JPWO2015016178A1 - Inhibitor of apoptosis-related spec-like card protein containing 1,5-D-anhydrofructose - Google Patents

Inhibitor of apoptosis-related spec-like card protein containing 1,5-D-anhydrofructose Download PDF

Info

Publication number
JPWO2015016178A1
JPWO2015016178A1 JP2015529565A JP2015529565A JPWO2015016178A1 JP WO2015016178 A1 JPWO2015016178 A1 JP WO2015016178A1 JP 2015529565 A JP2015529565 A JP 2015529565A JP 2015529565 A JP2015529565 A JP 2015529565A JP WO2015016178 A1 JPWO2015016178 A1 JP WO2015016178A1
Authority
JP
Japan
Prior art keywords
disease
asc
therapeutic agent
agent according
symptom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015529565A
Other languages
Japanese (ja)
Other versions
JP6359013B2 (en
Inventor
丸山 征郎
征郎 丸山
聖 野間
聖 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Publication of JPWO2015016178A1 publication Critical patent/JPWO2015016178A1/en
Application granted granted Critical
Publication of JP6359013B2 publication Critical patent/JP6359013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7004Monosaccharides having only carbon, hydrogen and oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Hospice & Palliative Care (AREA)
  • Reproductive Health (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、アポトーシス関連スペック様カード蛋白質(ASC)が関与する疾患又は症状についての安全でかつ優れた治療薬、及び安全でかつ優れたASCの機能阻害薬を提供する。1,5−D−アンヒドロフルクトースを有効成分とする、アポトーシス関連スペック様カード蛋白質(ASC)の機能阻害薬。The present invention provides a safe and excellent therapeutic agent for a disease or condition associated with apoptosis-related spec-like card protein (ASC) and a safe and excellent ASC function inhibitor. A function inhibitor of apoptosis-related spec-like card protein (ASC) comprising 1,5-D-anhydrofructose as an active ingredient.

Description

本発明は、1,5−D−アンヒドロフルクトースを有効成分として含有する、アポトーシス関連スペック様カード蛋白質(ASC)の機能阻害薬及びASCが関与する疾患又は症状の治療薬に関する。本発明はまた、1,5−D−アンヒドロフルクトースを有効成分として含有する、インフラマソーム経路阻害薬及びインフラマソーム経路が関与する疾患又は症状の治療薬に関する。   The present invention relates to an apoptosis-related spec-like card protein (ASC) function inhibitor containing 1,5-D-anhydrofructose as an active ingredient and a therapeutic agent for a disease or condition involving ASC. The present invention also relates to an inflammasome pathway inhibitor and a therapeutic agent for a disease or condition involving the inflammasome pathway, which contains 1,5-D-anhydrofructose as an active ingredient.

1,5−D−アンヒドロフルクトース(以下、1,5−AFという)は、ある種の子嚢菌や紅藻由来の酵素であるα−1,4−グルカンリアーゼを澱粉あるいは澱粉分解物に作用させることで生産することができる。1,5−AFは、その分子間内に二重結合を有しており、他の単糖類と比較して反応性に富む糖である。   1,5-D-anhydrofructose (hereinafter referred to as 1,5-AF) acts on starch or starch degradation products of α-1,4-glucan lyase, an enzyme derived from certain ascomycetes and red algae. Can be produced. 1,5-AF has a double bond in the molecule, and is a highly reactive sugar compared to other monosaccharides.

1,5−AFは食品に安全に添加される抗酸化剤等としての用途が開示されている(特許文献1及び2参照)。また、この単糖は抗生物質ピロンミクロテシンの前駆体でもある(特許文献3参照)。   1,5-AF has been disclosed for use as an antioxidant or the like that can be safely added to foods (see Patent Documents 1 and 2). This monosaccharide is also a precursor of the antibiotic pyrone microthecin (see Patent Document 3).

また1,5−AFは、最近では、抗う蝕作用、血小板凝集抑制作用、グリコーゲン分解酵素阻害、アディポネクチンの産生増強、抗腫瘍作用等についても報告されており(特許文献4−11参照)、1,5−AFは健康食品あるいは医薬品等の様々な分野でもその多機能性を利用した展開が期待される糖質である。   Recently, 1,5-AF has also been reported for an anti-cariogenic effect, a platelet aggregation inhibitory effect, glycogenolytic enzyme inhibition, adiponectin production enhancement, an anti-tumor effect and the like (see Patent Document 4-11), 1 , 5-AF is a carbohydrate that is expected to be developed using its multifunctionality in various fields such as health foods and pharmaceuticals.

「炎症(inflammation)」はヒトの感染症や外傷の基盤をなす病態であるため、臨床医学のみならず、基礎医学、生物学の分野においても重要な分野である。この炎症は症候−病理形態学的特徴から、「紅腫熱疼」として把握されてきた。すなわち炎症巣は、熱を帯びて紅く腫れ、かつ痛むという特徴を有しており、この病態像は長らく中核をなすコンセプトであり、いわば「古典的炎症像」とでも言うべき概念である。しかしこの十数年の研究でサイトカインと称される細胞間のメディエーター類、そしてそれらの受容体が発見され、一挙に炎症の研究は細胞間のネットワークと細胞内のシグナル、遺伝子発現の解明の研究へとシフトしていった。その輝かしい成果で、ブルース・ボイトラー、ジュール・ホフマン、ラルフ・スタインマン各博士らが2011年にノーベル賞に輝いたことからも窺い知ることができるように、まさにこの分野は現在オンゴーイングの領域であるといえる。この3氏の研究により、炎症が免疫と密接にリンクしていること、そして細胞−受容体とその下流のシグナルにより、免疫は自然免疫と獲得免疫に2大分類されること等の概念が確立された。これは古典的炎症像を塗り替える、いわば「近代的炎症像」とも言うべき炎症像である。これらの進歩は治療医学に関してもサイトカイン介入療法(抗サイトカイン、又はその受容体のブロッカー、又は抗体)へと発展していった。このうち抗体を用いる療法は「生物学的製剤」と言われ、慢性関節リウマチ等の疾患の治療においては進歩を遂げている。しかしこの生物学的製剤は全ての炎症に対して奏功するわけではなく一部の疾患に限られている。さらに、生物学的製剤が奏功する場合であっても、副作用及びコスト等の多くの問題があることが判明しつつある。   “Inflammation” is an important field not only in clinical medicine but also in the fields of basic medicine and biology because it is a pathological condition underlying human infection and trauma. This inflammation has been grasped as “erythema fever” from the symptom-pathomorphological characteristics. In other words, the inflammatory lesion is characterized by a fever, red swelling, and soreness, and this pathological image is a core concept for a long time, which is a concept that should be called a “classical inflammation image”. However, in recent decades, intercellular mediators called cytokines and their receptors have been discovered. Research on inflammation is a study of elucidation of intercellular networks, intracellular signals, and gene expression. It shifted to. As this brilliant achievement makes it possible to learn from the fact that Dr. Bruce Voithler, Jules Hoffman, Ralph Steinmann and others won the Nobel Prize in 2011, this field is exactly in the ongoing territory. It can be said that there is. These three studies established the concept that inflammation is closely linked to immunity, and that immunity is broadly classified into innate immunity and acquired immunity based on cell-receptors and downstream signals. It was done. This is an inflammatory image that can be called a “modern inflammatory image”. These advances have also evolved into therapeutic interventions (anti-cytokines, or blockers of their receptors, or antibodies) in therapeutic medicine. Of these, therapies using antibodies are referred to as “biological preparations”, and progress has been made in the treatment of diseases such as rheumatoid arthritis. However, this biologic is not effective for all inflammations and is limited to some diseases. Furthermore, it is becoming clear that there are many problems, such as side effects and costs, even when the biologic is successful.

一方、上述のサイトカイン類とその受容体からのシグナルは肥満や糖尿病、動脈硬化、高血圧、さらには加齢等によっても微量ではあるが慢性持続的に作動していることが判明し、「自然炎症」なる概念が登場してきつつある(図1)。このような概念の進化の背景には、PAMPs(Pathogen Associated Molecular Patterns:病原微生物由来の分子、あるいはその断片)、DAMPs(Damage Associated Molecular Patterns:障害を受けた、あるいは病態下で生成された自己の細胞や蛋白、あるいは組織由来の分子等)を認識するPRRs(Pattern Recognition Receptors)が発見・同定されたこと、そしてそれからのシグナル伝達とそれによって活性化される細胞内マシナリー;NF-κBとインフラマソーム(inflammasome)が明らかになってきたことが挙げられる(図2)。   On the other hand, the signals from the above-mentioned cytokines and their receptors were found to be chronically sustained even though they were traced by obesity, diabetes, arteriosclerosis, hypertension, and aging. The concept of “is emerging” (FIG. 1). The evolution of this concept is based on PAMPs (Pathogen Associated Molecular Patterns: molecules derived from pathogenic microorganisms or fragments thereof), DAMPs (Damage Associated Molecular Patterns: self-affected or generated under pathological conditions). PRRs (Pattern Recognition Receptors) that recognize cells, proteins, or tissue-derived molecules) have been discovered and identified, and signal transduction from them and intracellular machinery activated by them; NF-κB and inflamma It is mentioned that the inflamasome has been revealed (FIG. 2).

ここに至り、炎症の研究は一挙に細胞内シグナル伝達と細胞内マシナリー、特にインフラマソームの活性化と、その下流に移ってきつつある。従って今後、炎症とその治療の研究は、一斉に細胞内にシフトすることが予想され、事実その兆しは見えつつある。   At this point, research on inflammation is moving to the downstream of intracellular signaling and intracellular machinery, especially inflammasome activation. Therefore, it is expected that research on inflammation and its treatment will shift into cells all at once in the future, and in fact, the signs are being seen.

上記細胞内炎症発現のプロセスは図2、3−1に示すように、数千個にも上ると考えられ始めたPAMPs、DAMPsが生体内の細胞にあまねく発現している細胞表面、あるいは細胞内のPRRsによって認識されてシグナルは細胞内に伝達され、一つはNF-κBへ、あと一つはインフラマソームに収束することが判明してきた。すなわち「情報の収束」である。そして最終的にはNF-κBとインフラマソームからの情報はさらにプロカスパーゼ1(procaspase 1)のカスパーゼ1への活性化という一点に集中される。すなわち細胞内で炎症発現のためのシグナルのカスケード(瀑状型)反応を構築していると言い得る。   As shown in FIGS. 2 and 3-1, the intracellular inflammation expression process is started to be considered to be several thousand PAMPs and DAMPs that are generally expressed in cells in the living body, or intracellular It has been found that a signal is transmitted into the cell by being recognized by the PRRs, and one converges to NF-κB and the other to the inflammasome. That is, “information convergence”. Finally, the information from NF-κB and inflammasome is further concentrated on one point of activation of procaspase 1 to caspase-1. In other words, it can be said that a cascade of signals for the expression of inflammation in the cell is constructed.

