JPWO2013179623A1 - Ledモジュール - Google Patents

Ledモジュール Download PDF

Info

Publication number
JPWO2013179623A1
JPWO2013179623A1 JP2014518271A JP2014518271A JPWO2013179623A1 JP WO2013179623 A1 JPWO2013179623 A1 JP WO2013179623A1 JP 2014518271 A JP2014518271 A JP 2014518271A JP 2014518271 A JP2014518271 A JP 2014518271A JP WO2013179623 A1 JPWO2013179623 A1 JP WO2013179623A1
Authority
JP
Japan
Prior art keywords
light
substrate
led chip
led module
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014518271A
Other languages
English (en)
Other versions
JP6145945B2 (ja
Inventor
浦野 洋二
洋二 浦野
暁史 中村
暁史 中村
隼人 井岡
隼人 井岡
良治 今井
良治 今井
純 合田
純 合田
平野 徹
徹 平野
鈴木 雅教
雅教 鈴木
秀明 日向
秀明 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014518271A priority Critical patent/JP6145945B2/ja
Publication of JPWO2013179623A1 publication Critical patent/JPWO2013179623A1/ja
Application granted granted Critical
Publication of JP6145945B2 publication Critical patent/JP6145945B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

LEDモジュールは、透光性の光拡散基板と、光拡散基板の一表面側に透明な第1接合部を介して接合されたLEDチップと、光拡散基板の一表面側でLEDチップを覆う色変換部と、を備える。色変換部は、LEDチップから放射される光によって励起されてLEDチップとは異なる色の光を放射する蛍光体を含有する透明材料により形成されている。LEDモジュールは、光拡散基板の他表面側に配置された実装基板を備える。実装基板は、電気絶縁性を有する絶縁部材と、絶縁部材に埋設されLEDチップが電気的に接続される配線パターンと、を備え、絶縁部材が、拡散反射性を有する非透光性部材からなる。

Description

本発明は、LEDモジュールに関するものである。
従来から、白色系の発光が要求される発光装置としては、図27に示す構成の発光装置が提案されている(日本国特許出願公開番号2007−109701:特許文献1)。この発光装置は、放熱機能と光反射機能とを兼ね備えた金属板203と、光を通過させる貫通孔207を有する配線板201と、配線板201と金属板203とを張り合わせる接着シート202と、を備えている。そして、この発光装置は、LEDチップからなる発光素子214が、配線板201の貫通孔207直下にある金属板203に搭載され、発光素子214と配線板201の上面にあるランド206とが、金属線215でワイヤーボンディング接続されている。
上述の発光装置では、金属板203として、アルミニウム板などを用いる旨が記載されている。
図27に示した構成の発光装置では、発光素子214の発光層から放射された光の一部が、発光素子214中を透過して金属板203で反射されるものと推考される。しかしながら、この発光装置では、金属板203で全反射された光が、発光素子214内で吸収されたり、多重反射されること、などに起因して、光取り出し効率が低下してしまうと推考される。
本発明は上記事由に鑑みて為されたものであり、その目的は、光取り出し効率を向上させることが可能なLEDモジュールを提供することにある。
本発明のLEDモジュールは、透光性の光拡散基板と、前記光拡散基板の一表面側に透明な第1接合部を介して接合されたLEDチップと、前記光拡散基板の前記一表面側で前記LEDチップを覆う色変換部と、前記光拡散基板の他表面側に配置された実装基板と、を備え、前記色変換部は、前記LEDチップから放射される光によって励起されて前記LEDチップとは異なる色の光を放射する蛍光体を含有する透明材料により形成され、前記実装基板は、電気絶縁性を有する絶縁部材と、前記絶縁部材に埋設され前記LEDチップが電気的に接続される配線パターンと、を備え、前記絶縁部材は、拡散反射性を有する非透光性部材であることを特徴とする。
