大きくなりすぎると、πスタッキングによる化合物の凝集が起こりやすくなり、発光効率を低下させる原因となる。したがって、電子供与性基と電子吸引性基を備える芳香族炭化水素化合物は、4環程度のπ共役面の大きさを有することが好ましい。
通常の蛍光発光性化合物及びTADF化合物のエネルギーダイヤグラムを示した模式図 アシストドーパントが存在する場合のエネルギーダイヤグラムを示した模式図 π共役系化合物がホスト化合物として機能する場合のエネルギーダイヤグラムを示した模式図 有機EL素子から構成される表示装置の一例を示した模式図 アクティブマトリクス方式による表示装置の構成の一例を示す模式図 画素の回路を示した概略図 パッシブマトリクス方式による表示装置の構成の一例を示す模式図 照明装置の構成の一例を示す概略図 照明装置の構成の一例を示す断面図
本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有する有機エレクトロルミネッセンス素子であって、当該有機層群の少なくとも一層が、前記一般式(1)で表される同一分子内に電子供与基と電子吸引性基を有する構造のπ共役系化合物を含有することを特徴とする。
この特徴は、請求項1から請求項13までの請求項に係る発明に共通する又は対応する特徴である。
本発明においては、更に好ましい実施形態としては、一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(−SO;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、スルフェニル基(−SOR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、シアノ基(−CN)、ハロゲノ基、カルボニル基(−COR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(−C)、トリフルオロメチル基(−CF)、トリフルオロメチルフェニル基(−CCF)、及びボリル基(−BR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとの1種であることが、該電子吸引性基上へのLUMOの局在化が促進され、化合物全体のバイポーラー性が高まることにより、更に、駆動電圧を低くでき、より高い発光効率を得ることができる観点から好ましい。
また、前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3〜20の芳香族複素環基、アミノ基(−NH)、アリールアミノ基(−NHR又は−NR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20芳香族複素環基を表す。)、アルコキシ基(−OR;Rは炭素数1〜10の直鎖または環状の炭化水素基)、及びアリールオキシ基(−OR;Rは直鎖または環状の炭化水素基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることが、該電子供与性基上へのHOMOの局在化が促進され、化合物全体のバイポーラー性が高まることにより、更に、駆動電圧を低くでき、より高い発光効率を得ることができる観点から好ましい。
また、前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることが、縮環数が少ない、あるいはジグザグ型の共役構造を有するために、直列型に多数の環が縮環した構造を有する化合物よりも励起エネルギー準位を高くする点において有利である。励起状態と基底状態のエネルギー準位の近接は無輻射失活を増大させるため、前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることは、高い発光効率を得ることができる観点から好ましい。
また、前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることにより、熱活性化型遅延蛍光を発する可能性が有り、駆動時の励起子を一般的な蛍光材料よりも多く利用できることによって電力効率が向上することができる観点から、好ましい。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
本論に入る前に、本発明に関する技術思想に関連する、有機EL素子の発光方式及び発光材料について説明する。
《有機ELの発光方式》
有機ELの発光方式としては、a)三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、b)一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
有機EL素子のような電界で励起する場合には、三重項励起子が75%の確率で、一重項励起子が25%の確率で生成するため、リン光発光の方が蛍光発光に比べ発光効率を高くすることが可能で、低消費電力化を実現するには優れた方式である。
一方、蛍光発光においても、通常では無輻射失活してしまう75%の三重項励起子を高密度で存在させることによって、2つの三重項励起子から1つの一重項励起子を発生させて発光効率を向上させるTTA機構を利用した方式が見つかっている。
さらに、近年では、安達らの発見により、一重項励起状態と三重項励起状態のエネルギーギャップを小さくすることで、発光中のジュール熱及び/又は発光素子が置かれる環境温度によりエネルギー準位の低い三重項励起状態から一重項励起状態に逆項間交差が生じ、結果としてほぼ100%に近い蛍光発光を可能とする現象(熱励起型遅延蛍光又は熱励起型遅延蛍光、「TADF」)とそれを可能にする蛍光物質が、例えば、前記非特許文献1等に記載されている。
〔リン光発光性化合物〕
前述のとおり、リン光発光の発光効率は、蛍光発光よりも理論的には4倍有利であるが、三重項励起状態から一重項基底状態へのエネルギー失活(=リン光発光)は禁制遷移であり、また同様に一重項励起状態から三重項励起状態への項間交差も禁制遷移であるため、通常その速度定数は小さい。すなわち、遷移が起こりにくいため、励起子寿命はミリ秒から秒オーダーと長くなり、所望の発光を得ることが困難である。
ただし、イリジウムや白金などの重金属を用いた錯体が発光する場合には、中心金属の重原子効果によって、前記の禁制遷移の速度定数が3桁以上増大し、配位子の選択によっては、100%のリン光量子収率を得ることも可能となる。
しかしながら、このような理想的な発光を得るためには、希少金属であるイリジウムやパラジウム、白金などのいわゆる白金属と呼ばれる貴金属を用いる必要があり、大量に使用されることになると、その埋蔵量や金属自体の価格が産業上大きな問題となってくる。
〔蛍光発光性化合物〕
一般的な蛍光発光性化合物は、リン光発光性化合物のような重金属錯体である必要性は特になく、炭素、酸素、窒素及び水素などの一般的な元素の組み合わせから構成される、いわゆる有機化合物が適用でき、さらに、リンや硫黄、ケイ素などその他の非金属元素を用いることも可能で、また、アルミニウムや亜鉛などの典型金属の錯体も活用できるなど、その多様性はほぼ無限といえる。
ただし、従来の蛍光化合物では、前記のように励起子の25%しか発光に適用できないために、リン光発光のような高効率発光は望めない。
〔遅延蛍光化合物〕
(励起三重項−三重項消滅(TTA)遅延蛍光化合物)
蛍光発光性化合物の上記問題点を解決すべく登場したのが、遅延蛍光を利用した発光方式である。三重項励起子同士の衝突を起源とするTTA方式は、下記のような式(I)で記述できる。すなわち、従来、励起子のエネルギーが、無輻射失活により、熱にしか変換されなかった三重項励起子の一部が、発光に寄与しうる一重項励起子に逆項間交差できるメリットがあり、実際の有機EL素子においても従来の蛍光発光素子の約2倍の外部取り出し量子効率を得ることができている。
式(I)
+T→S+S
上記式(I)において、Tは三重項励起子、Sは一重項励起子、Sは基底状態分子を表す。
しかしながら、上記式(I)からもわかるように、二つの三重項励起子Tからは、発光に利用できる一重項励起子Sは一つしか生成しないため、この方式で100%の内部量子効率を得ることは、原理上不可能である。
(熱活性型遅延蛍光(TADF)化合物)
もう一つの高効率蛍光発光であるTADF方式は、TTAの上記問題点を解決できる方式である。
蛍光発光性化合物は、前記のごとく無限に近い分子設計できる利点を持っている。すなわち、分子設計された化合物の中で、特異的に三重項励起状態と一重項励起状態のエネルギー準位の差の絶対値(ΔEst)が極めて近接する化合物が存在する(図1A参照)。
このような化合物は、分子内に重原子を持っていないにもかかわらず、ΔEstが小さいため、通常では起こりえない三重項励起状態から一重項励起状態への逆項間交差が起こる。さらに、一重項励起状態から基底状態への失活(=蛍光発光)の速度定数が極めて大きいことから、三重項励起子はそれ自体が基底状態に熱的に失活(無輻射失活)するよりも、一重項励起状態経由で蛍光を発しながら基底状態に戻る方が速度論的に有利である。そのため、TADFでは、理想的には100%の蛍光発光が可能となる。
(ΔEstに関する分子設計思想)
上記ΔEstを小さくするための分子設計について説明する。
ΔEstを小さくするためには、原理上、分子内の最高被占軌道(Highest Occupied Molecular Orbital:HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)の空間的な重なりを小さくすることが最も効果的である。
一般に分子の電子軌道において、HOMOは電子供与性部位に、LUMOは電子吸引性部位に分布することが知られており、分子内に電子供与性と電子吸引性の骨格を導入することによって、HOMOとLUMOが存在する位置を遠ざけることが可能である。
例えば、前述の非特許文献1〜3においては、シアノ基やスルホニル基、トリアジンなどの電子吸引性の骨格と、カルバゾールやジフェニルアミノ基等の電子供与性の骨格とを導入することで、LUMOとHOMOとをそれぞれ局在化させている。
また、化合物の基底状態と三重項励起状態との分子構造変化を小さくすることも効果的である。構造変化を小さくするための方法としては、例えば、化合物を剛直にすることなどが効果的である。ここで述べる剛直とは、例えば、分子内の環と環との結合における自由回転を抑制し、またπ共役面の大きい縮合環を導入するなど、分子内において自由に動ける部位が少ないことを意味する。特に、発光に関与する部位を剛直にすることによって、励起状態における構造変化を小さくすることが可能である。
(TADF化合物が抱える一般的な問題)
TADF化合物は、その発光機構及び分子構造の面から種々の問題を抱えている。
以下に、一般的なTADF化合物が抱える問題の一部について記載する。
TADF化合物においては、ΔEstを小さくするため、HOMOとLUMOの存在する部位をできるだけ離すことが必要であるが、このため、分子の電子状態はHOMO部位とLUMO部位が分離したドナー/アクセプター型の分子内CT(分子内電荷移動状態)に近い状態となってしまう。
このような分子では、複数存在すると一方の分子のドナー部分と他方の分子のアクセプター部分とを近接させると安定化が図られる。そのような安定化状態は2分子間での形成に限らず、3分子間、5分子間等、複数の分子間でも形成が可能であり、その結果、広い分布を持った種々の安定化状態が存在することになり、吸収スペクトル及び発光スペクトルの形状はブロードとなる。また、2分子を超える多分子集合体を形成しない場合であっても、二つの分子の相互作用する方向や角度などの違いによって様々な存在状態を取り得るため、基本的にはやはり吸収スペクトル及び発光スペクトルの形状はブロードになる。
発光スペクトルがブロードになることは、以下に示す二つの大きな問題を発生する。
一つは、発光色の色純度が低くなってしまう問題である。照明用途に適用する場合にはそれほど大きな問題にはならないが、電子ディスプレイ用途に用いる場合には色再現域が狭くなり、また、純色の色再現性が低下することから、実際に商品として適用するのは困難になる。
もう一つの問題は、発光スペクトルの短波長側の立ち上がり波長(以下、「蛍光ゼロ−ゼロバンド」と称す。)が短波長化、すなわち高S化(最低励起一重項エネルギーの高エネルギー化)してしまうことである。
当然、蛍光ゼロ−ゼロバンドが短波長化すると、Sよりもエネルギーの低いTに由来するリン光ゼロ−ゼロバンドも短波長化(高T化)してしまう。そのため、ホスト化合物に用いる化合物はドーパントからの逆エネルギー移動を起こさないようにするために、高S化かつ高T化する必要が生じてくる。