カスパーゼ1の生成により、pro−IL−18、pro−IL−1βの成熟化とIL−18、IL−1βの細胞外への放出、それによる免疫細胞(T細胞、B細胞、樹状細胞、好中球等)の「呼び寄せ(chemotaxis)」が開始され、当該部位に炎症巣が形成されることになる。この点で重要な点は先ず、NF−κBの活性化で、pro−IL−1βとpro−IL−18(いずれも前駆体)が細胞内に産生・蓄積され、次に活性化インフラマソームがプロカスパーゼ1をカスパーゼ1に活性化してはじめて、活性を持ったカスパーゼがそれぞれ、pro−IL−18とpro−IL−βを、成熟型の活性化IL−18,IL−1βに活性化して、細胞外に放出するということである(図3−1)。   Production of caspase 1 leads to maturation of pro-IL-18, pro-IL-1β and release of IL-18, IL-1β to the outside, thereby immune cells (T cells, B cells, dendritic cells, “Chemotaxis” of neutrophils etc. is initiated, and an inflammatory lesion is formed at the site. The important point in this respect is first that NF-κB is activated, and pro-IL-1β and pro-IL-18 (both precursors) are produced and accumulated in cells, and then activated inflammasome Activates procaspase 1 to caspase 1, and active caspases activate pro-IL-18 and pro-IL-β to mature activated IL-18 and IL-1β, respectively. That is, it is released extracellularly (FIG. 3-1).

インフラマソームは、図3−2に示すような7量体を形成することによりカスパーゼ1を活性化すると考えられている。具体的には、CARDには重合する性質があり、そのためカスパーゼ1(CARD・p20/p16)とASC(PYD・CARD)とがCARDを介して結合し、これにNLR(PYD/NACHT)がPYDを介して結合して7量体を形成する。   The inflammasome is thought to activate caspase 1 by forming a heptamer as shown in FIG. 3-2. Specifically, CARD has a property of polymerizing, so that caspase 1 (CARD · p20 / p16) and ASC (PYD · CARD) are bound via CARD, and NLR (PYD / NACHT) is bound to PYD. To form a heptamer.

このASCは、本来、サイトゾルに存在し、トリトンX−100(フェニルポリエチレングリコール型のノンイオン界面活性剤)を含む緩衝液に可溶な蛋白質であるが、レチノイン酸や抗癌剤等のアポトーシス誘発剤によって誘発されるアポトーシスに伴い、トリトンX−100を含む緩衝液に不溶化し、凝集を起こす。ASCがアポトーシスに伴ってトリトンX−100を含む緩衝液に対して溶性から不溶性に変化する原因は、コンフォメーションの変化によるものと考えられる。また、ASCは、自らアポトーシスを誘発する作用はないが、他の因子によって誘発されるアポトーシスを促進する作用を有する(特許文献12参照)。   This ASC is originally a protein that exists in the cytosol and is soluble in a buffer containing Triton X-100 (a non-ionic surfactant of phenyl polyethylene glycol type). However, the ASC may be affected by apoptosis-inducing agents such as retinoic acid and anticancer agents. Along with the induced apoptosis, it becomes insoluble in a buffer containing Triton X-100 and causes aggregation. The cause that ASC changes from soluble to insoluble in a buffer containing Triton X-100 with apoptosis is considered to be due to a change in conformation. ASC has no effect of inducing apoptosis by itself, but has an effect of promoting apoptosis induced by other factors (see Patent Document 12).

NF-κBとインフラマソームは上皮系細胞、神経細胞等、免疫細胞以外の細胞や、免疫担当細胞、すなわちリンパ球細胞(lymphoid cells)がレジデントしていない組織や臓器の細胞群にもあまねく発現しているが、これらの非骨髄(non-myeloid)系細胞も当然、生体内外からの侵襲に会うので、生体防御的応答が要求される。この際に、non-myeloid組織はPAMPsやDAMPsの情報をキャッチして、免疫細胞の遊走因子であるIL−18、IL−1βを産生・放出して、myeloid系細胞を集簇させることで、その部位に免疫反応を遂行しうる生体防御のためのリンパ球等から成るいわば擬似リンパ節を構築するものと考えられる。   NF-κB and inflammasome are expressed in cells other than immune cells, such as epithelial cells and neurons, and cells in tissues and organs where lymphocyte cells (lymphoid cells) are not resident However, since these non-myeloid cells naturally meet invasion from inside and outside the living body, a biodefense response is required. At this time, the non-myloid tissue catches information on PAMPs and DAMPs, produces and releases IL-18 and IL-1β, which are migratory factors of immune cells, and collects myloid cells. It is considered that a so-called pseudo-lymph node consisting of lymphocytes for biological defense capable of carrying out an immune reaction at that site is constructed.

非特許文献1及び2には以下の事項が記載されている。自然免疫や獲得免疫に関る細胞群(マクロファージや樹状細胞等)は細胞表面にToll−likeレセプター(TLRs)を発現しており、これらの受容体にDAMPsやPAMPsが結合すると、これらの細胞は活性化され、種々のシグナルが伝達されるが、これらは合流し、1つはインフラマソームと称される蛋白複合体に収束する。この複合体はNod−like receptor(NLR)、Apoptosis−associated speck−like protein containing a caspase recruitment domain(ASC)、プロカスパーゼ1から構成される。NLRにTRLs同様、DAMPsやPAMPsが結合することにより、インフラマソームが活性化される。   Non-Patent Documents 1 and 2 describe the following matters. Cell groups related to innate immunity and acquired immunity (macrophages, dendritic cells, etc.) express Toll-like receptors (TLRs) on the cell surface, and when these receptors bind DAMPs or PAMPs, these cells Are activated and transmit various signals, but they merge and one converges to a protein complex called the inflammasome. This complex is composed of Nod-like receptor (NLR), Apoptosis-associated speck-like protein containing re- sessment domain (ASC), and procaspase 1. Like TRLs, inflammasome is activated by binding of DAMPs and PAMPs to NLRs.

炎症性サイトカインであるIL−1βの分泌には少なくとも2つのステップが必要である。1つはTLRsからの刺激(シグナル1)で、これによりpro−IL−1β(IL−1βの前駆体)が細胞質内で作られる。次に、インフラマソームの活性化(シグナル2)からのシグナルでプロカスパーゼ1がカスパーゼ1に活性化され、これによりカスパーゼ1がpro−IL−1βを切断し、活性化IL−1βが細胞外に分泌され、感染局所への免疫担当症細胞の遊走等、さまざまな免疫応答に関与する。また、IL−18も同様のメカニズムで分泌される(非特許文献1及び2参照)。ここで最近の知見で重要な点はカスパーゼの活性化は、IL−1βとIL−18の生成と細胞外放出を惹起するのみでなく、細胞DNAの断片化、pyroptosisと呼ばれる細胞の膨化と細胞死(炎症性programmed cell death)を引き起こすということである(図4)。   Secretion of IL-1β, an inflammatory cytokine, requires at least two steps. One is stimulation from TLRs (signal 1), which creates pro-IL-1β (a precursor of IL-1β) in the cytoplasm. Next, procaspase 1 is activated to caspase 1 by a signal from inflammasome activation (signal 2), whereby caspase 1 cleaves pro-IL-1β, and activated IL-1β is extracellular. And is involved in various immune responses such as migration of immunocompetent cells to the infected area. IL-18 is also secreted by a similar mechanism (see Non-Patent Documents 1 and 2). Here, an important point in recent knowledge is that caspase activation not only induces production and extracellular release of IL-1β and IL-18, but also fragmentation of cellular DNA, cell swelling and cell growth called pyroptosis It causes death (inflammatory programmed cell death) (FIG. 4).

クライオピリン関連周期熱症候群(cryopyrin−associated periodic syndrome: CAPS)は、インフラマソームの主要成分であるNLRP3遺伝子に変異が生じ、インフラマソームが活性化した状態が続き、IL−1βの過剰産生が起こる。同様に家族性地中海熱、Pyogenic arthritiswith pyoderma gangrenosum and acne(PAPA)症候群、Majeed症候群、高IgD症候群、反復性胞状奇胎、DIRAにおいてもインフラマソームが活性化した状態が続き、IL−1βの過剰産生が起こることが知られている(非特許文献1及び2参照)。これらの疾患に対してIL−1βの阻害薬であるアナキンラ、リロナセプト、カナキヌマブが臨床で使用されているが、すべての患者に対して効果があるわけではない(非特許文献3参照)。その上、これらのIL−1βの阻害薬アナキンラ、リロナセプト、カナキヌマブは、当然のことながらIL−18を阻害し得ない。   In cryopyrin-associated periodic syndrome (CAPS), the NLRP3 gene, which is a major component of inflammasome, is mutated, the inflammasome is activated, and overproduction of IL-1β continues. Occur. Similarly, familial Mediterranean fever, Pyogenetic arthritis with pyderma gangrenosum and acne (PAPA) syndrome, Majeed's syndrome, high IgD syndrome, recurrent hydatidiform mole, and DIRA continue to be inflammasome-activated, with excessive IL-1β Production is known to occur (see Non-Patent Documents 1 and 2). Anakinra, rilonacept, and canakinumab, which are inhibitors of IL-1β, are used clinically for these diseases, but they are not effective for all patients (see Non-patent Document 3). In addition, these IL-1β inhibitors anakinra, rilonacept, and canakinumab cannot of course inhibit IL-18.

上記した疾患は、遺伝子性のものであるが、内因性の因子であるDAMPsや外来性PAMPsによるインフラマソームの活性化を経てプロカスパーゼ1活性化が関係する病気として痛風、アルツハイマー病、2型糖尿病、そしてこれらの病態における急性増悪や急性転化が知られており(非特許文献2)、これらの病気も現状の治療法ではコントロールが効かないことが知られている。   The above-mentioned diseases are genetic, but gout, Alzheimer's disease, type 2 are diseases in which procaspase 1 activation is involved through activation of inflammasome by endogenous factors DAMPs and exogenous PAMPs. It is known that diabetes, and acute exacerbations and transformations in these pathological conditions (Non-patent Document 2), and these diseases are also known to be uncontrollable by current treatment methods.

このように、インフラマソームからカスパーゼ1の生成が炎症の発現に決定的に重要であることが判明してきたので、現在、インフラマソーム阻害剤やカスパーゼ阻害剤は世界中でいっせいに研究開始されている。そして、確実に症状を抑制でき、かつ、安全で長期に使用し得る薬剤の開発が目指されている。一方ASCが自然免疫系の活性化、癌の抑制、自然炎症疾患の抑制等に寄与する蛋白質であることも明らかになってきている。   Thus, since it has been found that the production of caspase 1 from inflammasome is critical for the development of inflammation, research on inflammasome inhibitors and caspase inhibitors has been started all over the world. Yes. And development of the medicine which can suppress a symptom reliably and can be used for a long time safely is aimed at. On the other hand, it has also become clear that ASC is a protein that contributes to activation of the innate immune system, suppression of cancer, suppression of natural inflammatory diseases, and the like.

特表平9−505988号公報Japanese National Patent Publication No. 9-505988 特表2001−89377号公報Special table 2001-89377 仏国特許出願公開第2617502号French Patent Application Publication No. 2617502 特開2004−123604号公報JP 2004-123604 A WO2010/082661WO2010 / 082661 WO2004/045628WO2004 / 045628 特開2012−1515号公報JP 2012-1515 A 特開2007−30146号公報JP 2007-30146 A 特開2007−91644号公報JP 2007-91644 A 特開2006−306814号公報JP 2006-306814 A 特開2005−154425号公報JP 2005-154425 A 特開2001−275681号公報JP 2001-275681 A

斎藤潤,日本臨床免疫学会会誌,Vol.34,(2011),20−28Jun Saito, Journal of Japanese Society for Clinical Immunology, Vol. 34, (2011), 20-28 増本純也,日本臨床免疫学会会誌,Vol.34,(2011),346−354Junya Masumoto, Journal of Japanese Society for Clinical Immunology, Vol. 34, (2011), 346-354 Biologic drugs in autoinflammatory syndromes,Caorsi,R.,et al.,Autoimmunity Reviews,12,(2012)81−86Biological drugs in autoinflammatory syndromes, Caorsi, R .; , Et al. , Autoimmunity Reviews, 12, (2012) 81-86.