このLEDモジュールにおいて、前記LEDチップは、厚み方向の一面側に第1電極と第2電極とが設けられたものであり、前記第1電極および前記第2電極の各々が前記配線パターンとワイヤを介して電気的に接続されており、前記配線パターンの一部が、前記光拡散基板の前記実装基板側への垂直投影領域に設けられていることが好ましい。
このLEDモジュールにおいて、前記光拡散基板は、前記絶縁部材に埋設されて側面と前記他表面とが前記絶縁部材に接しており、前記実装基板は、前記配線パターンが、前記光拡散基板の前記一表面上に設けられた部位を備え、前記配線パターンは、前記第1電極および前記第2電極に一端部がそれぞれ接合された各前記ワイヤの他端部と前記部位とが接合されており、前記色変換部は、前記光拡散基板の前記一表面側において前記LEDチップおよび各前記ワイヤを覆っていることが好ましい。
本発明のLEDモジュールにおいては、光拡散基板と、拡散反射性を有する非透光性部材と、を備えていることにより、光取り出し効率を向上させることが可能となる。
図1Aは、実施形態1のLEDモジュールの概略平面図である。図1Bは、実施形態1のLEDモジュールの概略断面図である。 図2A、2Bは、参考例1の構造における光の進行経路の説明図である。 図3A〜3Dは、参考例1の構造における構造パラメータの説明図である。 図4は、参考例1の構造におけるLEDチップの発光層での吸収率と光取り出し効率との関係のシミュレーション結果を示す図である。 図5は、参考例1の構造におけるLEDチップの発光層での吸収率と光取り出し効率比との関係を示す図である。 図6は、参考例1の構造における光取り出し効率の内訳のシミュレーション結果を示す図である。 図7は、参考例2、3および4それぞれの光束の測定結果の説明図である。 図8は、参考例2、3および4それぞれの光束の測定結果の説明図である。 図9は、参考例2、3および4それぞれの光束の測定結果の説明図である。 図10は、全反射率と波長との関係説明図である。 図11Aは、実施形態2のLEDモジュールの概略平面図である。図11Bは、実施形態2のLEDモジュールの概略断面図である。 図12Aは、実施形態3のLEDモジュールの概略平面図である。図12Bは、実施形態3のLEDモジュールの概略断面図である。 図13は、実施形態3のLEDモジュールにおける光拡散基板の概略斜視図である。 図14は、アルミナ粒子の粒径と反射率との関係説明図である。 図15は、実施形態3のLEDモジュールの実施例における光拡散基板およびアルミナ基板の反射率−波長特性図である。 図16は、実施形態3のLEDモジュールにおける光拡散基板の模式説明図である。 図17は、実施形態1のLEDモジュールにおける光拡散基板のガラス配合率と積分球の積分強度との関係説明図である。 図18は、実施形態3の実施例における光拡散基板およびアルミナ基板の反射率−波長特性図である。 図19は、実施形態3のLEDモジュールの光取り出し効率の向上に関する原理を説明するための推定メカニズム図である。 図20A〜20Cは、実施形態3のLEDモジュールの光取り出し効率の向上に関する原理を説明するための推定メカニズム図である。 図21は、実施形態3のLEDモジュールの第1変形例の概略断面図である。 図22は、実施形態3のLEDモジュールの第2変形例の概略斜視図である。 図23Aは、実施形態3の照明器具の一部破断した概略斜視図である。図23Bは、図23Aの要部拡大図である。 図24Aは、実施形態3の直管形LEDランプの一部破断した概略斜視図である。図24Bは、図24Aの要部拡大図である。 図25は、実施形態3の照明器具の第1変形例の概略斜視図である。 図26は、実施形態3の照明器具の第1変形例の一部破断した概略斜視図である。 図27は、従来例の発光装置を示す断面図である。
(実施形態1)
以下では、本実施形態のLEDモジュール1について図1A、1Bに基いて説明する。
LEDモジュール1は、透光性の光拡散基板2と、光拡散基板2の一表面2sa側に透明な第1接合部3を介して接合されたLEDチップ4と、光拡散基板2の一表面2sa側でLEDチップ4を覆う色変換部5と、を備えている。色変換部5は、LEDチップ4から放射される光によって励起されてLEDチップ4とは異なる色の光を放射する蛍光体を含有する透明材料により形成されている。また、LEDモジュール1は、光拡散基板2の他表面2sb側に配置された実装基板7を備えている。実装基板7は、電気絶縁性を有する絶縁部材72と、絶縁部材72に埋設されLEDチップ4が電気的に接続される配線パターン71と、を備えており、絶縁部材72が、拡散反射性を有する非透光性部材からなる。
