JPWO2014126193A1 - Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil - Google Patents

Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil Download PDF

Info

Publication number
JPWO2014126193A1
JPWO2014126193A1 JP2014526727A JP2014526727A JPWO2014126193A1 JP WO2014126193 A1 JPWO2014126193 A1 JP WO2014126193A1 JP 2014526727 A JP2014526727 A JP 2014526727A JP 2014526727 A JP2014526727 A JP 2014526727A JP WO2014126193 A1 JPWO2014126193 A1 JP WO2014126193A1
Authority
JP
Japan
Prior art keywords
copper foil
copper
roughened
treated
fine irregularities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014526727A
Other languages
Japanese (ja)
Other versions
JP5809361B2 (en
Inventor
裕昭 津吉
裕昭 津吉
眞 細川
眞 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2014526727A priority Critical patent/JP5809361B2/en
Application granted granted Critical
Publication of JP5809361B2 publication Critical patent/JP5809361B2/en
Publication of JPWO2014126193A1 publication Critical patent/JPWO2014126193A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/385Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by conversion of the surface of the metal, e.g. by oxidation, whether or not followed by reaction or removal of the converted layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

無粗化銅箔に比べて、絶縁樹脂基材との良好な密着性を備え、且つ、無粗化銅箔と同等の良好なエッチング性能を備える銅箔の提供を目的とする。この目的を達成するため、銅箔の表面を粗化した表面処理銅箔において、当該銅箔の表面に、最大長さが500nm以下の銅複合化合物からなる針状又は板状の微細凹凸で粗化した粗化処理表面を備えることを特徴とする表面処理銅箔等を採用する。そして、当該銅複合化合物は、亜酸化銅が50%〜99%、残部が酸化銅及び不純物の組成を備えることが好ましい。An object of the present invention is to provide a copper foil that has better adhesiveness with an insulating resin base material than a non-roughened copper foil and has good etching performance equivalent to that of a non-roughened copper foil. In order to achieve this object, in the surface-treated copper foil having a roughened copper foil surface, the surface of the copper foil is roughened with needle-like or plate-like fine irregularities made of a copper composite compound having a maximum length of 500 nm or less. A surface-treated copper foil or the like characterized by having a roughened roughened surface is employed. And it is preferable that the said copper complex compound is provided with a composition of 50% to 99% of cuprous oxide and the balance of copper oxide and impurities.

Description

本件出願は、表面処理銅箔及び表面処理銅箔を用いて得られる銅張積層板に関する。特に、銅箔の表面を銅複合化合物からなる針状又は板状の微細凹凸で粗化した表面処理銅箔に関する。   The present application relates to a surface-treated copper foil and a copper clad laminate obtained using the surface-treated copper foil. In particular, the present invention relates to a surface-treated copper foil obtained by roughening the surface of a copper foil with needle-like or plate-like fine irregularities made of a copper composite compound.

一般的に、市場を流通する銅箔は、プリント配線板の回路形成用途に用いられることが多く、絶縁樹脂基材との密着性を向上させるため、接着面となる銅箔の表面に、アンカー効果を発揮する粗化形状を設けてきた。このアンカー効果を発揮する粗化として、特許文献1等に開示されているような「微細銅粒の付着」、特許文献2等に開示されているような「エッチングによる凹凸形成」等が行われてきた。   In general, copper foils that are distributed in the market are often used for circuit formation applications of printed wiring boards, and in order to improve adhesion to insulating resin substrates, anchors are attached to the surface of the copper foil that becomes the adhesive surface. We have provided a roughened shape that demonstrates the effect. As roughening that exhibits this anchor effect, “adhesion of fine copper particles” as disclosed in Patent Document 1 and the like, “unevenness formation by etching” as disclosed in Patent Document 2 and the like are performed. I came.

ところが、近年は、ファインピッチ回路の形成に対する要求が顕著で、プリント配線板の製造技術も大きく進歩した結果、特許文献3及び特許文献4等に開示されているような無粗化銅箔の使用も行われるようになってきた。   However, in recent years, the demand for the formation of fine pitch circuits is remarkable, and as a result of great progress in the manufacturing technology of printed wiring boards, the use of non-roughened copper foil as disclosed in Patent Document 3 and Patent Document 4 is used. Has come to be done.

この特許文献3には、強靭、かつ、反応性に富む接着剤により、銅箔と積層基材とが強固に接着されたプリント回路用銅張積層板を提供するため、「積層基材の片面または両面に銅箔が積層接着された銅張積層板において、a.前記銅箔上に一般式QRSiXYZ …〔1〕(但し、式中Qは下記の樹脂組成物と反応する官能基、RはQとSi原子とを連結する結合基、X,Y,ZはSi原子に結合する加水分解性の基または水酸基を表す)で示されるシランカップリング剤、または、一般式 T(SH)n ・・・〔2〕(但し、Tは芳香環,脂肪族環,複素環,脂肪族鎖であり、nは2以上の整数)で示されるチオール系カップリング剤よりなる接着性下地を介し、b.(1)アクリルモノマ、メタクリルモノマ、それらの重合体またはオレフィンとの共重合体、(2)ジアリルフタレート、エポキシアクリレートまたはエポキシメタクリレートおよびそれらのオリゴマの過酸化物硬化性樹脂組成物、(3)エチレンブチレン共重合体とスチレン共重合体とを分子内に含有する熱可塑性エラストマの過酸化物硬化性樹脂組成物、(4)グリシジル基を含有するオレフィン共重合体の樹脂組成物、(5)不飽和基を含む側鎖を有するポリビニルブチラール樹脂の樹脂組成物、または、(6)ポリビニルブチラール樹脂とスピロアセタール環を有するアミノ樹脂とエポキシ樹脂の樹脂組成物、からなる接着剤により積層基材と接着されているか、あるいは前記樹脂組成物の接着剤を兼ねた積層基材と直接接着されていることを特徴とするプリント回路用銅張積層板。」を採用すること等が開示されている。   This Patent Document 3 provides a copper-clad laminate for a printed circuit in which a copper foil and a laminated substrate are firmly bonded with a tough and reactive adhesive. Or, in a copper clad laminate in which copper foil is laminated and bonded on both sides, a. A general formula QRSiXYZ (1) (where Q is a functional group that reacts with the following resin composition, R is Or a silane coupling agent represented by the general formula T (SH) n..., A bonding group for linking Q and Si atoms, and X, Y, and Z are hydrolyzable groups or hydroxyl groups bonded to Si atoms. .. [2] (where T is an aromatic ring, aliphatic ring, heterocyclic ring, aliphatic chain, and n is an integer of 2 or more) through an adhesive base made of a thiol-based coupling agent, b (1) Acrylic monomer, methacrylic monomer, polymer thereof or olefin (2) Diallyl phthalate, epoxy acrylate or epoxy methacrylate and their oligomer peroxide curable resin composition, (3) ethylene butylene copolymer and styrene copolymer in the molecule A thermoplastic elastomer peroxide curable resin composition, (4) an olefin copolymer resin composition containing a glycidyl group, and (5) a polyvinyl butyral resin resin composition having a side chain containing an unsaturated group. Or (6) an adhesive composed of a polyvinyl butyral resin and a resin composition of an amino resin having a spiroacetal ring and an epoxy resin, or an adhesive of the resin composition. It is possible to adopt a copper-clad laminate for printed circuits, which is directly bonded to the laminated substrate. It is.

そして、特許文献4には、表面処理層にクロムを含まず、プリント配線板に加工して以降の回路の引き剥がし強さ、当該引き剥がし強さの耐薬品性劣化率等に優れる表面処理銅箔の提供を目的として、「絶縁樹脂基材と張り合わせて銅張積層板を製造する際に用いる銅箔の張り合わせ面に表面処理層を設けた表面処理銅箔であって、当該表面処理層は、銅箔の張り合わせ面に亜鉛成分を付着させ、融点1400℃以上の高融点金属成分を付着させ、更に炭素成分を付着させて得られることを特徴とする表面処理銅箔。」を採用すること等が開示され、この中で「前記銅箔の張り合わせ面は、粗化処理を施すことなく、表面粗さ(Rzjis)が2.0μm以下のものを用いることが好ましい。」ことが開示されている。   Patent Document 4 discloses a surface-treated copper that does not contain chromium in the surface treatment layer and is excellent in the peel strength of the circuit after processing into a printed wiring board and the chemical resistance deterioration rate of the peel strength. For the purpose of providing a foil, “a surface-treated copper foil in which a surface-treated layer is provided on a laminated surface of a copper foil used when a copper-clad laminate is produced by laminating with an insulating resin base material, Adopting a surface-treated copper foil obtained by adhering a zinc component to a bonding surface of a copper foil, attaching a high melting point metal component having a melting point of 1400 ° C. or higher, and further adhering a carbon component ”. Among them, it is disclosed that “the bonding surface of the copper foil preferably has a surface roughness (Rzjis) of 2.0 μm or less without being subjected to roughening treatment”. Yes.

このような無粗化銅箔は、絶縁樹脂基材との接着表面に、粗化に用いる凹凸が存在しない。このため、当該銅箔をエッチング加工して回路形成を行う際の、絶縁樹脂基材側に埋まり込んだ状態のアンカー形状(凹凸形状)を除去するためのオーバーエッチングタイムを設ける必要がない。よって、良好なエッチングファクターを備えるファインピッチ回路の形成において、非常に有用である。   Such a non-roughened copper foil does not have irregularities used for roughening on the bonding surface with the insulating resin substrate. For this reason, it is not necessary to provide an over-etching time for removing the anchor shape (uneven shape) embedded in the insulating resin base material when the circuit is formed by etching the copper foil. Therefore, it is very useful in forming a fine pitch circuit having a good etching factor.

特開平05−029740号公報JP 05-029740 A 特開2000−282265号公報JP 2000-282265 A 特開平09−074273号公報Japanese Patent Application Laid-Open No. 09-074273 特開2008−297569号公報JP 2008-297569 A

しかしながら、この無粗化銅箔は、絶縁樹脂基材側に埋まり込んだ状態のアンカー形状(凹凸形状)が存在しないため、無粗化銅箔の絶縁樹脂基材に対する密着性は、粗化した銅箔に比べて低下する傾向にある。   However, since this non-roughened copper foil does not have an anchor shape (uneven shape) embedded in the insulating resin substrate side, the adhesion of the non-roughened copper foil to the insulating resin substrate is roughened. It tends to be lower than copper foil.

そのため、市場では、無粗化銅箔の絶縁樹脂基材に対する密着性に比べて、絶縁樹脂基材との良好な密着性を備え、且つ、粗化に用いる凹凸が存在しない無粗化銅箔と同等の良好なエッチング性能を備える銅箔に対する要求が存在していた。   Therefore, in the market, compared with the adhesiveness of the non-roughened copper foil to the insulating resin base material, the non-roughened copper foil has good adhesiveness with the insulating resin base material and has no irregularities used for roughening. There was a need for a copper foil with good etching performance equivalent to.

そこで、本件発明者等の鋭意研究の結果、以下に示す銅箔を採用することで、絶縁樹脂基材側に埋まり込んだ状態のアンカー形状(凹凸形状)が存在することで、絶縁樹脂基材との良好な密着性を備えることができることが分かった。以下、本件出願に係る表面処理銅箔について説明する。   Therefore, as a result of diligent research by the inventors of the present invention, by adopting the copper foil shown below, there is an anchor shape (uneven shape) embedded in the insulating resin substrate side, so that the insulating resin substrate It was found that good adhesiveness with can be provided. Hereinafter, the surface-treated copper foil according to the present application will be described.

表面処理銅箔: 本件出願に係る表面処理銅箔は、銅箔の表面を粗化した表面処理銅箔において、当該銅箔の表面に、最大長さが500nm以下の銅複合化合物からなる針状又は板状の微細凹凸で形成した粗化処理層を備えることを特徴とする。なお、以下において、「銅複合化合物からなる針状又は板状の微細凹凸」は、単に「銅複合化合物からなる微細凹凸」と称するものとする。 Surface-treated copper foil: The surface-treated copper foil according to the present application is a surface-treated copper foil obtained by roughening the surface of the copper foil. The surface of the copper foil has a needle-like shape made of a copper composite compound having a maximum length of 500 nm or less. Alternatively, a roughening treatment layer formed of plate-like fine irregularities is provided. In the following, “acicular or plate-like fine irregularities made of a copper composite compound” will be simply referred to as “fine irregularities made of a copper composite compound”.

本件出願に係る表面処理銅箔の粗化処理層の銅複合化合物からなる微細凹凸は、走査型電子顕微鏡を用いて、試料の傾斜角45°、50000倍以上の倍率で粗化処理層の表面から観察したときの最大長さが150nm以下である。   The fine irregularities made of the copper composite compound of the roughened layer of the surface-treated copper foil according to the present application are obtained by using a scanning electron microscope at a surface angle of the roughened layer at a tilt angle of 45 ° and a magnification of 50000 times or more. The maximum length when observed from is 150 nm or less.

本件出願に係る表面処理銅箔の銅複合化合物からなる微細凹凸は、XPSで分析したときのCu(I)及びCu(II)の各ピーク面積の合計面積を100%としたとき、Cu(I)ピークの占有面積率が50%以上であることが好ましい。   The fine irregularities made of the copper composite compound of the surface-treated copper foil according to the present application are Cu (I) when the total area of each peak area of Cu (I) and Cu (II) when analyzed by XPS is 100%. ) It is preferable that the peak occupation area ratio is 50% or more.

この本件出願に係る表面処理銅箔の銅複合化合物からなる微細凹凸は、酸化銅及び亜酸化銅を含有するものである。   The fine unevenness | corrugation which consists of a copper complex compound of the surface treatment copper foil which concerns on this this application contains a copper oxide and a cuprous oxide.

また、本件出願に係る表面処理銅箔の銅複合化合物からなる微細凹凸は、クリプトンを吸着させて測定した比表面積が0.035m/g以上であることが好ましい。Moreover, it is preferable that the fine unevenness | corrugation which consists of a copper complex compound of the surface treatment copper foil which concerns on this application has a specific surface area measured by making krypton adsorb | suck 0.035 m < 2 > / g or more.

更に、本件出願に係る表面処理銅箔の前記粗化処理層の表面は、L表色系の明度L が25以下の明度を備えることが好ましい。Furthermore, the surface of the roughened layer of the surface-treated copper foil according to the present application, L * a * b * color system of the lightness L * is preferably provided with a lightness of 25 or less.

銅張積層板: 本件出願に係る銅張積層板は、上述の表面処理銅箔を用いて得られることを特徴とする。 Copper-clad laminate: The copper-clad laminate according to the present application is obtained using the above-mentioned surface-treated copper foil.

本件出願に係る表面処理銅箔は、「最大長さが500nm以下の銅複合化合物からなる微細凹凸」で粗化処理表面を形成している。そして、この粗化処理表面は、銅箔の最表面にあるが、銅箔の絶縁樹脂基材との接着面が備えるμmオーダーのマクロ的な凹凸形状は、そのまま保持されている。その結果、無粗化銅箔の絶縁樹脂基材に対する密着性に比べて、良好な密着性を確保することができる。   The surface-treated copper foil according to the present application forms a roughened surface with “fine irregularities made of a copper composite compound having a maximum length of 500 nm or less”. And although this roughening process surface exists in the outermost surface of copper foil, the macro uneven | corrugated shape of a micrometer order with which the adhesive surface with the insulating resin base material of copper foil is maintained as it is. As a result, it is possible to ensure good adhesion compared to the adhesion of the non-roughened copper foil to the insulating resin substrate.

本件出願に係る表面処理銅箔の粗化形態を説明するための走査型電子顕微鏡観察像である(実施例1における酸化処理の浸漬時間2分間の試料)。It is a scanning electron microscope observation image for demonstrating the roughening form of the surface treatment copper foil which concerns on this application (sample for the immersion time of 2 minutes of the oxidation process in Example 1). 本件出願に係る表面処理銅箔において、電解銅箔の電極面と析出面との粗化対象部位によって異なる粗化形態を示すための走査型電子顕微鏡観察像である(実施例1における酸化処理の浸漬時間2分間の試料)。In the surface-treated copper foil which concerns on this application, it is a scanning electron microscope observation image for showing the roughening form which changes with the roughening object site | parts of the electrode surface and precipitation surface of an electrolytic copper foil (of the oxidation process in Example 1). Sample with an immersion time of 2 minutes). 本件出願に係る表面処理銅箔の粗化処理層の断面の走査型電子顕微鏡観察像である(実施例1における酸化処理の浸漬時間2分間の試料)。It is a scanning electron microscope observation image of the cross section of the roughening process layer of the surface treatment copper foil which concerns on this application (sample for the immersion time of 2 minutes of the oxidation process in Example 1). 比較例における比較試料の粗化処理形態を表面からみた走査型電子顕微鏡観察像である。It is the scanning electron microscope observation image which looked at the roughening process form of the comparative sample in a comparative example from the surface. 比較例における比較試料の粗化処理層を断面からみた走査型電子顕微鏡観察像である。It is the scanning electron microscope observation image which looked at the roughening process layer of the comparative sample in a comparative example from the cross section.

以下、本件出願に係る「表面処理銅箔の形態」及び「銅張積層板の形態」に関して説明する。   Hereinafter, the “form of the surface-treated copper foil” and the “form of the copper-clad laminate” according to the present application will be described.

表面処理銅箔の形態: 本件出願に係る表面処理銅箔は、銅箔の表面を粗化した表面処理銅箔において、当該銅箔の表面に、最大長さが500nm以下の銅複合化合物からなる微細凹凸で形成した粗化処理層を備えることを特徴とする。 Form of surface-treated copper foil: The surface-treated copper foil according to the present application is a surface-treated copper foil obtained by roughening the surface of the copper foil. The surface of the copper foil is made of a copper composite compound having a maximum length of 500 nm or less. It is characterized by comprising a roughened layer formed with fine irregularities.

本件出願に係る表面処理銅箔の製造に用いる銅箔は、電解銅箔、圧延銅箔のいずれの使用も可能である。また、銅箔の厚さに関しても、特段の限定は無く、一般的に200μm以下の厚さと認識すれば足りる。また、本件出願に係る表面処理銅箔は、片面に粗化を施した場合、両面に粗化を施した場合の双方を対象としている。   As the copper foil used for the production of the surface-treated copper foil according to the present application, either electrolytic copper foil or rolled copper foil can be used. Further, the thickness of the copper foil is not particularly limited, and it is generally sufficient to recognize that the thickness is 200 μm or less. In addition, the surface-treated copper foil according to the present application covers both cases where one side is roughened and both sides are roughened.

本件出願に係る表面処理銅箔の粗化処理表面は、銅箔の表面に酸化銅を含む「銅化合物からなる微細凹凸」を形成し、還元処理して酸化銅の一部を亜酸化銅に転換させることにより、酸化銅及び亜酸化銅を含む「最大長さが500nm以下の銅複合化合物からなる微細凹凸」で粗化したものであることが好ましい。ここで、「最大長さが500nm以下」とは、当該表面処理銅箔の粗化処理表面を電界放射タイプの走査型電子顕微鏡で観察した「銅複合化合物からなる微細凹凸」の最大値を示したものである。この「銅複合化合物からなる微細凹凸」の形状の最大値は、後述する図3に示すように、銅箔の表面に設けた「銅複合化合物からなる微細凹凸で形成した粗化処理層」の断面において、銅箔の表面から延びた針状又は板状の長さのことである。本件出願に係る表面処理銅箔と絶縁層構成材との密着性を高める観点から、この最大長さは、より好ましくは400nm以下、更に好ましくは300nm以下である。なお、この最大長さを、以下では「最大長さ1」と称することがある。   The roughened surface of the surface-treated copper foil according to the present application forms a “fine unevenness made of a copper compound” containing copper oxide on the surface of the copper foil, and a reduction treatment is performed to convert cuprous oxide into cuprous oxide. By converting, it is preferable that the surface is roughened by “fine irregularities made of a copper composite compound having a maximum length of 500 nm or less” containing copper oxide and cuprous oxide. Here, “the maximum length is 500 nm or less” indicates the maximum value of “fine irregularities made of a copper composite compound” obtained by observing the roughened surface of the surface-treated copper foil with a field emission type scanning electron microscope. It is a thing. As shown in FIG. 3 to be described later, the maximum value of the shape of the “fine irregularities made of the copper composite compound” is the “roughening treatment layer formed by the fine irregularities made of the copper composite compound” provided on the surface of the copper foil. In the cross section, it is a needle-like or plate-like length extending from the surface of the copper foil. From the viewpoint of enhancing the adhesion between the surface-treated copper foil and the insulating layer constituting material according to the present application, the maximum length is more preferably 400 nm or less, and still more preferably 300 nm or less. Hereinafter, this maximum length may be referred to as “maximum length 1”.