したがって本発明は、アポトーシス関連スペック様カード蛋白質(ASC)が関与する疾患又は症状についての安全でかつ優れた治療薬、及び安全でかつ優れたASCの機能阻害薬を提供することを課題とする。   Therefore, an object of the present invention is to provide a safe and excellent therapeutic agent for a disease or symptom related to apoptosis-related spec-like card protein (ASC) and a safe and excellent ASC function inhibitor.

本発明者らは、生体内糖代謝産物である1,5−AFがASCを標的蛋白とすることを見出し、本発明に到達した。さらに本発明者らは、1,5−AFがインフラマソーム経路を阻害することを見出した。これまでインフラマソーム経路の阻害系は見出されていなかった。つまり、インフラマソーム経路を阻害する化合物として初めて見出されたのが、1,5−AFである。   The present inventors have found that 1,5-AF, which is an in vivo sugar metabolite, uses ASC as a target protein, and have reached the present invention. Furthermore, the inventors have found that 1,5-AF inhibits the inflammasome pathway. Until now, an inhibitory system for the inflammasome pathway has not been found. That is, 1,5-AF was first discovered as a compound that inhibits the inflammasome pathway.

本発明は以下の発明を包含する。   The present invention includes the following inventions.

(1)1,5−D−アンヒドロフルクトースを有効成分とする、アポトーシス関連スペック様カード蛋白質(ASC)の機能阻害薬。 (1) A function inhibitor of apoptosis-related spec-like card protein (ASC) comprising 1,5-D-anhydrofructose as an active ingredient.

(2)ASCの機能が、カスパーゼ1及びNOD様受容体との複合体形成能である、上記(1)に記載の阻害薬。 (2) The inhibitor according to (1) above, wherein the function of ASC is the ability to form a complex with caspase 1 and a NOD-like receptor.

(3)複合体がインフラマソームである、上記(2)に記載の阻害薬。 (3) The inhibitor according to (2) above, wherein the complex is an inflammasome.

(4)インフラマソームが関与する経路における、プロカスパーゼ1のカスパーゼ1への活性化を阻害する、上記(3)に記載の阻害薬。 (4) The inhibitor according to (3) above, which inhibits activation of procaspase 1 to caspase 1 in a pathway involving inflammasome.

(5)1,5−D−アンヒドロフルクトースを有効成分とする、アポトーシス関連スペック様カード蛋白質(ASC)が関与する疾患又は症状の治療薬。 (5) A therapeutic drug for a disease or symptom involving apoptosis-related spec-like card protein (ASC) comprising 1,5-D-anhydrofructose as an active ingredient.

(6)ASCが関与する疾患又は症状が、ASCとカスパーゼ1及びNOD様受容体との複合体形成が関与する疾患又は症状である、上記(5)に記載の治療薬。 (6) The therapeutic agent according to (5) above, wherein the disease or symptom involving ASC is a disease or symptom involving complex formation between ASC, caspase 1 and NOD-like receptor.

(7)複合体がインフラマソームである、上記(6)に記載の治療薬。 (7) The therapeutic agent according to (6) above, wherein the complex is inflammasome.

(8)ASCが関与する疾患又は症状が、カスパーゼ1が関与する疾患又は症状である、上記(5)〜(7)のいずれかに記載の治療薬。 (8) The therapeutic agent according to any one of (5) to (7) above, wherein the disease or symptom associated with ASC is a disease or symptom associated with caspase 1.

(9)ASCが関与する疾患又は症状が、IL−1β及び/又はIL−18が関与する疾患又は症状である、上記(5)〜(8)のいずれかに記載の治療薬。 (9) The therapeutic agent according to any one of (5) to (8) above, wherein the disease or symptom associated with ASC is a disease or symptom associated with IL-1β and / or IL-18.

(10)ASCが関与する疾患又は症状が、全身性炎症性反応症候群SIRSである、上記(5)〜(9)のいずれかに記載の治療薬。 (10) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom involving ASC is systemic inflammatory response syndrome SIRS.

(11)ASCが関与する疾患又は症状が、慢性関節リウマチである、上記(5)〜(9)のいずれかに記載の治療薬。 (11) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom associated with ASC is rheumatoid arthritis.

(12)ASCが関与する疾患又は症状が、アルツハイマー病である、上記(5)〜(9)のいずれかに記載の治療薬。 (12) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom associated with ASC is Alzheimer's disease.

(13)ASCが関与する疾患又は症状が、クライオピリン関連周期熱症候群である、上記(5)〜(9)のいずれかに記載の治療薬。 (13) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom associated with ASC is cryopyrine-related periodic fever syndrome.

(14)ASCが関与する疾患又は症状が、家族性地中海熱である、上記(5)〜(9)のいずれかに記載の治療薬。 (14) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom associated with ASC is familial Mediterranean fever.

(15)ASCが関与する疾患又は症状が、PAPA症候群である、上記(5)〜(9)のいずれかに記載の治療薬。 (15) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom associated with ASC is PAPA syndrome.

(16)ASCが関与する疾患又は症状が、Majeed症候群である、上記(5)〜(9)のいずれかに記載の治療薬。 (16) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom associated with ASC is Majeed's syndrome.

(17)ASCが関与する疾患又は症状が、高IgD症候群である、上記(5)〜(9)のいずれかに記載の治療薬。 (17) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom involving ASC is high IgD syndrome.

(18)ASCが関与する疾患又は症状が、反復性胞状奇胎である、上記(5)〜(9)のいずれかに記載の治療薬。 (18) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom involving ASC is repetitive hydatidiform mole.

(19)ASCが関与する疾患又は症状が、DIRAである、上記(5)〜(9)のいずれかに記載の治療薬。 (19) The therapeutic agent according to any of (5) to (9) above, wherein the disease or symptom associated with ASC is DIRA.

(20)ASCが関与する疾患又は症状が、炭疽菌感染症である、上記(5)〜(9)のいずれかに記載の治療薬。 (20) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom associated with ASC is anthrax infection.

(21)ASCが関与する疾患又は症状が、急性呼吸促拍症候群である、上記(5)〜(9)のいずれかに記載の治療薬。 (21) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom associated with ASC is acute respiratory stimulation syndrome.

(22)ASCが関与する疾患又は症状が、炎症性細胞死である、上記(5)〜(9)のいずれかに記載の治療薬。 (22) The therapeutic agent according to any one of (5) to (9) above, wherein the disease or symptom involving ASC is inflammatory cell death.

(23)ASCが関与する疾患又は症状が、石綿肺である、上記(5)〜(9)のいずれかに記載の治療薬。 (23) The therapeutic agent according to any of (5) to (9) above, wherein the disease or symptom associated with ASC is asbestosis.

本発明者らは、1,5-AFの標的蛋白質がASCであることを見出した。さらに本発明者らは、特に生体細胞には細胞内炎症カスケードを制御するための装置があり、それが1,5-AF経路であることを見出した。1,5-AFは生体内分子であり、副作用も無いことから、炎症制御の大きな武器になるもと期待される。また、IL−1βの阻害薬アナキンラ、リロナセプト、カナキヌマブはいずれも蛋白質であり、製造コストが高いが、1,5−AFはこれらの蛋白質製剤に比べると格段に安いコストで製造できるため、本発明の薬剤はこれらと比較して経済的にも有利である。   The present inventors have found that the target protein of 1,5-AF is ASC. Furthermore, the present inventors have found that there is a device for controlling the intracellular inflammatory cascade, particularly in living cells, which is the 1,5-AF pathway. Since 1,5-AF is an in vivo molecule and has no side effects, it is expected to become a great weapon for controlling inflammation. In addition, IL-1β inhibitors anakinra, rilonacept, and canakinumab are all proteins and are expensive to produce, but 1,5-AF can be produced at a much lower cost than these protein preparations. These drugs are economically advantageous as compared with these drugs.

ASCが関与する疾患又は症状、特にインフラマソーム経路が関与する疾患又は症状、具体的には活性化プロカスパーゼ1が関与した自己炎症性疾患が起こっている哺乳動物個体に本発明の薬剤を適当量しかるべき方法で投与することにより、自然免疫の中心的役割を果たすIL−1β及び/又はIL−18生成を有意に抑え、自然免疫の過剰により発症する疾患群の発生を抑制することが可能となる。   The agent of the present invention is suitable for a mammal individual having a disease or symptom involving ASC, particularly a disease or symptom involving an inflammasome pathway, specifically, an autoinflammatory disease involving activated procaspase 1 By administering in an appropriate amount, it is possible to significantly suppress the production of IL-1β and / or IL-18, which plays a central role in innate immunity, and to suppress the occurrence of disease groups that develop due to excessive innate immunity It becomes.

本発明の薬剤によれば、ASCが関与する疾患又は症状を緩和、抑制することが可能となる。また本発明の薬剤によれば、インフラマソーム経路が関与する疾患又は症状、特には活性型カスパーゼ1が関与する疾患又は症状を予防及び/又は治療し、活性化した自然免疫を有意に緩和、抑制することが可能となる。   According to the drug of the present invention, it becomes possible to alleviate or suppress diseases or symptoms associated with ASC. Further, according to the agent of the present invention, a disease or symptom involving the inflammasome pathway, particularly a disease or symptom involving active caspase 1 is prevented and / or treated, and the activated innate immunity is significantly alleviated, It becomes possible to suppress.