これにより、LEDモジュール1は、LEDチップ4の発光層43(図2A、2B参照)で発光し、LEDチップ4内および第1接合部3を通過した光の一部が光拡散基板2内で拡散されたり、光拡散基板2の側面2scから取り出されることとなる。よって、LEDモジュール1は、透光性の光拡散基板2と、光拡散基板2の他表面2sb側に配置され拡散反射性を有する非透光性部材(絶縁部材72)と、を備えていることにより、光取り出し効率を向上させることが可能となる。
以下、LEDモジュール1の各構成要素について詳細に説明する。
LEDチップ4は、このLEDチップ4の厚み方向の一面側に、アノード電極である第1電極(図示せず)と、カソード電極である第2電極(図示せず)と、が設けられている。
LEDチップ4は、図2A、2Bに示すように、n形半導体層42、発光層43およびp形半導体層44を有するLED構造部40を、基板41の主表面41a側に備えている。n形半導体層42、発光層43およびp形半導体層44の積層順は、基板41に近い側から順に、n形半導体層42、発光層43、p形半導体層44としてあるが、これに限らず、p形半導体層44、発光層43、n形半導体層42の順でもよい。LEDチップ4は、LED構造部40と基板41との間に、バッファ層を設けてある構造が、より好ましい。発光層43は、単一量子井戸構造や多重量子井戸構造を有することが好ましいが、これに限らない。例えば、LEDチップ4は、n形半導体層42と発光層43とp形半導体層44とでダブルヘテロ構造を構成するようにしてもよい。なお、LEDチップ4の構造は、特に限定するものではない。LEDモジュール1としては、LEDチップ4として内部に反射層(例えば、ブラッグ反射器などの反射部)を備えていない構造のLEDチップを採用する場合に、内部に反射層を備えたLEDチップを採用する場合に比べて、光拡散基板2と、拡散反射性を有する非透光性部材からなる絶縁部材72と、を備えたことによる光取り出し効率の向上効果が大きい。
LEDチップ4としては、例えば、青色光を放射するGaN系青色LEDチップを採用することができる。この場合、LEDチップ4は、基板41としてサファイア基板を備えている。ただし、LEDチップ4の基板41は、サファイア基板に限らず、例えば、発光層43で発光する光に対して透明な基板であればよい。
LEDチップ4のチップサイズは、特に限定するものではない。LEDチップ4としては、例えば、チップサイズが0.3mm□(0.3mm×0.3mm)や0.45mm□(0.45mm×0.45mm)や1mm□(1mm×1mm)のものなどを用いることができる。また、LEDチップ4の平面形状は、正方形状に限らず、例えば、長方形状などでもよい。LEDチップ4の平面形状が、長方形状の場合、LEDチップ4としては、例えば、チップサイズが0.5mm×0.24mmのものなどを用いることができる。
また、LEDチップ4は、発光層43の材料や発光色を特に限定するものではない。すなわち、LEDチップ4としては、青色LEDチップに限らず、例えば、紫色光LEDチップ、紫外光LEDチップ、赤色LEDチップ、緑色LEDチップなどを用いてもよい。
LEDチップ4と光拡散基板2とを接合する第1接合部3の材料としては、例えば、シリコーン樹脂、エポキシ樹脂、シリコーン樹脂とエポキシ樹脂とのハイブリッド材料などを採用することができる。
光拡散基板2の材質としては、例えば、透光性セラミックス(アルミナ、硫酸バリウムなど)を採用することができる。透光性セラミックスは、バインダ、添加物などの種類や濃度によって、透過率、反射率および熱伝導率を調整することが可能である。LEDモジュール1は、光拡散基板2の一表面2sa側の中央部に、透明な第1接合部3を介してLEDチップ4が接合されている。これにより、LEDモジュール1は、LEDチップ4の発光層43からLEDチップ4の厚み方向の他面側へ放射された光がLEDチップ4の側面から取り出されやすくなり、また、光拡散基板2内で拡散され光拡散基板2の一表面2saの周部から取り出されやすくなる。よって、LEDモジュール1は、光取り出し効率の向上を図ることが可能となる。
光拡散基板2は、矩形板状に形成してあるが、これに限らず、例えば、円形状、多角形状などでもよい。光拡散基板2の平面サイズは、LEDチップ4の平面サイズよりも大きく設定してある。これにより、LEDモジュール1は、光取り出し効率を向上させることが可能となる。