そして、本件出願に係る表面処理銅箔の粗化処理層を構成する「銅複合化合物からなる微細凹凸」は、当該粗化処理層の表面を、図1に示すように、電界放射タイプの走査型電子顕微鏡を用いて、50000倍以上の倍率で、平面的(走査型電子顕微鏡観察時の試料の傾斜角45°)に観察したときの「銅複合化合物からなる微細凹凸の最大長さ」が、150nm以下であることが好ましい。この図1は、両面平滑電解銅箔の析出面(図1(a))に対し、本件出願にいう「銅複合化合物からなる微細凹凸」で粗化すると、図1(b)のように観察されることを示している。そして、図1(c)には、図1(b)の表面を、更に50000倍に拡大した観察像を示している。本件出願に係る表面処理銅箔と絶縁層構成材との密着性を高める観点から、この最大長さは、より好ましくは100nm以下である。なお、この最大長さを、以下では「最大長さ2」と称することがある。   And "the fine unevenness | corrugation which consists of a copper composite compound" which comprises the roughening process layer of the surface treatment copper foil which concerns on this application is a field emission type scanning, as shown in FIG. "Maximum length of fine irregularities made of a copper composite compound" when observed planarly with a scanning electron microscope at a magnification of 50000 times or more (inclination angle of the sample 45 ° when observed with a scanning electron microscope) 150 nm or less is preferable. This FIG. 1 is observed as shown in FIG. 1 (b) when the deposited surface (FIG. 1 (a)) of the double-side smooth electrolytic copper foil is roughened by “fine irregularities made of a copper composite compound” as referred to in the present application. It is shown that. FIG. 1C shows an observation image obtained by further enlarging the surface of FIG. From the viewpoint of enhancing the adhesion between the surface-treated copper foil and the insulating layer constituting material according to the present application, the maximum length is more preferably 100 nm or less. Hereinafter, this maximum length may be referred to as “maximum length 2”.

一例を挙げると、図1(a)に示す粗化前の電解銅箔の析出面を、Zygo株式会社製 非接触三次元表面形状・粗さ測定機(型式:New−View 6000)で測定すると、Ra=1.6nm、Rz=26nmであった。この電解銅箔の析出面に対して、本件出願にいう「銅複合化合物からなる微細凹凸」で粗化したのが、図1(b)に示す粗化処理後の電解銅箔である。この表面を、同様にして測定するとRa=2.3nm、Rz=39nmであり、nmオーダーでの粗化が出来ていることが理解できる。更に、図2には、電解銅箔の電極面と析出面との粗化する部位によって異なる粗化形態を示している。この図2に関しては、実施例中で詳述する。   For example, when the precipitating surface of the electrolytic copper foil before roughening shown in FIG. 1A is measured with a non-contact three-dimensional surface shape / roughness measuring machine (model: New-View 6000) manufactured by Zygo Corporation. Ra = 1.6 nm, Rz = 26 nm. The electrolytic copper foil after the roughening treatment shown in FIG. 1 (b) is roughened with respect to the deposited surface of the electrolytic copper foil by “fine irregularities made of a copper composite compound” as referred to in the present application. When this surface is measured in the same manner, Ra = 2.3 nm and Rz = 39 nm, and it can be understood that the surface is roughened in the nm order. Furthermore, in FIG. 2, the roughening form which changes with the site | parts with which the electrode surface of an electrolytic copper foil and a precipitation surface roughen is shown. This FIG. 2 will be described in detail in the embodiment.

また、このときの粗化により形成された銅複合化合物からなる微細凹凸の断面を、図3に示している。この断面図において、銅複合化合物からなる微細凹凸が密集して形成した粗化処理層の厚さに一定のバラツキはあるが、銅箔の表面からの平均厚さが400nm以下になる。図3の中では、粗化処理層の当該平均厚さが250nmのものを示している。本件出願の発明者等が数多くの試験を行った結果、当該粗化処理層の平均厚さが、100nm〜350nmの範囲に収まれば、「絶縁樹脂基材に対する無粗化銅箔以上の良好な密着性」を備えることができると判断している。   Moreover, the cross section of the fine unevenness | corrugation which consists of a copper complex compound formed by the roughening at this time is shown in FIG. In this cross-sectional view, there is a certain variation in the thickness of the roughened layer formed by densely forming fine irregularities made of a copper composite compound, but the average thickness from the surface of the copper foil is 400 nm or less. In FIG. 3, the roughened layer has an average thickness of 250 nm. As a result of many tests conducted by the inventors of the present application, if the average thickness of the roughened layer falls within the range of 100 nm to 350 nm, “the better than the non-roughened copper foil for the insulating resin substrate” It is judged that it can have “adhesion”.

次に、銅複合化合物からなる微細凹凸を構成する成分に関して、X線光電子分光分析法 (X−ray Photoelectron Spectroscopy:以下、単に「XPS」と称する。)を用いて状態分析を試みた。その結果、「Cu(0)」、「Cu(II)」、「Cu(I)」及び「−COO基」の存在が確認された。ここで「−COO基」の存在が確認されたため、「炭酸銅」が含まれている可能性が高いことが考えられる。従って、以下に述べる銅複合化合物が含有する不純物の中には、炭酸銅が含まれると考える。   Next, the state analysis was tried about the component which comprises the fine unevenness | corrugation which consists of a copper complex compound using the X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy: hereafter, only called "XPS"). As a result, the presence of “Cu (0)”, “Cu (II)”, “Cu (I)”, and “—COO group” was confirmed. Here, since the presence of the “—COO group” was confirmed, it is highly possible that “copper carbonate” is included. Therefore, it is considered that copper carbonate is contained in the impurities contained in the copper composite compound described below.

そして、上述のXPSを用いて本件出願に係る表面処理銅箔の前記銅複合化合物を分析すると、Cu(I)及びCu(II)の各ピークを分離して検出できる。このXPSで銅複合化合物を分析した場合、大きなCu(I)ピークのショルダー部分に、Cu(0)ピークが重複して観測される場合があるので、このショルダー部分を含めてCu(I)ピークとみなしている。このため、本願発明においては、XPSを用いて銅複合化合物を分析し、Cu 2p 3/2の結合エネルギーに対応する932.4eVに現れるCu(I)、及び934.3eVに現れるCu(II)の光電子を検出して得られる各ピークを波形分離して、各成分のピーク面積からCu(I)ピークの占有面積率を特定する。このときのCu(I)ピークは、「亜酸化銅を構成する1価の銅」に由来すると考えられる。そして、Cu(II)ピークは、「酸化銅を構成する2価の銅」に由来すると考えられる。更に、Cu(0)ピークは、「金属銅を構成する0価の銅」に由来すると考えられる。本件出願において、XPSの分析装置としてアルバック・ファイ株式会社製のQuantum2000(ビーム条件:40W、200um径)を用い、解析ソフトウェアとして「MultiPack ver.6.1A」を用いて状態・半定量用ナロー測定を行った。   And when the said copper complex compound of the surface treatment copper foil which concerns on this application is analyzed using the above-mentioned XPS, each peak of Cu (I) and Cu (II) can be isolate | separated and detected. When the copper composite compound is analyzed by XPS, the Cu (0) peak may be observed in the shoulder portion of the large Cu (I) peak, so the Cu (I) peak including this shoulder portion may be observed. It is considered. Therefore, in the present invention, the copper composite compound is analyzed using XPS, Cu (I) appearing at 932.4 eV corresponding to the binding energy of Cu 2p 3/2, and Cu (II) appearing at 934.3 eV Each peak obtained by detecting the photoelectrons is separated into waveforms, and the occupied area ratio of the Cu (I) peak is specified from the peak area of each component. The Cu (I) peak at this time is considered to be derived from “monovalent copper constituting cuprous oxide”. And it is thought that a Cu (II) peak originates in "the bivalent copper which comprises copper oxide." Furthermore, it is considered that the Cu (0) peak is derived from “zero-valent copper constituting metallic copper”. In this application, Quantum 2000 (beam condition: 40 W, 200 um diameter) manufactured by ULVAC-PHI Co., Ltd. is used as an XPS analyzer, and “MultiPack ver. Went.

従って、本件出願に係る表面処理銅箔の「銅複合化合物からなる微細凹凸」の場合、XPSで分析したときのCu(I)及びCu(II)の各ピーク面積の合計面積を100%としたとき、Cu(I)ピークの占有面積率が50%以上であることが好ましい。Cu(I)ピークの占有面積率が50%未満の場合には、本件出願に係る表面処理銅箔の粗化処理表面を絶縁層構成材に積層し、回路形成して得られた回路の耐薬品性能が低下するため好ましくない。ここで、前記銅複合化合物のCu(I)ピークの占有面積率が70%以上がより好ましく、80%以上が更に好ましい。亜酸化銅は酸化銅に比べて酸溶解性が低いため、Cu(I)ピークの占有面積率が増加する程、回路形成時のエッチング工程における絶縁層構成材との密着部分へのエッチング液・めっき液等の差し込みを低減することが可能で、耐薬品性能が向上するからである。一方、Cu(I)ピークの占有面積率に関して、特段の限定は無いが、後述の酸化処理及び還元処理することにより99%以下とする。しかし、Cu(I)ピークの占有面積率が低くなるほど、絶縁層構成材との密着性自体は向上する傾向があり、良好な耐酸化性を得るため、98%以下が好ましく、95%以下がより好ましい。である。なお、Cu(I)ピークの占有面積率は、Cu(I)/{Cu(I)+Cu(II)} ×100(%)の計算式で算出している。   Therefore, in the case of “fine irregularities made of a copper composite compound” of the surface-treated copper foil according to the present application, the total area of each peak area of Cu (I) and Cu (II) when analyzed by XPS is 100%. Sometimes, the occupied area ratio of the Cu (I) peak is preferably 50% or more. When the occupied area ratio of the Cu (I) peak is less than 50%, the roughened surface of the surface-treated copper foil according to the present application is laminated on the insulating layer constituting material, and the resistance of the circuit obtained by forming the circuit is increased. This is not preferable because the chemical performance decreases. Here, the occupied area ratio of the Cu (I) peak of the copper composite compound is more preferably 70% or more, and further preferably 80% or more. Since cuprous oxide has lower acid solubility than copper oxide, the more the Cu (I) peak occupancy ratio increases, the more the etching solution to the intimate contact with the insulating layer constituent material in the etching process during circuit formation. This is because insertion of a plating solution or the like can be reduced and chemical resistance performance is improved. On the other hand, the occupied area ratio of the Cu (I) peak is not particularly limited, but is 99% or less by an oxidation treatment and a reduction treatment described later. However, the lower the occupied area ratio of the Cu (I) peak, the more the adhesion itself with the insulating layer constituting material tends to improve. In order to obtain good oxidation resistance, 98% or less is preferable and 95% or less is preferable. More preferred. It is. Note that the occupied area ratio of the Cu (I) peak is calculated by the formula of Cu (I) / {Cu (I) + Cu (II)} × 100 (%).

そして、このときの粗化により形成された銅複合化合物からなる微細凹凸は、クリプトンを吸着させて測定した比表面積(以下、単に「比表面積」と称する。)が、0.035m/g以上という条件を満足することが好ましい。この比表面積が、0.035m/g以上になると、粗化処理層の前記平均厚さが200nmオーダーとなり、無粗化銅箔の絶縁樹脂基材に対する密着性を超えることができるからである。ここで、比表面積の上限を定めていないが、無粗化銅箔と同等の良好なエッチング性能を確保するためのは、上限は0.3m/g程度であり、より好ましくは0.2m/gである。なお、このときの比表面積は、マイクロメリティクス社製 比表面積・細孔分布測定装置 3Flexを用いて、試料に300℃×2時間の加熱を前処理として行い、吸着温度に液体窒素温度、吸着ガスにクリプトン(Kr)を用いて測定している。And the fine unevenness | corrugation which consists of a copper complex compound formed by the roughening at this time has a specific surface area (henceforth only called "specific surface area") which adsorb | sucked krypton and is 0.035 m < 2 > / g or more. It is preferable to satisfy the condition. This is because when the specific surface area is 0.035 m 2 / g or more, the average thickness of the roughened layer is on the order of 200 nm, and the adhesion of the non-roughened copper foil to the insulating resin substrate can be exceeded. . Here, although the upper limit of the specific surface area is not defined, the upper limit is about 0.3 m 2 / g, more preferably 0.2 m in order to ensure good etching performance equivalent to that of the non-roughened copper foil. 2 / g. Note that the specific surface area at this time was pre-treated by heating the sample at 300 ° C. for 2 hours using a specific surface area / pore distribution measuring device 3Flex manufactured by Micromeritics. Measurement is performed using krypton (Kr) as the gas.

以上に述べた「銅複合化合物からなる微細凹凸」は、光を吸収するほど微細であるため、粗化処理層の表面は黒色化、茶褐色化等に暗色化する。即ち、本件出願に係る表面処理銅箔の粗化処理層の表面は、その色調にも特色があり、L表色系の明度L が25以下、より好ましくは20以下である。この明度L が25を超えて明るい色調となると、十分な粗化が行われていないことになり、「絶縁樹脂基材に対する無粗化銅箔以上の良好な密着性」を得ることが出来ないため好ましくない。なお、明度L の測定は、日本電色工業株式会社製 分光色差計 SE2000を用いて、明度の校正には測定装置に付属の白色版を用い、JIS Z8722:2000に準拠して行った。そして、同一部位に関して3回の測定を行い、3回の明度L の測定データの平均値を、本件出願の明度L の値として記載している。Since the above-mentioned “fine irregularities made of a copper composite compound” are fine enough to absorb light, the surface of the roughened layer is darkened such as blackening or browning. That is, the surface of the roughened layer of the surface-treated copper foil according to the present application has a characteristic color tone, and the lightness L * of the L * a * b * color system is 25 or less, more preferably 20 or less. is there. If the lightness L * exceeds 25 and the color tone becomes bright, sufficient roughening has not been performed, and “good adhesion over unroughened copper foil to the insulating resin base material” can be obtained. It is not preferable because it is not. The lightness L * was measured using a spectroscopic color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the whiteness plate attached to the measuring device was used for lightness calibration in accordance with JIS Z8722: 2000. And the measurement of 3 times is performed regarding the same site | part, and the average value of the measurement data of 3 times lightness L * is described as the value of the lightness L * of this application.

そして、本件出願に係る表面処理銅箔の粗化に用いる「銅複合化合物からなる微細凹凸」の形成方法に関して述べる。そして、この銅複合化合物は、酸化銅及び亜酸化銅を含有するものである。この銅複合化合物は、以下のようにして形成する。まず、溶液を用いた湿式法で銅箔の表面に酸化処理を施し、銅箔表面に酸化銅を含む「銅化合物からなる微細凹凸」を形成する。その後、当該銅化合物を還元処理して、酸化銅の一部を亜酸化銅に転換させ、酸化銅と亜酸化銅とを含む「銅複合化合物からなる微細凹凸」とする。本件出願において酸化処理に用いる溶液は、酸化銅を浸食しにくいアルカリ性の溶液を用いることが好ましく、このアルカリ性の溶液に溶解可能で、且つ、比較的に安定して共存可能なアミノ系シランカップリング剤を用いることが好ましい。そこで、この酸化処理に用いる溶液に、アミノ系シランカップリング剤を含有させることで、「銅化合物からなる微細凹凸」の形成が容易となる。銅箔の表面にアミノ系シランカップリング剤が吸着することで、銅箔表面の酸化を微細に抑制するため、「銅化合物からなる微細凹凸」の形状になる。このアミノ系シランカップリング剤を具体的に例示すると、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン等を用いることができる。   And the formation method of "the fine unevenness | corrugation which consists of a copper complex compound" used for the roughening of the surface treatment copper foil which concerns on this application is described. And this copper complex compound contains a copper oxide and a cuprous oxide. This copper composite compound is formed as follows. First, the surface of the copper foil is oxidized by a wet method using a solution to form “fine irregularities made of a copper compound” containing copper oxide on the surface of the copper foil. Thereafter, the copper compound is subjected to a reduction treatment to convert a part of the copper oxide into cuprous oxide, thereby obtaining “fine irregularities made of a copper composite compound” containing copper oxide and cuprous oxide. The solution used for the oxidation treatment in the present application is preferably an alkaline solution that hardly erodes copper oxide, and can be dissolved in the alkaline solution and can be relatively stably coexistent with an amino-based silane coupling. It is preferable to use an agent. Therefore, by adding an amino-based silane coupling agent to the solution used for the oxidation treatment, formation of “fine irregularities made of a copper compound” is facilitated. Since the amino silane coupling agent is adsorbed on the surface of the copper foil, the surface of the copper foil is finely suppressed, so that it becomes a shape of “fine irregularities made of a copper compound”. Specific examples of this amino silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3- Use of aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, etc. it can.

そして、上述の酸化処理が終了すると、当該銅化合物からなる微細凹凸を還元処理する。本件出願に係る表面処理銅箔の表面に当該酸化処理で形成した「銅化合物からなる微細凹凸」は、還元処理が施されても当初の銅化合物からなる微細凹凸の形状をほぼ維持したまま、nmオーダーの長さの酸化銅及び亜酸化銅を含有する「銅複合化合物からなる微細凹凸」となる。酸化処理により得られた「銅化合物からなる微細凹凸」の銅化合物をそのまま残すと、当該成分のエッチング液、その他の酸溶液による浸食が容易であるため、表面処理銅箔と絶縁樹脂基材との界面の溶液浸食が顕著であるから、形成した回路の耐薬品性能が低下するため。よって、還元処理を行って、「銅化合物からなる微細凹凸」の酸化銅の一部を亜酸化銅に転化させた銅複合化合物とすることが好ましい。この還元処理において、還元剤濃度、溶液pH、溶液温度等を調整することで、「銅複合酸化物からなる微細凹凸」のCu(I)ピークの占有面積率を適宜調整できる。なお、酸化銅及び亜酸化銅を含有する銅複合化合物には、少量の金属銅が含まれても良い。   And when the above-mentioned oxidation treatment is completed, the fine irregularities made of the copper compound are reduced. `` Fine unevenness made of copper compound '' formed by the oxidation treatment on the surface of the surface-treated copper foil according to the present application, while maintaining the shape of the fine unevenness made of the original copper compound even when the reduction treatment is performed, It becomes “fine irregularities made of a copper composite compound” containing copper oxide and cuprous oxide having a length of the order of nm. If the copper compound of “fine unevenness made of copper compound” obtained by the oxidation treatment is left as it is, it is easy to be eroded by the etching solution of the component and other acid solutions. Because the solution erosion at the interface is remarkable, the chemical resistance of the formed circuit is reduced. Therefore, it is preferable to carry out a reduction treatment to obtain a copper composite compound in which a part of copper oxide of “fine irregularities made of a copper compound” is converted into cuprous oxide. In this reduction treatment, by adjusting the reducing agent concentration, solution pH, solution temperature, and the like, the occupied area ratio of the Cu (I) peak of “fine irregularities made of a copper composite oxide” can be adjusted as appropriate. Note that the copper composite compound containing copper oxide and cuprous oxide may contain a small amount of metallic copper.