これは非常に大きな問題である。基本的に有機化合物からなるホスト化合物は、有機EL素子中で、カチオンラジカル状態、アニオンラジカル状態及び励起状態という、複数の活性かつ不安定な化学種の状態を取るが、それら化学種は分子内のπ共役系を拡大することで比較的安定に存在させることができる。
しかしながら、高S化かつ高T化を達成するには、分子内のπ共役系を縮小するか若しくは断ち切ることが必要となり、安定性と両立させることが困難になって、結果的には発光素子の寿命を短くしてしまうことになる。
また、重金属を含まないTADF化合物においては、三重項励起状態から基底状態に失活する遷移は禁制遷移であるため、三重項励起状態での存在時間(励起子寿命)は数百μ秒からミリ秒オーダーと極めて長い。そのため、仮にホスト化合物のTエネルギーが蛍光発光性化合物のそれよりも高いエネルギーレベルであったとしても、その存在時間の長さから蛍光発光性化合物の三重項励起状態からホスト化合物へと逆エネルギー移動を起こす確率が増大してしまう。その結果、本来意図するTADF化合物の三重項励起状態から一重項励起状態への逆項間交差が十分に起こらずに、ホスト化合物への好ましくない逆エネルギー移動が主流となって、十分な発光効率が得られないという不具合が生じてしまう。
上記のような問題を解決するためには、TADF化合物の発光スペクトル形状をシャープ化し、発光極大波長と発光スペクトルの立ち上がり波長の差を小さくすることが必要となる。そのためには、基本的には一重項励起状態及び三重項励起状態の分子構造の変化を小さくすることにより達成することが可能である。
また、ホスト化合物への逆エネルギー移動を抑制するためには、TADF化合物の三重項励起状態の存在時間(励起子寿命)を短くすることが効果的である。それを実現するには、基底状態と三重項励起状態との分子構造変化を小さくすること及び禁制遷移をほどくのに好適な置換基や元素を導入することなどの対策を講じることで、問題点を解決することが可能である。
本発明は、上記のように励起状態の構造変化を抑えたπ共役系化合物(蛍光発光性化合物も含まれる。)及び三重項励起状態の存在時間が短いπ共役系化合物も設計思想として含むものである。
以下に、本発明に係るπ共役系化合物に関する種々の特性値の測定方法について記載する。
(電子密度分布)
本発明に係るπ共役系化合物は、ΔEstを小さくするという観点から、分子内においてHOMOとLUMOが実質的に分離していることが好ましい。これらHOMO及びLUMOの分布状態については、分子軌道計算により得られる構造最適化した際の電子密度分布から求めることができる。
本発明におけるπ共役系化合物の分子軌道計算による構造最適化及び電子密度分布の算出は、計算手法として、汎関数としてB3LYP、基底関数として6−31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。
本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いた。
また、「HOMOとLUMOが実質的に分離している」とは、上記分子計算により算出されたHOMO軌道分布及びLUMO軌道分布の中心部位が離れており、より好ましくはHOMO軌道の分布とLUMO軌道の分布がほぼ重なっていないことを意味する。
また、HOMOとLUMOの分離状態については、前述の汎関数としてB3LYP、基底関数として6−31G(d)を用いた構造最適化計算から、さらに時間依存密度汎関数法(Time−Dependent DFT)による励起状態計算を実施してS、Tのエネルギー(それぞれE(S)、E(T))を求めてΔEst=E(S)−E(T)として算出することも可能である。算出されたΔEstが小さいほど、HOMOとLUMOがより分離していることを示す。本発明においては、前述と同様の計算手法を用いて算出されたΔEstが0.5eV以下であることが好ましく、より好ましくは0.2eV以下であり、さらに好ましくは0.1eV以下である。
(最低励起一重項エネルギーS
本発明におけるπ共役系化合物の最低励起一重項エネルギーSについては、本発明においても通常の手法と同様にして算出されるもので定義される。すなわち、測定対象となる化合物を石英基板上に蒸着して試料を作製し、常温(300K)でこの試料の吸収スペクトル(縦軸:吸光度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。
ここで、使用する溶媒は、蛍光発光性化合物の凝集状態に影響を与えない、すなわち溶媒効果の影響が小さい溶媒、例えば、シクロヘキサンやトルエン等の非極性溶媒等を用いることができる。
(最低励起三重項エネルギーT
本発明で用いられるπ共役系化合物の最低励起三重項エネルギー(T)については、溶液若しくは薄膜のフォトルミネッセンス(PL)特性により算出した。例えば、薄膜における算出方法としては、希薄状態のπ共役系化合物の分散物を薄膜にした後に、ストリークカメラを用い、過渡PL特性を測定することで、蛍光成分とリン光成分の分離を行い、そのエネルギー差をΔEstとして最低励起一重項エネルギーから最低励起三重項エネルギーを求めることができる。
《有機EL素子の構成層》
本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層//陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
本発明に用いられる発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
本発明に用いられる電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
本発明に用いられる正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
上記の代表的な素子構成においては、陽極と陰極を除いた構成層を「有機層群」ともいう。
(タンデム構造)
また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
タンデム構造を構成する複数の各発光ユニットは、直接積層されていても、上記のように中間層を介して積層されていてもよい。中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料を用いて構成することができる。
中間層の形成に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
発光ユニット内の好ましい構成としては、例えば、上記の代表的な素子構成として例示した(1)〜(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006−228712号公報、特開2006−24791号公報、特開2006−49393号公報、特開2006−49394号公報、特開2006−49396号公報、特開2011−96679号公報、特開2005−340187号公報、特許第4711424号公報、特許第3496681号公報、特許第3884564号公報、特許第4213169号公報、特開2010−192719号公報、特開2009−076929号公報、特開2008−078414号公報、特開2007−059848号公報、特開2003−272860号公報、特開2003−045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
以下、本発明の有機EL素子の各構成層の詳細について説明する。
《発光層》
本発明に用いられる発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に用いられる発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧が印加されるのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲内に調整することが好ましく、より好ましくは2〜500nmの範囲内であり、更に好ましくは5〜200nmの範囲内である。
また、本発明に用いられる個々の発光層の層厚としては、2nm〜1μmの範囲内に調整することが好ましく、より好ましくは2〜200nmの範囲内に調整され、更に好ましくは3〜150nmの範囲内に調整される。
本発明に用いられる発光層には、発光ドーパント(発光性化合物、発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう。)を含有し、さらに前述のホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう。)を含有することが好ましい。
(1)発光ドーパント
発光ドーパントとしては、蛍光発光性ドーパント(蛍光発光性化合物、蛍光ドーパント、蛍光性化合物ともいう。)と、リン光発光性ドーパント(リン光発光性化合物、リン光ドーパント、リン光性化合物ともいう。)が好ましく用いられる。本発明においては、少なくとも1層の発光層が、後述する蛍光発光性化合物と発光補助剤(アシストドーパント)として機能するπ共役系化合物とを含有することを特徴とする。
本発明においては、発光層が蛍光発光性化合物を5〜40質量%の範囲内で、特に、10〜30質量%の範囲内で含有することが好ましい。
発光層中の蛍光発光性化合物の濃度については、使用する特定構造の蛍光発光性化合物及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意のパターンで濃度分布を有していてもよい。
また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011−213643号公報、特開2010−93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
また、本発明で用いられる蛍光発光性化合物は、複数種を併用して用いてもよく、構造の異なる蛍光発光性化合物同士の組み合わせや、蛍光発光性化合物とリン光発光性化合物とを組み合わせとしてもよい。これにより、任意の発光色を得ることができる。
さらに、本発明に係るπ共役系化合物は、異なる蛍光発光性化合物やリン光発光性化合物の発光を補助するために使用することができる。その場合、発光層には本発明に係るπ共役系化合物に対し、質量比で100%以上のホストが存在し、かつ、本発明に係るπ共役系化合物に対し、質量比で0.1〜50%の範囲内で異なる蛍光発光性物質又はリン光発光性化合物が存在することが好ましい。
なお、本発明に係るπ共役系化合物を異なる蛍光発光性化合物やリン光発光性化合物の発光を補助するために使用する場合、発光層に含まれる物質は、ホスト化合物も含み3成分以上であることが好ましい。
具体的には、発光層中に、π共役系化合物、好ましくは、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が0.5eV以下であるπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物の少なくとも1種類とを含有することも、高発光効率発現の観点から好適である。当該発光層には、さらにホスト化合物が含有されていることがより好ましい。
π共役系化合物、発光性化合物及びホスト化合物は、発光層中に含有されるそれぞれの成分の数に制限はないが、3成分がそれぞれ少なくとも1種ずつ含有されていることがさらに好ましい。
発光層が、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の絶対値の差(ΔEst)が、0.5eV以下である本発明に係るπ共役系化合物と、発光性化合物と、ホスト化合物を含有する場合、本発明に係るπ共役系化合物はアシストドーパントとして作用する。一方、発光層が、本発明に係るπ共役系化合物と発光性化合物を含有し、ホスト化合物を含有しない場合、本発明に係るπ共役系化合物はホスト化合物として作用する。
効果が発現する機構としては、いずれの場合も同様であり、本発明に係るπ共役系化合物上に生成した三重項励起子を、逆項間交差(RISC)で一重項励起子へと変換する点にある。
これにより、本発明に係るπ共役系化合物上に生成した理論上すべての励起子エネルギーを発光性化合物にエネルギー移動することができ、高発光効率の発現を可能にする。
したがって、発光層が、本発明に係るπ共役系化合物、発光性化合物及びホスト化合物の3成分を含有する場合は、π共役系化合物のSとTのエネルギー準位は、ホスト化合物のSとTのエネルギー準位よりも低く、発光性化合物のSとTのエネルギー準位よりも高い方が好ましい。
同様に、発光層が、本発明に係るπ共役系化合物と発光性化合物の2成分を含有する場合は、π共役系化合物のSとTのエネルギー準位は、発光性化合物のSとTのエネルギー準位よりも高い方が好ましい。
