JPWO2014156234A1 - ITO sputtering target and manufacturing method thereof - Google Patents

ITO sputtering target and manufacturing method thereof Download PDF

Info

Publication number
JPWO2014156234A1
JPWO2014156234A1 JP2015508113A JP2015508113A JPWO2014156234A1 JP WO2014156234 A1 JPWO2014156234 A1 JP WO2014156234A1 JP 2015508113 A JP2015508113 A JP 2015508113A JP 2015508113 A JP2015508113 A JP 2015508113A JP WO2014156234 A1 JPWO2014156234 A1 JP WO2014156234A1
Authority
JP
Japan
Prior art keywords
target
bulk resistivity
difference
tin
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015508113A
Other languages
Japanese (ja)
Other versions
JP5987105B2 (en
Inventor
敏也 栗原
敏也 栗原
崇 掛野
崇 掛野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Application granted granted Critical
Publication of JP5987105B2 publication Critical patent/JP5987105B2/en
Publication of JPWO2014156234A1 publication Critical patent/JPWO2014156234A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air

Abstract

インジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下である焼結体ITOスパッタリングターゲットであって、バルク抵抗率が0.1mΩ・cm〜1.4mΩ・cmであり、ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、差異が20%以下であることを特徴とするITOスパッタリングターゲット。ITOスパッタリングターゲットの厚み方向の酸素欠損の変動を少なくし、ターゲット表面と内部のバルク抵抗率の差異が20%以下とすることにより、スパッタリングが進行することに伴う膜特性の変化を少なくし、成膜の品質の向上と信頼性を確保することができる。本発明のITOスパッタリングターゲットは特にITO膜形成に有用である。A sintered body made of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) (atomic composition ratio: at.%) Is 0.3 or more and 14 .5 at. % Of a sintered ITO sputtering target having a bulk resistivity of 0.1 mΩ · cm to 1.4 mΩ · cm, and the thickness of the target is t, An ITO sputtering target having a difference of 20% or less in bulk resistivity at an arbitrary point in the plate thickness direction. By reducing the fluctuation of oxygen vacancies in the thickness direction of the ITO sputtering target and making the difference in bulk resistivity between the target surface and the interior 20% or less, the change in film properties accompanying the progress of sputtering can be reduced, Improvement of film quality and reliability can be ensured. The ITO sputtering target of the present invention is particularly useful for forming an ITO film.

Description

本発明は、ITO膜形成に好適なITOスパッタリングターゲットに関する。特に、ターゲットのスパッタリング初期から終了時にかけて、膜特性の変化が少ないITOスパッタリングターゲット及びその製造方法に関する。   The present invention relates to an ITO sputtering target suitable for forming an ITO film. In particular, the present invention relates to an ITO sputtering target with little change in film characteristics from the initial stage to the end of sputtering of the target and a method for manufacturing the same.

ITO(インジウム−錫の複合酸化物)膜は、液晶ディスプレーを中心とする表示デバイスにおける透明電極(導電膜)として、広く使用されている。このITO膜を形成する方法として、真空蒸着法やスパッタリング法など、一般に物理蒸着法と言われている手段によって行われている。特に操作性や被膜の安定性からマグネトロンスパッタリング法を用いて形成することが多い。  An ITO (indium-tin composite oxide) film is widely used as a transparent electrode (conductive film) in a display device centering on a liquid crystal display. As a method for forming the ITO film, a method generally called physical vapor deposition such as vacuum vapor deposition or sputtering is used. In particular, the magnetron sputtering method is often used because of operability and coating stability.

スパッタリング法による膜の形成は、陰極に設置したターゲットにArイオンなどの陽イオンを物理的に衝突させ、その衝突エネルギーによってターゲットを構成する材料を放出させて、対面している陽極側の基板にターゲット材料とほぼ同組成の膜を積層することによって行われる。スパッタリング法による被覆法は、処理時間や供給電力等を調整することによって、安定した成膜速度で数nmの薄い膜から数十μmの厚い膜まで形成することができるという特徴を有している。   A film is formed by sputtering, in which a cation such as Ar ions is physically collided with a target placed on a cathode, and the material constituting the target is released by the collision energy, so that a substrate on the anode side facing the target is released. This is done by stacking films having the same composition as the target material. The coating method by sputtering has a feature that it can be formed from a thin film of several nm to a thick film of several tens of μm at a stable film formation speed by adjusting processing time, supply power and the like. .

近年、静電容量式、抵抗膜式タッチパネルなどに用いられるITO膜の需要があり、従来から広く用いられている3.7at.%程度の錫(Sn)を含有するITOスパッタリングターゲット以外にも、求められる膜抵抗により酸化錫を0.3以上14.5at.%以下の広い範囲で組成を振ったターゲットの開発が行われている。例えば、特許文献1には、20〜50wt%の酸化錫を含有する酸化インジウムとの混合粉末をプレス成型し、この成形体を純酸素雰囲気中、温度1500〜1650℃、圧力0.15〜1MPaで加圧焼結してITOスパッタリングターゲットを製造することが知られている。   In recent years, there has been a demand for ITO films used for capacitance type, resistance type touch panels, etc., and 3.7 at. In addition to the ITO sputtering target containing about 0.1% tin (Sn), tin oxide is added in an amount of 0.3 to 14.5 at. Targets with a wide composition range of less than 10% are being developed. For example, in Patent Document 1, a mixed powder with indium oxide containing 20 to 50 wt% of tin oxide is press-molded, and the compact is subjected to a temperature of 1500 to 1650 ° C. and a pressure of 0.15 to 1 MPa in a pure oxygen atmosphere. It is known to produce an ITO sputtering target by pressure sintering.

ITOスパッタリングターゲットで代表的な特許を挙げると、下記に示す特許文献1がある。この特許は、「酸化インジウムと酸化錫を主成分とした原料から粉末冶金法にて製造されたITOスパッタリングタ−ゲットであって、表面粗さRaが0.5 μm以下で、かつ密度D(g/cm )とバルク抵抗値ρ(mΩcm)が下記2つの式を同時に満たして成るITOスパッタリングタ−ゲット。a) 6.20 ≦ D ≦ 7.23、 b」 −0.0676D+0.887 ≧ ρ ≧−0.0761D+0.666 。」というもので、約20年前の技術である。
この特許は、スパッタリング時に異常放電やノジュ−ルを発生することが殆どない上にガスの吸着も極力少なく、そのため良好な成膜作業下で品質の高いITO膜を安定して得ることのできるITO焼結タ−ゲットを実現することができるという、当時としては画期的な発明と言える。
As a typical patent for an ITO sputtering target, there is Patent Document 1 shown below. This patent is “ITO sputtering target manufactured by powder metallurgy from raw materials mainly composed of indium oxide and tin oxide, having a surface roughness Ra of 0.5 μm or less and a density D ( g / cm 3 ) and bulk resistance value ρ (mΩcm) satisfy the following two expressions simultaneously: an ITO sputtering target a) 6.20 ≦ D ≦ 7.23, b ”−0.0676D + 0.887 ≧ ρ ≧ −0.0761D + 0.666. It is a technology about 20 years ago.
This patent discloses an ITO that hardly generates abnormal discharge or nodule at the time of sputtering, and also has little gas adsorption, so that a high-quality ITO film can be stably obtained under good film forming operation. It can be said that it is an epoch-making invention at that time that a sintered target can be realized.

また、ITOターゲット密度を上げる対策として、例えば、下記特許文献2には、粒度分布から求めたメジアン径が0.40(0.40を除く)〜1.0μmの範囲にあり、かつ粒度分布から求めた90%粒径が3.0μm以下の範囲にある酸化錫粉末を用いて形成したITOターゲットが記載されている。
しかし、このような酸化錫粉末を使用して、従来よりも多くの酸化錫を含有するITOターゲットを製造した場合は、焼結体内部にマクロポア及びマイクロクラックが発生して、焼結体の加工中や加工終了後の保管中に、割れやひびが発生することがあった。そして、それらはターゲットとしての製品の出荷に影響を及ぼすことがあった。
As a measure for increasing the ITO target density, for example, in Patent Document 2 below, the median diameter obtained from the particle size distribution is in the range of 0.40 (excluding 0.40) to 1.0 μm, and from the particle size distribution. An ITO target formed using a tin oxide powder having a 90% particle size in the range of 3.0 μm or less is described.
However, when an ITO target containing a larger amount of tin oxide than before is produced using such tin oxide powder, macropores and microcracks are generated inside the sintered body, and the sintered body is processed. Cracks and cracks may occur during storage after storage or after processing. And they may affect the shipment of the product as a target.