光拡散基板2は、LEDチップ4に近い線膨張率を持つように構成することで、LEDチップ4と実装基板7との線膨張率の差に起因してLEDチップ4に働く応力を緩和する応力緩和機能を有することが好ましい。これにより、LEDモジュール1は、LEDチップ4と実装基板7との線膨張率の差に起因してLEDチップ4に働く応力を緩和することが可能となる。
また、光拡散基板2は、LEDチップ4で発生した熱を実装基板7側へ伝熱させる熱伝導機能を有していることが好ましい。また、光拡散基板2は、LEDチップ4で発生した熱をLEDチップ4のチップサイズよりも広い範囲に伝熱させる熱伝導機能を有していることが好ましい。これにより、LEDモジュール1は、LEDチップ4で発生した熱を光拡散基板2および実装基板7を介して効率良く放熱させることが可能となる。
色変換部5の形状は、LEDチップ4の平面形状などに基いて適宜設定すればよい。例えば、LEDチップ4の平面形状が長方形状の場合には、色変換部5を半楕円球状の形状とし、平面視での色変換部5の長軸方向、短軸方向を、平面視でのLEDチップ4の長手方向、短手方向それぞれと揃えることが好ましい。また、LEDチップ4の平面形状が正方形状の場合には、色変換部5の形状を半球状の形状とすることが好ましい。ただし、色変換部5の形状は、特に限定するものではなく、LEDモジュール1の所望の配光特性に基いて適宜設定すればよい。色変換部5は、LEDチップ4だけでなくLEDチップ4に接続された各ワイヤ8の各々の一部を覆っている。色変換部5は、LEDチップ4の上記一面側および側面と、光拡散基板2の一表面2saの周部とに接している。色変換部5は、例えば、成形法により形成することができる。
色変換部5の材料である透明材料としては、シリコーン樹脂を採用している。透明材料は、シリコーン樹脂に限らず、例えば、エポキシ樹脂、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用することもできる。
色変換部5の材料である蛍光体は、LEDチップ4から放射される光を当該光よりも長波長の光に変換する波長変換材料として機能する。これにより、LEDモジュール1は、LEDチップ4から放射される光と蛍光体から放射される光との混色光を得ることが可能となる。
LEDモジュール1は、例えば、LEDチップ4として青色LEDチップを採用し、波長変換材料の蛍光体として黄色蛍光体を採用すれば、白色光を得ることが可能となる。すなわち、LEDモジュール1は、LEDチップ4から放射された青色光と黄色蛍光体から放射された光とが色変換部5の表面を通して放射可能となり、白色光を得ることが可能となる。
波長変換材料である蛍光体としては、黄色蛍光体だけに限らず、例えば、黄色蛍光体と赤色蛍光体とを採用したり、赤色蛍光体と緑色蛍光体とを採用してもよい。また、波長変換材料である蛍光体は、1種類の黄色蛍光体に限らず、発光ピーク波長の異なる2種類の黄色蛍光体を採用してもよい。LEDモジュール1は、波長変換材料として複数種の蛍光体を採用することにより、演色性を高めることが可能となる。
本実施形態のLEDモジュール1は、光拡散基板2の他表面2sb側が、透明な第2接合部(図示せず)を介して配線パターン71に接合されている。要するに、光拡散基板2と実装基板7とは、透明な第2接合部を介して接合されている。第2接合部の材料としては、例えば、シリコーン樹脂、エポキシ樹脂、シリコーン樹脂とエポキシ樹脂とのハイブリッド材料などを採用することができる。
実装基板7は、LEDチップ4が電気的に接続された非透光性の配線パターン71と、配線パターン71が埋設され電気絶縁性を有する絶縁部材72と、を備えている。配線パターン71は、LEDチップ4への給電用の導体パターンである。導体パターンとは、パターン化された導体部を意味する。
実装基板7は、絶縁部材72が、配線パターン71の裏面側だけでなく、配線パターン71の主表面側の大部分を覆っている。実装基板7は、配線パターン71の主表面側において、絶縁部材72に、LEDチップ4の第1電極および第2電極の各々に一端部が接合された各ワイヤ8の他端部を通す穴73が形成されている。
配線パターン71の材質としては、例えば、アルミニウム、アルミニウム合金、銀、銅、リン青銅、銅合金(例えば、42アロイなど)、ニッケル合金などを採用することができる。配線パターン71は、例えば、リードフレーム、金属箔、金属膜などを利用して形成することができる。リードフレームは、金属フレームであり、帯状の金属フープ材から形成されている。金属フープ材の厚みは、例えば、100μm〜1500μm程度の範囲で設定することが好ましい。