図1B及び図1Cに、本発明のπ共役系化合物がそれぞれアシストドーパント及びホスト化合物として作用する場合の模式図を示す。図1B及び図1Cは一例であって、本発明に係るπ共役系化合物上に生成する三重項励起子の生成過程は、電界励起のみに限定されず、発光層内又は周辺層界面からのエネルギー移動や電子移動等も含まれる。
さらに、図1B及び図1Cでは、発光材料として蛍光発光性化合物を用いて示しているが、これに限定されず、燐光発光性化合物を用いてもよいし、蛍光発光性化合物と燐光発光性化合物の両者を用いてもよい。
本発明に係るπ共役系化合物をアシストドーパントとして用いる場合、発光層は、π共役系化合物に対し、質量比で100%以上のホスト化合物を含有し、蛍光発光性化合物又はリン光発光性化合物がπ共役系化合物に対して、質量比で0.1〜50%の範囲内で含有していることが好ましい。
本発明に係るπ共役系化合物をホスト化合物として用いる場合、発光層は、蛍光発光性化合物又はリン光発光性化合物をπ共役系化合物に対して質量比0.1〜50%の範囲内の範囲内で含有することが好ましい。
本発明に係るπ共役系化合物をアシストドーパント又はホスト化合物として用いる場合、本発明に係るπ共役系化合物の発光スペクトルと発光性化合物の吸収スペクトルが重なることが好ましい。
本発明の有機EL素子や本発明に用いられる化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図3.16において、分光放射輝度計CS−1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を呈することも好ましい態様の一つである。
白色を示す発光ドーパントの組み合わせについては、特に限定はないが、例えば、青と橙や、青と緑と赤との組み合わせ等が挙げられる。
本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることをいう。
(1.1)π共役系化合物
本発明の有機EL素子においては、有機層群の少なくとも一層が、下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とし、さらには、当該π共役系化合物の最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が0.5eV以下であることが好ましい。
本発明に係る一般式(1)で表される構造を有するπ共役系化合物は、π共役系化合物上に生成した三重項励起子を逆項間交差(RISC)で一重項励起子へと変換し、失活させないことで、発光効率を改善するアシストドーパントとして発光効率を上げる機能と、TADF性を備えた蛍光発光性化合物として発光効率を改善する機能を有する化合物であり、有機EL素子の構成材料として有用である。
具体的には、有機EL素子の発光層に、π共役系化合物をアシストドーパント又はホスト化合物として発光性化合物とともに含有させることにより、発光効率を向上させることができる。
以下に一般式(1)で表される構造を有するπ共役系化合物について、その詳細を説明する。
Figure 2016017514
一般式(1)において、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。
また、Xは、下記一般式(1a)〜(1k)で表される構造から選ばれる芳香族炭化水素基を表す。
Figure 2016017514
上記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0〜4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。
また、上記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(−SO;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、スルフェニル基(−SOR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、シアノ基(−CN)、ハロゲノ基、カルボニル基(−COR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(−C)、トリフルオロメチル基(−CF)、トリフルオロメチルフェニル基(−CCF)、及びボリル基(−BR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとの1種であることが好ましい態様である。
また、前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3〜20の芳香族複素環基、アミノ基(−NH)、アリールアミノ基(−NHR又は−NR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20芳香族複素環基を表す。)、アルコキシ基(−OR;Rは炭素数1〜10の直鎖または環状の炭化水素基)、及びアリールオキシ基(−OR;Rは直鎖または環状の炭化水素基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることが好ましい態様である。
更には、前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(−SO;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、スルフェニル基(−SOR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、シアノ基(−CN)、ハロゲノ基、カルボニル基(−COR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(−C)、トリフルオロメチル基(−CF)、トリフルオロメチルフェニル基(−CCF)、及びボリル基(−BR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとの1種であり。かつ前記一般式(1a)〜一般式(1k)におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3〜20の芳香族複素環基、アミノ基(−NH)、アリールアミノ基(−NHR又は−NR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20芳香族複素環基を表す。)、アルコキシ基(−OR;Rは炭素数1〜10の直鎖または環状の炭化水素基)、及びアリールオキシ基(−OR;Rは直鎖または環状の炭化水素基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとの1種であることが好ましい態様である。
また、前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることが好ましい態様である。
更には、前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であり、R、R、Ra、Rb、Rc及びRdのうちの少なくとも1つは電子吸引性基であり、かつ少なくとも1つは電子供与性基であり、前記電子吸引性基及び前記電子供与性基に該当しないR、R、Ra、Rb、Rc及びRdのすべてが水素原子であることが好ましい態様である。
上記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基において、R、R、R、R、R、及びRが置換基を表す場合、その置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ジフェニルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。好ましくは、アルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アミノ基、シアノ基が挙げられる。
更に、インドール環、インダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、イソインドール環、ナフチリジン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、アクリジン環、アクリダン環、フェナントリジン環、フェナントロリン環、フェナジン環、アザジベンゾフラン環、アザジベンゾチオフェン環等の置換基も好適に用いることができる。これらの置換基は、電子吸引性基としても好適に用いることができる。
また、これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は、複数が互いに結合して環を形成していてもよい。
本発明においては、本発明に係る一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることが好ましい。
以下に本発明で好ましく用いられる一般式(1)で表される構造を有するπ共役系化合物の具体的化合物を例示するが、本発明はこれに限定されない。
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
本発明に係る一般式(1)で表される構造を有するπ共役系化合物は、例えば、特開2004−103576号公報、米国特許第8685543号明細書、国際公開第2013/133359号等に記載の方法、又はこれらの特許文献に記載されている参照文献に記載されている方法を参照することにより合成することができる。
(1.2)リン光発光性ドーパント
本発明に用いられるリン光発光性ドーパントについて説明する。
本発明に用いられるリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012−069737号公報、特開2012−195554号公報、特開2009−114086号公報、特開2003−81988号公報、特開2002−302671号公報、特開2002−363552号公報等である。
中でも、好ましいリン光ドーパントとしては、Irを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
(1.3)蛍光発光性化合物
本発明に係るπ共役系化合物と併用することのできる蛍光発光性化合物について説明する。
本発明に係るπ共役系化合物と併用可能な蛍光発光性化合物としては、特に制限はなく、例えば、ΔEstが0.5eVより大きい蛍光発光性化合物も好適に用いることができ、その他、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
(2)ホスト化合物
発光層においては、本発明に係るπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有することが好ましい。
本発明に用いられるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
ホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
以下に、本発明において好ましく用いられるホスト化合物について述べる。
本発明で用いられる蛍光発光性化合物とともに用いられるホスト化合物としては、特に制限はないが、逆エネルギー移動の観点から、本発明に係る蛍光発光性化合物の励起一重項エネルギーより大きな励起エネルギーをもつものが好ましく、さらに本発明に係る蛍光発光性化合物の励起三重項エネルギーより大きな励起三重項エネルギーをもつものがより好ましい。
本発明の有機EL素子に公知のホスト化合物を用いる場合、その具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許出願公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008−074939号公報、特開2007−254297号公報、欧州特許第2034538号明細書、国際公開第2011/055933号、国際公開第2012/035853号等である。
ホスト化合物は、発光層内においてキャリアの輸送及び励起子の生成を担う。そのため、カチオンラジカル状態、アニオンラジカル状態、及び励起状態の全ての活性種の状態において安定に存在でき、分解や付加反応などの化学変化を起こさないこと、さらに、層中において通電経時でホスト分子がオングストロームレベルで移動しないことが好ましい。
また、特に併用する発光ドーパントがTADF発光を示す場合には、TADF化合物の三重項励起状態の存在時間が長いことから、ホスト化合物自体のTエネルギーが高いこと、さらにホスト化合物同士が会合した状態で低T状態を作らないこと、TADF化合物とホスト化合物とがエキサイプレックスを形成しないこと、ホスト化合物が電界によりエレクトロマーを形成しないことなど、ホスト化合物が低T化しないような分子構造の適切な設計が必要となる。