この他、下記特許文献3には、ITOに関する技術として、主結晶粒であるIn母相内にInSn12からなる微細粒子が存在するITO焼結体であって、前記微粒子が粒子の仮想中心から放射線状に針状突起が形成された立体星状形状を有すことを特徴とし、バルク抵抗の低いITOスパッタリングターゲットを提供するという技術が開示されている。In addition, the following Patent Document 3 discloses an ITO sintered body in which fine particles composed of In 4 Sn 3 O 12 are present in the In 2 O 3 matrix, which is the main crystal grain, as a technology related to ITO, A technique for providing an ITO sputtering target having a low bulk resistance, characterized in that the fine particles have a three-dimensional star shape in which needle-like protrusions are formed radially from the virtual center of the particle, is disclosed.

また、下記特許文献4には、In、Sn、Oからなり、焼結密度が7.08g/cm3以上、バルク抵抗率が80μΩcm〜100μΩcm、O/(In+Sn+O)が1.75%以下(重量比)、かつInSn12相の(200)面のX線回折ピークの積分強度の30%以下であるITO焼結体であり、この焼結体は、In、Sn、Oからなる成形体を焼結する際に、焼結温度を1400℃以上となったとき、焼結雰囲気を酸化性雰囲気から非酸化性雰囲気へと切り替える技術が開示されている。Patent Document 4 listed below includes In, Sn, and O, a sintered density of 7.08 g / cm 3 or more, a bulk resistivity of 80 μΩcm to 100 μΩcm, and O / (In + Sn + O) of 1.75% or less (weight ratio). ) And an ITO sintered body that is 30% or less of the integrated intensity of the X-ray diffraction peak of the (200) plane of the In 4 Sn 3 O 12 phase, and this sintered body is formed of In, Sn, and O. When sintering a body, a technique for switching a sintering atmosphere from an oxidizing atmosphere to a non-oxidizing atmosphere when the sintering temperature becomes 1400 ° C. or higher is disclosed.

ITOスパッタリングターゲットのように、不定比性を有する酸化物では、高温での熱平衡酸素欠損濃度は室温と比較して高いため、焼結での降温時には雰囲気中の酸素は焼結体に取り込まれ、焼結体表面から内部に拡散するが、拡散速度は温度と共に急速に低下するため、有限の降温時間では酸素欠損濃度は均一にはならず、室温での表面近傍の酸素欠損濃度は低く、内部に行くに従い高くなる。
一般に、ターゲットとして使用される板状の焼結体では、この濃度分布はターゲットの厚み方向に発生する。また、この濃度分布は焼結温度パターン、および雰囲気の酸素分圧に依存する。
In the case of an oxide having non-stoichiometry, such as an ITO sputtering target, since the thermal equilibrium oxygen deficiency concentration at a high temperature is higher than that at room temperature, oxygen in the atmosphere is taken into the sintered body when the temperature is lowered during sintering. Although it diffuses from the surface of the sintered body to the inside, the diffusion rate rapidly decreases with temperature, so the oxygen deficiency concentration is not uniform during the finite temperature drop time, and the oxygen deficiency concentration near the surface at room temperature is low. The higher you go.
Generally, in a plate-like sintered body used as a target, this concentration distribution occurs in the thickness direction of the target. This concentration distribution depends on the sintering temperature pattern and the oxygen partial pressure of the atmosphere.

一方、酸化物ターゲットの酸素欠損濃度は、膜の導電性などの特性に影響を及ぼす。例えば、ITOターゲットを用いたスパッタ成膜では、スパッタガスに1%程度の酸素を導入するが、膜抵抗が極小となる酸素分圧はターゲットの酸素欠損濃度に依存する。
従って、スパッタガスの最適酸素分圧は、ターゲットがエロージョンされスパッタ表面が内部になるに従い、変化していく。言い換えれば、スパッタガスの酸素分圧が一定の場合、スパッタ時間に伴い膜特性が変化することになる。
On the other hand, the oxygen deficiency concentration of the oxide target affects characteristics such as the conductivity of the film. For example, in sputter deposition using an ITO target, about 1% oxygen is introduced into the sputter gas, but the oxygen partial pressure at which the film resistance is minimized depends on the oxygen deficiency concentration of the target.
Therefore, the optimum oxygen partial pressure of the sputtering gas changes as the target is eroded and the sputtering surface becomes internal. In other words, when the oxygen partial pressure of the sputtering gas is constant, the film characteristics change with the sputtering time.

上記で示した従来の技術では、ITOスパッタリングターゲットの密度を上げること、あるいは低抵抗率化を図る提案がなされているが、ターゲットの表面近傍の酸素欠損濃度が低く、内部に行くに従い高くなり、ターゲットとして使用される板状の焼結体では、この濃度分布はターゲットの厚み方向に発生するという問題があるという認識がなく、またこれを解決しようとする試みもなされていなのが現状である。  In the conventional technique shown above, a proposal for increasing the density of the ITO sputtering target or reducing the resistivity has been made, but the oxygen deficiency concentration in the vicinity of the surface of the target is low and increases as it goes inside, In a plate-like sintered body used as a target, there is no recognition that this concentration distribution occurs in the thickness direction of the target, and no attempt has been made to solve this problem.

特許第2750483号Japanese Patent No. 2750483 特開2009−29706号公報JP 2009-29706 A 特開2009−40621号公報JP 2009-40621 A 特開2000−233969号公報JP 2000-233969 A

本発明は、ITO膜形成に好適なITOスパッタリングターゲットに関し、特にターゲットのスパッタリング初期から終了時にかけて、膜特性の変化が少ないITOスパッタリングターゲットを提供するものである。すなわち、ITOスパッタリングターゲットの厚み方向の酸素欠損の変動を少なくすることにより、スパッタリングが進行するに伴う膜特性の変化を少なくし、成膜の品質の向上と信頼性を確保することを課題とする。  The present invention relates to an ITO sputtering target suitable for forming an ITO film, and more particularly, to provide an ITO sputtering target with little change in film properties from the initial stage to the end of sputtering of the target. That is, it is an object of the present invention to reduce the change in film characteristics as the sputtering progresses by reducing the fluctuation of oxygen vacancies in the thickness direction of the ITO sputtering target, and to improve the film formation quality and ensure the reliability. .

上記の課題を解決するために、本発明は、以下の発明を提供するものである。
1)インジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下である焼結体ITOスパッタリングターゲットであって、バルク抵抗率が0.1mΩ・cm〜1.4mΩ・cmであり、ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異が20%以下であることを特徴とするITOスパッタリングターゲット、を提供する。
In order to solve the above-described problems, the present invention provides the following inventions.
1) A sintered body made of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) (atomic composition ratio: at.%) Is 0.3. 14.5 at. % Of a sintered ITO sputtering target having a bulk resistivity of 0.1 mΩ · cm to 1.4 mΩ · cm, and the thickness of the target is t, There is provided an ITO sputtering target characterized in that the difference in bulk resistivity at an arbitrary point in the thickness direction is 20% or less.

スパッタリング中に板厚が減少し抵抗率が変化してくるが、ターゲットの全ライフに亘って、このバルク抵抗率の変化を少なくし、膜特性の変動を少なくすることが望まれる。本発明は、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率の差異を20%以下とすることにより、良好な膜特性を得ることを目的とする。  Although the plate thickness decreases and the resistivity changes during sputtering, it is desirable to reduce the change in bulk resistivity and the variation in film characteristics over the entire life of the target. An object of the present invention is to obtain good film characteristics by setting the difference between the bulk resistivity of the thickness t and the bulk resistivity at an arbitrary point in the plate thickness direction to 20% or less.

ここで、前記「板厚方向の任意の地点」とは、ターゲットの厚さをtとすると、t未満の厚さの位置を示すものであり、その位置の厚さにおいて測定したバルク抵抗率である。また、「差異」とは、測定したバルク抵抗率の大きい方を基準として、例えばバルク抵抗率をR1、R2とし、R1>R2とした場合、(R1−R2)/R1×100(%)として計算したものである。
なお、製造されたターゲットは基本的にターゲットの厚み中心部が最低バルク抵抗率となり、中心部を過ぎるとバルク抵抗率が上昇し、裏面は表面とほぼ同じバルク抵抗率になる。従って、ターゲットの加工の際に表面を研削した場合であっても、裏面までの厚みには、少なくとも元の厚みの中心の最低バルク抵抗率が存在することになる。
Here, the “arbitrary point in the plate thickness direction” indicates a position having a thickness less than t, where t is the thickness of the target, and is a bulk resistivity measured at the thickness at that position. is there. The “difference” is based on the larger measured bulk resistivity, for example, when the bulk resistivity is R1 and R2 and R1> R2, and (R1−R2) / R1 × 100 (%) It is calculated.
The manufactured target basically has a minimum bulk resistivity at the center of the thickness of the target, the bulk resistivity increases after passing the center, and the back surface has substantially the same bulk resistivity as the front surface. Therefore, even when the surface is ground during the processing of the target, the thickness up to the back surface has at least the lowest bulk resistivity at the center of the original thickness.