以上に述べてきたことから理解できるように、本件出願に係る表面処理銅箔は、酸化処理溶液中に浸漬して、湿式法で銅箔の表面に酸化銅を含む「銅化合物からなる微細凹凸」を設け、その後還元処理してCu(I)ピークの占有面積率が50%以上の「銅複合酸化物からなる微細凹凸」を形成する。従って、銅箔の両面に同時に粗化を同時に施すことが可能である。よって、この湿式法を利用すると、多層プリント配線板の内層回路の形成に適した両面粗化処理銅箔を容易に得ることが可能となる。   As can be understood from what has been described above, the surface-treated copper foil according to the present application is immersed in an oxidation treatment solution and contains copper oxide on the surface of the copper foil by a wet method. And then a reduction treatment is performed to form “fine irregularities made of a copper composite oxide” in which the occupied area ratio of the Cu (I) peak is 50% or more. Therefore, it is possible to simultaneously roughen both surfaces of the copper foil. Therefore, when this wet method is used, it is possible to easily obtain a double-side roughened copper foil suitable for forming the inner layer circuit of the multilayer printed wiring board.

銅張積層板の形態: 本件出願に係る銅張積層板は、上述の粗化処理層を備える表面処理銅箔を用いて得られることを特徴とする。このときの銅張積層板は、本件出願に係る表面処理銅箔を使用して得られるものであれば、使用した絶縁樹脂基材の構成成分、厚さ、張り合わせ方法等に関して、特段の限定は無い。また、ここでいう銅張積層板の概念の中に、リジッドタイプ、フレキシブルタイプの双方の概念を含むものである。 Form of copper clad laminate: The copper clad laminate according to the present application is obtained by using a surface-treated copper foil provided with the above-mentioned roughening treatment layer. If the copper clad laminate at this time is obtained using the surface-treated copper foil according to the present application, there are no particular limitations on the constituent components, thickness, bonding method, etc. of the used insulating resin substrate. No. In addition, the concept of the copper-clad laminate referred to here includes the concept of both rigid type and flexible type.

電解銅箔として、析出面の表面粗さ(Rzjis)が0.2μm、光沢度[Gs(60°)]が600である三井金属鉱業株式会社製の電解銅箔(厚さ18μm)を用いて、以下の手順で表面処理を施した。   As the electrolytic copper foil, an electrolytic copper foil (thickness: 18 μm) manufactured by Mitsui Metal Mining Co., Ltd. having a surface roughness (Rzjis) of 0.2 μm and a glossiness [Gs (60 °)] of 600 is used. The surface treatment was performed according to the following procedure.

予備処理: 当該電解銅箔を、水酸化ナトリウム水溶液に浸漬して、アルカリ脱脂処理を行い、水洗を行った。そして、このアルカリ脱脂処理の終了した電解銅箔を、過酸化水素濃度が1質量%、硫酸濃度が5質量%の硫酸系溶液に5分間浸漬した後、水洗を行った。 Pretreatment: The electrolytic copper foil was immersed in an aqueous sodium hydroxide solution, subjected to alkali degreasing treatment, and washed with water. Then, the electrolytic copper foil after the alkaline degreasing treatment was immersed in a sulfuric acid solution having a hydrogen peroxide concentration of 1 mass% and a sulfuric acid concentration of 5 mass% for 5 minutes, and then washed with water.

酸化処理: 前記予備処理の終了した電解銅箔を、液温70℃、pH=12、亜塩素酸濃度が150g/L、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン濃度が10g/Lを含む水酸化ナトリウム溶液に、所定の酸化処理時間(1分間、2分間、4分間、10分間)浸漬して、電解銅箔の表面に「銅化合物からなる微細凹凸」を形成した4種類の試料を得た。 Oxidation treatment: The electrolytic copper foil having been subjected to the pretreatment was subjected to a liquid temperature of 70 ° C., pH = 12, a chlorous acid concentration of 150 g / L, and an N-2- (aminoethyl) -3-aminopropyltrimethoxysilane concentration of A predetermined oxidation treatment time (1 minute, 2 minutes, 4 minutes, 10 minutes) was immersed in a sodium hydroxide solution containing 10 g / L to form “fine irregularities made of a copper compound” on the surface of the electrolytic copper foil. Four types of samples were obtained.

還元処理: 酸化処理の終了した4種類の試料を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=12に調整したジメチルアミンボラン濃度が20g/Lの水溶液(室温)中に1分間浸漬して還元処理を行い、水洗し、乾燥して、「銅複合化合物からなる微細凹凸」で形成した粗化処理層を備える4種類の表面処理銅箔を得た。 Reduction treatment: Four types of samples after the oxidation treatment were immersed in an aqueous solution (room temperature) having a dimethylamine borane concentration of 20 g / L adjusted to pH = 12 using sodium carbonate and sodium hydroxide for 1 minute for reduction. The surface treatment copper foil provided with the roughening process layer formed with "the fine unevenness | corrugation which consists of a copper complex compound" was processed, washed with water, and dried.

この実施例1で得られた表面処理銅箔の粗化処理層表面の走査型電子顕微鏡観察像が、図1に示したものである。そして、この粗化処理層の表面をXPSを用いて状態分析をすると、「Cu(I)」、「Cu(II)」及び「−COO基」の存在が確認された。更に、この実施例で得られた表面処理銅箔のCu(I)ピークの占有面積率、比表面積、明度L 及び引き剥がし強さを、以下の表1に纏めて示す。A scanning electron microscope observation image of the surface of the roughened layer of the surface-treated copper foil obtained in Example 1 is shown in FIG. And when the state of the surface of the roughened layer was analyzed using XPS, the presence of “Cu (I)”, “Cu (II)” and “—COO group” was confirmed. Furthermore, the occupied area ratio, specific surface area, lightness L * and peel strength of the Cu (I) peak of the surface-treated copper foil obtained in this example are summarized in Table 1 below.

そして、本件出願における引き剥がし強さの測定は、以下のようにして行った。試料となる表面処理銅箔と、パナソニック株式会社製のプリプレグ(R1551)とを用い、真空プレス機を使用して、プレス圧を2.9MPa、温度を190℃、プレス時間が90分の条件で張り合わせて銅張積層板を製造した。次に、この銅張積層板を用いて、エッチング法で、3mm幅の引き剥がし強さ測定用直線回路を製造し、この3mm回路での引き剥がし強さの測定を行った。なお、明細書中では、引き剥がし強さの単位に「kgf/cm」を用いているが、1kgf/cm=980N/mの関係から、容易に「N/m」単位に換算できる。   And the measurement of the peeling strength in this application was performed as follows. Using a surface-treated copper foil as a sample and a prepreg (R1551) manufactured by Panasonic Corporation, using a vacuum press machine, the press pressure is 2.9 MPa, the temperature is 190 ° C., and the press time is 90 minutes. A copper clad laminate was produced by bonding. Next, using this copper-clad laminate, a 3 mm width peel strength measurement linear circuit was manufactured by an etching method, and the peel strength was measured with this 3 mm circuit. In the specification, “kgf / cm” is used as a unit of peel strength, but it can be easily converted into “N / m” unit from the relationship of 1 kgf / cm = 980 N / m.

実施例1で用いたと同じ電解銅箔を用いて、以下の手順で表面処理を施した。予備処理及び酸化処理(酸化処理時間:2分間)に関しては、実施例1と同じである。そして、この実施例2では、還元処理に用いる水溶液のpH及びジメチルアミンボラン濃度の影響をみるため、以下のような還元処理を採用している。   Using the same electrolytic copper foil as used in Example 1, surface treatment was performed in the following procedure. The preliminary treatment and the oxidation treatment (oxidation treatment time: 2 minutes) are the same as those in Example 1. In Example 2, the following reduction treatment is adopted in order to examine the influence of the pH of the aqueous solution used for the reduction treatment and the dimethylamine borane concentration.

還元処理: 酸化処理の終了した電解銅箔を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=11,12,13の3水準とし、ジメチルアミンボラン濃度が5g/L、10g/L、20g/Lの3水準を組合わせた9種類の各水溶液(室温)中に1分間浸漬して還元処理を行い、水洗し、乾燥して、本件出願に係る表面処理銅箔を得た。還元処理に用いる水溶液がpH=11のときに得られた表面処理銅箔を、「実施試料11−a,実施試料11−b,実施試料11−c」としている。還元処理に用いる水溶液がpH=12のときに得られた表面処理銅箔を、「実施試料12−a,実施試料12−b,実施試料12−c」としている。そして、還元処理に用いる水溶液がpH=13のときに得られた表面処理銅箔を、「実施試料13−a,実施試料13−b,実施試料13−c」としている。そして、各実施試料を示す際の「−a」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が5g/Lの場合である。そして、「−b」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が10g/Lの場合である。「−c」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が20g/Lの場合である。 Reduction treatment: The electrolytic copper foil after the oxidation treatment is adjusted to three levels of pH = 11, 12, and 13 using sodium carbonate and sodium hydroxide, and the dimethylamine borane concentrations are 5 g / L, 10 g / L, and 20 g / L. The surface-treated copper foil according to the present application was obtained by dipping for 1 minute in each of nine types of aqueous solutions (room temperature) combining these three levels, performing a reduction treatment, washing with water, and drying. The surface-treated copper foils obtained when the aqueous solution used for the reduction treatment has pH = 11 are referred to as “Execution Sample 11-a, Implementation Sample 11-b, Implementation Sample 11-c”. The surface-treated copper foil obtained when the aqueous solution used for the reduction treatment has a pH of 12 is referred to as “implementation sample 12-a, implementation sample 12-b, implementation sample 12-c”. The surface-treated copper foil obtained when the aqueous solution used for the reduction treatment has pH = 13 is referred to as “implementation sample 13-a, implementation sample 13-b, implementation sample 13-c”. In addition, the “−a” display when indicating each of the implementation samples is when the dimethylamine borane concentration in the aqueous solution used for the reduction treatment is 5 g / L. And "-b" display is a case where the dimethylamine borane density | concentration in the aqueous solution used for a reduction process is 10 g / L. “−c” is indicated when the concentration of dimethylamine borane in the aqueous solution used for the reduction treatment is 20 g / L.

この実施例2で得られた全ての実施試料の表面処理銅箔の走査型電子顕微鏡観察像は、図1に示したと同様の形態であった。そして、この各実施試料の粗化処理層の表面にある「銅複合化合物からなる微細凹凸」を、XPSを用いて状態分析すると、「Cu(I)」、「Cu(II)」及び「−COO基」の存在が確認された。この実施例で得られた表面処理銅箔のCu(I)ピークの占有面積率、比表面積、明度L 及び引き剥がし強さを、以下の表2に纏めて示す。Scanning electron microscope observation images of the surface-treated copper foils of all the working samples obtained in Example 2 were in the same form as shown in FIG. Then, when the state of the “fine irregularities made of a copper composite compound” on the surface of the roughened layer of each of the implementation samples was analyzed using XPS, “Cu (I)”, “Cu (II)” and “− The presence of “COO group” was confirmed. The occupied area ratio, specific surface area, lightness L * and peel strength of the Cu (I) peak of the surface-treated copper foil obtained in this example are summarized in Table 2 below.

比較例Comparative example

比較例では、実施例と同じ電解銅箔を用いて、実施例と同じ予備処理を施し、黒化処理を行い、更に還元処理を施し比較試料を得た。以下、黒化処理及び還元処理について説明する。   In the comparative example, using the same electrolytic copper foil as in the example, the same pretreatment as in the example was performed, the blackening process was performed, and the reduction process was further performed to obtain a comparative sample. Hereinafter, the blackening process and the reduction process will be described.

黒化処理: 前記予備処理の終了した電解銅箔を、ローム・アンド・ハース電子材料株式会社製の酸化処理液である「PRO BOND 80A OXIDE SOLUTION」を10vol%、「PRO BOND 80B OXIDE SOLUTION」を20vol%含有する液温85℃の水溶液に5分間浸漬して、表面に一般的な黒化処理を形成した。 Blackening treatment: 10% by volume of “PRO BOND 80A OXIDE SOLUTION”, which is an oxidation treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd. A general blackening treatment was formed on the surface by immersing in an aqueous solution containing 20 vol% and having a liquid temperature of 85 ° C. for 5 minutes.

還元処理: 酸化処理の終了した電解銅箔を、ローム・アンド・ハース電子材料株式会社製の還元処理液である「CIRCUPOSIT PB OXIDE CONVERTER 60C」を6.7vol%、「CUPOSIT Z」を1.5vol%含有する液温35℃の水溶液に5分間浸漬して、水洗し、乾燥して、図4(b)に示す還元黒化処理表面を備える比較試料を得た。 Reduction treatment: The electrolytic copper foil that has been subjected to oxidation treatment is reduced to 6.7 vol% for "CIRCUPOSIT PB OXIDE CONVERTER 60C", which is a reduction treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd., and 1.5 vol for "CUPOSIT Z". The sample was immersed in an aqueous solution containing 35% of a liquid temperature of 35 ° C. for 5 minutes, washed with water, and dried to obtain a comparative sample having a reduced blackening treatment surface shown in FIG.

この比較例で得られた表面処理銅箔(比較試料)の粗化処理層の表面をXPSを用いて状態分析すると、「Cu(0)」の存在が明瞭に確認され、「Cu(II)」及び「Cu(I)」の存在も確認されたが、「−COO基」は確認できなかった。この比較例で得られた表面処理銅箔のCu(I)ピークの占有面積率、比表面積、明度L 及び引き剥がし強さは、表2に示すとおりである。When the state of the surface of the roughened layer of the surface-treated copper foil (comparative sample) obtained in this comparative example was analyzed using XPS, the presence of “Cu (0)” was clearly confirmed, and “Cu (II)” "And" Cu (I) "were also confirmed, but" -COO group "could not be confirmed. Table 2 shows the occupied area ratio, specific surface area, lightness L *, and peel strength of the Cu (I) peak of the surface-treated copper foil obtained in this comparative example.

[実施例と比較例との対比]
実施例1と比較例との対比: 以下の表1を参照して、実施例1と比較例との対比を行う。
[Contrast between Example and Comparative Example]
Comparison between Example 1 and Comparative Example: With reference to Table 1 below, Example 1 and Comparative Example are compared.

Figure 2014126193
Figure 2014126193

この表1から理解できるように、酸化処理時間が1分〜10分の間で変動しても、粗化処理層の表面から見た「銅複合化合物からなる微細凹凸」の最大長さは100nmであり、粗化処理表面の状態分析においても検出される内容に変化はない。これに対して、比較例の場合の凹凸の最大長さは500nmと5倍程度大きくなっている。即ち、本件出願に係る表面処理銅箔の「銅複合化合物からなる微細凹凸」は、従来の黒化処理に比べて、極めて微細であることが分かる。   As can be understood from Table 1, even when the oxidation treatment time varies between 1 minute and 10 minutes, the maximum length of the “fine irregularities made of a copper composite compound” seen from the surface of the roughening treatment layer is 100 nm. Thus, there is no change in the contents detected in the analysis of the state of the roughened surface. On the other hand, the maximum length of the unevenness in the comparative example is 500 nm, which is about 5 times as large. That is, it can be seen that the “fine irregularities made of a copper composite compound” of the surface-treated copper foil according to the present application is extremely fine compared to the conventional blackening treatment.

次に、比表面積をみると、実施例1に比べて、比較例の方が大きな値を示している。しかし、これらの表面処理銅箔を絶縁樹脂基材に張り合わせて、引き剥がし強さを測定すると、実施例の引き剥がし強さが0.63kgf/cm〜0.78kgf/cmである。最も短い酸化処理時間であっても、実用的に十分な引き剥がし強さが得られており、比表面積の値に比例した引き剥がし強さが得られている。これに対し、実施例1よりも高い比表面積をもつ比較例の引き剥がし強さが、0.33kgf/cmと低くなっている。通常、比表面積の値が高いほど、引き剥がし強さも高くなるが、その逆となっている。これは、比較例における黒化処理の凹凸が強度的に劣化しているためと考えられる。これに関しては、後述する「実施例2と比較例との対比」の中で詳細に述べる。また、実施例1のみをみると、酸化処理時間の増加に比例して、比表面積が大きくなっている。即ち、この実施例1で採用した酸化処理時間は、適正と判断できる。更に、実施例1の粗化処理表面の明度Lの値に関しても、18〜20と非常にバラツキの少ない値を示している。Next, in terms of the specific surface area, the comparative example shows a larger value than the first embodiment. However, when these surface-treated copper foils are bonded to an insulating resin substrate and the peel strength is measured, the peel strength of the examples is 0.63 kgf / cm to 0.78 kgf / cm. Even in the shortest oxidation treatment time, a practically sufficient peel strength is obtained, and a peel strength proportional to the value of the specific surface area is obtained. On the other hand, the peel strength of the comparative example having a higher specific surface area than that of Example 1 is as low as 0.33 kgf / cm. Usually, the higher the specific surface area value, the higher the peel strength, but vice versa. This is considered because the unevenness of the blackening treatment in the comparative example is deteriorated in strength. This will be described in detail in “Comparison between Example 2 and Comparative Example” described later. Moreover, when only Example 1 is seen, the specific surface area becomes large in proportion to the increase in oxidation treatment time. That is, it can be determined that the oxidation treatment time employed in Example 1 is appropriate. Furthermore, regarding the value of the lightness L * of the roughened surface of Example 1, a value with very little variation of 18 to 20 is shown.

更に、図2には、実施例1における酸化処理の浸漬時間2分間の条件で得られた表面処理銅箔の電極面側と析出面側との粗化形態をみるための走査型電子顕微鏡観察像を示している。この図2から、マクロ的には、粗化前の電解銅箔の電極面側及び析出面側の表面形状が粗化後も維持され、その粗化前の表面形状に沿って「銅複合化合物からなる微細凹凸」が形成されていることが分かる。従って、本件出願に係る表面処理銅箔の場合、「銅複合化合物からなる微細凹凸」で粗化する前の銅箔のマクロ的表面形状を維持したまま、その表面形状に沿った形での粗化が行われていることが明らかである。   Furthermore, in FIG. 2, the scanning electron microscope observation for seeing the roughening form of the electrode surface side and precipitation surface side of the surface treatment copper foil obtained on the conditions for the immersion time of 2 minutes of the oxidation treatment in Example 1 The image is shown. From FIG. 2, on a macro basis, the surface shapes on the electrode surface side and the deposition surface side of the electrolytic copper foil before roughening are maintained after roughening, and along the surface shape before roughening, “copper composite compound” It can be seen that "fine irregularities made of" are formed. Therefore, in the case of the surface-treated copper foil according to the present application, while maintaining the macroscopic surface shape of the copper foil before being roughened by the “fine irregularities made of a copper composite compound”, the roughness in a shape along the surface shape is maintained. It is clear that this is being done.

実施例2と比較例との対比: 以下の表2を参照して、実施例2と比較例との対比を行う。 Comparison between Example 2 and Comparative Example: With reference to Table 2 below, Example 2 and Comparative Example are compared.