図1は、自然炎症と疾患との関係を説明する図である。FIG. 1 is a diagram illustrating the relationship between natural inflammation and disease. 図2は、PAMPs及びDAMPsによるNF−κB及びインフラマソームの活性化を説明する図である。FIG. 2 is a diagram for explaining the activation of NF-κB and inflammasome by PAMPs and DAMPs. 図3−1は、インフラマソーム経路活性化を経てプロカスパーゼ1が活性化される経路を説明する図である。FIG. 3-1 is a diagram illustrating a pathway in which procaspase 1 is activated through inflammasome pathway activation. 図3−2は、インフラマソーム多重蛋白質複合体の形態を説明する図である。3-2 is a figure explaining the form of an inflammasome multiprotein complex. 図4は、プロカスパーゼ1が、IL−1β、IL−18の産生・放出のみならず、DNAの断片化、pyroptosisと呼ばれるプログラム化された細胞死をも引き起こすことを示した図である。FIG. 4 shows that procaspase 1 causes not only production and release of IL-1β and IL-18 but also DNA fragmentation and programmed cell death called pyroptosis. 図5はマウス由来骨髄マクロファージにおけるIL−1β生成に対する1,5−AFの抑制効果の試験結果を示す図である。グラフ右は添加した物質で、括弧内は活性化されるNLRを示す。FIG. 5 is a graph showing the test results of the inhibitory effect of 1,5-AF on IL-1β production in mouse-derived bone marrow macrophages. The right side of the graph shows the added substance, and the parenthesis shows the activated NLR. 図6は、マウス由来骨髄マクロファージにおけるIL−1β生成に対する1,5−AFの抑制効果の試験結果を示す図である。グラフ右は添加した物質で、括弧内は活性化されるNLRを示す。FIG. 6 is a graph showing the test results of the inhibitory effect of 1,5-AF on IL-1β production in mouse-derived bone marrow macrophages. The right side of the graph shows the added substance, and the parenthesis shows the activated NLR. 図7は、マウス由来骨髄マクロファージにおけるIL−18生成に対する1,5−AFの抑制効果の試験結果を示す図である。グラフ右は添加した物質で、括弧内は活性化されるNLRを示す。FIG. 7 is a graph showing the test results of the inhibitory effect of 1,5-AF on IL-18 production in mouse-derived bone marrow macrophages. The right side of the graph shows the added substance, and the parenthesis shows the activated NLR. 図8は、マウス由来骨髄マクロファージにおけるIL−18生成に対する1,5−AFの抑制効果の試験結果を示す図である。グラフ右は添加した物質で、括弧内は活性化されるNLRを示す。FIG. 8 is a diagram showing the test results of the inhibitory effect of 1,5-AF on IL-18 production in mouse-derived bone marrow macrophages. The right side of the graph shows the added substance, and the parenthesis shows the activated NLR. 図9は、アラム又は尿酸塩によるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 9 is a diagram showing the test results of the inhibitory effect of 1,5-AF on inflammasome activation by alum or urate. 図10は、ニゲリシン及びATPによるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 10 is a diagram showing the test results of the inhibitory effect of 1,5-AF on inflammasome activation by nigericin and ATP. 図11は、ATPによるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 11 is a diagram showing test results of the inhibitory effect of 1,5-AF on inflammasome activation by ATP. 図12は、炭疽菌毒素によるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 12 is a figure which shows the test result of the inhibitory effect of 1, 5- AF with respect to inflammasome activation by anthrax toxin. 図13は、フラジェリンによるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 13 is a diagram showing the test results of the inhibitory effect of 1,5-AF on inflammasome activation by flagellin. 図14は、poly(dA:dT)によるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 14 is a diagram showing the test results of the inhibitory effect of 1,5-AF on inflammasome activation by poly (dA: dT). 図15は、1,5−AFがプロカスパーゼ1のカスパーゼ1への活性化を抑制することを示す図である。FIG. 15 is a diagram showing that 1,5-AF suppresses activation of procaspase 1 to caspase 1. 図16は、ロテノンによるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 16 is a diagram showing the test results of the inhibitory effect of 1,5-AF on inflammasome activation by rotenone. 図17は、マウスALIモデルの肺組織像及び細胞数を示す図である。FIG. 17 is a diagram showing lung tissue images and cell numbers of the mouse ALI model. 図18は、SIRSモデルに1,5−AFを投与した後の時間と生存率との関係を示す図である。FIG. 18 is a diagram showing the relationship between the time after administration of 1,5-AF to the SIRS model and the survival rate. 図19は、1,5−AFの標的蛋白質がASCであることを示す図である。FIG. 19 is a diagram showing that the target protein of 1,5-AF is ASC. 図20a及びbは、石綿肺のモデル実験におけるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。20a and 20b are diagrams showing test results of the inhibitory effect of 1,5-AF on inflammasome activation in an asbestosis model experiment. 図21は、炭疽菌毒素によるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 21 is a diagram showing the test results of the inhibitory effect of 1,5-AF on inflammasome activation by anthrax toxin. 図22は、ヒト末梢血を用いて行った、ATPによるインフラマソーム活性化に対する1,5−AFの抑制効果の試験結果を示す図である。FIG. 22 is a diagram showing the test results of the inhibitory effect of 1,5-AF on inflammasome activation by ATP, performed using human peripheral blood.

本発明の薬剤に使用される1,5−AFは、既に公知の方法、例えば、上記特許文献1に記載の方法によって調製可能である。   1,5-AF used for the drug of the present invention can be prepared by a known method, for example, the method described in Patent Document 1 above.

本発明の薬剤は、アポトーシス関連スペック様カード蛋白質(ASC)の機能、特には、カスパーゼ1及びNOD様受容体との複合体形成能を阻害する。ここでASCが「複合体形成能」を有するとは、ASCがアダプター蛋白質として機能することを示す。特には複合体がインフラマソームである場合、本発明の薬剤は、インフラマソーム経路を阻害し、特にはプロカスパーゼ1のカスパーゼ1への活性化を抑制することができる。ここで、インフラマソーム経路とはインフラマソームを介して行われる一連のシグナル伝達経路を示す(図3−1)。インフラマソームは、ASCがカスパーゼ1及びNOD様受容体と7量体の複合体を形成することによりカスパーゼ1を活性化すると考えられている(図3−2)。   The agent of the present invention inhibits the function of apoptosis-related spec-like card protein (ASC), particularly the ability to form a complex with caspase 1 and NOD-like receptor. Here, ASC having “complex forming ability” indicates that ASC functions as an adapter protein. In particular, when the complex is an inflammasome, the agent of the present invention can inhibit the inflammasome pathway, and in particular, can suppress the activation of procaspase 1 to caspase-1. Here, the inflammasome pathway indicates a series of signal transduction pathways performed via the inflammasome (FIG. 3-1). The inflammasome is thought to activate caspase 1 when ASC forms a complex of caspase 1 and NOD-like receptors with a 7-mer (FIG. 3-2).

また、本発明の薬剤は、ASCが関与する疾患又は症状、特には、ASCとカスパーゼ1及びNOD様受容体との複合体形成が関与する疾患又は症状の治療薬である。特には複合体がインフラマソームである場合、本発明の薬剤は、インフラマソームが活性化した自己炎症性疾患の予防若しくは治療を目的として使用することができる。この場合インフラマソーム活性化、特にはカスパーセ1活性化に伴う自己炎症性疾患の自然免疫を抑えることによりその症状を抑えるものであり、よって、これらの疾患の予防若しくは治療を目的として使用することが可能である。   The drug of the present invention is a therapeutic agent for a disease or symptom associated with ASC, particularly a disease or symptom associated with complex formation of ASC with caspase 1 and NOD-like receptor. In particular, when the complex is inflammasome, the agent of the present invention can be used for the purpose of preventing or treating autoinflammatory diseases in which inflammasome is activated. In this case, the symptoms are suppressed by suppressing innate immunity of autoinflammatory diseases associated with inflammasome activation, in particular, caspase 1 activation, and therefore used for the purpose of preventing or treating these diseases. Is possible.

ASCが関与する疾患又は症状としては、例えば癌、免疫抑制性疾患、自己免疫疾患、ウイルス感染症、神経変性疾患、内分泌疾患、炎症性疾患、臓器移植障害及び放射線障害等が挙げられる。   Examples of the disease or symptom related to ASC include cancer, immunosuppressive disease, autoimmune disease, viral infection, neurodegenerative disease, endocrine disease, inflammatory disease, organ transplantation disorder and radiation disorder.

さらに、上記疾患又は症状としては、インフラマソーム経路が関与する疾患又は症状、特には、インフラマソームを介して行われる一連のシグナル伝達により引き起こされる疾患又は症状が挙げられる。インフラマソーム経路が関与する疾患又は症状としては、活性化プロカスパーゼ1が関与した疾患又は症状が挙げられる。また、インフラマソーム経路が関与する疾患又は症状としては、自己炎症性疾患、特にはIL−1β及び/又はIL−18の生成により引き起こされる疾患が挙げられる。具体的には、インフラマソーム経路が関与する疾患としては、例えば、クライオピリン関連周期熱症候群、家族性地中海熱、PAPA症候群(Pyogenic arthritiswith pyoderma gangrenosum and acne)症候群、Majeed症候群、高IgD症候群、反復性胞状奇胎、DIRA(deficiency of the IL−1 receptor antagonist)、痛風、アルツハイマー病、2型糖尿病、炎症性腸疾患、慢性関節リウマチ、炭疽菌感染症、急性肺障害(Acute Lung Injury)、急性呼吸促拍症候群(Acute Repiratory Distress syndrome)及び全身性炎症性反応症候群SIRS(Systemic Inflammatory Response syndrome)、石綿肺及び若年性特発性関節炎等が挙げられる。   Further, the disease or symptom includes a disease or symptom involving the inflammasome pathway, particularly a disease or symptom caused by a series of signal transduction performed via the inflammasome. The disease or symptom involving the inflammasome pathway includes a disease or symptom involving activated procaspase-1. In addition, diseases or conditions involving the inflammasome pathway include autoinflammatory diseases, particularly diseases caused by the production of IL-1β and / or IL-18. Specifically, the diseases involving the inflammasome pathway include, for example, cryopyrine-related periodic fever syndrome, familial Mediterranean fever, PAPA syndrome (Pyogenetic arthritis with pyderma gangrenosum and acne) syndrome, Majeed syndrome, high IgD syndrome, repetitive Hydatidiform mole, DIRA (defectency of the IL-1 receptor antagonist), gout, Alzheimer's disease, type 2 diabetes, inflammatory bowel disease, rheumatoid arthritis, anthrax infection, acute lung injury (Acute Lung Injury), acute Respiratory Distress Syndrome and Systemic Inflammatory Response Syndrome SIRS (Systemic Inflammato ry Response syndrome), asbestosis and juvenile idiopathic arthritis.

全身性炎症性反応症候群SIRSには、外傷、熱傷、膵炎、侵襲の強い術後等感染を伴わない様々な原因によるものと、細菌、真菌、寄生虫、ウイルス等による感染を伴うものがあり、特に感染に起因するSIRSとして敗血症(sepsis)を挙げることができる。敗血症は、炎症性サイトカインによる全身の反応性炎症SIRSの病態に加えて、血管内凝固障害(出血や血栓等)、尿量減少、血圧低下等の全身の臓器障害が顕著に出現した病態である。つまり、いずれもインフラマソームの活性化に起因する病態であるが、SIRSは主として全身の炎症性病態、インフラマソームの活性化に主眼を置いた概念であり、一方敗血症はインフラマソームの活性化に引き続き、血液凝固系の障害や循環障害等によって多臓器障害等を合併している病態であるといえる。   Systemic inflammatory response syndrome SIRS includes trauma, burns, pancreatitis, severely invasive postoperative infections and other causes, and bacteria, fungi, parasites, viruses and other infections. In particular, as a SIRS resulting from infection, sepsis can be mentioned. Sepsis is a condition in which systemic organ disorders such as intravascular coagulation disorders (bleeding, thrombosis, etc.), decreased urine output, decreased blood pressure, etc. have appeared remarkably in addition to the pathological conditions of systemic reactive inflammation SIRS caused by inflammatory cytokines. . In other words, all are pathologies caused by inflammasome activation, but SIRS is a concept mainly focused on inflammatory pathologies and inflammasome activation throughout the body, while sepsis is the activity of inflammasome activity. It can be said that this is a pathological condition that is complicated by multiple organ disorders due to disorders of the blood coagulation system and circulatory disorders.

さらには、インフラマソーム経路が関与する症状としては、炎症性細胞死(pyroptosis)及びDNAの断片化に伴う症状が挙げられる。   Furthermore, symptoms involving the inflammasome pathway include symptoms associated with inflammatory cell death and DNA fragmentation.

本発明の薬剤は、その剤形に応じてそれ自体公知の種々の方法で投与することが可能であり、その投与量、投与部位、投与する間隔、期間等は、患者の年齢や体重、病状あるいは他の薬剤や治療法と併用した場合等を考慮して適宜決定することができる。投与方法としては、速やかに体内、あるいは病巣局所に1,5−AFを送達することができる限り特に制限されないが、例えば、経口投与、注射や点滴、経気管支等の方法、あるいは貼付、塗布を挙げることができる。   The drug of the present invention can be administered by various methods known per se, depending on the dosage form, and the dose, administration site, administration interval, period, etc. are determined depending on the patient's age, weight, medical condition, etc. Or it can determine suitably considering the case where it uses together with another chemical | medical agent and treatment method. The administration method is not particularly limited as long as 1,5-AF can be quickly delivered to the body or local lesion, but for example, oral administration, injection or infusion, transbronchial method, or application or application Can be mentioned.