また、研削等の加工前の焼結体の状態での表面が最もバルク抵抗率が高いので、バルク抵抗率の最大差は、通常研削等の加工前の焼結体での表面のバルク抵抗率と厚み中心部のバルク抵抗率との差異となる。従ってターゲットの加工の際に表面を研削した場合は、厚み方向での差異は最大差よりも小さな値となり得る。このような場合は、裏面の方が表面よりも高くなる場合もあり得る。  In addition, since the surface of the sintered body before processing such as grinding has the highest bulk resistivity, the maximum difference in bulk resistivity is usually the bulk resistivity of the surface of the sintered body before processing such as grinding. And the bulk resistivity at the center of thickness. Therefore, when the surface is ground during the processing of the target, the difference in the thickness direction can be smaller than the maximum difference. In such a case, the back surface may be higher than the front surface.

2)また、本発明はターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異が15%以下であることを特徴とする上記1)に記載のITOスパッタリングターゲット、を提供する。  2) In the present invention, when the thickness of the target is t, the difference between the bulk resistivity at the thickness t and the bulk resistivity at an arbitrary point in the plate thickness direction is 15% or less. The ITO sputtering target according to 1) above is provided.

3)また、本発明はインジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下である焼結体ITOスパッタリングターゲットの製造方法であって、酸化インジウム粉及び酸化錫粉からなる原料粉の焼結に際し、焼結温度を1300〜1600°Cとし、焼結時の最高温度から1000℃までの平均冷却速度を0.1〜3.0℃/minとすると共に、降温時冷却中の雰囲気を大気雰囲気(酸素分圧比30%未満)とすることを特徴とする焼結体ITOスパッタリングターゲットの製造方法、を提供する。  3) Further, the present invention is a sintered body made of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) (atomic composition ratio: at.%) ) Is 0.3 or more and 14.5 at. % Of the sintered body ITO sputtering target manufacturing method, sintering the raw material powder composed of indium oxide powder and tin oxide powder, the sintering temperature is 1300-1600 ° C., the highest temperature during sintering A sintered body characterized in that the average cooling rate from 0.1 to 1000 ° C. is 0.1 to 3.0 ° C./min, and the atmosphere during cooling is an air atmosphere (oxygen partial pressure ratio of less than 30%). A method for producing an ITO sputtering target is provided.

4)また、本発明はバルク抵抗率が0.10〜1.40mΩ・cmで、ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異を20%以下とすることを特徴とする上記3)に記載の焼結体ITOスパッタリングターゲットの製造方法、を提供する。
5)また、本発明はターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異を15%以下とすることを特徴とする上記3)又は4)に記載のITOスパッタリングターゲットの製造方法、を提供する。
4) Further, in the present invention, when the bulk resistivity is 0.10 to 1.40 mΩ · cm and the thickness of the target is t, the bulk resistivity at the thickness t and the bulk at any point in the plate thickness direction. The method for producing a sintered ITO sputtering target according to 3) above, wherein the difference in resistivity is 20% or less.
5) In the present invention, when the thickness of the target is t, the difference between the bulk resistivity of the thickness t and the bulk resistivity at an arbitrary point in the plate thickness direction is 15% or less. The manufacturing method of the ITO sputtering target as described in 3) or 4) above is provided.

6)また、本発明はインジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下である焼結体ITOスパッタリングターゲットを用いてスパッタリングしたITOスパッタ膜であって、ターゲットライフの初期とターゲットライフの後期の膜の抵抗率の差異が5%以下であることを特徴とするITOスパッタ膜、を提供する。  6) Further, the present invention is a sintered body made of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) (atomic composition ratio: at.%) ) Is 0.3 or more and 14.5 at. An ITO sputtered film sputtered using a sintered ITO sputtering target of less than or equal to%, wherein the difference in resistivity between the film at the initial stage of the target life and the latter stage of the target life is 5% or less A sputtered film.

ここで、ターゲットライフ初期は、ターゲットの最もエロージョンを受けた部位のエロージョンが1mm未満までの間、ターゲットライフ後期は、ターゲットの最もエロージョンを受けた部位であって、その部位のターゲットの残りの厚みが0.01mm〜1mmの間と言うこともできる。  Here, in the initial stage of the target life, the erosion of the part most subject to erosion of the target is less than 1 mm, and in the latter part of the target life, the part most subject to erosion of the target, and the remaining thickness of the target in that part Can also be said to be between 0.01 mm and 1 mm.

ITO膜形成に好適なITOスパッタリングターゲットに関し、特にターゲットのスパッタリング初期から終了時にかけて、膜特性の変化が少ないITOスパッタリングターゲットを提供することができる優れた効果を有する。すなわち、ITOスパッタリングターゲットの厚み方向の酸素欠損の変動を少なくし、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異を20%以内とすることにより、スパッタリングが進行することに伴う膜特性の変化を少なくし、成膜の品質の向上と信頼性を確保することができる。この結果、ITOターゲットの生産性や信頼性を向上することができるという優れた効果を有する。  The ITO sputtering target suitable for forming an ITO film has an excellent effect of providing an ITO sputtering target with little change in film characteristics, particularly from the initial stage to the end of sputtering of the target. That is, by reducing the fluctuation of oxygen vacancies in the thickness direction of the ITO sputtering target, the difference between the bulk resistivity at the thickness t and the bulk resistivity at any point in the plate thickness direction is within 20%, It is possible to reduce the change in film characteristics accompanying the progress of sputtering, and to improve the quality of film formation and ensure reliability. As a result, there is an excellent effect that the productivity and reliability of the ITO target can be improved.

ターゲットの厚さをtとした場合の厚さtの時のバルク抵抗率とt未満の時のバルク抵抗率のバルク抵抗率の最大差が13%となった例を示す図である。It is a figure which shows the example from which the maximum difference of the bulk resistivity of the bulk resistivity at the time of thickness t when the thickness of the target is t and the bulk resistivity of less than t became 13%.

本発明において、ITOスパッタリングターゲットの組成は、インジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下である。
このようなターゲットを使用することにより、液晶テレビやプラズマテレビだけでなく、静電容量式及び抵抗膜式タッチパネルなどに好適な、スパッタリング初期から終了時にかけて、膜特性の変化が少ないITOスパッタリングターゲットを提供することができる。
In the present invention, the composition of the ITO sputtering target is a sintered body composed of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) is (atomic composition ratio). : At.%) Is 0.3 or more and 14.5 at. % Or less.
By using such a target, an ITO sputtering target that is suitable not only for liquid crystal televisions and plasma televisions, but also for capacitive and resistive touch panels, etc., having little change in film properties from the beginning to the end of sputtering. Can be provided.

本発明の酸化インジウム−酸化錫系酸化物(ITO)焼結体ターゲットを製造するに際しては、各原料粉の混合、粉砕、成型、焼結のプロセスによって作製することができる。原料粉としては、酸化インジウム粉、および酸化錫粉であって、比表面積が約5m/g程度のものを使用する。When the indium oxide-tin oxide based oxide (ITO) sintered body target of the present invention is manufactured, it can be produced by a process of mixing, pulverizing, molding and sintering each raw material powder. As the raw material powder, indium oxide powder and tin oxide powder having a specific surface area of about 5 m 2 / g are used.

具体的には、酸化インジウム粉は、かさ密度:0.3〜0.8g/cm、メジアン径(D50):0.5〜2.5μm、比表面積:3.0〜6.0m/g、酸化錫粉:かさ密度:0.2〜0.6g/cm、メジアン径(D50):1.0〜2.5μm、比表面積:3.0〜6.0m/gを使用する。Specifically, indium oxide powder has a bulk density of 0.3 to 0.8 g / cm 3 , a median diameter (D 50 ) of 0.5 to 2.5 μm, and a specific surface area of 3.0 to 6.0 m 2. / G, tin oxide powder: bulk density: 0.2 to 0.6 g / cm 3 , median diameter (D 50 ): 1.0 to 2.5 μm, specific surface area: 3.0 to 6.0 m 2 / g use.

各原料粉を所望の組成比となるように秤量後、混合粉砕を行う。粉砕方法には求める粒度、被粉砕物質に応じて様々な方法があるが、ビーズミル等の湿式媒体攪拌ミルが適している。これは、粉体を水に分散させたスラリーを、硬度の高い材料であるジルコニア、アルミナ等の粉砕媒体と共に強制的に攪拌するものであり、高効率で粉砕粉を得ることが出来る。しかし、この際に粉砕媒体も磨耗するために、粉砕粉に粉砕媒体自身が不純物として混入するので、長時間の処理は好ましくない。  Each raw material powder is weighed so as to have a desired composition ratio, and then mixed and ground. There are various pulverization methods depending on the desired particle size and the material to be pulverized, but a wet medium stirring mill such as a bead mill is suitable. In this method, a slurry in which powder is dispersed in water is forcibly stirred together with a grinding medium such as zirconia or alumina, which is a material with high hardness, and a pulverized powder can be obtained with high efficiency. However, since the pulverizing medium is also worn at this time, the pulverizing medium itself is mixed as an impurity in the pulverized powder.