Figure 2014126193
Figure 2014126193

表2において、Cu(I)ピークの占有面積率に着目し、還元処理に用いる水溶液がpH=11のときに得られた表面処理銅箔(実施試料11−a,実施試料11−b,実施試料11−c)と、還元処理に用いる水溶液がpH=12のときに得られた表面処理銅箔(実施試料12−a,実施試料12−b,実施試料12−c)と、還元処理に用いる水溶液がpH=13のときに得られた表面処理銅箔(実施試料13−a,実施試料13−b,実施試料13−c)とをみると、Cu(I)ピークの占有面積率が、59%〜99%の範囲となっている。これに対し、比較試料でも、Cu(I)ピークの占有面積率が83%となっている。よって、Cu(I)ピークの占有面積率においては、実施例と比較例との差異は無いことが分かるが、上述のXPSによる状態分析でみると、検出成分が異なっている。   In Table 2, paying attention to the occupied area ratio of the Cu (I) peak, the surface-treated copper foils obtained when the aqueous solution used for the reduction treatment is pH = 11 (Example 11-a, Example 11-b, Example) Sample 11-c), surface-treated copper foil (implementation sample 12-a, implementation sample 12-b, implementation sample 12-c) obtained when the aqueous solution used for the reduction treatment is pH = 12, and reduction treatment Looking at the surface-treated copper foils (Example 13-a, Example 13-b, Example 13-c) obtained when the aqueous solution used was pH = 13, the occupied area ratio of the Cu (I) peak was 59% to 99%. On the other hand, even in the comparative sample, the occupied area ratio of the Cu (I) peak is 83%. Therefore, it can be seen that there is no difference between the example and the comparative example in the occupied area ratio of the Cu (I) peak, but the detected components are different in the state analysis by XPS described above.

そこで、実施試料と比較試料との粗化状態を、電子顕微鏡観察像で対比してみる。図2をみると、実施試料に係る粗化状態が理解できる。そして、図3をみると、実施試料に係る粗化処理層の断面の状態が理解できる。これに対して、比較例において黒化処理した直後の図4(a)に示す粗化状態の電子顕微鏡観察像では、長く、太い針状形状がみられ、黒化処理の先端部が鋭くとがっている。そして、この針状形状によって形成されている粗化処理層の厚さは500nm〜700nmであった。しかし、還元処理を行って還元黒化処理すると、図4(b)に示すように凹凸の先端部が丸くなり、還元処理により粗化形状が大きく変化していることが理解できる。   Therefore, the roughened state between the working sample and the comparative sample is compared with an electron microscope observation image. When FIG. 2 is seen, the roughening state which concerns on an implementation sample can be understood. And when FIG. 3 is seen, the state of the cross section of the roughening process layer which concerns on an implementation sample can be understood. In contrast, in the comparative example, the roughened electron microscope observation image shown in FIG. 4A immediately after the blackening treatment shows a long and thick needle shape, and the tip of the blackening treatment is sharply pointed. ing. And the thickness of the roughening process layer formed of this acicular shape was 500 nm-700 nm. However, when the reduction process is performed and the reduction blackening process is performed, as shown in FIG. 4B, it can be understood that the top of the irregularities is rounded, and the roughened shape is greatly changed by the reduction process.

更に、図5(a)には、比較例において黒化処理した直後の粗化処理層の断面を示している。そして、図5(b)に還元処理を行って還元黒化処理した後の断面を示している。この図5から分かるのは、還元処理により還元前の凹凸形状が、かなり大きな損傷を受けていることが分かる。即ち、酸化処理で形成されていた針状形状が、還元処理により細く、微細に断裂していることが分かる。これに対し、実施例の「銅複合化合物からなる微細凹凸」の粗化形状は、図3の断面から理解できるように、還元処理を行っていても、何ら損傷を受けていない。従って、実施試料に比べ、比較試料の還元処理後の凹凸は非常に脆く、いわゆる粉落ちの問題が生じることが予測できる。   Furthermore, FIG. 5A shows a cross section of the roughened layer immediately after blackening in the comparative example. FIG. 5B shows a cross section after the reduction process and the reduction blackening process. It can be seen from FIG. 5 that the uneven shape before the reduction is considerably damaged by the reduction treatment. That is, it can be seen that the needle-like shape formed by the oxidation treatment is thinned and finely broken by the reduction treatment. On the other hand, the roughened shape of the “fine irregularities made of a copper composite compound” in the example is not damaged at all even when the reduction treatment is performed, as can be understood from the cross section of FIG. Therefore, it can be predicted that the unevenness after the reduction treatment of the comparative sample is very fragile as compared with the working sample, and the so-called problem of powder falling occurs.

そこで、実施例2と比較例とで得られた表面処理銅箔の引き剥がし強さを対比してみる。この結果、実施試料の引き剥がし強さは、0.70kgf/cm〜0.81kgf/cmである。これに対して、比較試料の引き剥がし強さは0.33kgf/cmであり、実施試料よりも低くなっている。   Therefore, the peel strength of the surface-treated copper foil obtained in Example 2 and the comparative example will be compared. As a result, the peel strength of the working sample is 0.70 kgf / cm to 0.81 kgf / cm. On the other hand, the peel strength of the comparative sample is 0.33 kgf / cm, which is lower than that of the working sample.

以上に述べた本件出願に係る表面処理銅箔は、「最大長さが500nm以下の銅複合化合物からなる微細凹凸」で粗化を行ったものであり、無粗化銅箔の絶縁樹脂基材に対する密着性に比べれば、絶縁樹脂基材との良好な密着性を確保することができる。しかも、本件出願に係る表面処理銅箔の「最大長さが500nm以下の銅複合化合物からなる微細凹凸は、非常に微細であるため」、エッチング加工の際には、極めて短時間のオーバーエッチングタイムを設けるだけで済むと考えられ、良好なエッチングファクターを備えるファインピッチ回路の形成が期待できる。従って、全てのプリント配線板製品において、有用に使用可能である。また、上述のように、本件出願に係る表面処理銅箔は、銅箔の両面に粗化を施した形態とすることも可能であり、多層プリント配線板の内層回路形成に好適な両面粗化処理銅箔とできる。   The surface-treated copper foil according to the present application described above is roughened with "fine irregularities made of a copper composite compound having a maximum length of 500 nm or less", and the insulating resin base material of the non-roughened copper foil Compared with the adhesiveness with respect to, good adhesiveness with the insulating resin substrate can be ensured. Moreover, the surface-treated copper foil according to the present application “because the fine irregularities made of the copper composite compound having a maximum length of 500 nm or less are very fine”, and therefore, an extremely short over-etching time is required for the etching process. Therefore, it is expected that a fine pitch circuit having a good etching factor can be formed. Therefore, it can be usefully used in all printed wiring board products. In addition, as described above, the surface-treated copper foil according to the present application can be made into a form in which the both surfaces of the copper foil are roughened, and the double-sided roughening suitable for forming the inner layer circuit of the multilayer printed wiring board. Can be treated copper foil.

本件出願に係る表面処理銅箔の粗化処理表面は、銅箔の表面に酸化銅を含む「銅化合物からなる微細凹凸」を形成し、還元処理して酸化銅の一部を亜酸化銅に転換させることにより、酸化銅及び亜酸化銅を含む「最大長さが500nm以下の銅複合化合物からなる微細凹凸」で粗化したものであることが好ましい。ここで、「最大長さが500nm以下」とは、当該表面処理銅箔の粗化処理表面を電界放射タイプの走査型電子顕微鏡で観察した「銅複合化合物からなる微細凹凸」の最大長さを示したものである。この「銅複合化合物からなる微細凹凸」の形状の最大長さは、後述する図3に示すように、銅箔の表面に設けた「銅複合化合物からなる微細凹凸で形成した粗化処理層」の断面において、銅箔の表面から延びる針状又は板状の長さとして確認されるものである。本件出願に係る表面処理銅箔と絶縁層構成材との密着性を高める観点から、この最大長さは、より好ましくは400nm以下、更に好ましくは300nm以下である。なお、この最大長さを、以下では「最大長さ1」と称することがある。
The roughened surface of the surface-treated copper foil according to the present application forms a “fine unevenness made of a copper compound” containing copper oxide on the surface of the copper foil, and a reduction treatment is performed to convert cuprous oxide into cuprous oxide. By converting, it is preferable that the surface is roughened by “fine irregularities made of a copper composite compound having a maximum length of 500 nm or less” containing copper oxide and cuprous oxide. Here, “the maximum length is 500 nm or less” means the maximum length of “fine irregularities made of a copper composite compound” obtained by observing the roughened surface of the surface-treated copper foil with a field emission type scanning electron microscope. It is shown. The maximum length of the shape of the “fine irregularities made of a copper composite compound” is “a roughening treatment layer formed by fine irregularities made of a copper composite compound” provided on the surface of the copper foil, as shown in FIG. 3 described later. In the cross section, the needle-like or plate-like length extending from the surface of the copper foil is confirmed. From the viewpoint of enhancing the adhesion between the surface-treated copper foil and the insulating layer constituting material according to the present application, the maximum length is more preferably 400 nm or less, and still more preferably 300 nm or less. Hereinafter, this maximum length may be referred to as “maximum length 1”.

従って、本件出願に係る表面処理銅箔の「銅複合化合物からなる微細凹凸」の場合、XPSで分析したときのCu(I)及びCu(II)の各ピーク面積の合計面積を100%としたとき、Cu(I)ピークの占有面積率が50%以上であることが好ましい。Cu(I)ピークの占有面積率が50%未満の場合には、本件出願に係る表面処理銅箔の粗化処理表面を絶縁層構成材に積層し、回路形成して得られた回路の耐薬品性能が低下するため好ましくない。ここで、前記銅複合化合物のCu(I)ピークの占有面積率が70%以上がより好ましく、80%以上が更に好ましい。亜酸化銅は酸化銅に比べて酸溶解性が低いため、Cu(I)ピークの占有面積率が増加する程、回路形成時のエッチング工程における絶縁層構成材との密着部分へのエッチング液・めっき液等の差し込みを低減することが可能で、耐薬品性能が向上するからである。一方、Cu(I)ピークの占有面積率の上限に関して、特段の限定は無いが、後述の酸化処理及び還元処理することにより99%以下とする。しかし、Cu(I)ピークの占有面積率が低くなるほど、絶縁層構成材との密着性自体は向上する傾向があり、良好な耐酸化性を得るため、98%以下が好ましく、95%以下がより好ましい。なお、Cu(I)ピークの占有面積率は、Cu(I)/{Cu(I)+Cu(II)} ×100(%)の計算式で算出している。
Therefore, in the case of “fine irregularities made of a copper composite compound” of the surface-treated copper foil according to the present application, the total area of each peak area of Cu (I) and Cu (II) when analyzed by XPS is 100%. Sometimes, the occupied area ratio of the Cu (I) peak is preferably 50% or more. When the occupied area ratio of the Cu (I) peak is less than 50%, the roughened surface of the surface-treated copper foil according to the present application is laminated on the insulating layer constituting material, and the resistance of the circuit obtained by forming the circuit is increased. This is not preferable because the chemical performance decreases. Here, the occupied area ratio of the Cu (I) peak of the copper composite compound is more preferably 70% or more, and further preferably 80% or more. Since cuprous oxide has lower acid solubility than copper oxide, the more the Cu (I) peak occupancy ratio increases, the more the etching solution to the intimate contact with the insulating layer constituent material in the etching process during circuit formation. This is because insertion of a plating solution or the like can be reduced and chemical resistance performance is improved. On the other hand, regarding the upper limit of the Cu (I) Peak ratio of the area occupied, although no particular limitation is not, to 99% or less by oxidation treatment and reduction treatment described below. However, the lower the occupied area ratio of the Cu (I) peak, the more the adhesion itself with the insulating layer constituting material tends to improve. In order to obtain good oxidation resistance, 98% or less is preferable and 95% or less is preferable. More preferred. Note that the occupied area ratio of the Cu (I) peak is calculated by the formula of Cu (I) / {Cu (I) + Cu (II)} × 100 (%).

以上に述べた「銅複合化合物からなる微細凹凸」は、光を吸収するほど微細であるため、粗化処理層の表面は黒色化、茶褐色化等に暗色化する。即ち、本件出願に係る表面処理銅箔の粗化処理層の表面は、その色調にも特色があり、L表色系の明度L が25以下、より好ましくは20以下である。この明度L が25を超えて明るい色調となると、十分な粗化が行われていないことになり、「絶縁樹脂基材に対する無粗化銅箔以上の良好な密着性」を得ることが出来ないため好ましくない。なお、明度L の測定は、日本電色工業株式会社製 分光色差計 SE2000を用いて、明度の校正には測定装置に付属の白色板を用い、JIS Z8722:2000に準拠して行った。そして、同一部位に関して3回の測定を行い、3回の明度L の測定データの平均値を、本件出願の明度L の値として記載している。
Since the above-mentioned “fine irregularities made of a copper composite compound” are fine enough to absorb light, the surface of the roughened layer is darkened such as blackening or browning. That is, the surface of the roughened layer of the surface-treated copper foil according to the present application has a characteristic color tone, and the lightness L * of the L * a * b * color system is 25 or less, more preferably 20 or less. is there. If the lightness L * exceeds 25 and the color tone becomes bright, sufficient roughening has not been performed, and “good adhesion over unroughened copper foil to the insulating resin base material” can be obtained. It is not preferable because it is not. The lightness L * was measured using a spectral color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the whiteness attached to the measuring device was used for the lightness calibration in accordance with JIS Z8722: 2000. And the measurement of 3 times is performed regarding the same site | part, and the average value of the measurement data of 3 times lightness L * is described as the value of the lightness L * of this application.

そして、上述の酸化処理が終了すると、当該銅化合物からなる微細凹凸を還元処理する。本件出願に係る表面処理銅箔の表面にある当該酸化処理で形成した「銅化合物からなる微細凹凸」は、還元処理が施されても当初の銅化合物からなる微細凹凸の形状をほぼ維持したまま、nmオーダーの長さの酸化銅及び亜酸化銅を含有する「銅複合化合物からなる微細凹凸」となる。この酸化処理により得られた「銅化合物からなる微細凹凸」の銅化合物をそのまま残すと、当該銅化合物成分がエッチング液、その他の酸溶液によって浸食されやすいため、表面処理銅箔と絶縁樹脂基材との界面の浸食が顕著になり、回路形成して得られた回路の耐薬品性能が低下する。よって、当該銅化合物を還元処理して、「銅化合物からなる微細凹凸」の酸化銅の一部を亜酸化銅に転化させた銅複合化合物とすることが好ましい。この還元処理において、還元剤濃度、溶液pH、溶液温度等を調整することで、「銅複合酸化物からなる微細凹凸」のCu(I)ピークの占有面積率を適宜調整できる。なお、酸化銅及び亜酸化銅を含有する銅複合化合物には、少量の金属銅が含まれても良い。
And when the above-mentioned oxidation treatment is completed, the fine irregularities made of the copper compound are reduced. Was formed in the oxidation process on the surface of the surface treated copper foil according to the present application, "fine unevenness of a copper compound", while also reducing treatment is performed almost maintaining the shape of fine irregularities made of the original copper compounds And “fine irregularities made of a copper composite compound” containing copper oxide and cuprous oxide having a length of the order of nm. If the copper compound of “fine concavoconvex made of copper compound” obtained by this oxidation treatment is left as it is, the copper compound component is easily eroded by the etching solution and other acid solutions. The erosion of the interface with the circuit becomes remarkable, and the chemical resistance performance of the circuit obtained by forming the circuit deteriorates. Therefore, the copper compound reduction treatment, be a copper complex compound a part of the copper oxide was converted to cuprous oxide "fine unevenness of a copper compound" preferred. In this reduction treatment, by adjusting the reducing agent concentration, solution pH, solution temperature, and the like, the occupied area ratio of the Cu (I) peak of “fine irregularities made of a copper composite oxide” can be adjusted as appropriate. Note that the copper composite compound containing copper oxide and cuprous oxide may contain a small amount of metallic copper.

以上に述べてきたことから理解できるように、本件出願に係る表面処理銅箔は、酸化処理溶液中に浸漬して、湿式法で銅箔の表面に酸化銅を含む「銅化合物からなる微細凹凸」を設け、その後還元処理してCu(I)ピークの占有面積率が50%以上の「銅複合酸化物からなる微細凹凸」を形成する。従って、銅箔の両面に同時に粗化を施すことが可能である。よって、この湿式法を利用すると、多層プリント配線板の内層回路の形成に適した両面粗化処理銅箔を容易に得ることが可能となる。
As can be understood from what has been described above, the surface-treated copper foil according to the present application is immersed in an oxidation treatment solution and contains copper oxide on the surface of the copper foil by a wet method. And then a reduction treatment is performed to form “fine irregularities made of a copper composite oxide” in which the occupied area ratio of the Cu (I) peak is 50% or more. Accordingly, it is possible to simultaneously roughen both surfaces of the copper foil. Therefore, when this wet method is used, it is possible to easily obtain a double-side roughened copper foil suitable for forming the inner layer circuit of the multilayer printed wiring board.

そして、本件出願における引き剥がし強さの測定は、以下のようにして行った。試料となる表面処理銅箔と、パナソニック株式会社製のプリプレグ(R1551)とを用い、真空プレス機を使用して、プレス圧を2.9MPa、温度を190℃、プレス時間が90分の条件で張り合わせて銅張積層板を製造した。次に、この銅張積層板を用いて、エッチング法で、3mm幅の引き剥がし強さ測定用直線回路を製造し、この3mm回路での引き剥がし強さの測定を行った。   And the measurement of the peeling strength in this application was performed as follows. Using a surface-treated copper foil as a sample and a prepreg (R1551) manufactured by Panasonic Corporation, using a vacuum press machine, the press pressure is 2.9 MPa, the temperature is 190 ° C., and the press time is 90 minutes. A copper clad laminate was produced by bonding. Next, using this copper-clad laminate, a 3 mm width peel strength measurement linear circuit was manufactured by an etching method, and the peel strength was measured with this 3 mm circuit.

表面処理銅箔: 本件出願に係る表面処理銅箔は、銅箔の表面を粗化した表面処理銅箔において、当該銅箔の表面に、断面において銅箔の表面から延びた酸化銅及び亜酸化銅を含有する銅複合化合物からなる最大長さが350nm以下の針状又は板状の微細凹凸で形成した粗化処理層を備えることを特徴とする。なお、以下において、「銅複合化合物からなる針状又は板状の微細凹凸」は、単に「銅複合化合物からなる微細凹凸」と称するものとする。
Surface-treated copper foil: The surface-treated copper foil according to the present application is a surface-treated copper foil obtained by roughening the surface of the copper foil. The surface of the copper foil has a copper oxide and sub-oxide that extend from the surface of the copper foil in cross section. It is characterized by comprising a roughening treatment layer formed of needle-like or plate-like fine irregularities having a maximum length of 350 nm or less made of a copper composite compound containing copper . In the following, “acicular or plate-like fine irregularities made of a copper composite compound” will be simply referred to as “fine irregularities made of a copper composite compound”.

本件出願に係る表面処理銅箔は、「最大長さが350nm以下の銅複合化合物からなる微細凹凸」で粗化処理表面を形成している。そして、この粗化処理表面は、銅箔の最表面にあるが、銅箔の絶縁樹脂基材との接着面が備えるμmオーダーのマクロ的な凹凸形状は、そのまま保持されている。その結果、無粗化銅箔の絶縁樹脂基材に対する密着性に比べて、良好な密着性を確保することができる。
The surface-treated copper foil according to the present application forms a roughened surface with “fine irregularities made of a copper composite compound having a maximum length of 350 nm or less”. And although this roughening process surface exists in the outermost surface of copper foil, the macro uneven | corrugated shape of a micrometer order with which the adhesive surface with the insulating resin base material of copper foil is maintained as it is. As a result, it is possible to ensure good adhesion compared to the adhesion of the non-roughened copper foil to the insulating resin substrate.