本発明の一実施形態において、本発明の薬剤の投与量は、その剤形、投与方法、又は予防若しくは治療しようとする症状により異なるが、例えば、体重1kgあたりの投与量として有効成分(1,5−AF)換算で1mg〜500mg、好ましくは10mg〜100mgとすることができ、1日1回又は数回、あるいは持続点滴等、さらには数日毎に1回というような、適当な投与頻度によって投与することが可能である。また肺障害が強い場合には経気道投与等の方法も考えられる。   In one embodiment of the present invention, the dose of the drug of the present invention varies depending on the dosage form, administration method, or symptoms to be prevented or treated. For example, the active ingredient (1, 1, 5-AF) in terms of 1 mg to 500 mg, preferably 10 mg to 100 mg, depending on an appropriate administration frequency such as once or several times a day, continuous infusion, or once every several days. It is possible to administer. In addition, when the lung disorder is strong, a method such as administration of the respiratory tract can be considered.

本発明の一実施形態において、本発明の薬剤の投与量は、その剤形、投与方法、又は予防若しくは治療しようとする症状により異なるが、例えば、体重1kgあたりの投与量として有効成分(1,5−AF)換算で0.001μg〜10000mg、好ましくは0.01mg〜5,000mgとすることができ、1日1回又は数回、あるいは数日毎に1回というような、適当な投与頻度によって投与することが可能である。   In one embodiment of the present invention, the dose of the drug of the present invention varies depending on the dosage form, administration method, or symptoms to be prevented or treated. For example, the active ingredient (1, 1, 5-AF) in terms of 0.001 μg to 10000 mg, preferably 0.01 mg to 5,000 mg, depending on the appropriate administration frequency such as once or several times a day or once every several days. It is possible to administer.

本発明は、本発明の薬剤を含む製剤にも関する。本発明の製剤の形態としては、例えば、点滴、錠剤、カプセル剤、散剤、顆粒剤、坐剤、注射剤、経皮吸収剤、クリーム、ペースト、ゲル、スプレー等が挙げられるが、特に制限されない。また本発明の薬剤を含む製剤は、さらに必要な成分、例えば、製剤担体や賦形剤、安定剤等を含有することもできる。   The present invention also relates to a formulation comprising the agent of the present invention. Examples of the form of the preparation of the present invention include, but are not particularly limited to, infusion, tablet, capsule, powder, granule, suppository, injection, transdermal absorption agent, cream, paste, gel, spray and the like. . The preparation containing the drug of the present invention may further contain necessary components such as a preparation carrier, excipient, stabilizer and the like.

さらに、本発明の効果を奏する限り、本発明の製剤は、他の薬剤あるいはその他の薬理成分あるいはブドウ糖等の栄養成分を含むことも可能である。上述したように、例えば1,5−AFは抗炎症作用を有し、さらに炎症性細胞死をも強く抑制する。よって、特に敗血症の治療においては、1,5−AFを、凝固を抑制する抗凝固剤(例えば、遺伝子組換えトロンボモジュリン、商品名リコモジュリン等)と併用することにより、複合した病態を軽減することができる。   Furthermore, as long as the effects of the present invention are exhibited, the preparation of the present invention can also contain other drugs, other pharmacological components, or nutritional components such as glucose. As described above, for example, 1,5-AF has an anti-inflammatory effect and also strongly suppresses inflammatory cell death. Therefore, particularly in the treatment of sepsis, combined use of 1,5-AF with an anticoagulant that suppresses coagulation (for example, recombinant thrombomodulin, trade name lycomodulin, etc.) can reduce the combined pathology. it can.

また本発明の薬剤は、医薬品用途に限られるものではなく、医薬部外品、化粧品、食品、飲料、飼料等に配合することも可能である。例えば、1,5−AFを食品に添加して、各種疾患における症状の予防あるいは治療を目的とした機能性食品のような形態をとることもできる。   Moreover, the chemical | medical agent of this invention is not restricted to a pharmaceutical use, It is also possible to mix | blend with a quasi-drug, cosmetics, a foodstuff, a drink, feed, etc. For example, 1,5-AF can be added to foods to take the form of functional foods intended to prevent or treat symptoms in various diseases.

本発明の薬剤を含む製剤は、皮膚症状の治療を目的とする医薬部外品あるいは化粧品等の形態をとることも可能である。   The preparation containing the drug of the present invention can be in the form of a quasi-drug or cosmetic for the purpose of treating skin symptoms.

本発明の薬剤は、人間以外の哺乳動物にも投与することができる。その場合、哺乳動物に対し、1,5−AFを適量投与することによって治療を行うことができる。   The agent of the present invention can also be administered to mammals other than humans. In that case, treatment can be performed by administering an appropriate amount of 1,5-AF to the mammal.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.

[1]1,5−AFは、NLRP1、NLRP3、NLRC4及びAIM2が関連する全てのインフラマソーム経路を介したプロカスパーゼ1の活性化を抑制した
[実施例1]
インフラマソームの構成成分であるNLRは、細胞内の病原体等を認識するパターン認識受容体であり、これにDAMPsやPAMPsが結合することによりインフラマソームが活性化される。NLRは多くのものが知られているが、本実施例においてはNLRの代表としてNLRP1、NLRP3、NLRC4、AIM2を活性化する薬剤を用いて実験を行った。各NLRを活性化するものとして以下の薬剤を用いた:
NLRP1 Anthrax PAとLF(ANT)(List Biologist社)
NLRP3 ATP、nigericin(NIG)、尿酸塩(MSU)、Imject Alum Ajuvant(ALU)
NLRC4 フラジェリンFLA
AIM2 poly(dA:dT)(POL)(Sigma社)、リポフェクタミン2000(LIP)(Invitrogen社)。
[1] 1,5-AF suppressed activation of procaspase 1 through all inflammasome pathways involving NLRP1, NLRP3, NLRC4 and AIM2 [Example 1]
NLR, which is a component of inflammasome, is a pattern recognition receptor that recognizes intracellular pathogens and the like, and the inflammasome is activated by binding DAMPs and PAMPs thereto. Although many NLRs are known, in this example, experiments were conducted using agents that activate NLRP1, NLRP3, NLRC4, and AIM2 as representatives of NLRs. The following agents were used to activate each NLR:
NLRP1 Anthrax PA and LF (ANT) (List Biologist)
NLRP3 ATP, nigericin (NIG), urate (MSU), Image Alum Ajuvant (ALU)
NLRC4 Flagellin FLA
AIM2 poly (dA: dT) (POL) (Sigma), Lipofectamine 2000 (LIP) (Invitrogen).

本実施例において、Nakahira,Kらの方法(Nat.Immunol.12 (2011)222−30)に従ってマウス由来骨髄マクロファージを作製した。C57/BL6の雄性マウスの大腿骨及び脛骨より、骨髄幹細胞を抽出し、L929細胞より抽出した培養上清液(M−CSFを含む)を25%含むDMEM液体培地(10%FBS及び2%ペニシリンストレプトマイシン含有)中で6日間培養し、マクロファージへと分化させた。6日間経過後に、マウス由来骨髄マクロファージを回収し、細胞数を調節し、各デッシュにまきなおし、オーバーナイトで接着させた後に、LPS、及びインフラマソームを誘導する薬剤を添加した。   In this example, mouse-derived bone marrow macrophages were prepared according to the method of Nakahira, K et al. (Nat. Immunol. 12 (2011) 222-30). Bone marrow stem cells were extracted from the femur and tibia of C57 / BL6 male mice, and DMEM liquid medium (10% FBS and 2% penicillin) containing 25% of the culture supernatant (including M-CSF) extracted from L929 cells. The cells were cultured in streptomycin) for 6 days and differentiated into macrophages. After 6 days, mouse-derived bone marrow macrophages were collected, the number of cells was adjusted, each dish was re-wound and allowed to adhere overnight, and then LPS and an inflammasome-inducing agent were added.

最初に、TLRsからの刺激(シグナル1)でpro−IL−1β(IL−1βの前駆体)及びpro−IL−18(IL−18の前駆体)を細胞質内で作らせる目的で、LPSの添加を行った。LPSは、Invitrogen社のUltrapure LPSを使用し、100ng/ml濃度で4時間刺激を行った。   First, in order to make pro-IL-1β (a precursor of IL-1β) and pro-IL-18 (a precursor of IL-18) in the cytoplasm by stimulation from TLRs (signal 1), The addition was made. As LPS, Invitrogen's Ultrapure LPS was used, and stimulation was performed at a concentration of 100 ng / ml for 4 hours.

その後、1,5−AFを30分間インキュベートし、さらにインフラマソームを誘導する薬剤を添加した。   Thereafter, 1,5-AF was incubated for 30 minutes, and an agent that induces inflammasome was further added.

NLRP1を活性化する場合は、Anthrax PAとLF(ANT)を5 μg/mlずつ入れ6時間インキュベートして誘導した。NLRP3の場合は、ATP 5mMで1時間、ニゲリシン(Nigericin:NIG) 5μMで1時間、Imject Alum Ajuvant(ALU) 200μg/mlで6時間、尿酸塩(MSU) 150μg/mlで6時間インキュベートして誘導した。NLRC4の場合は、フラジェリン(FLA)2.5μg/mlで6時間インキュベートして誘導した。AIM2の場合は、リポフェクタミン2000(LIP)を使用し、poly(dA:dT)(POL)をトランスフェクションさせることで誘導した。IL−1βやIL−18の定量はR&D社のELISAキットを用いて行った。   In order to activate NLRP1, 5 μg / ml of Anthrax PA and LF (ANT) were added and incubated for 6 hours. In the case of NLRP3, induced by incubation with ATP 5 mM for 1 hour, Nigericin (NIG) 5 μM for 1 hour, Imject Alum Ajuvant (ALU) 200 μg / ml for 6 hours, and Urate (MSU) 150 μg / ml for 6 hours did. In the case of NLRC4, it was induced by incubation with flagellin (FLA) 2.5 μg / ml for 6 hours. In the case of AIM2, it was induced by transfecting poly (dA: dT) (POL) using Lipofectamine 2000 (LIP). Quantification of IL-1β and IL-18 was performed using an ELISA kit manufactured by R & D.

実施例1の結果を図5−8に示す。図5−8より、1,5−AFは、NLRP1、NLRP3、NLRC4及びAIM2が関連する全てのインフラマソーム経路を介したプロカスパーゼ1の活性化によるIL−1β、IL−18の生成を抑制したことがわかる。図5−8に示す結果について以下に説明する。   The results of Example 1 are shown in FIGS. 5-8. From FIG. 5-8, 1,5-AF suppresses the production of IL-1β and IL-18 by activating procaspase 1 through all inflammasome pathways involving NLRP1, NLRP3, NLRC4 and AIM2. You can see that The results shown in FIGS. 5-8 will be described below.

LPSで刺激した骨髄マクロファージのメディウム中にATP、ニゲリシン、尿酸塩又はアラムを添加することによりNLRP3インフラマソーム経路を活性化した。LPSでインキュベートした骨髄マクロファージに対して、サルモネラ菌の菌体成分を抽出したフラジェリン(FLA)を添加することによりNLRC4インフラマソーム経路を活性化した。LPSでインキュベートした骨髄マクロファージに対して、DNAを抽出したpoly(dA:dT)(POL)を、リポフェクタミン2000を使用してトランスフェクションすることによりAIM−2インフラマソーム経路を活性化した。   The NLRP3 inflammasome pathway was activated by adding ATP, nigericin, urate or alum into the medium of bone marrow macrophages stimulated with LPS. The NLRC4 inflammasome pathway was activated by adding flagellin (FLA) obtained by extracting Salmonella cell components to bone marrow macrophages incubated with LPS. Bone marrow macrophages incubated with LPS activated the AIM-2 inflammasome pathway by transfecting poly (dA: dT) (POL) with extracted DNA using Lipofectamine 2000.