粉砕量を粉砕前後の比表面積の差で定義すれば、湿式媒体攪拌ミルでは粉砕量は粉体に対する投入エネルギーにほぼ比例する。従って、粉砕を行う際には、湿式媒体攪拌ミルは積算電力を管理することが重要である。粉砕前後の比表面積の差(ΔBET)は、0.5〜5.0m/g、粉砕後のメジアン径(D50)は、2.5μm以下とする。If the pulverization amount is defined by the difference in specific surface area before and after pulverization, the pulverization amount is almost proportional to the input energy to the powder in the wet medium stirring mill. Therefore, when performing pulverization, it is important that the wet medium stirring mill manages the integrated power. The difference in specific surface area before and after pulverization (ΔBET) is 0.5 to 5.0 m 2 / g, and the median diameter (D 50 ) after pulverization is 2.5 μm or less.

次に、微粉砕したスラリーの造粒を行う。これは、造粒により粉体の流動性を向上させることで、次工程のプレス成型時に粉体を均一に金型へ充填し、均質な成形体を得るためである。造粒には様々な方式があるが、プレス成型に適した造粒粉を得る方法の一つに、噴霧式乾燥装置(スプレードライヤー)を用いる方法がある。これは粉体をスラリーとして、熱風中に液滴として分散させ、瞬間的に乾燥させる方法であり、10〜500μmの球状の造粒粉が連続的に得ることが出来る。  Next, the finely pulverized slurry is granulated. This is because by improving the fluidity of the powder by granulation, the powder is uniformly filled in the mold at the time of press molding in the next step, and a homogeneous molded body is obtained. There are various types of granulation, and one method for obtaining granulated powder suitable for press molding is a method using a spray-type drying device (spray dryer). This is a method in which powder is dispersed as slurry in hot air and dried instantaneously, and spherical granulated powder of 10 to 500 μm can be continuously obtained.

また、スラリー中にポリビニルアルコール(PVA)等のバインダーを添加し造粒粉中に含有させることで、成形体強度を向上させることが出来る。PVAの添加量は、PVA4〜10wt.%が含有水溶液を原料粉に対して50〜250cc/kg添加する。  Moreover, a molded object intensity | strength can be improved by adding binders, such as polyvinyl alcohol (PVA), in a slurry, and making it contain in granulated powder. The amount of PVA added was PVA 4 to 10 wt. % Of the aqueous solution containing 50 to 250 cc / kg of the raw material powder.

さらに、バインダーに適した可塑剤も添加することで、プレス成型時の造粒粉の圧壊強度を調節することも出来る。また、得られた造粒粉に、少量の水を添加し湿潤させることで成形体強度を向上する方法もある。スプレードライヤーによる乾燥では熱風の入口温度、および出口温度の管理が重要である。  Furthermore, the crushing strength of the granulated powder during press molding can be adjusted by adding a plasticizer suitable for the binder. There is also a method for improving the strength of the molded body by adding a small amount of water to the obtained granulated powder and moistening it. In drying with a spray dryer, it is important to control the inlet temperature and outlet temperature of hot air.

入口と出口との温度差が大きければ単位時間当たりの乾燥量が増加し生産性が向上するが、入口温度が高すぎる場合には粉体、および添加したバインダーが熱により変質し、望まれる特性が得られない場合がある。また、出口温度が低すぎる場合は造粒粉が十分に乾燥されない場合がある。  If the temperature difference between the inlet and outlet is large, the amount of drying per unit time will increase and the productivity will improve, but if the inlet temperature is too high, the powder and added binder will change in quality due to heat, and the desired characteristics May not be obtained. In addition, when the outlet temperature is too low, the granulated powder may not be sufficiently dried.

次に、プレス成型を行う。造粒粉を金型に充填し、400〜1000kgf/cmの圧力を、1〜3分間保持して成形する。圧力400kgf/cm未満であると、充分な強度と密度の成形体を得ることができず、また圧力1000kgf/cm以上では、成形体を金型から取り出す際に、成形体自身が圧力から解放されることによる変形のため破壊する場合があり、生産上好ましくない。Next, press molding is performed. The granulated powder is filled into a mold, and molded by holding a pressure of 400 to 1000 kgf / cm 2 for 1 to 3 minutes. When the pressure is less than 400 kgf / cm 2 , a molded body having sufficient strength and density cannot be obtained. When the pressure is 1000 kgf / cm 2 or more, the molded body itself is out of pressure when taken out from the mold. It may break due to deformation due to being released, which is not preferable in production.

電気炉を使用し、酸素雰囲気中で成形体を焼結し、焼結体を得る。焼結温度は1300〜1600°Cとして焼結する。この場合、焼結温度が1300°Cより低いと、高密度の焼結体を得ることが出来ない。また、1600°Cを超える焼結温度では、酸化錫の揮発により、焼結密度の低下や組成ずれが生じ、また炉ヒーター寿命が低下してしまうというコスト的問題もあるので、上限は1600°Cとすることが望ましい。焼結温度までの昇温途中で、必要に応じて脱バインダー工程等を導入しても良い。  Using an electric furnace, the molded body is sintered in an oxygen atmosphere to obtain a sintered body. Sintering is performed at a sintering temperature of 1300 to 1600 ° C. In this case, if the sintering temperature is lower than 1300 ° C., a high-density sintered body cannot be obtained. Further, at a sintering temperature exceeding 1600 ° C, volatilization of tin oxide causes a decrease in sintering density and a composition shift, and there is also a cost problem that the life of the furnace heater is reduced, so the upper limit is 1600 °. C is desirable. A binder removal step or the like may be introduced as needed during the temperature rise to the sintering temperature.

焼結温度における保持時間が1時間より短いと、焼結が充分進まず、焼結体の密度が充分高くならなかったり、焼結体が反ってしまったりする。保持時間が100時間を越えても、不必要なエネルギーと時間を要する無駄が生じて生産上好ましくない。好ましくは、5〜30hrである。
降温時冷却中の雰囲気を大気雰囲気(酸素分圧比30%未満)とし、前記焼結時の最高温度から1000℃までの平均冷却速度を0.1〜3.0℃/minとする。
If the holding time at the sintering temperature is shorter than 1 hour, the sintering does not proceed sufficiently, and the density of the sintered body does not become sufficiently high, or the sintered body is warped. Even if the holding time exceeds 100 hours, unnecessary energy and time is wasted, which is not preferable for production. Preferably, it is 5 to 30 hours.
The atmosphere during cooling when the temperature is lowered is an air atmosphere (oxygen partial pressure ratio of less than 30%), and the average cooling rate from the highest temperature during sintering to 1000 ° C. is 0.1 to 3.0 ° C./min.

バルク抵抗率の測定方法については、例えばエヌピイエス株式会社製、型式:Σ−5+を用いて測定することができる。測定に際し、まず試料の表面に金属製の探針を4本一直線上に立て、外側の二探針間に一定電流を流し、内側の二探針間に生じる電位差を測定し抵抗を求める。求めた抵抗に試料厚さ、補正係数RCF(Resistivity Correction Factor)をかけて、体積抵抗率(バルク抵抗率)を算出することができる。  About the measuring method of a bulk resistivity, it can measure, for example by NP Corporation make and type | formula: (SIGMA) -5+. In the measurement, first, four metal probes are placed on a straight line on the surface of the sample, a constant current is passed between the two outer probes, the potential difference generated between the two inner probes is measured, and the resistance is obtained. The volume resistivity (bulk resistivity) can be calculated by multiplying the obtained resistance by the sample thickness and a correction coefficient RCF (Resistivity Correction Factor).

このような条件で焼結された焼結体は、相対密度が90%以上、バルク抵抗率が0.10〜1.40mΩ・cmで、ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異を20%以内とすることができる。これが本願発明の大きな特徴である。
すなわち、インジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下からなる焼結体ITOスパッタリングターゲットにおいて、バルク抵抗率が0.1mΩ・cm〜1.4mΩ・cmであるときに、ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異を20%以内、さらには15%以内とすることができる。
A sintered body sintered under such conditions has a relative density of 90% or more, a bulk resistivity of 0.10 to 1.40 mΩ · cm, and a target thickness of t. The difference between the bulk resistivity and the bulk resistivity at any point in the plate thickness direction can be within 20%. This is a major feature of the present invention.
That is, it is a sintered body made of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) (atomic composition ratio: at.%) Is 0.3. 14.5 at. % When the bulk resistivity is 0.1 mΩ · cm to 1.4 mΩ · cm, and the thickness of the target is t, The difference in bulk resistivity at any point in the plate thickness direction can be within 20%, and even within 15%.