リードフレームは、主表面側に、金属フープ材に比べてLEDチップ4からの光に対する反射率の高い表面処理層(図示せず)を適宜設けてもよい。表面処理層としては、例えば、Ag膜、Ni膜とPd膜とAu膜との積層膜、Ni膜とAu膜との積層膜、Ag膜とPd膜とAuAg合金膜との積層膜などを採用することができる。表面処理層は、長期的な信頼性(例えば、耐酸化性、耐腐食性、絶縁部材72との密着性など)の観点から、Ag膜よりも、Ni膜とPd膜とAu膜との積層膜、Ni膜とAu膜との積層膜、Ag膜とPd膜とAuAg合金膜などのほうが好ましい。表面処理層は、めっき層などにより構成することが好ましい。要するに、表面処理層は、めっき法により形成することが好ましい。リードフレームは、主表面側に限らず、全体に表面処理層を形成してあってもよい。また、リードフレームの主表面側の表面処理層は、スポットめっき法などによって部分的に形成するようにしてもよい。
なお、金属フープ材としては、母材であるアルミニウム板の一表面側にアルミニウム板よりも高純度のアルミニウム膜が積層され、このアルミニウム膜上に、屈折率の異なる2種類の誘電体膜からなる増反射膜が積層された高反射基板を用いることもできる。ここで、2種類の誘電体膜としては、例えば、SiO2膜とTiO2膜とを採用することが好ましい。高反射基板としては、例えば、アラノッド(alanod)社のMIRO2、MIRO(登録商標)を用いることができる。上述のアルミニウム板としては、表面が陽極酸化処理されたものを用いてもよい。金属フープ材として、上述のような高反射基板を用いる場合には、各ワイヤ8それぞれとの電気的接続のための導電膜をめっき法などによって形成するか、増反射膜をパターニングする必要がある。
配線パターン71は、LEDチップ4の第1電極と第2電極とのうちの一方が、ワイヤ8を介して電気的に接続される第1導体部(第1パターン)71aと、第1電極と第2電極とのうちの他方がワイヤ8を介して電気的に接続される第2導体部(第2パターン)71bと、を備えている。なお、図1の例では、第1電極がワイヤ8を介して第1導体部71aと電気的に接続され、第2電極がワイヤ8を介して第2導体部71bと電気的に接続されている。
実装基板7は、配線パターン71において絶縁部材72により覆われた領域以外の領域の主表面側に、最表層がAu膜からなる表面処理層が形成されていることが好ましい。この表面処理層の材料は、配線パターン71の材料に比べて、耐酸化性および耐腐食性が高い材料が好ましい。ここにおいて、表面処理層は、例えば、配線パターン71が上述のリードフレームを利用して形成されていて配線パターン71の材料がCuである場合、Ni膜とPd膜とAu膜との積層膜もしくはNi膜とAu膜との積層膜からなることが好ましい。これにより、表面処理層は、耐酸化性および耐腐食性が高く、また、ワイヤ8を構成する金ワイヤとの接合強度を高めることが可能となり、また、配線パターン71の材料であるCuが表面処理層のAu膜中へ拡散するのを抑制することが可能となる。
実装基板7の平面形状は、矩形状としてある。これに対し、配線パターン71は、第1導体部71aと第2導体部71bとが規定方向(図1Aの左右方向)に並設され、且つ、第1導体部71aと第2導体部71bとの両方を包含する仮想四角形が、絶縁部材72の外周形状よりもやや小さく当該外周形状に相似な矩形となるように形成されている。ここで、配線パターン71は、第1導体部71aと第2導体部71bとで、上記仮想四角形の大部分を占めるように外形寸法が設定されている。具体的には、第1導体部71aは、外周形状が矩形状であり、上記規定方向における長さ寸法が、上記仮想四角形の上記規定方向に沿った辺の長さの4分の3よりもやや小さな寸法に設定され、上記規定方向に直交する方向における長さ寸法が、上記仮想四角形の上記規定方向に直交する方向に沿った辺の長さと同じ寸法に設定してある。また、第2導体部71bは、上記規定方向における長さ寸法が、上記仮想四角形の上記規定方向に沿った辺の長さの4分の1よりもやや小さな寸法に設定され、上記規定方向に直交する方向における長さ寸法が、上記仮想四角形の上記規定方向に直交する方向に沿った辺の長さと同じ寸法に設定してある。実装基板7は、第1導体部71aおよび第2導体部71bそれぞれの形状や大きさを特に限定するものではないが、配線パターン71の平面積が絶縁部材72の平面積に近いほうが、好ましい。これにより、LEDモジュール1は、放熱性を向上させることが可能となる。配線パターン71は、第1導体部71aと第2導体部71bとの大きさが逆でもよい。また、配線パターン71は、配線パターン71の厚み方向への第1導体部71aと第2導体部71bとのいずれか一方の投影領域内に光拡散基板2が収まるように、第1導体部71aおよび第2導体部71bそれぞれの外形寸法が設定されていることが好ましい。