このような要件を満たすためには、ホスト化合物自体が電子のホッピング移動性が高いこと、かつ、正孔のホッピング移動が高いこと、三重項励起状態となったときの構造変化が小さいことが必要である。このような要件を満たすホスト化合物の代表格としては、カルバゾール骨格、アザカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格又はアザジベンゾフラン骨格などの、高Tエネルギーを有し、かつ14π電子系の拡張π共役骨格を部分構造として有するものが好ましく挙げられる。特に、発光層が、カルバゾール誘導体を含有することにより、発光層内における適度なキャリアホッピングや発光材料の分散を促すことができ、素子の発光性能や薄膜の安定性を向上させる効果が得られることから、好ましい。
さらに、これらの環がビアリール構造又はマルチアリール構造を取った化合物などが代表例として挙げられる。ここでいう「アリール」とは、芳香族炭化水素環だけでなく芳香族複素環も含む。
より好ましくは、カルバゾール骨格と、カルバゾール骨格とは異なる分子構造を持つ14π電子系の芳香族複素環化合物とが直接結合した化合物であり、さらに14π電子系の芳香族複素環化合物を分子内に二つ以上持つカルバゾール誘導体が好ましい。特に、前記カルバゾール誘導体が、14π電子以上の共役系構造部分を二つ以上有する化合物であることが、本発明の効果を一層高めるために好ましい。
また、本発明に用いられるホスト化合物としては、下記一般式(I)で表される化合物も好ましい。これは、下記一般式(I)で表される化合物は、縮環構造を有するためにπ電子雲が広がっておりキャリア輸送性が高く、高いガラス転移温度(Tg)を有するためである。さらに、一般に縮合芳香族環は三重項エネルギー(T)が小さい傾向があるが、一般式(I)で表される化合物は高いTを有しており、発光波長の短い(すなわちT及びSの大きい)発光材料に対しても好適に用いることができる。
Figure 2016017514
上記一般式(I)において、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y〜yは、各々CR104又は窒素原子を表す。
101〜R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。
Ar101及びAr102は、各々芳香族環を表し、それぞれ同一でも異なっていてもよい。
n101及びn102は各々0〜4の整数を表すが、R101が水素原子の場合は、n101は1〜4の整数を表す。
一般式(I)におけるR101〜R104は水素又は置換基を表し、ここにいう置換基は本発明に用いられるホスト化合物の機能を阻害しない範囲で有してもよいものを指し、例えば、合成スキーム上置換基が導入されてしまう場合で、本発明の効果を奏する化合物は本発明に包含される旨を規定するものである。
101〜R104で各々表される置換基としては、例えば、直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいう。例えば、ベンゼン環、ビフェニル、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−ターフェニル環、m−ターフェニル環、p−ターフェニル環、アセナフテン環、コロネン環、インデン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環、テトラリン等から導出される基)、芳香族複素環基(例えば、フラン環、ジベンゾフラン環、チオフェン環、ジベンゾチオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環等から導出される基。また、カルボリン環とジアザカルバゾール環を合わせて「アザカルバゾール環」と呼ぶ場合もある。)、非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、重水素原子等が挙げられる。
これらの置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
一般式(I)におけるy〜yとしては、好ましくは、y〜yの内の少なくとも三つ、又はy〜yの内の少なくとも三つがCR102で表され、より好ましくはy〜yが全てCR102である。このような骨格は、正孔輸送性又は電子輸送性に優れ、陽極・陰極から注入された正孔・電子を効率よく発光層内で再結合・発光させることができる。
中でも、LUMOのエネルギー準位が浅く、電子輸送性に優れる構造として、一般式(I)中でX101が、NR101、酸素原子又は硫黄原子である化合物が好ましい。より好ましくは、X101及びy〜yとともに形成される縮合環が、カルバゾール環、アザカルバゾール環、ジベンゾフラン環又はアザジベンゾフラン環である。
さらに、ホスト化合物は剛直構造にすることが好ましいという目的から、X101がNR101の場合においては、R101は前述で挙げられた置換基の内、π共役系骨格である芳香族炭化水素環基又は芳香族複素環基であることが好ましい。また、これらのR101は更に前述のR101〜R104で表される置換基で置換されていてもよい。
一般式(I)において、Ar101及びAr102により表される芳香族環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。該芳香族環は単環でも縮合環でもよく、更に未置換でも、前述のR101〜R104で表される置換基と同様の置換基を有してもよい。
一般式(I)において、Ar101及びAr102により表される芳香族炭化水素環としては、例えば、前述のR101〜R104で表される置換基の例として挙げられた芳香族炭化水素環基と同様の環が挙げられる。
一般式(I)で表される部分構造において、Ar101及びAr102により表される芳香族複素環としては、例えば、前述のR101〜R104で表される置換基の例として挙げられた芳香族複素環基と同様の環が挙げられる。
一般式(I)で表されるホスト化合物が大きなTを有するという目的を考えた場合には、Ar101及びAr102で表される芳香族環自身のTが高いことが好ましく、例えば、ベンゼン環(ベンゼン環が複数連結したポリフェニレン骨格(ビフェニル、テルフェニル、クォーターフェニル等)も含む)、フルオレン環、トリフェニレン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環、アザジベンゾフラン環、ジベンゾチオフェン環、ジベンゾチオフェン環、ピリジン環、ピラジン環、インドロインドール環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イミダゾール環又はトリアジン環等が好ましい。より好ましくは、ベンゼン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環である。
Ar101及びAr102がカルバゾール環又はアザカルバゾール環の場合は、N位(又は9位ともいう)又は3位で結合していることがより好ましい。
Ar101及びAr102がジベンゾフラン環の場合は、2位又は4位で結合していることがより好ましい。
また、上記の目的とは別に、有機EL素子を車内に積載して使用する用途などを考えた場合においては、車内の環境温度が高くなることが想定されるため、ホスト化合物のTgが高いことも好ましい。そこで、一般式(I)で表されるホスト化合物を高Tg化するという目的から、Ar101及びAr102により表される芳香族環としては、各々3環以上の縮合環が好ましい一態様である。
3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。
また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、アクリダン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。
一般式(I)において、n101及びn102は各々0〜2の整数であることが好ましく、より好ましくはn101+n102が1〜3の整数である。また、R101が水素原子の場合にn101及びn102が同時に0であると、一般式(I)で表されるホスト化合物の分子量が小さく、低いTgしか達成できないため、R101が水素原子の場合にはn101は1〜4の整数を表す。
本発明で用いられるホスト化合物として、カルバゾール誘導体が、一般式(II)で表される構造を有する化合物であることが好ましい。このような化合物は、特にキャリア輸送性に優れる傾向があるためである。
Figure 2016017514
一般式(II)において、X101、Ar101、Ar102、n102は、それぞれ前記一般式(I)におけるX101、Ar101、Ar102、n102と同義である。
n102は好ましくは0〜2の整数であり、より好ましくは0又は1である。
一般式(II)において、X101を含んで形成される縮合環は、Ar101及びAr102以外にも本発明に用いられるホスト化合物の機能を阻害しない範囲でさらに置換基を有してもよい。
さらに、一般式(II)で表される化合物が、下記一般式(III−1)、(III−2)又は(III−3)で表されることが好ましい。
Figure 2016017514
一般式(III−1)〜(III−3)において、X101、Ar102、n102は、それぞれ前記一般式(II)におけるX101、Ar102、n102と同義である。また、一般式(III−2)において、R104は、前記一般式(I)におけるR104と同義である。
一般式(III−1)〜(III−3)において、X101を含んで形成される縮合環、カルバゾール環及びベンゼン環は、本発明に用いられるホスト化合物の機能を阻害しない範囲でさらに置換基を有してもよい。
以下に、本発明に用いることができるホスト化合物として、一般式(I)、(II)、(III−1)〜(III−3)で表される化合物及びその他の構造からなる化合物例を示すが、これらに限定されるものではない。
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
Figure 2016017514
本発明に用いられる好ましいホスト化合物は、昇華精製が可能な程度の分子量をもった低分子化合物であっても、繰り返し単位を有するポリマーであってもよい。
低分子化合物の場合、昇華精製が可能であるため精製が容易で、高純度の材料を得やすいという利点がある。分子量としては、昇華精製が可能な程度であれば特に制限はないが、好ましい分子量としては3000以下、より好ましくは2000以下である。
繰り返し単位を有するポリマー又はオリゴマーの場合は、ウェットプロセスで成膜しやすいという利点があり、また一般にポリマーはTgが高いため耐熱性の点でも好ましい。
本発明に用いられるホスト化合物として用いられるポリマーは、所望の素子性能が達成可能であれば特に制限はないが、好ましくは一般式(I)、(II)、(III−1)〜(III−3)の構造を主鎖若しくは側鎖に有するものが好ましい。分子量としては特に制限はないが、分子量5000以上が好ましく、若しくは繰り返し単位数が10以上のものが好ましい。
また、ホスト化合物は、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121−2012に準拠した方法により求められる値である。
《電子輸送層》
本発明における電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
本発明に係る電子輸送層の総層厚については特に制限はないが、通常は2nm〜5μmの範囲内であり、より好ましくは2〜500nmの範囲内であり、さらに好ましくは5〜200nmの範囲内である。
また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を数nm〜数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10−5cm/Vs以上であることが好ましい。
電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン誘導体等)等が挙げられる。
また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8−キノリノール)アルミニウム(略称:Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(略称:Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、EP2311826号、特開2010−251675号公報、特開2009−209133号公報、特開2009−124114号公報、特開2008−277810号公報、特開2006−156445号公報、特開2005−340122号公報、特開2003−45662号公報、特開2003−31367号公報、特開2003−282270号公報、国際公開第2012/115034号等である。