この代表例を図1に示す。この図1においては、ターゲットの厚さをtとした場合の厚さtの時のバルク抵抗率とt未満の時のバルク抵抗率のバルク抵抗率の最大差が13%となった例を示す。通常、ターゲットを研削する前の焼結体の厚さをTとした場合、Tのバルク抵抗率とT/2のバルク抵抗率の差が最大となるので、ターゲットのT/2のバルク抵抗率を測定することにより、ターゲット内部(厚み方向)のバルク抵抗の、およその特性を知ることができる。  A typical example is shown in FIG. FIG. 1 shows an example in which the maximum difference between the bulk resistivity when the target thickness is t and the bulk resistivity when the target thickness is less than t is 13%. . Usually, when the thickness of the sintered body before grinding the target is T, the difference between the bulk resistivity of T and the bulk resistivity of T / 2 is maximized, so the bulk resistivity of T / 2 of the target. Can be used to know the approximate characteristics of the bulk resistance inside the target (thickness direction).

本発明の焼結体ITOスパッタリングターゲットの製造に際しては、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下、残余が酸化インジウムとなるように酸化インジウム粉及び酸化錫粉を調製し、この原料粉を焼結温度:1300〜1600°Cとし、所定の圧力で焼結する。そして、焼結時の最高温度から1000℃までの平均冷却速度を0.1〜3.0℃/minとすると共に、降温時冷却中の雰囲気を大気雰囲気(酸素分圧比30%未満)とする。  In the production of the sintered ITO sputtering target of the present invention, the content of tin (Sn) (atomic composition ratio: at.%) Is 0.3 or more and 14.5 at. % Indium oxide powder and tin oxide powder are prepared so that the remainder is indium oxide, and the raw material powder is sintered at a temperature of 1300 to 1600 ° C. and sintered at a predetermined pressure. And while making the average cooling rate from the highest temperature at the time of sintering to 1000 degreeC into 0.1-3.0 degreeC / min, the atmosphere under cooling at the time of temperature-fall is made into air atmosphere (oxygen partial pressure ratio is less than 30%). .

これによって、バルク抵抗率が0.10〜1.40mΩ・cmで、ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異(双方のバルク抵抗率の差異)を20%以内とすること、さらにはターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異(双方のバルク抵抗率の差異)を15%以内とすることができる。  Thereby, when the bulk resistivity is 0.10 to 1.40 mΩ · cm and the thickness of the target is t, the bulk resistivity at the thickness t and the bulk resistivity at an arbitrary point in the plate thickness direction are as follows: When the difference (difference between both bulk resistivities) is within 20%, and when the target thickness is t, the bulk resistivity at the thickness t and the bulk resistance at any point in the plate thickness direction. Regarding the rate, the difference (difference between both bulk resistivity) can be within 15%.

このようにして得られた焼結体の表面を研削し、さらに側辺をダイヤモンドカッターで127mm×508mmサイズに切断した。
次に、無酸素銅製のバッキングプレートを200°Cに設定したホットプレート上に設置し、インジウムをロウ材として使用し、その厚みが約0.2mmとなるように塗布した。このバッキングプレート上に、ITO焼結体を接合させ、室温まで放置冷却した。
The surface of the sintered body thus obtained was ground, and the side was further cut into a size of 127 mm × 508 mm with a diamond cutter.
Next, a backing plate made of oxygen-free copper was placed on a hot plate set at 200 ° C., and indium was used as a brazing material and applied so that its thickness was about 0.2 mm. An ITO sintered body was bonded onto the backing plate and allowed to cool to room temperature.

このターゲットをシンクロン製マグネトロンスパッタ装置(BSC−7011)に取り付け、投入パワーはDC電源で2.3W/cm、ガス圧は0.6Pa、スパッタガスはアルゴン(Ar)と酸素(O)でガス総流量は300sccm、酸素濃度は1%とした。ライフ初期とライフ後期で膜抵抗率の比較をするため、成膜温度200℃、膜厚150nmで成膜を行った。This target is attached to a SYNCHRON magnetron sputtering device (BSC-7011), the input power is 2.3 W / cm 2 with a DC power source, the gas pressure is 0.6 Pa, and the sputtering gas is argon (Ar) and oxygen (O 2 ). The total gas flow rate was 300 sccm, and the oxygen concentration was 1%. In order to compare the film resistivity between the initial stage of life and the late stage of life, the film was formed at a film forming temperature of 200 ° C. and a film thickness of 150 nm.

上記の焼結体ITOターゲットを用いてスパッタリングすることにより、ターゲットライフの初期とターゲットライフの後期の膜の抵抗率の差異が5%以下であるITOスパッタ膜を得ることができる。
下記に、実施例及び比較例に基づいて本発明を説明する。
By sputtering using the above-mentioned sintered ITO target, an ITO sputtered film in which the difference in resistivity between the film at the initial stage of the target life and the film at the late stage of the target life is 5% or less can be obtained.
Below, this invention is demonstrated based on an Example and a comparative example.

以下に示す実施例は、理解を容易にするためのものであり、これらの実施例によって本発明を制限するものではない。すなわち、本発明の技術思想に基づく変形及び他の実施例は、当然本発明に含まれる。   The following examples are for ease of understanding, and the present invention is not limited by these examples. That is, modifications and other embodiments based on the technical idea of the present invention are naturally included in the present invention.

(実施例1)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を0.5℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.142mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.130mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が8%であった。
また、図1のように調査した結果、最大で12%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も1.3%と変動が小さかった。この結果を、表1に示す。
Example 1
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate at the time of temperature reduction from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 0.5 ° C./min, and the atmosphere at the time of temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 0.142 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.130 mΩ · cm, and the difference between the bulk resistivity at the early and late stages of the target life was 8%. It was.
Moreover, as a result of investigating like FIG. 1, it was 12% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also as small as 1.3%. The results are shown in Table 1.

(実施例2)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.138mΩ・cmでターゲットライフ後期のバルク抵抗率が0.125mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が9%であった。
また、図1のように調査した結果、最大で13%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も0.6%と変動が小さかった。この結果を、同様に表1に示す。
(Example 2)
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 1.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.138 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.125 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 9%. .
Moreover, as a result of investigating like FIG. 1, it was 13% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also as small as 0.6%. The results are also shown in Table 1.

(実施例3)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.5℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.135mΩ・cmでターゲットライフ後期のバルク抵抗率が0.121mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が10%であった。
また、図1のように調査した結果、最大で15%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も2.5%と変動が小さかった。
(Example 3)
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate when the temperature was lowered from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 1.5 ° C./min, and the atmosphere during the temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 0.135 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.121 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 10%. .
Moreover, as a result of investigating like FIG. 1, it was 15% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also as small as 2.5%.

(実施例4)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を2.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.134mΩ・cmでターゲットライフ後期のバルク抵抗率が0.119mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が11%であった。
また、図1のように調査した結果、最大で17%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も1.2%と変動が小さかった。この結果を、同様に表1に示す。
Example 4
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 2.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.134 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.119 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 11%. .
Moreover, as a result of investigating like FIG. 1, it was 17% of difference at maximum. As a result of film formation using this target in the early stage and late stage of the target life, the difference in film resistivity was as small as 1.2%. The results are also shown in Table 1.

(実施例5)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を2.5℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.132mΩ・cmでターゲットライフ後期のバルク抵抗率が0.118mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が11%であった。
また、図1のように調査した結果、最大で14%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も2.4%と変動が小さかった。この結果を、同様に表1に示す。
(Example 5)
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 2.5 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.132 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.118 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 11%. .
Moreover, as a result of investigating like FIG. 1, it was 14% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was as small as 2.4%. The results are also shown in Table 1.

(実施例6)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を3.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.130mΩ・cmでターゲットライフ後期のバルク抵抗率が0.116mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が11%であった。
また、図1のように調査した結果、最大で13%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も3.5%と変動が小さかった。この結果を、同様に表1に示す。
(Example 6)
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 3.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.130 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.116 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 11%. .
Moreover, as a result of investigating like FIG. 1, it was 13% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also as small as 3.5%. The results are also shown in Table 1.