実装基板7は、配線パターン71の一部が、光拡散基板2の実装基板7側への垂直投影領域に設けられているのが好ましい。これにより、LEDモジュール1は、LEDチップ4で発生した熱を、配線パターン71の厚み方向および横方向(面内方向)へ広げて絶縁部材72の裏面側へ伝熱させることが可能となる。よって、LEDモジュール1は、放熱性が向上してLEDチップ4の温度上昇を抑制することが可能となり、光出力のより一層の高出力化を図ることが可能となる。実装基板7は、放熱性を向上させる観点から、配線パターン71の第1導体部71aの一部が、光拡散基板2の実装基板7側への垂直投影領域の全域に亘って設けられているのが好ましく、この垂直投影領域よりも大きな規定領域の全域に亘って設けられているのが、より好ましい。
実装基板7の平面形状は、矩形状に限らず、例えば、円形状、楕円形状、三角形状、矩形以外の多角形状などの形状としてもよい。
絶縁部材72は、拡散反射性を有する非透光性部材である。絶縁部材72は、樹脂に反射率を高めるためのフィラーを添加した材料から形成されている。一例として、絶縁部材72は、樹脂として不飽和ポリエステルを採用し、フィラーとしてチタニアを採用することができる。絶縁部材72の樹脂としては、不飽和ポリエステルに限らず、例えば、ビニルエステルなどを採用することができる。また、フィラーとしては、チタニアに限らず、例えば、酸化マグネシウム、窒化ホウ素、水酸化アルミニウムなどを用いることができる。
絶縁部材72は、光拡散基板2の近傍において第1導体部71a、第2導体部71bそれぞれの1箇所を露出させる穴73を有し、且つ、実装基板7の外周部において第1導体部71a、第2導体部71bそれぞれの1箇所を露出させる開孔部(図示せず)を有するように、パターニングされている。これにより、第1導体部71a、第2導体部71bは、光拡散基板2の近傍において露出した部位が、ワイヤ8が接続される接続部を構成し、実装基板7の外周部において露出した部位が外部接続用の端子部を構成している。
穴73は、開口形状を円形状としてある。穴73の内径は、0.5mmに設定してあるが、この値は一例であり、特に限定するものではない。穴73の形状は、円形状に限らず、例えば、矩形状、楕円形状などでもよい。穴73は、平面視においてLEDチップ4の両側に1つずつ形成されている。
実装基板7の形成方法の一例としては、例えば、まず、配線パターン71を有するリードフレームを準備してから、配線パターン71に対して表面処理層を電解めっき法により形成し、その後、インサート成形法によって、配線パターン71が埋設された絶縁部材72を成形し、その後、リードフレームの不要部分を切断するようにすればよい。この実装基板7の形成方法は、一例である。実装基板の形成方法は、他の形成方法でもよい。
実装基板7の一表面7sa側に配置するLEDチップ4の個数は、1個に限らず、複数個でもよい。LEDチップ4の個数が複数個の場合には、LEDチップ4の個数と光拡散基板2の個数とは同じでもよいし、LEDチップ4の個数よりも光拡散基板2の個数が少なくてもよい。要するに、LEDモジュール1は、例えば、1個の光拡散基板2に1個のLEDチップ4が第1接合部3を介して接合された構成を、LEDチップ4の個数だけ備えた構成でもよいし、1個の光拡散基板2に複数個のLEDチップ4の各々が第1接合部3を介して接合された構成を備えたものでもよい。
また、LEDモジュール1は、例えば、実装基板7の平面形状を長尺状として、実装基板7の長手方向に沿って複数個のLEDチップ4を配列した構成としてもよい。この場合、配線パターン71は、複数個のLEDチップ4を直列接続可能に構成してもよいし、並列接続可能に構成してもよいし、直並列接続可能に構成してもよい。
ワイヤ8としては、金ワイヤに限らず、例えば、アルミニウムワイヤなどを採用することができる。
LEDモジュール1は、LEDチップ4から放射された光および蛍光体から放射された光を効率良く絶縁部材72の表面で拡散反射させることが可能となる。したがって、LEDモジュール1は、実装基板7の平面サイズを光拡散基板2の平面サイズよりも大きくした構成でありながら、LEDチップ4から放射された光および蛍光体から放射された光が絶縁部材72の表面で拡散反射され、実装基板7に吸収されるのを抑制することが可能となる、これにより、LEDモジュール1は、光取り出し効率の向上を図ることが可能となる。また、LEDモジュール1は、光拡散基板2を備えていることにより、光拡散基板2直下の絶縁部材72が空気に触れないので、絶縁部材72が経年劣化しにくくなり、経年劣化による影響を低減することが可能となる。