アラム(ALU)又は尿酸塩(MSU)は、NLRP3経路を活性化する代表的な分子である。LPSで刺激した骨髄マクロファージにアラム又は尿酸塩を加えるとNLRP3インフラマソームが活性化された(Nature Immunology, 2013 May;14(5):454−60)。これに対し、1,5−AFが存在する場合には、アラム又は尿酸塩によるNLRP3インフラマソームの活性化は抑制された(図9も参照)。   Alum (ALU) or urate (MSU) are representative molecules that activate the NLRP3 pathway. Addition of alum or urate to bone marrow macrophages stimulated with LPS activated NLRP3 inflammasome (Nature Immunology, 2013 May; 14 (5): 454-60). In contrast, when 1,5-AF was present, the activation of NLRP3 inflammasome by alum or urate was suppressed (see also FIG. 9).

細菌毒素の一種であるニゲリシン(NIG)はNLRPsを活性化し、カスパーゼ1を介してIL−1β及びIL−18を再生、放出させて、炎症を引き起こす。LPSで刺激した骨髄マクロファージにニゲリシンを加えるとインフラマソームが活性化された。これに対し、1,5−AFが存在する場合には、ニゲリシンによるインフラマソーム活性化、すなわちIL−1β及びIL−18の産生、放出は強く抑制された(図10も参照)。   Nigericin (NIG), a kind of bacterial toxin, activates NLRPs and regenerates and releases IL-1β and IL-18 via caspase 1 to cause inflammation. When nigericin was added to bone marrow macrophages stimulated with LPS, the inflammasome was activated. In contrast, in the presence of 1,5-AF, inflammasome activation by nigericin, that is, production and release of IL-1β and IL-18 were strongly suppressed (see also FIG. 10).

ATPはNLRP3経路でインフラマソームを活性化する。LPSで刺激した骨髄マクロファージにATPを加えるとインフラマソームが活性化された。これに対し、1,5−AFが存在する場合には、ATPによるインフラマソーム活性化、すなわちIL−1β及びIL−18の産生、放出は抑制された(図11も参照)。また、アンヒドログルコース(AG)及びフルクトースと比較して、1,5−AFはATPによるインフラマソーム活性化、すなわちIL−1β及びIL−18の産生、放出を濃度依存性に抑制した(図11参照)。   ATP activates the inflammasome through the NLRP3 pathway. Inflammasome was activated when ATP was added to bone marrow macrophages stimulated with LPS. In contrast, in the presence of 1,5-AF, inflammasome activation by ATP, that is, production and release of IL-1β and IL-18 were suppressed (see also FIG. 11). In addition, compared to anhydroglucose (AG) and fructose, 1,5-AF inhibited inflammasome activation by ATP, that is, production and release of IL-1β and IL-18 in a concentration-dependent manner (FIG. 11).

炭疽菌毒素(anthorax toxin:ANT)はNLRP1経路でインフラマソームを活性化する。炭疽菌毒素は強い肺障害を起こし、バイオテロに使用される危険性からその対策が急がれている。LPSで刺激した骨髄マクロファージに炭疽菌毒素を加えるとNLRP1インフラマソームが活性化された。これに対し、1,5−AFが存在する場合には、炭疽菌毒素よるインフラマソーム活性化、すなわちIL−1β及びIL−18の産生、放出は強く抑制された(図12も参照)。   Anthrax toxin (ANT) activates the inflammasome through the NLRP1 pathway. Anthrax toxin causes strong lung injury, and countermeasures are urgently needed due to the danger of being used for bioterrorism. Addition of anthrax toxin to bone marrow macrophages stimulated with LPS activated NLRP1 inflammasome. In contrast, in the presence of 1,5-AF, inflammasome activation by anthrax toxin, that is, production and release of IL-1β and IL-18 was strongly suppressed (see also FIG. 12).

フラジェリン(FLA)はNLRP4を活性化し、カスパーゼ1を介してIL−1β及びIL−18を再生、放出させて、炎症を引き起こす。フラジェリン(FLA)は、鞭毛を有する細菌(ピロリ菌等)の鞭毛の構成タンパク質の一種で、樹状細胞等に発現しているトール様受容体5(Toll like receptor 5)を介して炎症を惹起する。LPSで刺激した骨髄マクロファージにフラジェリンを加えるとインフラマソームが活性化された。これに対し、1,5−AFが存在する場合には、フラジェリンによるインフラマソーム活性化、すなわちIL−1β及びIL−18の産生、放出は強く抑制された(図13も参照)。   Flagellin (FLA) activates NLRP4 and regenerates and releases IL-1β and IL-18 via caspase 1, causing inflammation. Flagellin (FLA) is a kind of flagellar constituent protein of flagellar bacteria (H. pylori, etc.), and causes inflammation via Toll-like receptor 5 (Toll like receptor 5) expressed in dendritic cells and the like. To do. When flagellin was added to bone marrow macrophages stimulated with LPS, the inflammasome was activated. In contrast, in the presence of 1,5-AF, inflammasome activation by flagellin, that is, production and release of IL-1β and IL-18 were strongly suppressed (see also FIG. 13).

宿主の2重鎖DNA(dsDNA)はAIM2/ASC経由でカスパーゼを活性化して、IL−1β及びIL−18を産生放出し、炎症を引き起こすことが判明している。dsDNAとしてpoly(dA:dT)(POL)で骨髄マクロファージを刺激した。1,5−AFが存在する場合には、コントロールに比べ、1,5−AFを添加した群の培養上清中のIL−1βの産生は顕著に抑制されており、1,5−AFがAIM2/ASC経路からのインフラマソーム活性化を抑制していることが実証された(図14も参照)。   Host double-stranded DNA (dsDNA) has been found to activate caspases via AIM2 / ASC to produce and release IL-1β and IL-18, causing inflammation. Bone marrow macrophages were stimulated with poly (dA: dT) (POL) as dsDNA. When 1,5-AF is present, the production of IL-1β in the culture supernatant of the group to which 1,5-AF has been added is remarkably suppressed as compared to the control. It was demonstrated to suppress inflammasome activation from the AIM2 / ASC pathway (see also FIG. 14).

[2](i)LPSとATPの両方の刺激があったもののみプロカスパーゼ−1のカスパーゼ1への活性化とIL−1β前駆体(proIL−1β)のIL−1βへの成熟化、細胞外への分泌が起きた
(ii)1,5−AFはインフラマソームの活性化を介したプロカスパーゼ1からカスパーゼ1への活性化を抑制した
[実施例2]
実施例1同様に、本実験はNakahira,Kらの方法(Nat.Immunol.12 (2011)222−30)に従ってマウス由来骨髄マクロファージを作製し、実験を行った。C57/BL6の雄性マウスの大腿骨及び脛骨より、骨髄幹細胞を抽出し、L929細胞より抽出した培養上清液(M−CSFを含む)を25%含むDMEM液体培地(10%FBS及び2%ペニシリンストレプトマイシン含有)中で6日間培養し、マクロファージへと分化させた。6日間経過後に、マウス由来骨髄マクロファージを回収し、細胞数を調節し、各デッシュにまきなおし、オーバーナイトで接着させた後に、LPS、及びインフラマソームを誘導する薬剤を添加した。
[2] (i) Activation of procaspase-1 to caspase-1 and maturation of IL-1β precursor (proIL-1β) to IL-1β, cells only stimulated by LPS and ATP, cells (Ii) 1,5-AF, which was secreted to the outside, inhibited activation of procaspase 1 to caspase 1 through activation of inflammasome [Example 2]
In the same manner as in Example 1, mouse-derived bone marrow macrophages were prepared according to the method of Nakahira, K et al. (Nat. Immunol. 12 (2011) 222-30). Bone marrow stem cells were extracted from the femur and tibia of C57 / BL6 male mice, and DMEM liquid medium (10% FBS and 2% penicillin) containing 25% of the culture supernatant (including M-CSF) extracted from L929 cells. The cells were cultured in streptomycin) for 6 days and differentiated into macrophages. After 6 days, mouse-derived bone marrow macrophages were collected, the number of cells was adjusted, each dish was re-wound and allowed to adhere overnight, and then LPS and an inflammasome-inducing agent were added.

最初に、TLRsからの刺激(シグナル1)でpro−IL−1β(IL−1βの前駆体)を細胞質内で作らせる目的で、LPSの添加を行った。LPSは、invivoGen社のUltrapure LPSを使用し、100ng/ml濃度で4時間刺激を行った。   First, LPS was added for the purpose of producing pro-IL-1β (a precursor of IL-1β) in the cytoplasm by stimulation from TLRs (signal 1). For LPS, in vivoGen Ultrapure LPS was used, and stimulation was performed at a concentration of 100 ng / ml for 4 hours.

その後、1,5−AFを30分間インキュベートし、さらにインフラマソームを誘導する薬剤を添加した。NLRP3の場合は、ATP 5mMで時間インキュベートし誘導した。各サンプルの細胞と上清各分を電気泳動にかけ、カテプシンB抗体(Santa Cruz社、sc−13985)、ASC抗体(Santa Cruz社、sc−22514−R)、カスパーゼ−1抗体(Santa Cruz社、sc−514)、IL−1β抗体(Biovision社、5129−100)、β−アクチン抗体(Sigma社、A1978)を用いて、ウエスタンブロッティングを行った。   Thereafter, 1,5-AF was incubated for 30 minutes, and an agent that induces inflammasome was further added. In the case of NLRP3, it was induced by incubation with 5 mM ATP for a time. Each sample cell and supernatant was subjected to electrophoresis, and cathepsin B antibody (Santa Cruz, sc-13985), ASC antibody (Santa Cruz, sc-22514-R), caspase-1 antibody (Santa Cruz, sc-514), IL-1β antibody (Biovision, 5129-100) and β-actin antibody (Sigma, A1978) were used for Western blotting.

実施例2の結果を図15に示す。図15より、LPSとATPの両方の刺激があったもののみプロカスパーゼ−1のカスパーゼ1への活性化とIL−1β前駆体(proIL−1β)のIL−1βへの成熟化、細胞外への分泌が起きたことがわかる。そして、1,5−AFはインフラマソームの活性化を介したプロカスパーゼ1からカスパーゼ1への活性化を抑制することが明らかとなった。   The results of Example 2 are shown in FIG. From FIG. 15, activation of procaspase-1 to caspase-1 and maturation of IL-1β precursor (proIL-1β) to IL-1β, extracellularly, only in the presence of both LPS and ATP stimulation. It can be seen that secretion occurred. And it became clear that 1,5-AF suppresses the activation from procaspase 1 to caspase 1 through activation of inflammasome.