(比較例1)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を0.05℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.163mΩ・cmでターゲットライフ後期のバルク抵抗率が0.130mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が20%であった。
また、図1のように調査した結果、最大で25%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も10.4%と大きく変動していた。この結果を、同様に表1に示す。
(Comparative Example 1)
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during temperature reduction from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 0.05 ° C./min, and the atmosphere during temperature reduction was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.163 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.130 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 20%. .
Moreover, as a result of investigating like FIG. 1, it was a difference of 25% at maximum. As a result of film formation using the target in the early stage and late stage of the target life, the difference in film resistivity also fluctuated greatly to 10.4%. The results are also shown in Table 1.

(比較例2)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を5.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.131mΩ・cmでターゲットライフ後期のバルク抵抗率が0.106mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が19%であった。
また、図1のように調査した結果、最大で24%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も9.4%と大きく変動していた。この結果を、同様に表1に示す。
(Comparative Example 2)
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate when the temperature was lowered from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 5.0 ° C./min, and the atmosphere during the temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 0.131 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.106 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 19%. .
Moreover, as a result of investigating like FIG. 1, it was a difference of 24% at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly to 9.4%. The results are also shown in Table 1.

(比較例3)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.0℃/minとし、降温時の雰囲気を酸素分圧比30%以上とした。この結果、ターゲットライフ初期のバルク抵抗率が0.160mΩ・cmでターゲットライフ後期のバルク抵抗率が0.130mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が19%であった。
また、図1のように調査した結果、最大で23%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も10.0%と大きく変動していた。この結果を、同様に表1に示す。
(Comparative Example 3)
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 1.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of 30% or more. As a result, the bulk resistivity at the initial stage of the target life was 0.160 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.130 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 19%. .
Moreover, as a result of investigating like FIG. 1, it was a difference of 23% at maximum. As a result of film formation using the target in the early stage and late stage of the target life, the difference in film resistivity also fluctuated greatly as 10.0%. The results are also shown in Table 1.

(比較例4)
錫(Sn)の含有量が(原子組成比:at.%)3.7at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を3.0℃/minとし、降温時の雰囲気を酸素分圧比30%以上とした。この結果、ターゲットライフ初期のバルク抵抗率が0.152mΩ・cmでターゲットライフ後期のバルク抵抗率が0.123mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が19%であった。
また、図1のように調査した結果、最大で24%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も11.7%と大きく変動していた。この結果を、同様に表1に示す。
(Comparative Example 4)
The content of tin (Sn) (atomic composition ratio: at.%) Is 3.7 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 3.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of 30% or more. As a result, the bulk resistivity at the initial stage of the target life was 0.152 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.123 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 19%. .
Moreover, as a result of investigating like FIG. 1, it was a difference of 24% at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly to 11.7%. The results are also shown in Table 1.

(実施例7)
錫(Sn)の含有量が(原子組成比:at.%)0.4at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.250mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.230mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が8%であった。
また、図1のように調査した結果、最大で10%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も4.4%と変動が小さかった。この結果を、表1に示す。
(Example 7)
The content of tin (Sn) (atomic composition ratio: at.%) 0.4 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 1.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.250 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.230 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 8%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 10% at maximum. As a result of film formation using this target in the early and late stages of the target life, the difference in film resistivity was as small as 4.4%. The results are shown in Table 1.

(実施例8)
錫(Sn)の含有量が(原子組成比:at.%)0.4at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を3.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.231mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.209mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が10%であった。
また、図1のように調査した結果、最大で12%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も1.6%と変動が小さかった。この結果を、表1に示す。
(Example 8)
The content of tin (Sn) (atomic composition ratio: at.%) 0.4 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 3.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.231 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.209 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 10%. It was.
Moreover, as a result of investigating like FIG. 1, it was 12% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also as small as 1.6%. The results are shown in Table 1.

(実施例9)
錫(Sn)の含有量が(原子組成比:at.%)1.1at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.121mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.109mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が10%であった。
また、図1のように調査した結果、最大で11%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も4.5%と変動が小さかった。この結果を、表1に示す。
Example 9
The content of tin (Sn) (atomic composition ratio: at.%) 1.1 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 1.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.121 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.109 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 10%. It was.
Moreover, as a result of investigating like FIG. 1, it was 11% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also as small as 4.5%. The results are shown in Table 1.

(実施例10)
錫(Sn)の含有量が(原子組成比:at.%)1.1at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を3.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.113mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.101mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が11%であった。
また、図1のように調査した結果、最大で14%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も2.2%と変動が小さかった。この結果を、表1に示す。
(Example 10)
The content of tin (Sn) (atomic composition ratio: at.%) 1.1 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 3.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.113 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.101 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 11%. It was.
Moreover, as a result of investigating like FIG. 1, it was 14% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was as small as 2.2%. The results are shown in Table 1.

(実施例11)
錫(Sn)の含有量が(原子組成比:at.%)1.8at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.119mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.109mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が8%であった。
また、図1のように調査した結果、最大で9%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も3.2%と変動が小さかった。この結果を、表1に示す。
(Example 11)
The content of tin (Sn) (atomic composition ratio: at.%) 1.8 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 1.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.119 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.109 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 8%. It was.
Moreover, as a result of investigating like FIG. 1, it was 9% of difference at maximum. As a result of film formation using the target in the early stage and late stage of the target life, the difference in film resistivity was also as small as 3.2%. The results are shown in Table 1.

(実施例12)
錫(Sn)の含有量が(原子組成比:at.%)1.8at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を3.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.110mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.100mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が9%であった。
また、図1のように調査した結果、最大で11%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も1.6%と変動が小さかった。この結果を、表1に示す。
(Example 12)
The content of tin (Sn) (atomic composition ratio: at.%) 1.8 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 3.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.110 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.100 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 9%. It was.
Moreover, as a result of investigating like FIG. 1, it was 11% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also as small as 1.6%. The results are shown in Table 1.

(実施例13)
錫(Sn)の含有量が(原子組成比:at.%)5.4at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.176mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.161mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が9%であった。
また、図1のように調査した結果、最大で11%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も2.4%と変動が小さかった。この結果を、表1に示す。
(Example 13)
The content of tin (Sn) (atomic composition ratio: at.%) Is 5.4 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 1.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.176 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.161 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 9%. It was.
Moreover, as a result of investigating like FIG. 1, it was 11% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was as small as 2.4%. The results are shown in Table 1.

(実施例14)
錫(Sn)の含有量が(原子組成比:at.%)5.4at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を3.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.167mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.155mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が7%であった。
また、図1のように調査した結果、最大で9%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も4.2%と変動が小さかった。この結果を、表1に示す。
(Example 14)
The content of tin (Sn) (atomic composition ratio: at.%) Is 5.4 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 3.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.167 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.155 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 7%. It was.
Moreover, as a result of investigating like FIG. 1, it was 9% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was as small as 4.2%. The results are shown in Table 1.

(実施例15)
錫(Sn)の含有量が(原子組成比:at.%)7.2at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.220mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.200mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が9%であった。
また、図1のように調査した結果、最大で12%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も3.5%と変動が小さかった。この結果を、表1に示す。
(Example 15)
The content of tin (Sn) (atomic composition ratio: at.%) 7.2 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 1.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.220 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.200 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 9%. It was.
Moreover, as a result of investigating like FIG. 1, it was 12% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also as small as 3.5%. The results are shown in Table 1.

(実施例16)
錫(Sn)の含有量が(原子組成比:at.%)7.2at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を3.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.200mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.180mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が10%であった。
また、図1のように調査した結果、最大で11%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も2.1%と変動が小さかった。この結果を、表1に示す。
(Example 16)
The content of tin (Sn) (atomic composition ratio: at.%) 7.2 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 3.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.200 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.180 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 10%. It was.
Moreover, as a result of investigating like FIG. 1, it was 11% of difference at maximum. As a result of film formation using the target in the early stage and late stage of the target life, the difference in film resistivity was also as small as 2.1%. The results are shown in Table 1.

(実施例17)
錫(Sn)の含有量が(原子組成比:at.%)12.8at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を1.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が1.302mΩ・cmで、ターゲットライフ後期のバルク抵抗率が1.172mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が10%であった。
また、図1のように調査した結果、最大で12%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も3.3%と変動が小さかった。この結果を、表1に示す。
(Example 17)
The content of tin (Sn) (atomic composition ratio: at.%) 12.8 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 1.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 1.302 mΩ · cm, the bulk resistivity at the late stage of the target life was 1.172 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 10%. It was.
Moreover, as a result of investigating like FIG. 1, it was 12% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was as small as 3.3%. The results are shown in Table 1.

(実施例18)
錫(Sn)の含有量が(原子組成比:at.%)12.8at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を3.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が1.251mΩ・cmで、ターゲットライフ後期のバルク抵抗率が1.151mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が8%であった。
また、図1のように調査した結果、最大で10%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も2.1%と変動が小さかった。この結果を、表1に示す。
(Example 18)
The content of tin (Sn) (atomic composition ratio: at.%) 12.8 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during cooling from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 3.0 ° C./min, and the atmosphere during cooling was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 1.251 mΩ · cm, the bulk resistivity at the late stage of the target life was 1.151 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 8%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 10% at maximum. As a result of film formation using the target in the early stage and late stage of the target life, the difference in film resistivity was also as small as 2.1%. The results are shown in Table 1.