本実施形態のLEDモジュール1は、透光性の光拡散基板2と、光拡散基板2の他表面2sb側に配置されLEDチップ4から放射される光および蛍光体から放射される光を拡散反射する拡散反射性を有する非透光性部材(絶縁部材72)と、を備えていることにより、光取り出し効率を向上させることが可能となり、光出力(光束)の高出力化を図ることが可能となる。
LEDモジュール1は、実装基板7の一表面7sa側において色変換部5および色変換部5から露出している各ワイヤ8を覆う透明材料からなるカバー部(図示せず)を備えることが好ましい。カバー部の材料としては、色変換部5の材料である透明材料と同じ材料などを採用することができる。すなわち、カバー部の材料としては、例えば、シリコーン樹脂、エポキシ樹脂、エポキシ樹脂、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用することができる。なお、カバー部の光出射面は、色変換部5の光出射面に沿った形状であることが好ましい。また、LEDモジュール1の製造時には、色変換部5を形成した後に、例えば、ディスペンサなどにより、各穴73にカバー部の材料を充填して各ワイヤ8が光拡散基板2に接触しないようにし、その後、カバー部を形成すればよい。
ところで、本願発明者らは、光取り出し効率の向上を図るという課題を解決するために、特にLEDチップ4を搭載するサブマウント部材20(図2A、2B、3A〜3D、7〜9参照)、サブマウント部材20におけるLEDチップ4側とは反対側に配置される支持部材170(図7〜9参照)に着目し、鋭意研究を行った。
まず、本願発明者らは、LEDチップ4をサブマウント部材20に第1接合部3を介して接合することでLEDチップ4をサブマウント部材20に搭載した構造(参考例1)に関して、サブマウント部材20の材質の違いによる光取り出し効率の違いについて検討した。LEDチップ4としては、基板41がサファイア基板であり、発光層43から放射される光が青色光であるGaN系青色LEDチップを準備した。また、サブマウント部材20としては、透光性セラミックス基板(透光性アルミナ基板)、透光性セラミックス基板に比べて反射率の高い金属板(Ag基板、Al基板)を準備した。また、第1接合部3の材料は、シリコーン樹脂とした。
図2Aには、参考例1の構造においてサブマウント部材20を透光性セラミックス基板とした場合について、発光層43の任意の点から放射された光の進行経路を矢印で模式的に示してある。また、図2Bには、参考例1の構造においてサブマウント部材20をAg基板とした場合について、発光層43の任意の点から放射された光の進行経路を矢印で模式的に示してある。参考例1の構造での光取り出し効率については、サブマウント部材20を透光性セラミックス基板とした場合の方が、サブマウント部材20をAg基板とした場合よりも、8〜10%、高かった。
参考例1の構造については、図3A〜3Dに示す構造パラメータを設定した。LEDチップ4については、平面形状を長方形とし、長辺の長さ寸法H41を0.5mm、短辺の長さ寸法H42を0.24mmとした。また、LEDチップ4については、基板41とLED構造部40とを合わせた厚み寸法t4を0.14mm、LED構造部40の厚み寸法t5を0.0004mm、LEDチップ4の上記一面から発光層43までの厚み寸法t6を0.0003mmとした。また、LEDチップ4については、基板41の材料を屈折率が1.77のサファイアとし、LED構造部40を屈折率が2.5のGaNとした。
また、発光層43については、発光層43の全点いずれからも、全方向に等方的に均一な強度の光が放射されるものと仮定した。
また、第1接合部3については、厚み寸法t3を0.005mmとし、材料を屈折率が1.41のシリコーン樹脂とした。
サブマウント部材20については、平面形状を矩形状とし、隣り合う2つの辺の長さ寸法H1、H2それぞれを3.75mm、3.75mmとした。したがって、LEDチップ4の長手方向に沿った方向におけるLEDチップ4とサブマウント部材20の外周線との距離L1は、1.625mmとし、LEDチップ4の短手方向に沿った方向におけるLEDチップ4とサブマウント部材20の外周線との距離L2は、1.755mmとした。
また、サブマウント部材20の光学特性については、透光性セラミックス基板の場合、反射率を92%、透過率を8%と仮定した。そして、本願発明者らは、サブマウント部材20が透光性セラミックス基板の場合について、図3Dに示すように、セラミックスからなる母材中に母材とは屈折率の異なる球状の粒子が混入されている構造モデルを考え、上述の反射率、透過率それぞれの値が得られるように、母材の屈折率を1.77、粒子の屈折率を1.0、粒子サイズを3.0μm、粒子濃度を16.5%と仮定した。