表面処理銅箔の形態: 本件出願に係る表面処理銅箔は、銅箔の表面を粗化した表面処理銅箔において、当該銅箔の表面に、最大長さが350nm以下の銅複合化合物からなる微細凹凸で形成した粗化処理層を備えることを特徴とする。
Form of surface-treated copper foil: The surface-treated copper foil according to the present application is a surface-treated copper foil obtained by roughening the surface of the copper foil. The surface of the copper foil is made of a copper composite compound having a maximum length of 350 nm or less. It is characterized by comprising a roughened layer formed with fine irregularities.

本件出願に係る表面処理銅箔の粗化処理表面は、銅箔の表面に酸化銅を含む「銅化合物からなる微細凹凸」を形成し、還元処理して酸化銅の一部を亜酸化銅に転換させることにより、酸化銅及び亜酸化銅を含む「最大長さが350nm以下の銅複合化合物からなる微細凹凸」で粗化したものであることが好ましい。ここで、「最大長さが350nm以下」とは、当該表面処理銅箔の粗化処理表面を電界放射タイプの走査型電子顕微鏡で観察した「銅複合化合物からなる微細凹凸」の最大長さを示したものである。この「銅複合化合物からなる微細凹凸」の形状の最大長さは、後述する図3に示すように、銅箔の表面に設けた「銅複合化合物からなる微細凹凸で形成した粗化処理層」の断面において、銅箔の表面から延びる針状又は板状の長さとして確認されるものである。本件出願に係る表面処理銅箔と絶縁層構成材との密着性を高める観点から、この最大長さは、より好ましくは300nm以下である。なお、この最大長さを、以下では「最大長さ1」と称することがある。
The roughened surface of the surface-treated copper foil according to the present application forms a “fine unevenness made of a copper compound” containing copper oxide on the surface of the copper foil, and a reduction treatment is performed to convert cuprous oxide into cuprous oxide. By converting, it is preferable that the surface is roughened by “fine irregularities made of a copper composite compound having a maximum length of 350 nm or less” containing copper oxide and cuprous oxide. Here, “the maximum length is 350 nm or less” means the maximum length of the “fine irregularities made of a copper composite compound” obtained by observing the roughened surface of the surface-treated copper foil with a field emission type scanning electron microscope. It is shown. The maximum length of the shape of the “fine irregularities made of a copper composite compound” is “a roughening treatment layer formed by fine irregularities made of a copper composite compound” provided on the surface of the copper foil, as shown in FIG. 3 described later. In the cross section, the needle-like or plate-like length extending from the surface of the copper foil is confirmed. From the viewpoint of enhancing the adhesion between the surface-treated copper foil and the insulating layer constituting material according to the present application, the maximum length is more preferably 300 nm or less. Hereinafter, this maximum length may be referred to as “maximum length 1”.

また、本件出願に係る表面処理銅箔の粗化処理層を構成する「銅複合化合物からなる微細凹凸」は、当該粗化処理層の表面を、図1に示すように、電界放射タイプの走査型電子顕微鏡を用いて、50000倍以上の倍率で、平面的(走査型電子顕微鏡観察時の試料の傾斜角45°)に観察したときの「銅複合化合物からなる微細凹凸の最大長さ」が、150nm以下であること好ましい。この図1は、両面平滑電解銅箔の析出面(図1(a))に対し、本件出願にいう「銅複合化合物からなる微細凹凸」で粗化すると、図1(b)のように観察されることを示している。そして、図1(c)には、図1(b)の表面を、更に50000倍に拡大した観察像を示している。本件出願に係る表面処理銅箔と絶縁層構成材との密着性を高める観点から、この最大長さは、より好ましくは100nm以下である。なお、この最大長さを、以下では「最大長さ2」と称することがある。
In addition, “fine irregularities made of a copper composite compound” constituting the roughened layer of the surface-treated copper foil according to the present application is a field emission type scan of the surface of the roughened layer as shown in FIG. "Maximum length of fine irregularities made of a copper composite compound" when observed planarly with a scanning electron microscope at a magnification of 50000 times or more (inclination angle of the sample 45 ° when observed with a scanning electron microscope) It is also preferable that it is 150 nm or less. This FIG. 1 is observed as shown in FIG. 1 (b) when the deposited surface (FIG. 1 (a)) of the double-side smooth electrolytic copper foil is roughened by “fine irregularities made of a copper composite compound” as referred to in the present application. It is shown that. FIG. 1C shows an observation image obtained by further enlarging the surface of FIG. From the viewpoint of enhancing the adhesion between the surface-treated copper foil and the insulating layer constituting material according to the present application, the maximum length is more preferably 100 nm or less. Hereinafter, this maximum length may be referred to as “maximum length 2”.

以上に述べた本件出願に係る表面処理銅箔は、「最大長さが350nm以下の銅複合化合物からなる微細凹凸」で粗化を行ったものであり、無粗化銅箔の絶縁樹脂基材に対する密着性に比べれば、絶縁樹脂基材との良好な密着性を確保することができる。しかも、本件出願に係る表面処理銅箔の「最大長さが350nm以下の銅複合化合物からなる微細凹凸は、非常に微細であるため」、エッチング加工の際には、極めて短時間のオーバーエッチングタイムを設けるだけで済むと考えられ、良好なエッチングファクターを備えるファインピッチ回路の形成が期待できる。従って、全てのプリント配線板製品において、有用に使用可能である。また、上述のように、本件出願に係る表面処理銅箔は、銅箔の両面に粗化を施した形態とすることも可能であり、多層プリント配線板の内層回路形成に好適な両面粗化処理銅箔とできる。
The surface-treated copper foil according to the present application described above is roughened with "fine irregularities made of a copper composite compound having a maximum length of 350 nm or less", and the insulating resin base material of the non-roughened copper foil Compared with the adhesiveness with respect to, good adhesiveness with the insulating resin substrate can be ensured. In addition, the surface treatment copper foil according to the present application “because the fine irregularities made of a copper composite compound having a maximum length of 350 nm or less are very fine”, an extremely short over-etching time is required for the etching process. Therefore, it is expected that a fine pitch circuit having a good etching factor can be formed. Therefore, it can be usefully used in all printed wiring board products. In addition, as described above, the surface-treated copper foil according to the present application can be made into a form in which the both surfaces of the copper foil are roughened, and the double-sided roughening suitable for forming the inner layer circuit of the multilayer printed wiring board. Can be treated copper foil.

本件出願は、表面処理銅箔及び表面処理銅箔を用いて得られる銅張積層板に関する。特に、銅箔の表面を銅複合化合物からなる針状又は板状の微細凹凸で粗化した表面処理銅箔に関する。   The present application relates to a surface-treated copper foil and a copper clad laminate obtained using the surface-treated copper foil. In particular, the present invention relates to a surface-treated copper foil obtained by roughening the surface of a copper foil with needle-like or plate-like fine irregularities made of a copper composite compound.

一般的に、市場を流通する銅箔は、プリント配線板の回路形成用途に用いられることが多く、絶縁樹脂基材との密着性を向上させるため、接着面となる銅箔の表面に、アンカー効果を発揮する粗化形状を設けてきた。このアンカー効果を発揮する粗化として、特許文献1等に開示されているような「微細銅粒の付着」、特許文献2等に開示されているような「エッチングによる凹凸形成」等が行われてきた。   In general, copper foils that are distributed in the market are often used for circuit formation applications of printed wiring boards, and in order to improve adhesion to insulating resin substrates, anchors are attached to the surface of the copper foil that becomes the adhesive surface. We have provided a roughened shape that demonstrates the effect. As roughening that exhibits this anchor effect, “adhesion of fine copper particles” as disclosed in Patent Document 1 and the like, “unevenness formation by etching” as disclosed in Patent Document 2 and the like are performed. I came.

ところが、近年は、ファインピッチ回路の形成に対する要求が顕著で、プリント配線板の製造技術も大きく進歩した結果、特許文献3及び特許文献4等に開示されているような無粗化銅箔の使用も行われるようになってきた。   However, in recent years, the demand for the formation of fine pitch circuits is remarkable, and as a result of great progress in the manufacturing technology of printed wiring boards, the use of non-roughened copper foil as disclosed in Patent Document 3 and Patent Document 4 is used. Has come to be done.

この特許文献3には、強靭、かつ、反応性に富む接着剤により、銅箔と積層基材とが強固に接着されたプリント回路用銅張積層板を提供するため、「積層基材の片面または両面に銅箔が積層接着された銅張積層板において、a.前記銅箔上に一般式QRSiXYZ …〔1〕(但し、式中Qは下記の樹脂組成物と反応する官能基、RはQとSi原子とを連結する結合基、X,Y,ZはSi原子に結合する加水分解性の基または水酸基を表す)で示されるシランカップリング剤、または、一般式 T(SH)n ・・・〔2〕(但し、Tは芳香環,脂肪族環,複素環,脂肪族鎖であり、nは2以上の整数)で示されるチオール系カップリング剤よりなる接着性下地を介し、b.(1)アクリルモノマ、メタクリルモノマ、それらの重合体またはオレフィンとの共重合体、(2)ジアリルフタレート、エポキシアクリレートまたはエポキシメタクリレートおよびそれらのオリゴマの過酸化物硬化性樹脂組成物、(3)エチレンブチレン共重合体とスチレン共重合体とを分子内に含有する熱可塑性エラストマの過酸化物硬化性樹脂組成物、(4)グリシジル基を含有するオレフィン共重合体の樹脂組成物、(5)不飽和基を含む側鎖を有するポリビニルブチラール樹脂の樹脂組成物、または、(6)ポリビニルブチラール樹脂とスピロアセタール環を有するアミノ樹脂とエポキシ樹脂の樹脂組成物、からなる接着剤により積層基材と接着されているか、あるいは前記樹脂組成物の接着剤を兼ねた積層基材と直接接着されていることを特徴とするプリント回路用銅張積層板。」を採用すること等が開示されている。   This Patent Document 3 provides a copper-clad laminate for a printed circuit in which a copper foil and a laminated substrate are firmly bonded with a tough and reactive adhesive. Or, in a copper clad laminate in which copper foil is laminated and bonded on both sides, a. A general formula QRSiXYZ (1) (where Q is a functional group that reacts with the following resin composition, R is Or a silane coupling agent represented by the general formula T (SH) n..., A bonding group for linking Q and Si atoms, and X, Y, and Z are hydrolyzable groups or hydroxyl groups bonded to Si atoms. .. [2] (where T is an aromatic ring, aliphatic ring, heterocyclic ring, aliphatic chain, and n is an integer of 2 or more) through an adhesive base made of a thiol-based coupling agent, b (1) Acrylic monomer, methacrylic monomer, polymer thereof or olefin (2) Diallyl phthalate, epoxy acrylate or epoxy methacrylate and their oligomer peroxide curable resin composition, (3) ethylene butylene copolymer and styrene copolymer in the molecule A thermoplastic elastomer peroxide curable resin composition, (4) an olefin copolymer resin composition containing a glycidyl group, and (5) a polyvinyl butyral resin resin composition having a side chain containing an unsaturated group. Or (6) an adhesive composed of a polyvinyl butyral resin and a resin composition of an amino resin having a spiroacetal ring and an epoxy resin, or an adhesive of the resin composition. It is possible to adopt a copper-clad laminate for printed circuits, which is directly bonded to the laminated substrate. It is.

そして、特許文献4には、表面処理層にクロムを含まず、プリント配線板に加工して以降の回路の引き剥がし強さ、当該引き剥がし強さの耐薬品性劣化率等に優れる表面処理銅箔の提供を目的として、「絶縁樹脂基材と張り合わせて銅張積層板を製造する際に用いる銅箔の張り合わせ面に表面処理層を設けた表面処理銅箔であって、当該表面処理層は、銅箔の張り合わせ面に亜鉛成分を付着させ、融点1400℃以上の高融点金属成分を付着させ、更に炭素成分を付着させて得られることを特徴とする表面処理銅箔。」を採用すること等が開示され、この中で「前記銅箔の張り合わせ面は、粗化処理を施すことなく、表面粗さ(Rzjis)が2.0μm以下のものを用いることが好ましい。」ことが開示されている。   Patent Document 4 discloses a surface-treated copper that does not contain chromium in the surface treatment layer and is excellent in the peel strength of the circuit after processing into a printed wiring board and the chemical resistance deterioration rate of the peel strength. For the purpose of providing a foil, “a surface-treated copper foil in which a surface-treated layer is provided on a laminated surface of a copper foil used when a copper-clad laminate is produced by laminating with an insulating resin base material, Adopting a surface-treated copper foil obtained by adhering a zinc component to a bonding surface of a copper foil, attaching a high melting point metal component having a melting point of 1400 ° C. or higher, and further adhering a carbon component ”. Among them, it is disclosed that “the bonding surface of the copper foil preferably has a surface roughness (Rzjis) of 2.0 μm or less without being subjected to roughening treatment”. Yes.

このような無粗化銅箔は、絶縁樹脂基材との接着表面に、粗化に用いる凹凸が存在しない。このため、当該銅箔をエッチング加工して回路形成を行う際の、絶縁樹脂基材側に埋まり込んだ状態のアンカー形状(凹凸形状)を除去するためのオーバーエッチングタイムを設ける必要がない。よって、良好なエッチングファクターを備えるファインピッチ回路の形成において、非常に有用である。   Such a non-roughened copper foil does not have irregularities used for roughening on the bonding surface with the insulating resin substrate. For this reason, it is not necessary to provide an over-etching time for removing the anchor shape (uneven shape) embedded in the insulating resin base material when the circuit is formed by etching the copper foil. Therefore, it is very useful in forming a fine pitch circuit having a good etching factor.

特開平05−029740号公報JP 05-029740 A 特開2000−282265号公報JP 2000-282265 A 特開平09−074273号公報Japanese Patent Application Laid-Open No. 09-074273 特開2008−297569号公報JP 2008-297569 A

しかしながら、この無粗化銅箔は、絶縁樹脂基材側に埋まり込んだ状態のアンカー形状(凹凸形状)が存在しないため、無粗化銅箔の絶縁樹脂基材に対する密着性は、粗化した銅箔に比べて低下する傾向にある。   However, since this non-roughened copper foil does not have an anchor shape (uneven shape) embedded in the insulating resin substrate side, the adhesion of the non-roughened copper foil to the insulating resin substrate is roughened. It tends to be lower than copper foil.

そのため、市場では、無粗化銅箔の絶縁樹脂基材に対する密着性に比べて、絶縁樹脂基材との良好な密着性を備え、且つ、粗化に用いる凹凸が存在しない無粗化銅箔と同等の良好なエッチング性能を備える銅箔に対する要求が存在していた。   Therefore, in the market, compared with the adhesiveness of the non-roughened copper foil to the insulating resin base material, the non-roughened copper foil has good adhesiveness with the insulating resin base material and has no irregularities used for roughening. There was a need for a copper foil with good etching performance equivalent to.

そこで、本件発明者等の鋭意研究の結果、以下に示す銅箔を採用することで、絶縁樹脂基材側に埋まり込んだ状態のアンカー形状(凹凸形状)が存在することで、絶縁樹脂基材との良好な密着性を備えることができることが分かった。以下、本件出願に係る表面処理銅箔について説明する。   Therefore, as a result of diligent research by the inventors of the present invention, by adopting the copper foil shown below, there is an anchor shape (uneven shape) embedded in the insulating resin substrate side, so that the insulating resin substrate It was found that good adhesiveness with can be provided. Hereinafter, the surface-treated copper foil according to the present application will be described.

表面処理銅箔: 本件出願に係る表面処理銅箔は、銅箔の表面を粗化した表面処理銅箔において、当該銅箔の表面に、断面において銅箔の表面から延びた酸化銅及び亜酸化銅を含有する銅複合化合物からなる最大長さが350nm以下の針状又は板状の微細凹凸で形成した粗化処理層を備え、当該酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状又は板状の微細凹凸は、XPSで分析したときのCu(I)及びCu(II)の各ピーク面積の合計面積を100%としたとき、Cu(I)ピークの占有面積率が50%以上99%以下であることを特徴とする。なお、以下において、「銅複合化合物からなる針状又は板状の微細凹凸」は、単に「銅複合化合物からなる微細凹凸」と称するものとする。 Surface-treated copper foil: The surface-treated copper foil according to the present application is a surface-treated copper foil obtained by roughening the surface of the copper foil. The surface of the copper foil has a copper oxide and sub-oxide that extend from the surface of the copper foil in cross section. A needle composed of a copper composite compound containing a copper oxide and a cuprous oxide, comprising a roughening treatment layer formed of needle-like or plate-like fine irregularities having a maximum length of 350 nm or less comprising a copper composite compound containing copper When the total area of each peak area of Cu (I) and Cu (II) when analyzed by XPS is 100%, the occupied area ratio of the Cu (I) peak is 50% It is characterized by being 99% or less . In the following, “acicular or plate-like fine irregularities made of a copper composite compound” will be simply referred to as “fine irregularities made of a copper composite compound”.

本件出願に係る表面処理銅箔の粗化処理層の銅複合化合物からなる微細凹凸は、走査型電子顕微鏡を用いて、試料の傾斜角45°、50000倍以上の倍率で粗化処理層の表面から観察したときの最大長さが150nm以下である。   The fine irregularities made of the copper composite compound of the roughened layer of the surface-treated copper foil according to the present application are obtained by using a scanning electron microscope at a surface angle of the roughened layer at a tilt angle of 45 ° and a magnification of 50000 times or more. The maximum length when observed from is 150 nm or less.

また、本件出願に係る表面処理銅箔の銅複合化合物からなる微細凹凸は、クリプトンを吸着させて測定した比表面積が0.035m/g以上であることが好ましい。 Moreover, it is preferable that the fine unevenness | corrugation which consists of a copper complex compound of the surface treatment copper foil which concerns on this application has a specific surface area measured by making krypton adsorb | suck 0.035 m < 2 > / g or more.

更に、本件出願に係る表面処理銅箔の前記粗化処理層の表面は、L表色系の明度L が25以下の明度を備えることが好ましい。 Furthermore, the surface of the roughened layer of the surface-treated copper foil according to the present application, L * a * b * color system of the lightness L * is preferably provided with a lightness of 25 or less.

銅張積層板: 本件出願に係る銅張積層板は、上述の表面処理銅箔を用いて得られることを特徴とする。 Copper-clad laminate: The copper-clad laminate according to the present application is obtained using the above-mentioned surface-treated copper foil.

本件出願に係る表面処理銅箔は、「最大長さが350nm以下の銅複合化合物からなる微細凹凸」で粗化処理表面を形成している。そして、この粗化処理表面は、銅箔の最表面にあるが、銅箔の絶縁樹脂基材との接着面が備えるμmオーダーのマクロ的な凹凸形状は、そのまま保持されている。その結果、無粗化銅箔の絶縁樹脂基材に対する密着性に比べて、良好な密着性を確保することができる。   The surface-treated copper foil according to the present application forms a roughened surface with “fine irregularities made of a copper composite compound having a maximum length of 350 nm or less”. And although this roughening process surface exists in the outermost surface of copper foil, the macro uneven | corrugated shape of a micrometer order with which the adhesive surface with the insulating resin base material of copper foil is maintained as it is. As a result, it is possible to ensure good adhesion compared to the adhesion of the non-roughened copper foil to the insulating resin substrate.