(比較例5)
錫(Sn)の含有量が(原子組成比:at.%)0.4at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を0.05℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.277mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.228mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が18%であった。
また、図1のように調査した結果、最大で22%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も9.9%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 5)
The content of tin (Sn) (atomic composition ratio: at.%) 0.4 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during temperature reduction from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 0.05 ° C./min, and the atmosphere during temperature reduction was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.277 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.228 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 18%. It was.
Moreover, as a result of investigating like FIG. 1, it was 22% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly as 9.9%. The results are shown in Table 1.

(比較例6)
錫(Sn)の含有量が(原子組成比:at.%)0.4at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を5.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.228mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.187mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が18%であった。
また、図1のように調査した結果、最大で23%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も10.3%と変動と大きく変動していた。この結果を、表1に示す。
(Comparative Example 6)
The content of tin (Sn) (atomic composition ratio: at.%) 0.4 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate when the temperature was lowered from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 5.0 ° C./min, and the atmosphere during the temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 0.228 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.187 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 18%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 23% at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity was also 10.3%, which fluctuated greatly. The results are shown in Table 1.

(比較例7)
錫(Sn)の含有量が(原子組成比:at.%)1.1at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を0.05℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.131mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.105mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が20%であった。
また、図1のように調査した結果、最大で25%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も10.8%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 7)
The content of tin (Sn) (atomic composition ratio: at.%) 1.1 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during temperature reduction from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 0.05 ° C./min, and the atmosphere during temperature reduction was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.131 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.105 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 20%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 25% at maximum. As a result of film formation using this target in the early stage and late stage of the target life, the difference in film resistivity also fluctuated greatly as 10.8%. The results are shown in Table 1.

(比較例8)
錫(Sn)の含有量が(原子組成比:at.%)1.1at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を5.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.105mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.085mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が19%であった。
また、図1のように調査した結果、最大で21%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も11.1%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 8)
The content of tin (Sn) (atomic composition ratio: at.%) 1.1 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate when the temperature was lowered from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 5.0 ° C./min, and the atmosphere during the temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 0.105 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.085 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 19%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 21% at maximum. As a result of film formation using this target in the early stage and late stage of the target life, the difference in film resistivity also fluctuated greatly as 11.1%. The results are shown in Table 1.

(比較例9)
錫(Sn)の含有量が(原子組成比:at.%)1.8at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を0.05℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.129mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.104mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が19%であった。
また、図1のように調査した結果、最大で22%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も7.4%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 9)
The content of tin (Sn) (atomic composition ratio: at.%) 1.8 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during temperature reduction from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 0.05 ° C./min, and the atmosphere during temperature reduction was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.129 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.104 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 19%. It was.
Moreover, as a result of investigating like FIG. 1, it was 22% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly to 7.4%. The results are shown in Table 1.

(比較例10)
錫(Sn)の含有量が(原子組成比:at.%)1.8at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を5.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.101mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.083mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が18%であった。
また、図1のように調査した結果、最大で22%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も10.7%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 10)
The content of tin (Sn) (atomic composition ratio: at.%) 1.8 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate when the temperature was lowered from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 5.0 ° C./min, and the atmosphere during the temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 0.101 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.083 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 18%. It was.
Moreover, as a result of investigating like FIG. 1, it was 22% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly as 10.7%. The results are shown in Table 1.

(比較例11)
錫(Sn)の含有量が(原子組成比:at.%)5.4at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を0.05℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.191mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.155mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が19%であった。
また、図1のように調査した結果、最大で24%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も9.0%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 11)
The content of tin (Sn) (atomic composition ratio: at.%) Is 5.4 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during temperature reduction from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 0.05 ° C./min, and the atmosphere during temperature reduction was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.191 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.155 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 19%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 24% at maximum. As a result of film formation using the target in the early stage and late stage of the target life, the difference in film resistivity also greatly fluctuated to 9.0%. The results are shown in Table 1.

(比較例12)
錫(Sn)の含有量が(原子組成比:at.%)5.4at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を5.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.160mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.128mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が20%であった。
また、図1のように調査した結果、最大で22%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も12.3%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 12)
The content of tin (Sn) (atomic composition ratio: at.%) Is 5.4 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate when the temperature was lowered from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 5.0 ° C./min, and the atmosphere during the temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 0.160 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.128 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 20%. It was.
Moreover, as a result of investigating like FIG. 1, it was 22% of difference at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly to 12.3%. The results are shown in Table 1.

(比較例13)
錫(Sn)の含有量が(原子組成比:at.%)7.2at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を0.05℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.259mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.213mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が18%であった。
また、図1のように調査した結果、最大で23%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も13.8%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 13)
The content of tin (Sn) (atomic composition ratio: at.%) 7.2 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during temperature reduction from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 0.05 ° C./min, and the atmosphere during temperature reduction was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 0.259 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.213 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 18%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 23% at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly to 13.8%. The results are shown in Table 1.

(比較例14)
錫(Sn)の含有量が(原子組成比:at.%)7.2at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を5.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が0.184mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.142mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が23%であった。
また、図1のように調査した結果、最大で26%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も7.9%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 14)
The content of tin (Sn) (atomic composition ratio: at.%) 7.2 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate when the temperature was lowered from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 5.0 ° C./min, and the atmosphere during the temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 0.184 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.142 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 23%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 26% at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly as 7.9%. The results are shown in Table 1.

(比較例15)
錫(Sn)の含有量が(原子組成比:at.%)12.8at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を0.05℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が1.355mΩ・cmで、ターゲットライフ後期のバルク抵抗率が1.070mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が21%であった。
また、図1のように調査した結果、最大で25%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も10.3%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 15)
The content of tin (Sn) (atomic composition ratio: at.%) 12.8 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate during temperature reduction from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was set to 0.05 ° C./min, and the atmosphere during temperature reduction was set to an oxygen partial pressure ratio of less than 30%. As a result, the bulk resistivity at the initial stage of the target life was 1.355 mΩ · cm, the bulk resistivity at the late stage of the target life was 1.070 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 21%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 25% at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly as 10.3%. The results are shown in Table 1.

(比較例16)
錫(Sn)の含有量が(原子組成比:at.%)12.8at.%とした酸化錫粉を用い、残余が酸化インジウムに調整した焼結原料を用いて焼結した。最高焼結温度1560℃から1000℃までの降温時平均冷却速度を5.0℃/minとし、降温時の雰囲気を酸素分圧比30%未満とした。この結果、ターゲットライフ初期のバルク抵抗率が1.259mΩ・cmで、ターゲットライフ後期のバルク抵抗率が0.944mΩ・cmであり、ターゲットライフ初期と後期のバルク抵抗率の差が25%であった。
また、図1のように調査した結果、最大で30%の差異であった。このターゲットを用いてターゲットライフ初期と後期で成膜した結果、膜抵抗率の差も9.5%と大きく変動していた。この結果を、表1に示す。
(Comparative Example 16)
The content of tin (Sn) (atomic composition ratio: at.%) 12.8 at. % Tin oxide powder was used, and the remainder was sintered using a sintering raw material adjusted to indium oxide. The average cooling rate when the temperature was lowered from the maximum sintering temperature of 1560 ° C. to 1000 ° C. was 5.0 ° C./min, and the atmosphere during the temperature reduction was less than 30% of the oxygen partial pressure ratio. As a result, the bulk resistivity at the initial stage of the target life was 1.259 mΩ · cm, the bulk resistivity at the late stage of the target life was 0.944 mΩ · cm, and the difference between the bulk resistivity at the early stage and the late stage of the target life was 25%. It was.
Moreover, as a result of investigating like FIG. 1, it was a difference of 30% at maximum. As a result of film formation in the early and late stages of the target life using this target, the difference in film resistivity also fluctuated greatly as 9.5%. The results are shown in Table 1.