[3]1,5−AFは実験的アルツハイマー病やパーキンソン病に使われる神経障害因子であるロテノンによるインフラマソーム活性化を抑制した
[実施例3]
ワイルドタイプマウスより腹腔マクロファージを抽出し、これにLPSを添加してプライミングした後に、インフラマソームを誘導する薬剤としてロテノン(rotenon)を添加(1時間)して上清中のIL−1βの定量をELISAキットを用いて行った。ロテノンは、ミトコンドリア障害因子であり、実験的アルツハイマー病やパーキンソン病に使われる神経障害因子である。ミトコンドリアが障害されると、障害ミトコンドリアから大量のATPが放出されて、インフラマソームが活性化されて炎症が惹起されることが知られている。神経系の場合にはこのことがアルツハイマー病やパーキンソン病の原因となることがわかっている。
[3] 1,5-AF inhibited inflammasome activation by rotenone, a neuropathic factor used in experimental Alzheimer's disease and Parkinson's disease
[Example 3]
Peritoneal macrophages were extracted from wild-type mice, and LPS was added thereto for priming, and then rotenon was added (1 hour) as a drug that induces inflammasome to quantify IL-1β in the supernatant. Was performed using an ELISA kit. Rotenone is a mitochondrial disorder factor and a neuropathy factor used in experimental Alzheimer's disease and Parkinson's disease. It is known that when the mitochondria are damaged, a large amount of ATP is released from the damaged mitochondria, the inflammasome is activated, and inflammation is caused. In the nervous system, this is known to cause Alzheimer's disease and Parkinson's disease.

1,5−AFは、ロテノンによるインフラマソーム活性化、すなわちIL−1βの産生、放出を抑制した(図16)。   1,5-AF suppressed rotenone-induced inflammasome activation, that is, production and release of IL-1β (FIG. 16).

[4]1,5−AFをALIの代表的モデルに腹腔内投与すると顕著に肺組織像と気管支肺胞洗浄液中の炎症性細胞浸潤が抑制された
[実施例4]
C57/BL6ワイルドマウスにLPSを経気管投与してALIモデルを作製した。LPS(エンドトキシン)を経気管投与すると激しい肺障害が惹起され、これはALIの代表的モデルとされている(Gustavo Matute−Bello,et al. “Animal models of acute lung injury”, Am J Physiol Lung Cell Mol Physiol 295: L379−L399, 2008)。急性肺障害(acute lung injury, ALI)や急性呼吸促拍症候群(acute respiratory distress syndrome, ARDS)はインフラマソーム活性化に伴う代表的な疾患である。
[4] Intraperitoneal administration of 1,5-AF to a representative model of ALI markedly suppressed lung histology and inflammatory cell infiltration in bronchoalveolar lavage fluid
[Example 4]
An ALI model was prepared by transtracheally administering LPS to C57 / BL6 wild mice. Intratracheal administration of LPS (endotoxin) causes severe lung injury, which is considered to be a representative model of ALI (Gustavo Matte-Bello, et al. “Animal models of accumulating long injuries”, Am J PhysiolLil. Mol Physiol 295: L379-L399, 2008). Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are typical diseases associated with inflammasome activation.

作製したマウス(ALIモデル)に1,5−AFを腹腔内投与すると顕著に肺組織像と気管支肺胞洗浄液中の炎症性細胞浸潤が抑制された(図17)。   When 1,5-AF was intraperitoneally administered to the prepared mouse (ALI model), pulmonary histology and inflammatory cell infiltration in bronchoalveolar lavage fluid were markedly suppressed (FIG. 17).

[5]1,5−AFをSIRSモデルに投与すると顕著に生存率が改善された
[実施例5]
C57/BL6ワイルドタイプマウスにLPSを腹腔内投与してSIRSモデルを作製した。全身性にインフラマソームが活性化されるとIL−1β等の炎症性サイトカインが全身を循環しSIRSを引きおこし、臨床上も重要な病態となっている。
[5] Survival improved significantly when 1,5-AF was administered to SIRS model
[Example 5]
A SIRS model was prepared by intraperitoneally administering LPS to C57 / BL6 wild type mice. When inflammasome is activated systemically, inflammatory cytokines such as IL-1β circulate throughout the body and cause SIRS, which is an important clinical condition.

作製したマウス(SIRSモデル)に治療群として1,5−AFを100mg/kg、LPS投与2、6、12、24時間後に投与し、5日間観察したところ、顕著に生存率が改善された(図18)。   When the prepared mouse (SIRS model) was administered with 1,5-AF as a treatment group at 100 mg / kg, 2, 6, 12, 24 hours after LPS administration and observed for 5 days, the survival rate was remarkably improved ( FIG. 18).

[6]1,5−AFはプロカスパーゼ1のカスパーゼ1への活性化を抑制して炎症性細胞死を抑制した
[実施例6]
プロカスパーゼ1のカスパーゼ1への活性化は、単にpro−IL−1βとpro−IL−18のIL−1β、IL−18への活性化で免疫担当細胞を病巣部へリクルートするのみでなく、プログラム化された炎症性細胞死(pyroptosis)をも引き起こす。これらは新しい炎症の概念である。本発明者らは、1,5−AFがプロカスパーゼ1のカスパーゼ1への活性化を抑制して、炎症性細胞死を抑制することを検証した。
[6] 1,5-AF suppressed inflammatory cell death by suppressing activation of procaspase 1 to caspase 1
[Example 6]
Activation of procaspase 1 to caspase 1 not only recruits immunocompetent cells to the lesion by activation of pro-IL-1β and pro-IL-18 to IL-1β and IL-18, It also causes programmed inflammatory cell death. These are new inflammation concepts. The present inventors have verified that 1,5-AF suppresses activation of procaspase 1 to caspase 1 and suppresses inflammatory cell death.

マウス骨髄細胞をLPSで4時間インキュベーションしてプライミングし、次に1,5−AFと30分間インキュベーションした後に、完全に1,5−AFを洗い去り、次にニゲリシン(5μM)で1時間インキュベーションして、炎症性細胞死を検討した。   Mouse bone marrow cells were primed by incubation with LPS for 4 hours, then incubated with 1,5-AF for 30 minutes, and then washed completely with 1,5-AF and then incubated with nigericin (5 μM) for 1 hour. Inflammatory cell death was examined.

3つのサンプルについての結果を表1に示す。LPSとニゲリシンを加えたものは、炎症性細胞死が誘導されて、生細胞数はLPS単独に比べ、約1/6に減少していたが、1,5―AF(10mg/ml)を添加した場合、炎症性細胞死した細胞数は約1/3程度に収まり、細胞死は抑制され、生細胞数は50%近くまで増加した。すなわち1,5−AFによりニゲリシンによる炎症性細胞死は抑制された。

Figure 2015016178
The results for the three samples are shown in Table 1. When LPS and nigericin were added, inflammatory cell death was induced, and the number of living cells was reduced to about 1/6 compared with LPS alone, but 1,5-AF (10 mg / ml) was added. In this case, the number of inflammatory cell deaths was reduced to about 1/3, cell death was suppressed, and the number of living cells increased to nearly 50%. That is, inflammatory cell death by nigericin was suppressed by 1,5-AF.
Figure 2015016178

[7]1,5−AFはアポトーシス関連スペック様カード蛋白質(ASC)を標的とする
[実施例7]
ASCを発現させたHEK細胞をエンドトキシン刺激し(第1刺激)、次にpoly(dA:dT)を加えた(第2刺激)場合、図19の列5のようにASCモノマーは、ダイマー、トリマー及びテトラマーを形成した。しかしながら、1,5−AFの存在下では、このようなASCモノマーの重合体は観察されなかった(図19の6列参照)。つまり、1,5−AFはASCの重合を抑制していることが示唆された。結果として1,5−AFは図3−2に示されるASC重合阻害を介してカスパーゼ1の生成を阻害して、結果的にIL−1b、IL−18の産生を抑制しているものといえる。
[7] 1,5-AF targets apoptosis-related spec-like card protein (ASC) [Example 7]
When HEK cells expressing ASC were stimulated with endotoxin (primary stimulation) and then added with poly (dA: dT) (second stimulation), as shown in column 5 of FIG. And tetramers formed. However, in the presence of 1,5-AF, such an ASC monomer polymer was not observed (see column 6 in FIG. 19). That is, it was suggested that 1,5-AF suppressed ASC polymerization. As a result, it can be said that 1,5-AF inhibits the production of caspase 1 through the inhibition of ASC polymerization shown in FIG. 3-2 and consequently suppresses the production of IL-1b and IL-18. .

[8]1,5−AFは、シリカによるインフラマソーム活性化を抑制した
[実施例8]
マウス骨髄単核球を培養し、シリカ(珪酸マグネシウム:50μg/ml)による刺激した後、1,5-AF(5μg/ml)を添加して1時間後、IL−18の濃度を測定した(図20a)。同様に、各濃度のシリカで骨髄単核球を刺激した後、5時間後に1,5−AF(2〜10mg/ml)加え、IL−1βの濃度を測定した(図20b)。
[8] 1,5-AF suppressed inflammasome activation by silica [Example 8]
Mouse bone marrow mononuclear cells were cultured, stimulated with silica (magnesium silicate: 50 μg / ml), 1,5-AF (5 μg / ml) was added, and one hour later, the concentration of IL-18 was measured ( FIG. 20a). Similarly, after stimulating bone marrow mononuclear cells with each concentration of silica, 1,5-AF (2 to 10 mg / ml) was added 5 hours later, and the concentration of IL-1β was measured (FIG. 20b).

1,5−AFは、シリカによるインフラマソーム活性化、すなわちIL−18、IL−1βの産生、放出を抑制した(図20)。   1,5-AF suppressed inflammasome activation by silica, that is, production and release of IL-18 and IL-1β (FIG. 20).

石綿肺のモデル実験において、炎症を抑制し、石綿肺防止剤として利用できることが分かった。   In the model experiment of asbestosis, it was found that it can suppress inflammation and can be used as an asbestosis inhibitor.

[9]1,5−AFは、炭疽菌毒素によるインフラマソーム活性化IL−1βの産生、放出を抑制した
[実施例9]
マウス骨髄単核球を炭疽菌毒素(anthorax toxin:1mg/ml)又はアラム(50μg/ml)で4時間培養刺激した後、1,5−AF(5mg/ml)を添加して、2時間後のIL−1βの濃度を測定した(図21)。アラムはポジティブコントロールとして使用した。
[9] 1,5-AF suppressed production and release of inflammasome-activated IL-1β by anthrax toxin [Example 9]
Mouse bone marrow mononuclear cells were cultured and stimulated with anthrax toxin (mg / ml) or alum (50 μg / ml) for 4 hours, 1,5-AF (5 mg / ml) was added, and 2 hours later The concentration of IL-1β was measured (FIG. 21). Alum was used as a positive control.

1,5−AFは、炭疽菌毒素によるインフラマソーム活性化、すなわちIL−1βの産生、放出を抑制した(図21)。   1,5-AF suppressed inflammasome activation by anthrax toxin, that is, production and release of IL-1β (FIG. 21).

炭疽菌によるバイオテロへの防御剤として利用できることが分かった。   It was found that it can be used as a protective agent against bioterrorism caused by anthrax.

[10]1,5−AFは、LPS+シリカ又はATPで刺激したヒト末梢血単核細胞に対してもIL−1βの放出を抑制する効果を有する
[実施例10]
ヒト末梢血を採取し、Lymphoprep(Ficoll)を使用してヒト末梢血単核細胞(PBMC)を分離した。PBMCを、DMEM+10%FBS培地に当たり0.1x10個/ウェルずつまいて、実験に用いた。LPS 500ng/mlで3時間プライミング処理した。1,5−AF(2〜10mg/ml)を加え、30分インキュベートした後にシリカ(250μg/ml)で2時間刺激した後、上清を回収した。
[10] 1,5-AF has an effect of suppressing the release of IL-1β even on human peripheral blood mononuclear cells stimulated with LPS + silica or ATP [Example 10]
Human peripheral blood was collected and human peripheral blood mononuclear cells (PBMC) were isolated using Lymphoprep (Ficoll). PBMCs were dispersed in DMEM + 10% FBS medium at 0.1 × 10 6 cells / well and used for the experiment. Primed with LPS 500 ng / ml for 3 hours. 1,5-AF (2 to 10 mg / ml) was added, incubated for 30 minutes, and then stimulated with silica (250 μg / ml) for 2 hours, and then the supernatant was collected.