本発明におけるより好ましい電子輸送材料としては、少なくとも一つの窒素原子を含む芳香族複素環化合物が挙げられ、例えば、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、アザジベンゾフラン誘導体、アザジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体などが挙げられる。
電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
《正孔阻止層》
正孔阻止層とは、広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ、正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ、正孔を阻止することで、電子と正孔の再結合確率を向上させることができる。
また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
本発明の有機EL素子において、正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
本発明に係る正孔阻止層の層厚としては、好ましくは3〜100nmの範囲内であり、更に好ましくは5〜30nmの範囲内である。
正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料と同様のものが好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
《電子注入層》
本発明に係る電子注入層(以下、「陰極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
本発明において、電子注入層は必要に応じて設け、上記のごとく陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1〜5nmの範囲内が好ましい。また構成材料が断続的に存在する不均一な層(膜)であってもよい。
電子注入層は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、8−ヒドロキシキノリネートリチウム(略称:Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
《正孔輸送層》
本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
本発明に係る正孔輸送層の総層厚については特に制限はないが、通常は5nm〜5μmの範囲内であり、より好ましくは2〜500nmの範囲内であり、さらに好ましくは5〜200nmの範囲内である。
正孔輸送層に用いられる材料(以下、正孔輸送材料という。)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT/PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
トリアリールアミン誘導体としては、α−NPD(4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
また、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型−Si、p型−SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72−74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003−519432号公報、特開2006−135145号公報、米国特許出願番号第13/585981号明細書等である。
正孔輸送材料は、単独で用いてもよく、また複数種を併用して用いてもよい。
《電子阻止層》
電子阻止層とは、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
本発明に係る電子阻止層の層厚としては、好ましくは3〜100nmの範囲内であり、更に好ましくは5〜30nmの範囲内である。
電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物も電子阻止層に好ましく用いられる。
《正孔注入層》
本発明に係る正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
本発明において、正孔注入層は必要に応じて設け、上記のごとく陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
正孔注入層は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、前述の正孔輸送層に用いられる材料と同様の化合物等が挙げられる。
中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
《添加物》
前述した本発明における有機層群は、更に他の添加物が含まれていてもよい。
添加物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
添加物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
《有機層群の形成方法》
本発明に係る有機層群(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
本発明に係る有機層群の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
本発明に用いられる有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF(N,N−ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)等の有機溶媒を用いることができる。
また、分散方法としては、超音波分散、高剪断力分散やメディア分散等の方法により分散することができる。
更に層ごとに異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度を50〜450℃の範囲、真空度を10−6〜10−2Paの範囲、蒸着速度を0.01〜50nm/秒の範囲、基板温度を−50〜300℃の範囲、層(膜)厚を0.1nm〜5μm、好ましくは5〜200nmの範囲内で適宜選択して形成することが望ましい。
本発明に係る有機層群の形成は、一回の真空引きで一貫して正孔注入層から陰極まで形成する方法が好ましいが、途中で取り出して異なる成膜法を適用してもよい。その際、作業は乾燥不活性ガス雰囲気下で行うことが好ましい。
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度を余り必要としない場合(100μm以上程度)は、上記電極物質の蒸着時やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
陽極の膜厚は、適用する材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲内で選ばれる。
《陰極》
陰極としては、仕事関数の小さい(4eV以下)金属(以下、電子注入性金属と称す。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極は、これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることで作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であることが、発光輝度が向上し好都合である。
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
樹脂フィルムの表面には、無機物又は有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m・24h以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10−3ml/m・24h・atm以下、水蒸気透過度が、1×10−5g/m・24h以下の高バリア性フィルムであることが好ましい。
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層群の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるがより好ましい。
ここで、外部取り出し量子効率(%)は、下式により求める。
外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
《封止》
本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
本発明においては、有機EL素子を薄膜化できる観点から、ポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/m・24h・atm以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%)が、1×10−3g/m・24h以下のものであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また、有機層群を挟み支持基板と対向する側の電極の外側に該電極と有機層群を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、封止膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機膜を用いることができる。
さらに封止膜の脆弱性を改良するために、これら無機膜と有機材料からなる膜の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
《保護膜、保護板》
有機層群を挟み支持基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《光取り出し向上技術》
有機EL素子は、空気よりも屈折率の高い(屈折率1.6〜2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
この光の取り出しの効率を向上させる方法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書参照。)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63−314795号公報参照。)、素子の側面等に反射面を形成する方法(例えば、特開平1−220394号公報参照。)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62−172691号公報参照。)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001−202827号公報参照。)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(例えば、特開平11−283751号公報参照。)などが挙げられる。
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は、一般に1.5〜1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。さらには、1.35以下であることが好ましい。
また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光を回折することにより、光の取り出し効率が上がる。
回折格子を導入する位置としては、いずれかの層間、又は媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である発光層の近傍が好ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2〜3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。
《集光シート》