本発明は、ITO膜形成に好適なITOスパッタリングターゲットに関し、特にターゲットのスパッタリング初期から終了時にかけて、膜特性の変化が少ないITOスパッタリングターゲットを提供することができる。すなわち、ITOスパッタリングターゲットの厚み方向の酸素欠損の変動を少なくし、ターゲットの厚さをtとした場合のターゲットの厚さtの時のバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率の差異を20%以内とすることにより、スパッタリングが進行することに伴う膜特性の変化を少なくし、成膜の品質の向上と信頼性を確保することができる。この結果、ITOターゲットの生産性や信頼性を向上することができるという優れた効果を有する。本発明のITOスパッタリングターゲットは特にITO膜形成に有用である。  The present invention relates to an ITO sputtering target suitable for forming an ITO film, and in particular, can provide an ITO sputtering target with little change in film characteristics from the initial sputtering to the end of sputtering of the target. That is, the fluctuation of oxygen deficiency in the thickness direction of the ITO sputtering target is reduced, and the bulk resistivity at the target thickness t when the target thickness is t and the bulk resistance at any point in the plate thickness direction. By making the difference in rate 20% or less, it is possible to reduce the change in film characteristics accompanying the progress of sputtering, and to improve the film formation quality and ensure the reliability. As a result, there is an excellent effect that the productivity and reliability of the ITO target can be improved. The ITO sputtering target of the present invention is particularly useful for forming an ITO film.

Claims (6)

インジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下であり、バルク抵抗率が0.1mΩ・cm〜1.4mΩ・cmであり、ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異が20%以下であることを特徴とするITOスパッタリングターゲット。  A sintered body made of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) (atomic composition ratio: at.%) Is 0.3 or more and 14 .5 at. %, The bulk resistivity is 0.1 mΩ · cm to 1.4 mΩ · cm, and when the target thickness is t, the bulk resistivity of the thickness t and at any point in the plate thickness direction An ITO sputtering target characterized in that the difference in bulk resistivity is 20% or less. ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異が15%以下であることを特徴とする請求項1に記載のITOスパッタリングターゲット。  The difference between the bulk resistivity of the thickness t and the bulk resistivity at an arbitrary point in the plate thickness direction is 15% or less, where t is the thickness of the target. ITO sputtering target. インジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下である焼結体ITOスパッタリングターゲットの製造方法であって、酸化インジウム粉及び酸化錫粉からなる原料粉の焼結に際し、焼結温度を1300〜1600°Cとし、焼結時の最高温度から1000℃までの平均冷却速度を0.1〜3.0℃/minとすると共に、降温時冷却中の雰囲気を大気雰囲気(酸素分圧比30%未満)とすることを特徴とする焼結体ITOスパッタリングターゲットの製造方法。  A sintered body made of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) (atomic composition ratio: at.%) Is 0.3 or more and 14 .5 at. % Of the sintered body ITO sputtering target manufacturing method, sintering the raw material powder composed of indium oxide powder and tin oxide powder, the sintering temperature is 1300-1600 ° C., the highest temperature during sintering A sintered body characterized in that the average cooling rate from 0.1 to 1000 ° C. is 0.1 to 3.0 ° C./min, and the atmosphere during cooling is an air atmosphere (oxygen partial pressure ratio of less than 30%). Manufacturing method of ITO sputtering target. バルク抵抗率が0.10〜1.40mΩ・cmで、ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異を20%以下とすることを特徴とする請求項3記載の焼結体ITOスパッタリングターゲットの製造方法。  When the bulk resistivity is 0.10 to 1.40 mΩ · cm and the thickness of the target is t, the difference between the bulk resistivity at the thickness t and the bulk resistivity at any point in the plate thickness direction is The method for producing a sintered ITO sputtering target according to claim 3, wherein the content is 20% or less. ターゲットの厚さをtとした場合、厚さtのバルク抵抗率と板厚方向の任意の地点でのバルク抵抗率について、その差異を15%以下とすることを特徴とする請求項3又は4に記載のITOスパッタリングターゲットの製造方法。  The difference between the bulk resistivity of the thickness t and the bulk resistivity at any point in the plate thickness direction is 15% or less, where t is the thickness of the target. The manufacturing method of ITO sputtering target as described in any one of. インジウム(In)、錫(Sn)、酸素(O)、不可避的不純物からなる焼結体であって、錫(Sn)の含有量が(原子組成比:at.%)が0.3以上14.5at.%以下である焼結体ITOターゲットを用いてスパッタリングしたITOスパッタ膜であって、ターゲットライフの初期(スパッタリング開始から10分)とターゲットライフの後期(スパッタリング終了時)の膜の抵抗率の差異が5%以下であることを特徴とするITOスパッタ膜。  A sintered body made of indium (In), tin (Sn), oxygen (O), and inevitable impurities, and the content of tin (Sn) (atomic composition ratio: at.%) Is 0.3 or more and 14 .5 at. % Of sputtered ITO film sputtered using a sintered ITO target that is less than or equal to 10%, and there is a difference in resistivity between the initial stage of target life (10 minutes from the start of sputtering) and the latter stage of target life (at the end of sputtering). An ITO sputtered film characterized by being 5% or less.
JP2015508113A 2013-03-29 2014-01-20 ITO sputtering target and manufacturing method thereof Active JP5987105B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013071342 2013-03-29
JP2013071342 2013-03-29
PCT/JP2014/050912 WO2014156234A1 (en) 2013-03-29 2014-01-20 Ito sputtering target and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP5987105B2 JP5987105B2 (en) 2016-09-06
JPWO2014156234A1 true JPWO2014156234A1 (en) 2017-02-16

Family

ID=51623239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015508113A Active JP5987105B2 (en) 2013-03-29 2014-01-20 ITO sputtering target and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP5987105B2 (en)
TW (1) TWI608112B (en)
WO (1) WO2014156234A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180093140A (en) * 2014-11-07 2018-08-20 제이엑스금속주식회사 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
JPWO2016174877A1 (en) * 2015-04-30 2018-02-22 三井金属鉱業株式会社 ITO sputtering target material
JP6414165B2 (en) * 2016-09-06 2018-10-31 三菱マテリアル株式会社 Oxide sputtering target and manufacturing method of oxide sputtering target
TWI657159B (en) * 2018-02-08 2019-04-21 日商三菱綜合材料股份有限公司 Oxide sputtering target and method of producing oxide sputtering target
CN110352263A (en) * 2018-02-08 2019-10-18 三菱综合材料株式会社 The manufacturing method of oxide sputtering target and oxide sputtering target
CN114835485A (en) * 2022-04-20 2022-08-02 柳州华锡有色设计研究院有限责任公司 Method for deeply reducing resistivity of ITO target by accurately proportioning oxygen and argon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344465A (en) * 1989-07-13 1991-02-26 Nippon Mining Co Ltd Production of sputtering target for electrically conductive transparent ito film
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film
JP2003301265A (en) * 2002-02-08 2003-10-24 Tosoh Corp Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it
JP2009040620A (en) * 2007-08-06 2009-02-26 Mitsui Mining & Smelting Co Ltd Ito sintered body and ito sputtering target

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846726B2 (en) * 2005-09-20 2011-12-28 出光興産株式会社 Sputtering target, transparent conductive film and transparent electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344465A (en) * 1989-07-13 1991-02-26 Nippon Mining Co Ltd Production of sputtering target for electrically conductive transparent ito film
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film
JP2003301265A (en) * 2002-02-08 2003-10-24 Tosoh Corp Ito thin film free from spike-shaped protrusion, manufacturing method therefor and target used in it
JP2009040620A (en) * 2007-08-06 2009-02-26 Mitsui Mining & Smelting Co Ltd Ito sintered body and ito sputtering target

Also Published As

Publication number Publication date
WO2014156234A1 (en) 2014-10-02
JP5987105B2 (en) 2016-09-06
TW201446998A (en) 2014-12-16
TWI608112B (en) 2017-12-11

Similar Documents

Publication Publication Date Title
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
JP6125689B1 (en) Indium oxide-zinc oxide (IZO) sputtering target
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JP5887819B2 (en) Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
WO2017158928A1 (en) Oxide sintered compact
CN104710163A (en) method for producing IZO sputtering target
JP7158102B2 (en) ITO sputtering target, manufacturing method thereof, ITO transparent conductive film, and manufacturing method of ITO transparent conductive film
JP4859726B2 (en) SnO2-based sputtering target and sputtered film
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
JP6885038B2 (en) Oxide sintered body, its manufacturing method and sputtering target
JP6343695B2 (en) Indium oxide-zinc oxide (IZO) sputtering target and method for producing the same
JP6133531B1 (en) Oxide sintered body
JP5890671B2 (en) Manufacturing method of ITO sputtering target
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP2013256425A (en) Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
JP2020147822A (en) MANUFACTURING METHOD OF MgO-TiO-BASED SPUTTERING TARGET
WO2003008658A1 (en) Ito sintered body sputtering target for forming high-resistance film and its manufacturing method
JP2013112833A (en) Sputtering target material and method for manufacturing the same
JP2018008852A (en) Oxide sintered compact, method for producing the same and sputtering target
JP2015024927A (en) Oxide sintered body, production method thereof and oxide film
JP2011174168A (en) Oxide sintered compact, and high resistance oxide transparent conductive film obtained using the oxide sintered compact

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5987105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250