本件出願に係る表面処理銅箔の粗化形態を説明するための走査型電子顕微鏡観察像である(実施例1における酸化処理の浸漬時間2分間の試料)。It is a scanning electron microscope observation image for demonstrating the roughening form of the surface treatment copper foil which concerns on this application (sample for the immersion time of 2 minutes of the oxidation process in Example 1). 本件出願に係る表面処理銅箔において、電解銅箔の電極面と析出面との粗化対象部位によって異なる粗化形態を示すための走査型電子顕微鏡観察像である(実施例1における酸化処理の浸漬時間2分間の試料)。In the surface-treated copper foil which concerns on this application, it is a scanning electron microscope observation image for showing the roughening form which changes with the roughening object site | parts of the electrode surface and precipitation surface of an electrolytic copper foil (of the oxidation process in Example 1). Sample with an immersion time of 2 minutes). 本件出願に係る表面処理銅箔の粗化処理層の断面の走査型電子顕微鏡観察像である(実施例1における酸化処理の浸漬時間2分間の試料)。It is a scanning electron microscope observation image of the cross section of the roughening process layer of the surface treatment copper foil which concerns on this application (sample for the immersion time of 2 minutes of the oxidation process in Example 1). 比較例における比較試料の粗化処理形態を表面からみた走査型電子顕微鏡観察像である。It is the scanning electron microscope observation image which looked at the roughening process form of the comparative sample in a comparative example from the surface. 比較例における比較試料の粗化処理層を断面からみた走査型電子顕微鏡観察像である。It is the scanning electron microscope observation image which looked at the roughening process layer of the comparative sample in a comparative example from the cross section.

以下、本件出願に係る「表面処理銅箔の形態」及び「銅張積層板の形態」に関して説明する。   Hereinafter, the “form of the surface-treated copper foil” and the “form of the copper-clad laminate” according to the present application will be described.

表面処理銅箔の形態: 本件出願に係る表面処理銅箔は、銅箔の表面を粗化した表面処理銅箔において、当該銅箔の表面に、最大長さが350nm以下の銅複合化合物からなる微細凹凸で形成した粗化処理層を備えることを特徴とする。 Form of surface-treated copper foil: The surface-treated copper foil according to the present application is a surface-treated copper foil obtained by roughening the surface of the copper foil. The surface of the copper foil is made of a copper composite compound having a maximum length of 350 nm or less. It is characterized by comprising a roughened layer formed with fine irregularities.

本件出願に係る表面処理銅箔の製造に用いる銅箔は、電解銅箔、圧延銅箔のいずれの使用も可能である。また、銅箔の厚さに関しても、特段の限定は無く、一般的に200μm以下の厚さと認識すれば足りる。また、本件出願に係る表面処理銅箔は、片面に粗化を施した場合、両面に粗化を施した場合の双方を対象としている。   As the copper foil used for the production of the surface-treated copper foil according to the present application, either electrolytic copper foil or rolled copper foil can be used. Further, the thickness of the copper foil is not particularly limited, and it is generally sufficient to recognize that the thickness is 200 μm or less. In addition, the surface-treated copper foil according to the present application covers both cases where one side is roughened and both sides are roughened.

本件出願に係る表面処理銅箔の粗化処理表面は、銅箔の表面に酸化銅を含む「銅化合物からなる微細凹凸」を形成し、還元処理して酸化銅の一部を亜酸化銅に転換させることにより、酸化銅及び亜酸化銅を含む「最大長さが350nm以下の銅複合化合物からなる微細凹凸」で粗化したものであることが好ましい。ここで、「最大長さが350nm以下」とは、当該表面処理銅箔の粗化処理表面を電界放射タイプの走査型電子顕微鏡で観察した「銅複合化合物からなる微細凹凸」の最大長さを示したものである。この「銅複合化合物からなる微細凹凸」の形状の最大長さは、後述する図3に示すように、銅箔の表面に設けた「銅複合化合物からなる微細凹凸で形成した粗化処理層」の断面において、銅箔の表面から延びる針状又は板状の長さとして確認されるものである。本件出願に係る表面処理銅箔と絶縁層構成材との密着性を高める観点から、この最大長さは、より好ましくは300nm以下である。なお、この最大長さを、以下では「最大長さ1」と称することがある。   The roughened surface of the surface-treated copper foil according to the present application forms a “fine unevenness made of a copper compound” containing copper oxide on the surface of the copper foil, and a reduction treatment is performed to convert cuprous oxide into cuprous oxide. By converting, it is preferable that the surface is roughened by “fine irregularities made of a copper composite compound having a maximum length of 350 nm or less” containing copper oxide and cuprous oxide. Here, “the maximum length is 350 nm or less” means the maximum length of the “fine irregularities made of a copper composite compound” obtained by observing the roughened surface of the surface-treated copper foil with a field emission type scanning electron microscope. It is shown. The maximum length of the shape of the “fine irregularities made of a copper composite compound” is “a roughening treatment layer formed by fine irregularities made of a copper composite compound” provided on the surface of the copper foil, as shown in FIG. 3 described later. In the cross section, the needle-like or plate-like length extending from the surface of the copper foil is confirmed. From the viewpoint of enhancing the adhesion between the surface-treated copper foil and the insulating layer constituting material according to the present application, the maximum length is more preferably 300 nm or less. Hereinafter, this maximum length may be referred to as “maximum length 1”.

また、本件出願に係る表面処理銅箔の粗化処理層を構成する「銅複合化合物からなる微細凹凸」は、当該粗化処理層の表面を、図1に示すように、電界放射タイプの走査型電子顕微鏡を用いて、50000倍以上の倍率で、平面的(走査型電子顕微鏡観察時の試料の傾斜角45°)に観察したときの「銅複合化合物からなる微細凹凸の最大長さ」が、150nm以下であることも好ましい。この図1は、両面平滑電解銅箔の析出面(図1(a))に対し、本件出願にいう「銅複合化合物からなる微細凹凸」で粗化すると、図1(b)のように観察されることを示している。そして、図1(c)には、図1(b)の表面を、更に50000倍に拡大した観察像を示している。本件出願に係る表面処理銅箔と絶縁層構成材との密着性を高める観点から、この最大長さは、より好ましくは100nm以下である。なお、この最大長さを、以下では「最大長さ2」と称することがある。   In addition, “fine irregularities made of a copper composite compound” constituting the roughened layer of the surface-treated copper foil according to the present application is a field emission type scan of the surface of the roughened layer as shown in FIG. "Maximum length of fine irregularities made of a copper composite compound" when observed planarly with a scanning electron microscope at a magnification of 50000 times or more (inclination angle of the sample 45 ° when observed with a scanning electron microscope) It is also preferable that it is 150 nm or less. This FIG. 1 is observed as shown in FIG. 1 (b) when the deposited surface (FIG. 1 (a)) of the double-side smooth electrolytic copper foil is roughened by “fine irregularities made of a copper composite compound” as referred to in the present application. It is shown that. FIG. 1C shows an observation image obtained by further enlarging the surface of FIG. From the viewpoint of enhancing the adhesion between the surface-treated copper foil and the insulating layer constituting material according to the present application, the maximum length is more preferably 100 nm or less. Hereinafter, this maximum length may be referred to as “maximum length 2”.

一例を挙げると、図1(a)に示す粗化前の電解銅箔の析出面を、Zygo株式会社製 非接触三次元表面形状・粗さ測定機(型式:New−View 6000)で測定すると、Ra=1.6nm、Rz=26nmであった。この電解銅箔の析出面に対して、本件出願にいう「銅複合化合物からなる微細凹凸」で粗化したのが、図1(b)に示す粗化処理後の電解銅箔である。この表面を、同様にして測定するとRa=2.3nm、Rz=39nmであり、nmオーダーでの粗化が出来ていることが理解できる。更に、図2には、電解銅箔の電極面と析出面との粗化する部位によって異なる粗化形態を示している。この図2に関しては、実施例中で詳述する。   For example, when the precipitating surface of the electrolytic copper foil before roughening shown in FIG. 1A is measured with a non-contact three-dimensional surface shape / roughness measuring machine (model: New-View 6000) manufactured by Zygo Corporation. Ra = 1.6 nm, Rz = 26 nm. The electrolytic copper foil after the roughening treatment shown in FIG. 1 (b) is roughened with respect to the deposited surface of the electrolytic copper foil by “fine irregularities made of a copper composite compound” as referred to in the present application. When this surface is measured in the same manner, Ra = 2.3 nm and Rz = 39 nm, and it can be understood that the surface is roughened in the nm order. Furthermore, in FIG. 2, the roughening form which changes with the site | parts with which the electrode surface of an electrolytic copper foil and a precipitation surface roughen is shown. This FIG. 2 will be described in detail in the embodiment.

また、このときの粗化により形成された銅複合化合物からなる微細凹凸の断面を、図3に示している。この断面図において、銅複合化合物からなる微細凹凸が密集して形成した粗化処理層の厚さに一定のバラツキはあるが、銅箔の表面からの平均厚さが400nm以下になる。図3の中では、粗化処理層の当該平均厚さが250nmのものを示している。本件出願の発明者等が数多くの試験を行った結果、当該粗化処理層の平均厚さが、100nm〜350nmの範囲に収まれば、「絶縁樹脂基材に対する無粗化銅箔以上の良好な密着性」を備えることができると判断している。   Moreover, the cross section of the fine unevenness | corrugation which consists of a copper complex compound formed by the roughening at this time is shown in FIG. In this cross-sectional view, there is a certain variation in the thickness of the roughened layer formed by densely forming fine irregularities made of a copper composite compound, but the average thickness from the surface of the copper foil is 400 nm or less. In FIG. 3, the roughened layer has an average thickness of 250 nm. As a result of many tests conducted by the inventors of the present application, if the average thickness of the roughened layer falls within the range of 100 nm to 350 nm, “the better than the non-roughened copper foil for the insulating resin substrate” It is judged that it can have “adhesion”.

次に、銅複合化合物からなる微細凹凸を構成する成分に関して、X線光電子分光分析法 (X−ray Photoelectron Spectroscopy:以下、単に「XPS」と称する。)を用いて状態分析を試みた。その結果、「Cu(0)」、「Cu(II)」、「Cu(I)」及び「−COO基」の存在が確認された。ここで「−COO基」の存在が確認されたため、「炭酸銅」が含まれている可能性が高いことが考えられる。従って、以下に述べる銅複合化合物が含有する不純物の中には、炭酸銅が含まれると考える。   Next, the state analysis was tried about the component which comprises the fine unevenness | corrugation which consists of a copper complex compound using the X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy: hereafter, only called "XPS"). As a result, the presence of “Cu (0)”, “Cu (II)”, “Cu (I)”, and “—COO group” was confirmed. Here, since the presence of the “—COO group” was confirmed, it is highly possible that “copper carbonate” is included. Therefore, it is considered that copper carbonate is contained in the impurities contained in the copper composite compound described below.

そして、上述のXPSを用いて本件出願に係る表面処理銅箔の前記銅複合化合物を分析すると、Cu(I)及びCu(II)の各ピークを分離して検出できる。このXPSで銅複合化合物を分析した場合、大きなCu(I)ピークのショルダー部分に、Cu(0)ピークが重複して観測される場合があるので、このショルダー部分を含めてCu(I)ピークとみなしている。このため、本願発明においては、XPSを用いて銅複合化合物を分析し、Cu 2p 3/2の結合エネルギーに対応する932.4eVに現れるCu(I)、及び934.3eVに現れるCu(II)の光電子を検出して得られる各ピークを波形分離して、各成分のピーク面積からCu(I)ピークの占有面積率を特定する。このときのCu(I)ピークは、「亜酸化銅を構成する1価の銅」に由来すると考えられる。そして、Cu(II)ピークは、「酸化銅を構成する2価の銅」に由来すると考えられる。更に、Cu(0)ピークは、「金属銅を構成する0価の銅」に由来すると考えられる。本件出願において、XPSの分析装置としてアルバック・ファイ株式会社製のQuantum2000(ビーム条件:40W、200um径)を用い、解析ソフトウェアとして「MultiPack ver.6.1A」を用いて状態・半定量用ナロー測定を行った。   And when the said copper complex compound of the surface treatment copper foil which concerns on this application is analyzed using the above-mentioned XPS, each peak of Cu (I) and Cu (II) can be isolate | separated and detected. When the copper composite compound is analyzed by XPS, the Cu (0) peak may be observed in the shoulder portion of the large Cu (I) peak, so the Cu (I) peak including this shoulder portion may be observed. It is considered. Therefore, in the present invention, the copper composite compound is analyzed using XPS, Cu (I) appearing at 932.4 eV corresponding to the binding energy of Cu 2p 3/2, and Cu (II) appearing at 934.3 eV Each peak obtained by detecting the photoelectrons is separated into waveforms, and the occupied area ratio of the Cu (I) peak is specified from the peak area of each component. The Cu (I) peak at this time is considered to be derived from “monovalent copper constituting cuprous oxide”. And it is thought that a Cu (II) peak originates in "the bivalent copper which comprises copper oxide." Furthermore, it is considered that the Cu (0) peak is derived from “zero-valent copper constituting metallic copper”. In this application, Quantum 2000 (beam condition: 40 W, 200 um diameter) manufactured by ULVAC-PHI Co., Ltd. is used as an XPS analyzer, and “MultiPack ver. Went.

従って、本件出願に係る表面処理銅箔の「銅複合化合物からなる微細凹凸」の場合、XPSで分析したときのCu(I)及びCu(II)の各ピーク面積の合計面積を100%としたとき、Cu(I)ピークの占有面積率が50%以上99%以下であることが好ましい。Cu(I)ピークの占有面積率が50%未満の場合には、本件出願に係る表面処理銅箔の粗化処理表面を絶縁層構成材に積層し、回路形成して得られた回路の耐薬品性能が低下するため好ましくない。ここで、前記銅複合化合物のCu(I)ピークの占有面積率が70%以上がより好ましく、80%以上が更に好ましい。亜酸化銅は酸化銅に比べて酸溶解性が低いため、Cu(I)ピークの占有面積率が増加する程、回路形成時のエッチング工程における絶縁層構成材との密着部分へのエッチング液・めっき液等の差し込みを低減することが可能で、耐薬品性能が向上するからである。一方、Cu(I)ピークの占有面積率の上限は、後述の酸化処理及び還元処理することにより99%以下とする。しかし、Cu(I)ピークの占有面積率が低くなるほど、絶縁層構成材との密着性自体は向上する傾向があり、良好な耐酸化性を得るため、98%以下が好ましく、95%以下がより好ましい。なお、Cu(I)ピークの占有面積率は、Cu(I)/{Cu(I)+Cu(II)} ×100(%)の計算式で算出している。 Therefore, in the case of “fine irregularities made of a copper composite compound” of the surface-treated copper foil according to the present application, the total area of each peak area of Cu (I) and Cu (II) when analyzed by XPS is 100%. In this case, the occupied area ratio of the Cu (I) peak is preferably 50% or more and 99% or less . When the occupied area ratio of the Cu (I) peak is less than 50%, the roughened surface of the surface-treated copper foil according to the present application is laminated on the insulating layer constituting material, and the resistance of the circuit obtained by forming the circuit is increased. This is not preferable because the chemical performance decreases. Here, the occupied area ratio of the Cu (I) peak of the copper composite compound is more preferably 70% or more, and further preferably 80% or more. Since cuprous oxide has lower acid solubility than copper oxide, the more the Cu (I) peak occupancy ratio increases, the more the etching solution to the intimate contact with the insulating layer constituent material in the etching process during circuit formation. This is because insertion of a plating solution or the like can be reduced and chemical resistance performance is improved. On the other hand, the upper limit of the occupied area ratio of the Cu (I) peak is set to 99% or less by performing oxidation treatment and reduction treatment described later. However, the lower the occupied area ratio of the Cu (I) peak, the more the adhesion itself with the insulating layer constituting material tends to improve. In order to obtain good oxidation resistance, 98% or less is preferable and 95% or less is preferable. More preferred. Note that the occupied area ratio of the Cu (I) peak is calculated by the formula of Cu (I) / {Cu (I) + Cu (II)} × 100 (%).

そして、このときの粗化により形成された銅複合化合物からなる微細凹凸は、クリプトンを吸着させて測定した比表面積(以下、単に「比表面積」と称する。)が、0.035m/g以上という条件を満足することが好ましい。この比表面積が、0.035m/g以上になると、粗化処理層の前記平均厚さが200nmオーダーとなり、無粗化銅箔の絶縁樹脂基材に対する密着性を超えることができるからである。ここで、比表面積の上限を定めていないが、無粗化銅箔と同等の良好なエッチング性能を確保するためのは、上限は0.3m/g程度であり、より好ましくは0.2m/gである。なお、このときの比表面積は、マイクロメリティクス社製 比表面積・細孔分布測定装置 3Flexを用いて、試料に300℃×2時間の加熱を前処理として行い、吸着温度に液体窒素温度、吸着ガスにクリプトン(Kr)を用いて測定している。 And the fine unevenness | corrugation which consists of a copper complex compound formed by the roughening at this time has a specific surface area (henceforth only called "specific surface area") which adsorb | sucked krypton and is 0.035 m < 2 > / g or more. It is preferable to satisfy the condition. This is because when the specific surface area is 0.035 m 2 / g or more, the average thickness of the roughened layer is on the order of 200 nm, and the adhesion of the non-roughened copper foil to the insulating resin substrate can be exceeded. . Here, although the upper limit of the specific surface area is not defined, the upper limit is about 0.3 m 2 / g, more preferably 0.2 m in order to ensure good etching performance equivalent to that of the non-roughened copper foil. 2 / g. Note that the specific surface area at this time was pre-treated by heating the sample at 300 ° C. for 2 hours using a specific surface area / pore distribution measuring device 3Flex manufactured by Micromeritics. Measurement is performed using krypton (Kr) as the gas.

以上に述べた「銅複合化合物からなる微細凹凸」は、光を吸収するほど微細であるため、粗化処理層の表面は黒色化、茶褐色化等に暗色化する。即ち、本件出願に係る表面処理銅箔の粗化処理層の表面は、その色調にも特色があり、L表色系の明度L が25以下、より好ましくは20以下である。この明度L が25を超えて明るい色調となると、十分な粗化が行われていないことになり、「絶縁樹脂基材に対する無粗化銅箔以上の良好な密着性」を得ることが出来ないため好ましくない。なお、明度L の測定は、日本電色工業株式会社製 分光色差計 SE2000を用いて、明度の校正には測定装置に付属の白色板を用い、JIS Z8722:2000に準拠して行った。そして、同一部位に関して3回の測定を行い、3回の明度L の測定データの平均値を、本件出願の明度L の値として記載している。 Since the above-mentioned “fine irregularities made of a copper composite compound” are fine enough to absorb light, the surface of the roughened layer is darkened such as blackening or browning. That is, the surface of the roughened layer of the surface-treated copper foil according to the present application has a characteristic color tone, and the lightness L * of the L * a * b * color system is 25 or less, more preferably 20 or less. is there. If the lightness L * exceeds 25 and the color tone becomes bright, sufficient roughening has not been performed, and “good adhesion over unroughened copper foil to the insulating resin base material” can be obtained. It is not preferable because it is not. The lightness L * was measured using a spectral color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the whiteness attached to the measuring device was used for the lightness calibration in accordance with JIS Z8722: 2000. And the measurement of 3 times is performed regarding the same site | part, and the average value of the measurement data of 3 times lightness L * is described as the value of the lightness L * of this application.