本発明の有機EL素子は、支持基板(基板)の光取出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工する、あるいは、いわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向より集光することで、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10〜100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製の拡散フィルム(ライトアップ)などを用いることができる。
《用途》
本発明の有機EL素子は、電子機器、例えば、表示装置、ディスプレイ、各種発光装置として用いることができる。
発光装置として、例えば、照明装置(例えば、家庭用照明、車内照明等。)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
〔表示装置〕
本発明の有機EL素子を具備する表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法又は印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法及び印刷法である。
表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
多色表示装置は、表示デバイス、ディスプレイ又は各種発光光源として用いることができる。表示デバイス又はディスプレイにおいて、青、赤及び緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
表示デバイス又はディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示及び自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
発光装置としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
以下、本発明の有機EL素子を具備する表示装置の一例を図面に従って説明する。
図2は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。
制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
図3は、アクティブマトリクス方式による表示装置の模式図である。
表示部Aは、基板上に複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。
図3においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
画素3は、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
次に、画素の発光プロセスを説明する。図4は、画素の回路を示した概略図である。
画素は、有機EL素子10、スイッチングトランジスター11、駆動トランジスター12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
図4において、制御部Bからデータ線6を介してスイッチングトランジスター11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスター11のゲートに走査信号が印加されると、スイッチングトランジスター11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスター12のゲートに伝達される。
画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスター12の駆動がオンする。駆動トランジスター12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスター11の駆動がオフする。しかし、スイッチングトランジスター11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスター12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスター12が駆動して有機EL素子10が発光する。
すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスター11と駆動トランジスター12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
図5は、パッシブマトリクス方式による表示装置の模式図である。図5において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
本発明の有機EL素子を用いることにより、発光効率が向上した表示装置を得ることができる。
〔照明装置〕
本発明の有機EL素子は、照明装置に適用することができる。
本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
また、本発明に用いられるπ共役系化合物は、実質的に白色の発光を生じる有機EL素子を具備する照明装置に適用できる。例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。
また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が白色発光である。
(本発明の照明装置の一態様)
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(例えば、東亞合成社製、ラックストラックLC0629B。)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図6及び図7に示すような照明装置を形成することができる。
図6は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている。なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス、詳しくは純度99.999%以上の高純度窒素ガスの雰囲気下で行った。
図7は、照明装置の断面図を示し、105は陰極、106は有機層群、107は透明電極(陽極)付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
本発明の有機EL素子を用いることにより、発光効率に優れた照明装置が得られる。
〔発光性薄膜〕
本発明の発光性薄膜は、本発明に係る一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とし、前記有機層群の形成方法と同様に作製することができる。
本発明の発光性薄膜の形成方法は、特に制限はなく、従来公知の薄膜形成方法、例えば、真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
本発明に用いられる発光材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
また、分散方法としては、超音波分散、高剪断力分散やメディア分散等の方法により分散することができる。
更に層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度を50〜450℃の範囲内、真空度を10−6〜10−2Paの範囲内、蒸着速度0.01〜50nm/秒の範囲内、基板温度−50〜300℃の範囲内、層厚0.1nm〜5μmの範囲内、好ましくは5〜200nmの範囲内で適宜選ぶことが望ましい。
また、成膜にスピンコート法を採用する場合、スピンコーターを100〜1000rpmの範囲内、10〜120秒の範囲内で、乾燥不活性ガス雰囲気下で行うことが好ましい。
また、本発明の発光性薄膜を表示装置及び照明装置に用いることもできる。
これにより、発光効率が改善された表示装置及び照明装置が得られる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
実施例1
《有機EL素子の作製》
〔有機EL素子1−1の作製〕
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度として1×10−4Paまで減圧した後、HAT−CN(1,4,5,8,9,12−ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
次いで、α−NPD(4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。次いで、ホスト化合物としてmCBP(3,3−ジ(9H−カルバゾール−9−イル)ビフェニル)、発光性化合物として下記比較化合物1を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚が30nmの発光層を形成した。
その後、BCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)を蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。
さらに、フッ化リチウムを膜厚0.5nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子1−1を作製した。
Figure 2016017514
〔有機EL素子1−2〜1−31の作製〕
上記有機EL素子1−1の作製において、発光性化合物を、比較化合物1から表1に記載の各発光性化合物に変更した以外は同様にして、有機EL素子1−2〜1−31を作製した。
〔発光性化合物の最低励起一重項エネルギーと最低励起三重項エネルギーの差(ΔEst)の測定〕
最低励起一重項エネルギーと最低励起三重項エネルギーの差ΔEstはGaussian09により、汎関数B3LYP、基底関数6−31G(d)を用いた密度汎関数法による計算を行って算出し、得られた結果を、表1に示す。
《有機EL素子の特性値の測定》
(発光効率の測定)
各有機EL素子の駆動時の発光効率を、下記に示す方法に従って測定した。
室温(約25℃)で、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて、各有機EL素子の発光輝度を測定し、発光輝度3000cd/mにおける発光効率を求め、有機EL素子1−1の発光効率を基準とし、下式に従って発光効率(相対値)を求めた。
発光効率(相対値)=(サンプルの発光輝度3000cd/mにおける発光効率/有機EL素子1−1の発光輝度3000cd/mにおける発光効率)×100
なお、表1では、発光効率の相対値は大きいほど低電力で素子が駆動することを示している。
(駆動電圧の測定)
各有機EL素子の駆動時の駆動電圧を、下記測定により測定した。
室温(約25℃)で、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて、各有機EL素子の発光輝度を測定し、発光輝度1000cd/mにおける初期駆動電圧を求め、有機EL素子1−1の駆動電圧を基準とし、下式に従って駆動電圧(相対値)を求めた。
駆動電圧(相対値)=(サンプルの発光輝度1000cd/mにおける初期駆動電圧/有機EL素子1−1の発光輝度1000cd/mにおける初期駆動電圧)×100
なお、表1では、電圧値の相対値は小さいほど素子の導電性が良く、低電圧で素子が駆動することを示している
以上により得られた結果を、表1に示す。
Figure 2016017514
表1に記載の結果より明らかなように、本発明で規定する化合物を用いて作製した本発明の有機EL素子は、良好な導電特性を獲得し、駆動電圧が低下することが明らかである。さらに、駆動電圧が低下したことにより、消費電力が低下し、発光効率も向上した。特に、ΔEstの小さいものほど、上記効果がより顕著に発現した。
実施例2
《有機EL素子の作製》
〔有機EL素子2−1の作製〕
100mm×100mmで、厚さ1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を厚さ100nmで成膜した透明支持基板(NHテクノグラス社製NA45)に、パターニング処理を施した後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(略称:PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて、3000rpm、30秒の条件で、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚が20nmの正孔注入層を形成した。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度として1×10−4Paまで減圧した後、α−NPD(4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で、上記形成した正孔注入層上に蒸着し、層厚が40nmの正孔輸送層を形成した。次いで、例示化合物であるホスト化合物H−46、下記比較化合物2が、それぞれ94%、6%の体積%になる条件で蒸着速度0.1nm/秒で共蒸着し、層厚が30nmの発光層を形成した。