[実施例11]
ヒト末梢血を採取し、Lymphoprep(Ficoll)を使用してヒト末梢血単核細胞(PBMC)を分離した。PBMCを、DMEM+10%FBS培地に当たり0.1x10個/ウェルずつまいて実験に用いた。LPS 500ng/mlで3時間プライミング処理した。1,5−AF(2〜10mg/ml)を加え、30分インキュベートした後にATP(2〜5mM)で1時間刺激した後、上清を回収した。
[Example 11]
Human peripheral blood was collected and human peripheral blood mononuclear cells (PBMC) were isolated using Lymphoprep (Ficoll). PBMCs were dispersed in DMEM + 10% FBS medium at 0.1 × 10 6 cells / well and used for the experiment. Primed with LPS 500 ng / ml for 3 hours. 1,5-AF (2 to 10 mg / ml) was added, incubated for 30 minutes, and then stimulated with ATP (2 to 5 mM) for 1 hour, and then the supernatant was collected.

1,5−AFは、LPS+ATPで刺激したヒト末梢血単核細胞に対してもIL−1βの放出を抑制する効果を有することが分かった(図22)。   1,5-AF was found to have an effect of suppressing the release of IL-1β on human peripheral blood mononuclear cells stimulated with LPS + ATP (FIG. 22).

本願の薬剤は、現在の生物学的製剤(抗体)に代わるアポトーシス関連スペック様カード蛋白質(ASC)制御剤として使用することができる。   The drug of the present application can be used as an apoptosis-related spec-like card protein (ASC) regulator in place of the current biological preparation (antibody).

本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。   All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (23)

1,5−D−アンヒドロフルクトースを有効成分とする、アポトーシス関連スペック様カード蛋白質(ASC)の機能阻害薬。   A function inhibitor of apoptosis-related spec-like card protein (ASC) comprising 1,5-D-anhydrofructose as an active ingredient. ASCの機能が、カスパーゼ1及びNOD様受容体との複合体形成能である、請求項1に記載の阻害薬。   The inhibitor according to claim 1, wherein the function of ASC is the ability to form a complex with caspase 1 and a NOD-like receptor. 複合体がインフラマソームである、請求項2に記載の阻害薬。   The inhibitor according to claim 2, wherein the complex is inflammasome. インフラマソームが関与する経路における、プロカスパーゼ1のカスパーゼ1への活性化を阻害する、請求項3に記載の阻害薬。   The inhibitor according to claim 3, which inhibits activation of procaspase 1 to caspase 1 in a pathway involving inflammasome. 1,5−D−アンヒドロフルクトースを有効成分とする、アポトーシス関連スペック様カード蛋白質(ASC)が関与する疾患又は症状の治療薬。   A therapeutic agent for a disease or condition involving apoptosis-related spec-like card protein (ASC) comprising 1,5-D-anhydrofructose as an active ingredient. ASCが関与する疾患又は症状が、ASCとカスパーゼ1及びNOD様受容体との複合体形成が関与する疾患又は症状である、請求項5に記載の治療薬。   The therapeutic agent according to claim 5, wherein the disease or symptom involving ASC is a disease or symptom involving complex formation between ASC, caspase 1 and NOD-like receptor. 複合体がインフラマソームである、請求項6に記載の治療薬。   The therapeutic agent according to claim 6, wherein the complex is inflammasome. ASCが関与する疾患又は症状が、カスパーゼ1が関与する疾患又は症状である、請求項5〜7のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 7, wherein the disease or symptom associated with ASC is a disease or symptom associated with caspase-1. ASCが関与する疾患又は症状が、IL−1β及び/又はIL−18が関与する疾患又は症状である、請求項5〜8のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 8, wherein the disease or symptom associated with ASC is a disease or symptom associated with IL-1β and / or IL-18. ASCが関与する疾患又は症状が、全身性炎症性反応症候群SIRSである、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is systemic inflammatory response syndrome SIRS. ASCが関与する疾患又は症状が、慢性関節リウマチである、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom associated with ASC is rheumatoid arthritis. ASCが関与する疾患又は症状が、アルツハイマー病である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is Alzheimer's disease. ASCが関与する疾患又は症状が、クライオピリン関連周期熱症候群である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom associated with ASC is cryopyrine-related periodic fever syndrome. ASCが関与する疾患又は症状が、家族性地中海熱である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is familial Mediterranean fever. ASCが関与する疾患又は症状が、PAPA症候群である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is PAPA syndrome. ASCが関与する疾患又は症状が、Majeed症候群である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is Majeed's syndrome. ASCが関与する疾患又は症状が、高IgD症候群である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom associated with ASC is high IgD syndrome. ASCが関与する疾患又は症状が、反復性胞状奇胎である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is recurrent hydatidiform mole. ASCが関与する疾患又は症状が、DIRAである、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is DIRA. ASCが関与する疾患又は症状が、炭疽菌感染症である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is an anthrax infection. ASCが関与する疾患又は症状が、急性呼吸促拍症候群である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is acute respiratory stimulation syndrome. ASCが関与する疾患又は症状が、炎症性細胞死である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom involving ASC is inflammatory cell death. ASCが関与する疾患又は症状が、石綿肺である、請求項5〜9のいずれか1項に記載の治療薬。   The therapeutic agent according to any one of claims 5 to 9, wherein the disease or symptom associated with ASC is asbestosis.
JP2015529565A 2013-07-29 2014-07-28 Inhibitor of apoptosis-related spec-like card protein containing 1,5-D-anhydrofructose Active JP6359013B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013156633 2013-07-29
JP2013156629 2013-07-29
JP2013156633 2013-07-29
JP2013156629 2013-07-29
PCT/JP2014/069824 WO2015016178A1 (en) 2013-07-29 2014-07-28 Function inhibitor of apoptosis-associated speck-like protein containing card comprising 1,5-d-anhydrofructose

Publications (2)

Publication Number Publication Date
JPWO2015016178A1 true JPWO2015016178A1 (en) 2017-03-02
JP6359013B2 JP6359013B2 (en) 2018-07-18

Family

ID=52431711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015529565A Active JP6359013B2 (en) 2013-07-29 2014-07-28 Inhibitor of apoptosis-related spec-like card protein containing 1,5-D-anhydrofructose

Country Status (2)

Country Link
JP (1) JP6359013B2 (en)
WO (1) WO2015016178A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722895B2 (en) * 2015-04-21 2020-07-15 国立大学法人 鹿児島大学 Caspase-1 activation inhibitor
US10894061B2 (en) * 2015-08-06 2021-01-19 Regents Of The University Of Minnesota Therapeutic methods involving modulating inflammasome activation of myeloid-derived suppressor cells
KR20180105138A (en) * 2016-02-08 2018-09-27 크라시에 홀딩스 가부시키가이샤 Inflammation activator inhibitor
SG10202106385XA (en) 2016-12-29 2021-07-29 Univ Miami Method for modulating inflammasome activity and inflammation in the lung
US11840565B2 (en) 2016-12-29 2023-12-12 University Of Miami Methods and compositions for treating virus-associated inflammation
US20200339670A1 (en) * 2017-12-20 2020-10-29 Michael Heneka Novel means and methods for treating neurodegenerative diseases
MX2021000142A (en) * 2018-07-03 2021-05-12 Univ Miami Compositions and methods for treating inflammasome related diseases or conditions.
JP7320167B2 (en) * 2019-02-26 2023-08-03 武 只野 Oral bacteriostatic composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680565A (en) * 1992-09-03 1994-03-22 Ishihara Sangyo Kaisha Ltd Immunological function suppressing agent
JPH09505988A (en) * 1993-10-15 1997-06-17 ダニスコ エイ/エス Use of α-1,4-glucan lyase for the preparation of 1,5-D-anhydrofructose
JP2001275681A (en) * 2000-03-31 2001-10-09 Junya Masumoto Apoptosis-associated protein, its antibody and its dna
JP2006306814A (en) * 2005-04-28 2006-11-09 Nihon Starch Co Ltd Anti-inflammatory agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680565A (en) * 1992-09-03 1994-03-22 Ishihara Sangyo Kaisha Ltd Immunological function suppressing agent
JPH09505988A (en) * 1993-10-15 1997-06-17 ダニスコ エイ/エス Use of α-1,4-glucan lyase for the preparation of 1,5-D-anhydrofructose
JP2001275681A (en) * 2000-03-31 2001-10-09 Junya Masumoto Apoptosis-associated protein, its antibody and its dna
JP2006306814A (en) * 2005-04-28 2006-11-09 Nihon Starch Co Ltd Anti-inflammatory agent

Also Published As

Publication number Publication date
JP6359013B2 (en) 2018-07-18
WO2015016178A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP6359013B2 (en) Inhibitor of apoptosis-related spec-like card protein containing 1,5-D-anhydrofructose
Komada et al. The role of inflammasomes in kidney disease
Yuan et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities
Patel et al. Macrophage polarization in response to epigenetic modifiers during infection and inflammation
Zhou et al. Berberine inhibits palmitate-induced NLRP3 inflammasome activation by triggering autophagy in macrophages: A new mechanism linking berberine to insulin resistance improvement
Hong et al. 6-Gingerol ameliorates sepsis-induced liver injury through the Nrf2 pathway
He et al. Vitamin D inhibits the occurrence of experimental cerebral malaria in mice by suppressing the host inflammatory response
Liu et al. Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis
JP2021120383A (en) Use of beta-1,3-glucan for modulating immune function and treating intestinal inflammation
Gao et al. Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine
CN111542329B (en) Anti-inflammatory compositions comprising graphene nanostructures
Wang et al. Secoisolariciresinol diglucoside suppresses Dextran sulfate sodium salt-induced colitis through inhibiting NLRP1 inflammasome
TWI742540B (en) Method for treating inflammatory diseases
EP3299453B1 (en) Cell therapy with polarized macrophages for tissue regeneration
JP2016528277A (en) A composition for inhibiting blood cancer or cancer metastasis comprising a monoacetyldiacylglycerol compound as an active ingredient
Song et al. A hydroxyethyl derivative of chrysin exhibits anti-inflammatory activity in dendritic cells and protective effects against dextran sodium salt-induced colitis in mice
US20150182487A1 (en) Composition for preventing and treating inflammatory diseases and immune diseases, containing apo-9`-fucoxanthinone as active ingredient
Li et al. Propofol pretreatment alleviates mast cell degranulation by inhibiting SOC to protect the myocardium from ischemia–reperfusion injury
WO2016056665A1 (en) White blood cell extracellular trap formation inhibitor
CN108324735A (en) For the extracellular body preparation of disease treatment and its application
Zhou et al. Xuanfei Baidu decoction regulates NETs formation via CXCL2/CXCR2 signaling pathway that is involved in acute lung injury
Yan et al. CQMUH-011, a novel adamantane sulfonamide compound, inhibits lipopolysaccharide-and D-galactosamine-induced fulminant hepatic failure in mice
US20210380625A1 (en) Uses of hyaluronan conjugate
Darestani et al. New Treatments (MSC) in Immune Disorders Like Cancers and Covid Infection: Cancer and Virus New Treatment (MSC)
He et al. The effects of IL-22 on the inflammatory mediator production, proliferation, and barrier function of HUVECs

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6359013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250