そして、本件出願に係る表面処理銅箔の粗化に用いる「銅複合化合物からなる微細凹凸」の形成方法に関して述べる。そして、この銅複合化合物は、酸化銅及び亜酸化銅を含有するものである。この銅複合化合物は、以下のようにして形成する。まず、溶液を用いた湿式法で銅箔の表面に酸化処理を施し、銅箔表面に酸化銅を含む「銅化合物からなる微細凹凸」を形成する。その後、当該銅化合物を還元処理して、酸化銅の一部を亜酸化銅に転換させ、酸化銅と亜酸化銅とを含む「銅複合化合物からなる微細凹凸」とする。本件出願において酸化処理に用いる溶液は、酸化銅を浸食しにくいアルカリ性の溶液を用いることが好ましく、このアルカリ性の溶液に溶解可能で、且つ、比較的に安定して共存可能なアミノ系シランカップリング剤を用いることが好ましい。そこで、この酸化処理に用いる溶液に、アミノ系シランカップリング剤を含有させることで、「銅化合物からなる微細凹凸」の形成が容易となる。銅箔の表面にアミノ系シランカップリング剤が吸着することで、銅箔表面の酸化を微細に抑制するため、「銅化合物からなる微細凹凸」の形状になる。このアミノ系シランカップリング剤を具体的に例示すると、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン等を用いることができる。   And the formation method of "the fine unevenness | corrugation which consists of a copper complex compound" used for the roughening of the surface treatment copper foil which concerns on this application is described. And this copper complex compound contains a copper oxide and a cuprous oxide. This copper composite compound is formed as follows. First, the surface of the copper foil is oxidized by a wet method using a solution to form “fine irregularities made of a copper compound” containing copper oxide on the surface of the copper foil. Thereafter, the copper compound is subjected to a reduction treatment to convert a part of the copper oxide into cuprous oxide, thereby obtaining “fine irregularities made of a copper composite compound” containing copper oxide and cuprous oxide. The solution used for the oxidation treatment in the present application is preferably an alkaline solution that hardly erodes copper oxide, and can be dissolved in the alkaline solution and can be relatively stably coexistent with an amino-based silane coupling. It is preferable to use an agent. Therefore, by adding an amino-based silane coupling agent to the solution used for the oxidation treatment, formation of “fine irregularities made of a copper compound” is facilitated. Since the amino silane coupling agent is adsorbed on the surface of the copper foil, the surface of the copper foil is finely suppressed, so that it becomes a shape of “fine irregularities made of a copper compound”. Specific examples of this amino silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3- Use of aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, etc. it can.

そして、上述の酸化処理が終了すると、当該銅化合物からなる微細凹凸を還元処理する。本件出願に係る表面処理銅箔の表面にある当該酸化処理で形成した「銅化合物からなる微細凹凸」は、還元処理が施されても当初の銅化合物からなる微細凹凸の形状をほぼ維持したまま、nmオーダーの長さの酸化銅及び亜酸化銅を含有する「銅複合化合物からなる微細凹凸」となる。この酸化処理により得られた「銅化合物からなる微細凹凸」の銅化合物をそのまま残すと、当該銅化合物成分がエッチング液、その他の酸溶液による浸食されやすいため、表面処理銅箔と絶縁樹脂基材との界面の溶液浸食が顕著になり、回路形成して得られた回路の耐薬品性能が低下する。よって、当該銅化合物を還元処理して、「銅化合物からなる微細凹凸」の酸化銅の一部を亜酸化銅に転化させた銅複合化合物とすることが好ましい。この還元処理において、還元剤濃度、溶液pH、溶液温度等を調整することで、「銅複合酸化物からなる微細凹凸」のCu(I)ピークの占有面積率を適宜調整できる。なお、酸化銅及び亜酸化銅を含有する銅複合化合物には、少量の金属銅が含まれても良い。   And when the above-mentioned oxidation treatment is completed, the fine irregularities made of the copper compound are reduced. “Fine unevenness made of copper compound” formed by the oxidation treatment on the surface of the surface-treated copper foil according to the present application is substantially maintained in the shape of the fine unevenness made of the original copper compound even when the reduction treatment is performed. And “fine irregularities made of a copper composite compound” containing copper oxide and cuprous oxide having a length of the order of nm. If the copper compound of “fine irregularities made of copper compound” obtained by this oxidation treatment is left as it is, the copper compound component is easily eroded by the etching solution and other acid solutions. As a result, solution erosion at the interface becomes remarkable, and the chemical resistance of the circuit obtained by forming the circuit deteriorates. Therefore, it is preferable to reduce the copper compound to obtain a copper composite compound in which a part of copper oxide of “fine irregularities made of a copper compound” is converted into cuprous oxide. In this reduction treatment, by adjusting the reducing agent concentration, solution pH, solution temperature, and the like, the occupied area ratio of the Cu (I) peak of “fine irregularities made of a copper composite oxide” can be adjusted as appropriate. Note that the copper composite compound containing copper oxide and cuprous oxide may contain a small amount of metallic copper.

以上に述べてきたことから理解できるように、本件出願に係る表面処理銅箔は、酸化処理溶液中に浸漬して、湿式法で銅箔の表面に酸化銅を含む「銅化合物からなる微細凹凸」を設け、その後還元処理してCu(I)ピークの占有面積率が50%以上99%以下の「銅複合酸化物からなる微細凹凸」を形成する。従って、銅箔の両面に同時に粗化を施すことが可能である。よって、この湿式法を利用すると、多層プリント配線板の内層回路の形成に適した両面粗化処理銅箔を容易に得ることが可能となる。 As can be understood from what has been described above, the surface-treated copper foil according to the present application is immersed in an oxidation treatment solution and contains copper oxide on the surface of the copper foil by a wet method. And then a reduction treatment is performed to form “fine irregularities made of a copper complex oxide” having an area ratio of Cu (I) peaks of 50% or more and 99% or less . Accordingly, it is possible to simultaneously roughen both surfaces of the copper foil. Therefore, when this wet method is used, it is possible to easily obtain a double-side roughened copper foil suitable for forming the inner layer circuit of the multilayer printed wiring board.

銅張積層板の形態: 本件出願に係る銅張積層板は、上述の粗化処理層を備える表面処理銅箔を用いて得られることを特徴とする。このときの銅張積層板は、本件出願に係る表面処理銅箔を使用して得られるものであれば、使用した絶縁樹脂基材の構成成分、厚さ、張り合わせ方法等に関して、特段の限定は無い。また、ここでいう銅張積層板の概念の中に、リジッドタイプ、フレキシブルタイプの双方の概念を含むものである。 Form of copper clad laminate: The copper clad laminate according to the present application is obtained by using a surface-treated copper foil provided with the above-mentioned roughening treatment layer. If the copper clad laminate at this time is obtained using the surface-treated copper foil according to the present application, there are no particular limitations on the constituent components, thickness, bonding method, etc. of the used insulating resin substrate. No. In addition, the concept of the copper-clad laminate referred to here includes the concept of both rigid type and flexible type.

電解銅箔として、析出面の表面粗さ(Rzjis)が0.2μm、光沢度[Gs(60°)]が600である三井金属鉱業株式会社製の電解銅箔(厚さ18μm)を用いて、以下の手順で表面処理を施した。   As the electrolytic copper foil, an electrolytic copper foil (thickness: 18 μm) manufactured by Mitsui Metal Mining Co., Ltd. having a surface roughness (Rzjis) of 0.2 μm and a glossiness [Gs (60 °)] of 600 is used. The surface treatment was performed according to the following procedure.

予備処理: 当該電解銅箔を、水酸化ナトリウム水溶液に浸漬して、アルカリ脱脂処理を行い、水洗を行った。そして、このアルカリ脱脂処理の終了した電解銅箔を、過酸化水素濃度が1質量%、硫酸濃度が5質量%の硫酸系溶液に5分間浸漬した後、水洗を行った。 Pretreatment: The electrolytic copper foil was immersed in an aqueous sodium hydroxide solution, subjected to alkali degreasing treatment, and washed with water. Then, the electrolytic copper foil after the alkaline degreasing treatment was immersed in a sulfuric acid solution having a hydrogen peroxide concentration of 1 mass% and a sulfuric acid concentration of 5 mass% for 5 minutes, and then washed with water.

酸化処理: 前記予備処理の終了した電解銅箔を、液温70℃、pH=12、亜塩素酸濃度が150g/L、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン濃度が10g/Lを含む水酸化ナトリウム溶液に、所定の酸化処理時間(1分間、2分間、4分間、10分間)浸漬して、電解銅箔の表面に「銅化合物からなる微細凹凸」を形成した4種類の試料を得た。 Oxidation treatment: The electrolytic copper foil having been subjected to the pretreatment was subjected to a liquid temperature of 70 ° C., pH = 12, a chlorous acid concentration of 150 g / L, and an N-2- (aminoethyl) -3-aminopropyltrimethoxysilane concentration of A predetermined oxidation treatment time (1 minute, 2 minutes, 4 minutes, 10 minutes) was immersed in a sodium hydroxide solution containing 10 g / L to form “fine irregularities made of a copper compound” on the surface of the electrolytic copper foil. Four types of samples were obtained.

還元処理: 酸化処理の終了した4種類の試料を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=12に調整したジメチルアミンボラン濃度が20g/Lの水溶液(室温)中に1分間浸漬して還元処理を行い、水洗し、乾燥して、「銅複合化合物からなる微細凹凸」で形成した粗化処理層を備える4種類の表面処理銅箔を得た。 Reduction treatment: Four types of samples after the oxidation treatment were immersed in an aqueous solution (room temperature) having a dimethylamine borane concentration of 20 g / L adjusted to pH = 12 using sodium carbonate and sodium hydroxide for 1 minute for reduction. The surface treatment copper foil provided with the roughening process layer formed with "the fine unevenness | corrugation which consists of a copper complex compound" was processed, washed with water, and dried.

この実施例1で得られた表面処理銅箔の粗化処理層表面の走査型電子顕微鏡観察像が、図1に示したものである。そして、この粗化処理層の表面をXPSを用いて状態分析をすると、「Cu(I)」、「Cu(II)」及び「−COO基」の存在が確認された。更に、この実施例で得られた表面処理銅箔のCu(I)ピークの占有面積率、比表面積、明度L 及び引き剥がし強さを、以下の表1に纏めて示す。 A scanning electron microscope observation image of the surface of the roughened layer of the surface-treated copper foil obtained in Example 1 is shown in FIG. And when the state of the surface of the roughened layer was analyzed using XPS, the presence of “Cu (I)”, “Cu (II)” and “—COO group” was confirmed. Furthermore, the occupied area ratio, specific surface area, lightness L * and peel strength of the Cu (I) peak of the surface-treated copper foil obtained in this example are summarized in Table 1 below.

そして、本件出願における引き剥がし強さの測定は、以下のようにして行った。試料となる表面処理銅箔と、パナソニック株式会社製のプリプレグ(R1551)とを用い、真空プレス機を使用して、プレス圧を2.9MPa、温度を190℃、プレス時間が90分の条件で張り合わせて銅張積層板を製造した。次に、この銅張積層板を用いて、エッチング法で、3mm幅の引き剥がし強さ測定用直線回路を製造し、この3mm回路での引き剥がし強さの測定を行った。   And the measurement of the peeling strength in this application was performed as follows. Using a surface-treated copper foil as a sample and a prepreg (R1551) manufactured by Panasonic Corporation, using a vacuum press machine, the press pressure is 2.9 MPa, the temperature is 190 ° C., and the press time is 90 minutes. A copper clad laminate was produced by bonding. Next, using this copper-clad laminate, a 3 mm width peel strength measurement linear circuit was manufactured by an etching method, and the peel strength was measured with this 3 mm circuit.

実施例1で用いたと同じ電解銅箔を用いて、以下の手順で表面処理を施した。予備処理及び酸化処理(酸化処理時間:2分間)に関しては、実施例1と同じである。そして、この実施例2では、還元処理に用いる水溶液のpH及びジメチルアミンボラン濃度の影響をみるため、以下のような還元処理を採用している。   Using the same electrolytic copper foil as used in Example 1, surface treatment was performed in the following procedure. The preliminary treatment and the oxidation treatment (oxidation treatment time: 2 minutes) are the same as those in Example 1. In Example 2, the following reduction treatment is adopted in order to examine the influence of the pH of the aqueous solution used for the reduction treatment and the dimethylamine borane concentration.

還元処理: 酸化処理の終了した電解銅箔を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=11,12,13の3水準とし、ジメチルアミンボラン濃度が5g/L、10g/L、20g/Lの3水準を組合わせた9種類の各水溶液(室温)中に1分間浸漬して還元処理を行い、水洗し、乾燥して、本件出願に係る表面処理銅箔を得た。還元処理に用いる水溶液がpH=11のときに得られた表面処理銅箔を、「実施試料11−a,実施試料11−b,実施試料11−c」としている。還元処理に用いる水溶液がpH=12のときに得られた表面処理銅箔を、「実施試料12−a,実施試料12−b,実施試料12−c」としている。そして、還元処理に用いる水溶液がpH=13のときに得られた表面処理銅箔を、「実施試料13−a,実施試料13−b,実施試料13−c」としている。そして、各実施試料を示す際の「−a」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が5g/Lの場合である。そして、「−b」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が10g/Lの場合である。「−c」表示が、還元処理に用いる水溶液中のジメチルアミンボラン濃度が20g/Lの場合である。 Reduction treatment: The electrolytic copper foil after the oxidation treatment is adjusted to three levels of pH = 11, 12, and 13 using sodium carbonate and sodium hydroxide, and the dimethylamine borane concentrations are 5 g / L, 10 g / L, and 20 g / L. The surface-treated copper foil according to the present application was obtained by dipping for 1 minute in each of nine types of aqueous solutions (room temperature) combining these three levels, performing a reduction treatment, washing with water, and drying. The surface-treated copper foils obtained when the aqueous solution used for the reduction treatment has pH = 11 are referred to as “Execution Sample 11-a, Implementation Sample 11-b, Implementation Sample 11-c”. The surface-treated copper foil obtained when the aqueous solution used for the reduction treatment has a pH of 12 is referred to as “implementation sample 12-a, implementation sample 12-b, implementation sample 12-c”. The surface-treated copper foil obtained when the aqueous solution used for the reduction treatment has pH = 13 is referred to as “implementation sample 13-a, implementation sample 13-b, implementation sample 13-c”. In addition, the “−a” display when indicating each of the implementation samples is when the dimethylamine borane concentration in the aqueous solution used for the reduction treatment is 5 g / L. And "-b" display is a case where the dimethylamine borane density | concentration in the aqueous solution used for a reduction process is 10 g / L. “−c” is indicated when the concentration of dimethylamine borane in the aqueous solution used for the reduction treatment is 20 g / L.

この実施例2で得られた全ての実施試料の表面処理銅箔の走査型電子顕微鏡観察像は、図1に示したと同様の形態であった。そして、この各実施試料の粗化処理層の表面にある「銅複合化合物からなる微細凹凸」を、XPSを用いて状態分析すると、「Cu(I)」、「Cu(II)」及び「−COO基」の存在が確認された。この実施例で得られた表面処理銅箔のCu(I)ピークの占有面積率、比表面積、明度L 及び引き剥がし強さを、以下の表2に纏めて示す。 Scanning electron microscope observation images of the surface-treated copper foils of all the working samples obtained in Example 2 were in the same form as shown in FIG. Then, when the state of the “fine irregularities made of a copper composite compound” on the surface of the roughened layer of each of the implementation samples was analyzed using XPS, “Cu (I)”, “Cu (II)” and “− The presence of “COO group” was confirmed. The occupied area ratio, specific surface area, lightness L * and peel strength of the Cu (I) peak of the surface-treated copper foil obtained in this example are summarized in Table 2 below.

比較例Comparative example

比較例では、実施例と同じ電解銅箔を用いて、実施例と同じ予備処理を施し、黒化処理を行い、更に還元処理を施し比較試料を得た。以下、黒化処理及び還元処理について説明する。   In the comparative example, using the same electrolytic copper foil as in the example, the same pretreatment as in the example was performed, the blackening process was performed, and the reduction process was further performed to obtain a comparative sample. Hereinafter, the blackening process and the reduction process will be described.

黒化処理: 前記予備処理の終了した電解銅箔を、ローム・アンド・ハース電子材料株式会社製の酸化処理液である「PRO BOND 80A OXIDE SOLUTION」を10vol%、「PRO BOND 80B OXIDE SOLUTION」を20vol%含有する液温85℃の水溶液に5分間浸漬して、表面に一般的な黒化処理を形成した。 Blackening treatment: 10% by volume of “PRO BOND 80A OXIDE SOLUTION”, which is an oxidation treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd., and “PRO BOND 80B OXIDE SOLUTION” were applied to the electrolytic copper foil after the preliminary treatment. A general blackening treatment was formed on the surface by immersing in an aqueous solution containing 20 vol% and having a liquid temperature of 85 ° C. for 5 minutes.

還元処理: 酸化処理の終了した電解銅箔を、ローム・アンド・ハース電子材料株式会社製の還元処理液である「CIRCUPOSIT PB OXIDE CONVERTER 60C」を6.7vol%、「CUPOSIT Z」を1.5vol%含有する液温35℃の水溶液に5分間浸漬して、水洗し、乾燥して、図4(b)に示す還元黒化処理表面を備える比較試料を得た。 Reduction treatment: The electrolytic copper foil that has been subjected to oxidation treatment is reduced to 6.7 vol% for "CIRCUPOSIT PB OXIDE CONVERTER 60C", which is a reduction treatment solution manufactured by Rohm & Haas Electronic Materials Co., Ltd., and 1.5 vol for "CUPOSIT Z". The sample was immersed in an aqueous solution containing 35% of a liquid temperature of 35 ° C. for 5 minutes, washed with water, and dried to obtain a comparative sample having a reduced blackening treatment surface shown in FIG.

この比較例で得られた表面処理銅箔(比較試料)の粗化処理層の表面をXPSを用いて状態分析すると、「Cu(0)」の存在が明瞭に確認され、「Cu(II)」及び「Cu(I)」の存在も確認されたが、「−COO基」は確認できなかった。この比較例で得られた表面処理銅箔のCu(I)ピークの占有面積率、比表面積、明度L 及び引き剥がし強さは、表2に示すとおりである。 When the state of the surface of the roughened layer of the surface-treated copper foil (comparative sample) obtained in this comparative example was analyzed using XPS, the presence of “Cu (0)” was clearly confirmed, and “Cu (II)” "And" Cu (I) "were also confirmed, but" -COO group "could not be confirmed. Table 2 shows the occupied area ratio, specific surface area, lightness L *, and peel strength of the Cu (I) peak of the surface-treated copper foil obtained in this comparative example.

[実施例と比較例との対比]
実施例1と比較例との対比: 以下の表1を参照して、実施例1と比較例との対比を行う。
[Contrast between Example and Comparative Example]
Comparison between Example 1 and Comparative Example: With reference to Table 1 below, Example 1 and Comparative Example are compared.

Figure 2014126193
Figure 2014126193

この表1から理解できるように、酸化処理時間が1分〜10分の間で変動しても、粗化処理層の表面から見た「銅複合化合物からなる微細凹凸」の最大長さは100nmであり、粗化処理表面の状態分析においても検出される内容に変化はない。これに対して、比較例の場合の凹凸の最大長さは500nmと5倍程度大きくなっている。即ち、本件出願に係る表面処理銅箔の「銅複合化合物からなる微細凹凸」は、従来の黒化処理に比べて、極めて微細であることが分かる。   As can be understood from Table 1, even when the oxidation treatment time varies between 1 minute and 10 minutes, the maximum length of the “fine irregularities made of a copper composite compound” seen from the surface of the roughening treatment layer is 100 nm. Thus, there is no change in the contents detected in the analysis of the state of the roughened surface. On the other hand, the maximum length of the unevenness in the comparative example is 500 nm, which is about 5 times as large. That is, it can be seen that the “fine irregularities made of a copper composite compound” of the surface-treated copper foil according to the present application is extremely fine compared to the conventional blackening treatment.