その後、TPBi(1,3,5−トリス(N−フェニルベンゾイミダゾール−2−イル)ベンゼン)を蒸着速度0.1nm/秒で蒸着し、層厚が30nmの電子輸送層を形成した。
さらに、フッ化ナトリウムを膜厚1nmで形成した後に、アルミニウムを厚さ100nmで蒸着して陰極を形成した。
上記有機EL素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子2−1を作製した。
〔有機EL素子2−2の作製〕
上記有機EL素子2−1の作製において、ホスト化合物として、例示化合物H−46、発光化合物として比較化合物2、併用化合物として比較化合物1を用い、それぞれの比率が75%、10%、15%の体積%となるように発光層を形成した以外は同様にして、有機EL素子2−2を作製した。
〔有機EL素子2−3〜2−11の作製〕
上記有機EL素子2−2の作製において、発光層のホスト化合物、発光化合物、併用化合物とその比率を表2に記載の組み合わせに変更した以外は同様にして、有機EL素子2−3〜2−11を作製した。
Figure 2016017514
〔併用化合物(C)の第一励起一重項エネルギーと第一励起三重項エネルギーの差(ΔEst)の測定〕
第一励起一重項エネルギーと第一励起三重項エネルギーの差ΔEstは、Gaussian09により、汎関数B3LYP、基底関数6−31G(d)を用いた密度汎関数法による計算を行って算出し、得られた結果を表2に示す。
《有機EL素子の特性値の測定》
上記作製した有機EL素子2−1〜2−11について、実施例1に記載の方法と同様にして発光効率及び駆動電圧の測定を行った。なお、各測定における基準とする試料は、有機EL素子2−1とした。
以上により得られた結果を、表2に示す。
Figure 2016017514
表2に記載の結果より明らかなように、本発明の有機EL素子2−4〜2−11は、比較例である有機EL素子2−1〜2−3に対して、高い発光効率を有していることが明らかである。これは、本発明に係る化合物が、他の蛍光化合物の発光を補助している効果と考えられる。すなわち、発光物質よりエネルギー準位の高い本発明に係る蛍光発光性化合物が発光素子中で励起された時、そのエネルギーを発光物質が効率よく受け取ることにより、本発明に係る化合物自体が発光するのと遜色ない発光効率が得られるものと考えられる。
実施例3
本発明に係る例示化合物D15のトルエン溶液を調製して、窒素をバブリングしながら300Kで280nmの光を照射したところ、緑色の発光を観測した。なお、この例示化合物D15には、nsオーダーの蛍光の他に、発光寿命の長い成分が観測された。時間分解スペクトルは、浜松ホトニクス(株)製の蛍光寿命測定装置 Quantaurus−tauにて測定し、発光寿命の短い成分を蛍光と判断し、また、常温での測定であったことから、発光寿命が長い成分を遅延蛍光と判断した。
実施例4
《有機EL素子の作製》
(有機EL素子4−1の作製)
50mm×50mm×厚さ0.7mmのガラス基板上に、ITO(インジウム・スズ酸化物)を150nmの厚さで成膜した後、パターニングを行い、陽極であるITO透明電極を形成した。このITO透明電極が設けられた透明基板を、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後、UVオゾン洗浄を5分間行った。得られた透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を各々の素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
真空蒸着装置内を真空度1×10−4Paまで減圧した後、HAT−CN(1,4,5,8,9,12−ヘキサアザトリフェニレンヘキサカルボニトリル)の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、厚さ15nmの正孔注入層を形成した。
次いで、α−NPD(4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で、上記形成した正孔注入層上に蒸着し、厚さ30nmの正孔輸送層を形成した。
次いで、ホスト化合物として比較化合物4と、発光性化合物としてGD−1とが入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で、正孔輸送層上に共蒸着し、厚さ40nmの発光層を形成した。
Figure 2016017514
次いで、例示化合物H−42を蒸着速度0.1nm/秒で蒸着し、厚さ5nmの第一電子輸送層を形成した。
更に、その上に、ET−1を蒸着速度0.1nm/秒で蒸着し、厚さ45nmの第二電子輸送層を形成した。
Figure 2016017514
その後、フッ化ナトリウムを厚さ0.5nmになるように蒸着した後、アルミニウムを厚さ100nmで蒸着して陰極を形成し、有機EL素子4−1を作製した。
(有機EL素子4−2〜4−11の作製)
発光層の形成に用いるホスト化合物を、表3に記載した各化合物に変更した以外は、有機EL素子4−1と同様にして、有機EL素子4−2〜4−11を作製した。
《有機EL素子の評価》
実施例1に記載の方法と同様にして、有機EL素子4−1の駆動電圧及び発光効率をそれぞれ測定し、各有機EL素子の有機EL素子4−1のそれぞれの測定値を100とした相対値を求め、得られた結果を、表3に示す。
Figure 2016017514
表3に記載の結果より明らかなように、有機EL素子4−2〜4−11は、比較例である有機EL素子4-1に比べ、駆動電圧が低く、かつ発光効率に優れていることが分かる。
これは、本発明に係る化合物が、ホスト材料としても効用があることを実証することができた。すなわち、本発明に係る化合物はキャリア輸送性に優れ、ドーパントの発光を補助することができることに起因していると推測される。
本発明の有機エレクトロルミネッセンス素子は、駆動電圧が低下し、高い発光効率を達成することができ、本発明に係る共役系化合物を含有する発光性薄膜、表示装置、照明装置に好適に利用できる。
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスター
12 駆動トランジスター
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機層群
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
C 配線部

Claims (13)

  1. 陽極と陰極の間に、少なくとも一層の発光層を含む有機層群を有する有機エレクトロルミネッセンス素子であって、
    当該有機層群の少なくとも一層が、下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure 2016017514
    〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、下記一般式(1a)〜(1k)で表される構造から選ばれる芳香族炭化水素基を表す。〕
    Figure 2016017514
    〔上記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0〜4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。〕
  2. 前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(−SO;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、スルフェニル基(−SOR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、シアノ基(−CN)、ハロゲノ基、カルボニル基(−COR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(−C)、トリフルオロメチル基(−CF)、トリフルオロメチルフェニル基(−CCF)、及びボリル基(−BR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3〜20の芳香族複素環基、アミノ基(−NH)、アリールアミノ基(−NHR又は−NR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20芳香族複素環基を表す。)、アルコキシ基(−OR;Rは炭素数1〜10の直鎖または環状の炭化水素基)、及びアリールオキシ基(−OR;Rは直鎖または環状の炭化水素基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  4. 前記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子吸引性基であるとき、当該電子吸引性基が、芳香族複素環基、スルホニル基(−SO;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、スルフェニル基(−SOR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、シアノ基(−CN)、ハロゲノ基、カルボニル基(−COR;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)、ペンタフルオロフェニル基(−C)、トリフルオロメチル基(−CF)、トリフルオロメチルフェニル基(−CCF)、及びボリル基(−BR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとの1種であり、かつ前記一般式(1a)〜一般式(1k)におけるR、R、Ra、Rb、Rc及びRdの少なくとも一つが電子供与性基であるとき、当該電子供与性基が、炭素数3〜20の芳香族複素環基、アミノ基(−NH)、アリールアミノ基(−NHR又は−NR ;Rは炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20芳香族複素環基を表す。)、アルコキシ基(−OR;Rは炭素数1〜10の直鎖または環状の炭化水素基)、及びアリールオキシ基(−OR;Rは直鎖または環状の炭化水素基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜20の芳香族複素環基を表す。)から選ばれる少なくとも1種であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  5. 前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  6. 前記一般式(1)で表される構造を有するπ共役系化合物におけるXが、前記一般式(1a)、(1b)、(1d)、(1e)、(1g)、(1h)、(1i)又は(1j)で表される芳香族炭化水素基であり、R、R、Ra、Rb、Rc及びRdのうちの少なくとも1つは電子吸引性基であり、かつ少なくとも1つは電子供与性基であり、前記電子吸引性基及び前記電子供与性基に該当しないR、R、Ra、Rb、Rc及びRdのすべてが水素原子であることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。
  7. 前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8. 前記発光層が、前記一般式(1)で表される構造を有するπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種とを含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9. 前記発光層が、π共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有することを特徴とする請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  10. 下記一般式(1)で表される構造を有するπ共役系化合物を含有することを特徴とする発光性薄膜。
    Figure 2016017514
    〔式中、Aは電子吸引性基を表し、Dは電子供与性基を表す。m及びnはそれぞれ独立に1又は2の整数である。Xは、下記一般式(1a)〜(1k)で表される構造から選ばれる芳香族炭化水素基を表す。〕
    Figure 2016017514
    〔上記一般式(1a)〜(1k)で表される構造を有する芳香族炭化水素基において、R、R、Ra、Rb、Rc及びRdは、それぞれ独立に水素原子又は置換基を表す。p、q、r及びsは、それぞれ独立に0〜4の整数を表す。これらの置換基は同一でも異なっていてもよく、また、各々の置換基同士が結合して環を形成していてもよい。〕
  11. 前記一般式(1)で表される構造を有するπ共役系化合物の最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする請求項10に記載の発光性薄膜。
  12. 請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。
  13. 請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。
JP2016538300A 2014-07-31 2015-07-23 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置 Pending JPWO2016017514A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014156174 2014-07-31
JP2014156174 2014-07-31
PCT/JP2015/070917 WO2016017514A1 (ja) 2014-07-31 2015-07-23 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置

Publications (1)

Publication Number Publication Date
JPWO2016017514A1 true JPWO2016017514A1 (ja) 2017-04-27

Family

ID=55217415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016538300A Pending JPWO2016017514A1 (ja) 2014-07-31 2015-07-23 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置

Country Status (2)

Country Link
JP (1) JPWO2016017514A1 (ja)
WO (1) WO2016017514A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780605B1 (ko) 2014-09-19 2017-09-21 이데미쓰 고산 가부시키가이샤 신규의 화합물
CN107112431B (zh) 2015-02-06 2019-08-23 出光兴产株式会社 有机电致发光元件和电子设备
US10547009B2 (en) 2015-03-27 2020-01-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, electronic device and compound
EP3312159B1 (en) * 2015-06-16 2022-01-26 Idemitsu Kosan Co., Ltd Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
GB201523037D0 (en) * 2015-12-29 2016-02-10 Univ St Andrews Light emitting compounds
CN105777809B (zh) 2016-04-15 2017-07-21 京东方科技集团股份有限公司 有机电致发光材料及有机电致发光器件
CN108203420B (zh) * 2016-12-20 2020-06-09 武汉尚赛光电科技有限公司 萘苯并呋喃和蒽的衍生物及其制备方法、应用和器件
CN110337480B (zh) * 2017-02-28 2023-05-23 三星Sdi株式会社 有机光电子器件用组合物、有机光电子器件和显示器件
WO2018179482A1 (ja) * 2017-03-28 2018-10-04 Tdk株式会社 有機電界発光素子用化合物および有機電界発光素子
JPWO2018186462A1 (ja) * 2017-04-07 2020-02-27 コニカミノルタ株式会社 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP2019073489A (ja) * 2017-10-19 2019-05-16 Dic株式会社 有機エレクトロルミネッセンス素子及び材料
CN108586188B (zh) * 2018-06-01 2021-06-29 石家庄诚志永华显示材料有限公司 䓛衍生物、包含该䓛衍生物的材料和有机电致发光器件
KR102654051B1 (ko) * 2019-09-11 2024-04-03 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20210136224A (ko) 2020-05-06 2021-11-17 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 전자 장치
WO2023042814A1 (ja) * 2021-09-16 2023-03-23 株式会社Kyulux 化合物、発光材料および発光素子
CN116003340A (zh) * 2022-12-27 2023-04-25 广东工业大学 一种菲腈类有机发光化合物及其制备方法和应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69932263T2 (de) * 1999-01-08 2007-06-06 Chisso Corp. Borderivate und organische elektrolumineszierende verbindungen
JP4026273B2 (ja) * 1999-04-05 2007-12-26 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子
JP5304010B2 (ja) * 2008-04-23 2013-10-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2010195708A (ja) * 2009-02-25 2010-09-09 Toyo Ink Mfg Co Ltd カルバゾリル基を有する化合物およびその用途
JP2011012190A (ja) * 2009-07-03 2011-01-20 Toyo Ink Mfg Co Ltd 低分子塗布型有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用インキ組成物、および、有機エレクトロルミネッセンス素子
JP2011174025A (ja) * 2010-02-26 2011-09-08 Toyo Ink Sc Holdings Co Ltd 有機エレクトロルミネッセンス素子用材料およびその用途
KR101801047B1 (ko) * 2010-04-16 2017-11-28 에스에프씨 주식회사 아민계 화합물 및 이를 포함하는 유기전계발광소자
US8932734B2 (en) * 2010-10-08 2015-01-13 Universal Display Corporation Organic electroluminescent materials and devices
US9403795B2 (en) * 2011-08-05 2016-08-02 Samsung Display Co., Ltd. Carbazole-based compound and organic light-emitting diode comprising the same
KR20130025087A (ko) * 2011-09-01 2013-03-11 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 발광 화합물
JP2015118958A (ja) * 2013-12-16 2015-06-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
CN103896973B (zh) * 2014-04-11 2018-01-30 中国科学院理化技术研究所 二(三甲苯基)硼衍生物及其在白光有机电致发光二极管中的应用

Also Published As

Publication number Publication date
WO2016017514A1 (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
JP6975639B2 (ja) π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6761662B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6761463B2 (ja) 発光性薄膜及び有機エレクトロルミネッセンス素子
JP6705148B2 (ja) π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2016017514A1 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
JP6128119B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置
WO2017115608A1 (ja) π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2016017741A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、蛍光発光性化合物及び発光性薄膜
JPWO2017119203A1 (ja) 薄膜、及び有機エレクトロルミネッセンス素子
JP6673203B2 (ja) 有機エレクトロルミネッセンス素子
WO2016017760A1 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
WO2018008721A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置
JPWO2015022835A1 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物
JP6264001B2 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
WO2017126370A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6942127B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置
JP7081898B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6686748B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物
JP2017123460A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
WO2015029964A1 (ja) 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
JP2016092320A (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP6593114B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP2017028025A (ja) 有機エレクトロルミネッセンス素子、照明装置、及びπ共役系化合物
WO2016194865A1 (ja) 有機エレクトロルミネッセンス素子
JP6606986B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体