次に、比表面積をみると、実施例1に比べて、比較例の方が大きな値を示している。しかし、これらの表面処理銅箔を絶縁樹脂基材に張り合わせて、引き剥がし強さを測定すると、実施例の引き剥がし強さが0.63kgf/cm〜0.78kgf/cmである。最も短い酸化処理時間であっても、実用的に十分な引き剥がし強さが得られており、比表面積の値に比例した引き剥がし強さが得られている。これに対し、実施例1よりも高い比表面積をもつ比較例の引き剥がし強さが、0.33kgf/cmと低くなっている。通常、比表面積の値が高いほど、引き剥がし強さも高くなるが、その逆となっている。これは、比較例における黒化処理の凹凸が強度的に劣化しているためと考えられる。これに関しては、後述する「実施例2と比較例との対比」の中で詳細に述べる。また、実施例1のみをみると、酸化処理時間の増加に比例して、比表面積が大きくなっている。即ち、この実施例1で採用した酸化処理時間は、適正と判断できる。更に、実施例1の粗化処理表面の明度Lの値に関しても、18〜20と非常にバラツキの少ない値を示している。 Next, in terms of the specific surface area, the comparative example shows a larger value than the first embodiment. However, when these surface-treated copper foils are bonded to an insulating resin substrate and the peel strength is measured, the peel strength of the examples is 0.63 kgf / cm to 0.78 kgf / cm. Even in the shortest oxidation treatment time, a practically sufficient peel strength is obtained, and a peel strength proportional to the value of the specific surface area is obtained. On the other hand, the peel strength of the comparative example having a higher specific surface area than that of Example 1 is as low as 0.33 kgf / cm. Usually, the higher the specific surface area value, the higher the peel strength, but vice versa. This is considered because the unevenness of the blackening treatment in the comparative example is deteriorated in strength. This will be described in detail in “Comparison between Example 2 and Comparative Example” described later. Moreover, when only Example 1 is seen, the specific surface area becomes large in proportion to the increase in oxidation treatment time. That is, it can be determined that the oxidation treatment time employed in Example 1 is appropriate. Furthermore, regarding the value of the lightness L * of the roughened surface of Example 1, a value with very little variation of 18 to 20 is shown.

更に、図2には、実施例1における酸化処理の浸漬時間2分間の条件で得られた表面処理銅箔の電極面側と析出面側との粗化形態をみるための走査型電子顕微鏡観察像を示している。この図2から、マクロ的には、粗化前の電解銅箔の電極面側及び析出面側の表面形状が粗化後も維持され、その粗化前の表面形状に沿って「銅複合化合物からなる微細凹凸」が形成されていることが分かる。従って、本件出願に係る表面処理銅箔の場合、「銅複合化合物からなる微細凹凸」で粗化する前の銅箔のマクロ的表面形状を維持したまま、その表面形状に沿った形での粗化が行われていることが明らかである。   Furthermore, in FIG. 2, the scanning electron microscope observation for seeing the roughening form of the electrode surface side and precipitation surface side of the surface treatment copper foil obtained on the conditions for the immersion time of 2 minutes of the oxidation treatment in Example 1 The image is shown. From FIG. 2, on a macro basis, the surface shapes on the electrode surface side and the deposition surface side of the electrolytic copper foil before roughening are maintained after roughening, and along the surface shape before roughening, “copper composite compound” It can be seen that "fine irregularities made of" are formed. Therefore, in the case of the surface-treated copper foil according to the present application, while maintaining the macroscopic surface shape of the copper foil before being roughened by the “fine irregularities made of a copper composite compound”, the roughness in a shape along the surface shape is maintained. It is clear that this is being done.

実施例2と比較例との対比: 以下の表2を参照して、実施例2と比較例との対比を行う。 Comparison between Example 2 and Comparative Example: With reference to Table 2 below, Example 2 and Comparative Example are compared.

Figure 2014126193
Figure 2014126193

表2において、Cu(I)ピークの占有面積率に着目し、還元処理に用いる水溶液がpH=11のときに得られた表面処理銅箔(実施試料11−a,実施試料11−b,実施試料11−c)と、還元処理に用いる水溶液がpH=12のときに得られた表面処理銅箔(実施試料12−a,実施試料12−b,実施試料12−c)と、還元処理に用いる水溶液がpH=13のときに得られた表面処理銅箔(実施試料13−a,実施試料13−b,実施試料13−c)とをみると、Cu(I)ピークの占有面積率が、59%〜99%の範囲となっている。これに対し、比較試料でも、Cu(I)ピークの占有面積率が83%となっている。よって、Cu(I)ピークの占有面積率においては、実施例と比較例との差異は無いことが分かるが、上述のXPSによる状態分析でみると、検出成分が異なっている。   In Table 2, paying attention to the occupied area ratio of the Cu (I) peak, the surface-treated copper foils obtained when the aqueous solution used for the reduction treatment is pH = 11 (Example 11-a, Example 11-b, Example) Sample 11-c), surface-treated copper foil (implementation sample 12-a, implementation sample 12-b, implementation sample 12-c) obtained when the aqueous solution used for the reduction treatment is pH = 12, and reduction treatment Looking at the surface-treated copper foils (Example 13-a, Example 13-b, Example 13-c) obtained when the aqueous solution used was pH = 13, the occupied area ratio of the Cu (I) peak was 59% to 99%. On the other hand, even in the comparative sample, the occupied area ratio of the Cu (I) peak is 83%. Therefore, it can be seen that there is no difference between the example and the comparative example in the occupied area ratio of the Cu (I) peak, but the detected components are different in the state analysis by XPS described above.

そこで、実施試料と比較試料との粗化状態を、電子顕微鏡観察像で対比してみる。図2をみると、実施試料に係る粗化状態が理解できる。そして、図3をみると、実施試料に係る粗化処理層の断面の状態が理解できる。これに対して、比較例において黒化処理した直後の図4(a)に示す粗化状態の電子顕微鏡観察像では、長く、太い針状形状がみられ、黒化処理の先端部が鋭くとがっている。そして、この針状形状によって形成されている粗化処理層の厚さは500nm〜700nmであった。しかし、還元処理を行って還元黒化処理すると、図4(b)に示すように凹凸の先端部が丸くなり、還元処理により粗化形状が大きく変化していることが理解できる。   Therefore, the roughened state between the working sample and the comparative sample is compared with an electron microscope observation image. When FIG. 2 is seen, the roughening state which concerns on an implementation sample can be understood. And when FIG. 3 is seen, the state of the cross section of the roughening process layer which concerns on an implementation sample can be understood. In contrast, in the comparative example, the roughened electron microscope observation image shown in FIG. 4A immediately after the blackening treatment shows a long and thick needle shape, and the tip of the blackening treatment is sharply pointed. ing. And the thickness of the roughening process layer formed of this acicular shape was 500 nm-700 nm. However, when the reduction process is performed and the reduction blackening process is performed, as shown in FIG. 4B, it can be understood that the top of the irregularities is rounded, and the roughened shape is greatly changed by the reduction process.

更に、図5(a)には、比較例において黒化処理した直後の粗化処理層の断面を示している。そして、図5(b)に還元処理を行って還元黒化処理した後の断面を示している。この図5から分かるのは、還元処理により還元前の凹凸形状が、かなり大きな損傷を受けていることが分かる。即ち、酸化処理で形成されていた針状形状が、還元処理により細く、微細に断裂していることが分かる。これに対し、実施例の「銅複合化合物からなる微細凹凸」の粗化形状は、図3の断面から理解できるように、還元処理を行っていても、何ら損傷を受けていない。従って、実施試料に比べ、比較試料の還元処理後の凹凸は非常に脆く、いわゆる粉落ちの問題が生じることが予測できる。   Furthermore, FIG. 5A shows a cross section of the roughened layer immediately after blackening in the comparative example. FIG. 5B shows a cross section after the reduction process and the reduction blackening process. It can be seen from FIG. 5 that the uneven shape before the reduction is considerably damaged by the reduction treatment. That is, it can be seen that the needle-like shape formed by the oxidation treatment is thinned and finely broken by the reduction treatment. On the other hand, the roughened shape of the “fine irregularities made of a copper composite compound” in the example is not damaged at all even when the reduction treatment is performed, as can be understood from the cross section of FIG. Therefore, it can be predicted that the unevenness after the reduction treatment of the comparative sample is very fragile as compared with the working sample, and the so-called problem of powder falling occurs.

そこで、実施例2と比較例とで得られた表面処理銅箔の引き剥がし強さを対比してみる。この結果、実施試料の引き剥がし強さは、0.70kgf/cm〜0.81kgf/cmである。これに対して、比較試料の引き剥がし強さは0.33kgf/cmであり、実施試料よりも低くなっている。   Therefore, the peel strength of the surface-treated copper foil obtained in Example 2 and the comparative example will be compared. As a result, the peel strength of the working sample is 0.70 kgf / cm to 0.81 kgf / cm. On the other hand, the peel strength of the comparative sample is 0.33 kgf / cm, which is lower than that of the working sample.

以上に述べた本件出願に係る表面処理銅箔は、「最大長さが350nm以下の銅複合化合物からなる微細凹凸」で粗化を行ったものであり、無粗化銅箔の絶縁樹脂基材に対する密着性に比べれば、絶縁樹脂基材との良好な密着性を確保することができる。しかも、本件出願に係る表面処理銅箔の「最大長さが350nm以下の銅複合化合物からなる微細凹凸は、非常に微細であるため」、エッチング加工の際には、極めて短時間のオーバーエッチングタイムを設けるだけで済むと考えられ、良好なエッチングファクターを備えるファインピッチ回路の形成が期待できる。従って、全てのプリント配線板製品において、有用に使用可能である。また、上述のように、本件出願に係る表面処理銅箔は、銅箔の両面に粗化を施した形態とすることも可能であり、多層プリント配線板の内層回路形成に好適な両面粗化処理銅箔とできる。   The surface-treated copper foil according to the present application described above is roughened with "fine irregularities made of a copper composite compound having a maximum length of 350 nm or less", and the insulating resin base material of the non-roughened copper foil Compared with the adhesiveness with respect to, good adhesiveness with the insulating resin substrate can be ensured. In addition, the surface treatment copper foil according to the present application “because the fine irregularities made of a copper composite compound having a maximum length of 350 nm or less are very fine”, an extremely short over-etching time is required for the etching process. Therefore, it is expected that a fine pitch circuit having a good etching factor can be formed. Therefore, it can be usefully used in all printed wiring board products. In addition, as described above, the surface-treated copper foil according to the present application can be made into a form in which the both surfaces of the copper foil are roughened, and the double-sided roughening suitable for forming the inner layer circuit of the multilayer printed wiring board. Can be treated copper foil.

Claims (7)

銅箔の表面を粗化した表面処理銅箔において、
当該銅箔の表面に、最大長さが500nm以下の銅複合化合物からなる針状又は板状の微細凹凸で形成した粗化処理層を備えることを特徴とする表面処理銅箔。
In the surface-treated copper foil that roughened the surface of the copper foil,
A surface-treated copper foil comprising a roughened layer formed of needle-like or plate-like fine irregularities made of a copper composite compound having a maximum length of 500 nm or less on the surface of the copper foil.
前記銅複合化合物からなる針状又は板状の微細凹凸は、走査型電子顕微鏡を用いて、試料の傾斜角45°、50000倍以上の倍率で粗化処理層の表面から観察したときの最大長さが150nm以下である請求項1に記載の表面処理銅箔。 The needle-like or plate-like fine irregularities made of the copper composite compound have a maximum length when observed from the surface of the roughened layer at a tilt angle of 45 ° and a magnification of 50000 times or more using a scanning electron microscope. The surface-treated copper foil according to claim 1, wherein the thickness is 150 nm or less. 前記銅複合化合物からなる針状又は板状の微細凹凸は、XPSで分析したときのCu(I)及びCu(II)の各ピーク面積の合計面積を100%としたとき、Cu(I)ピークの占有面積率が50%以上である請求項1又は請求項2に記載の表面処理銅箔。 The needle-like or plate-like fine irregularities made of the copper composite compound have a Cu (I) peak when the total area of each peak area of Cu (I) and Cu (II) when analyzed by XPS is 100%. The surface-treated copper foil according to claim 1 or 2, wherein the occupied area ratio is 50% or more. 前記銅複合化合物からなる針状又は板状の微細凹凸は、酸化銅及び亜酸化銅を含有するものである請求項1〜請求項3のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the needle-like or plate-like fine irregularities made of the copper composite compound contain copper oxide and cuprous oxide. 前記銅複合化合物からなる針状又は板状の微細凹凸は、クリプトンを吸着させて測定した比表面積が0.035m/g以上である請求項1〜請求項4のいずれかに記載の表面処理銅箔。The surface treatment according to any one of claims 1 to 4, wherein the needle-like or plate-like fine irregularities made of the copper composite compound have a specific surface area measured by adsorbing krypton of 0.035 m 2 / g or more. Copper foil. 前記粗化処理層の表面は、L表色系の明度L が25以下の明度を備えるものである請求項1〜請求項5のいずれかに記載の表面処理銅箔。The surface-treated copper foil according to any one of claims 1 to 5, wherein the surface of the roughening layer has a lightness L * a * b * color system L * of 25 or less. 請求項1〜請求項6のいずれかに記載の表面処理銅箔を用いて得られたことを特徴とする銅張積層板。 A copper clad laminate obtained by using the surface-treated copper foil according to any one of claims 1 to 6.
JP2014526727A 2013-02-14 2014-02-14 Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil Active JP5809361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526727A JP5809361B2 (en) 2013-02-14 2014-02-14 Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013027059 2013-02-14
JP2013027059 2013-02-14
JP2013195941 2013-09-20
JP2013195941 2013-09-20
PCT/JP2014/053450 WO2014126193A1 (en) 2013-02-14 2014-02-14 Surface-treated copper foil, and copper-clad laminate obtained using surface-treated copper foil
JP2014526727A JP5809361B2 (en) 2013-02-14 2014-02-14 Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil

Publications (2)

Publication Number Publication Date
JP5809361B2 JP5809361B2 (en) 2015-11-10
JPWO2014126193A1 true JPWO2014126193A1 (en) 2017-02-02

Family

ID=51354192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014526727A Active JP5809361B2 (en) 2013-02-14 2014-02-14 Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil

Country Status (5)

Country Link
JP (1) JP5809361B2 (en)
KR (1) KR101574475B1 (en)
CN (2) CN107881505A (en)
TW (1) TWI543862B (en)
WO (1) WO2014126193A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103082B (en) * 2014-03-31 2019-04-26 三井金属矿业株式会社 Copper foil, copper clad laminate and printed wiring board with carrier foils
CN107109663B (en) * 2014-12-05 2020-03-10 纳美仕有限公司 Surface-treated copper foil for forming high-frequency signal transmission circuit, copper-clad laminate, and printed wiring board
CN107923047B (en) * 2015-07-29 2020-05-01 纳美仕有限公司 Roughened copper foil, copper-clad laminate, and printed wiring board
JP6087028B1 (en) * 2015-09-30 2017-03-01 三井金属鉱業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
KR101821601B1 (en) * 2015-09-30 2018-01-24 미쓰이금속광업주식회사 Roughened copper foil, copper clad laminate, and printed circuit board
JP6449823B2 (en) * 2016-01-21 2019-01-09 大成プラス株式会社 Copper and resin composites and paints
WO2017150043A1 (en) 2016-03-03 2017-09-08 三井金属鉱業株式会社 Production method for copper-clad laminate plate
WO2017179416A1 (en) * 2016-04-14 2017-10-19 三井金属鉱業株式会社 Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same
WO2019093494A1 (en) 2017-11-10 2019-05-16 ナミックス株式会社 Composite copper foil
JP7013003B2 (en) * 2017-11-10 2022-01-31 ナミックス株式会社 Objects with a roughened copper surface
JP6985745B2 (en) 2018-06-20 2021-12-22 ナミックス株式会社 Roughened copper foil, copper-clad laminate and printed wiring board
CN113365804A (en) * 2019-01-30 2021-09-07 Agc株式会社 Laminate and method for producing same, method for producing composite laminate, and method for producing polymer film
JP7456578B2 (en) * 2019-05-09 2024-03-27 ナミックス株式会社 Copper surface processing equipment
JP7352939B2 (en) * 2019-05-09 2023-09-29 ナミックス株式会社 composite copper parts
JP7409602B2 (en) * 2019-05-09 2024-01-09 ナミックス株式会社 composite copper parts
WO2021079952A1 (en) 2019-10-25 2021-04-29 ナミックス株式会社 Composite copper member
WO2022107511A1 (en) 2020-11-20 2022-05-27 信越化学工業株式会社 Phenol compound, electroconductive paste composition, method for producing electroconductive paste composition, and electroconductive wiring line and production method therefor
CN116997684A (en) * 2021-03-26 2023-11-03 三井金属矿业株式会社 Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board
JPWO2022202541A1 (en) * 2021-03-26 2022-09-29

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153797A (en) * 1980-04-28 1981-11-27 Hitachi Chemical Co Ltd Method of manufacturing multilayer printed circuit board substrate
JPH0628941B2 (en) * 1988-09-20 1994-04-20 株式会社日立製作所 Circuit board and manufacturing method thereof
JPH07116640B2 (en) * 1991-04-12 1995-12-13 株式会社日立製作所 Metallic copper foil and manufacturing method thereof
JP2003293166A (en) * 2002-04-02 2003-10-15 Kobe Steel Ltd Copper or copper alloy tube and method for producing the same
JP4727194B2 (en) 2004-09-14 2011-07-20 富士通株式会社 Circuit board
JP2006152329A (en) * 2004-11-25 2006-06-15 Shin Kobe Electric Mach Co Ltd Surface treatment method for copper layer and laminated board and wiring plate including the copper layer subjected to the treatment
JP2008248269A (en) 2007-03-29 2008-10-16 Hitachi Chem Co Ltd Copper surface treatment method, and wiring board using the method
CN101896641A (en) * 2007-12-14 2010-11-24 株式会社东亚电化 Resin-metal bonded article and method for producing the same

Also Published As

Publication number Publication date
CN105102678B (en) 2018-06-12
CN105102678A (en) 2015-11-25
WO2014126193A1 (en) 2014-08-21
TWI543862B (en) 2016-08-01
CN107881505A (en) 2018-04-06
KR20150119217A (en) 2015-10-23
TW201446492A (en) 2014-12-16
KR101574475B1 (en) 2015-12-03
JP5809361B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5809361B2 (en) Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil
JP6297124B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
KR101846141B1 (en) Manufacturing method of copper clad laminate
JP6430092B1 (en) Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
JP4683640B2 (en) Copper foil for printed wiring board and printed wiring board using the same
JP5351461B2 (en) Copper foil and copper foil manufacturing method
WO2017056534A1 (en) Roughened copper foil, copper clad laminate, and printed circuit board
JP2020122189A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP5406905B2 (en) A method for producing a copper foil for a printed circuit board comprising a fine granular surface that has high peel strength and is environmentally friendly.
TW201942370A (en) Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board
JP5579350B1 (en) Electrolytic copper foil, battery current collector using the electrolytic copper foil, secondary battery electrode using the current collector, and secondary battery using the electrode
JP2017508890A (en) Copper foil, electrical parts including the same, and battery
JP2010141227A (en) Rolled copper foil for printed wiring board
JP2020122190A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP2009149977A (en) Surface-treated copper foil, surface treatment method for the same, and laminated circuit board
WO2012046841A1 (en) Method of manufacturing printed circuit board, and printed circuit board obtained using method of manufacturing printed circuit board
JP2007046095A (en) Copper foil, and surface treatment method therefor
JP2004143547A (en) Aluminum stabilized laminate
JP2009117706A (en) Copper foil for flexible printed wiring board and manufacturing method thereof, and flexible printed wiring board
TW202302920A (en) Surface-treated copper foil
JP2014152344A (en) Composite copper foil and production method thereof
JP6087028B1 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP5074822B2 (en) Surface treated copper foil
JP2008279663A (en) Copper foil with al coating for copper clad laminate and copper clad laminate
JP2007012940A (en) Copper foil for printed wiring

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150910

R150 Certificate of patent or registration of utility model

Ref document number: 5809361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250