また、参考例1の構造から放射される全光束は、参考例1の構造が無限遠にあると見なすファーフィールド(far field)受光器で検出するものと仮定した。
光取り出し効率の実測値については、参考例1の構造においてサブマウント部材20を透光性セラミックス基板とした場合の光取り出し効率が72.5%であるのに対し、参考例1の構造においてサブマウント部材20をAl基板とした場合の光取り出し効率が68.7%であった。
図4は、参考例1の構造において発光層43での吸収率と全体での光取り出し効率との関係をシミュレーションした結果を示す。図4中のD1は、サブマウント部材20を透光性セラミックス基板とした場合のシミュレーション結果を示す。図4中のD2は、サブマウント部材20をAl基板とした場合のシミュレーション結果を示す。なお、このシミュレーションでは、LEDチップ4の側面ではフレネル損失のみが生じると仮定した。また、このシミュレーションは、モンテカルロ法を用いた光線追跡法による幾何光学シミュレーションである。
図4に示したシミュレーション結果からは、発光層43での光吸収率が約0.2%のときにD1、D2とも光取り出し効率が約70%となり、実測値に近い値が得られた。
図5は、参考例1の構造においてサブマウント部材20をAl基板とした場合の光取り出し効率に対するサブマウント部材20を透光性セラミックス基板の光取り出し効率の比を光取り出し効率比として定義し、発光層43の光吸収率と光取り出し効率比との関係を示したものである。
図5からは、発光層43の光吸収率の大小にかかわらず光取り出し効率比が1よりも大きな値となっていることが分かる。すなわち、図5からは、発光層43の光吸収率が同一条件であれば、参考例1の構造においてサブマウント部材20をAl基板とした場合よりも、サブマウント部材20を透光性セラミックス基板とした場合のほうが、光取り出し効率が高くなることが分かる。参考例1の構造においてサブマウント部材20をAl基板とした場合よりも、サブマウント部材20を透光性セラミックス基板とした場合のほうが、光取り出し効率が高くなるという結果は、実測値の場合と同様である。
図6は、参考例1の構造においてサブマウント部材20を透光性セラミックス基板、Al基板とした場合、それぞれの光取り出し効率の内訳をシミュレーションした結果である。図6では、基板材質がセラミックスの場合が、サブマウント部材20が透光性セラミックス基板の場合に対応し、基板材質がアルミニウムの場合が、サブマウント部材20がAl基板の場合に対応している。光取り出し効率の内訳に関して、図6中のI1は、LEDチップ4の上記一面からの光取り出し効率である。また、図6中のI2は、LEDチップ4の側面からの光取り出し効率である。また、図6中のI3は、サブマウント部材20におけるLEDチップ4側の露出表面(上面)からの光取り出し効率である。また、図6中のI4は、サブマウント部材20の側面とLEDチップ4側とは反対側の露出表面(下面)とからの光取り出し効率である。
図6から、参考例1の構造においてサブマウント部材20をAl基板とした場合には、I3およびI4が0であるのに対して、サブマウント部材20を透光性セラミックス基板とした場合には、I1およびI2それぞれが若干減少するものの、I3とI4とを合わせて9.3%の光取り出し効率が得られ、トータルとしての光取り出し効率が向上することが分かる。
図7、8は、各々の左下に示す参考例2の構造、各々の中央下に示す参考例3の構造、各々の右下に示す参考例4の構造それぞれについて、サブマウント部材20の平面サイズを2mm□(2mm×2mm)で一定とし厚み寸法を種々変化させた場合について、光束を積分球により測定した結果をまとめた図である。参考例2の構造は、参考例1の構造に対して、サブマウント部材20におけるLEDチップ4側とは反対側に配置される支持部材170を追加した構造である。参考例3の構造は、参考例2の構造にLEDチップ4を封止するシリコーン樹脂からなる封止部150を追加した構造である。参考例4の構造は、参考例2の構造にLEDチップ4を覆う色変換部5を追加した構造である。色変換部5は、透明材料としてシリコーン樹脂を採用し、波長変換材料として黄色蛍光体を採用した。図7と図8との相違点は、図7の支持部材170がAl基板であるのに対し、図8の支持部材170がAg基板である点のみである。なお、Al基板、Ag基板の反射率は、それぞれ、約78%、約98%である。
また、図7のE1、E2、E3およびE4は、サブマウント部材20の厚み寸法を、それぞれ、0.4mm、0.6mm、0.8mmおよび1.0mmとしたときの光束比である。また、図8のF1、F2、F3およびF4は、サブマウント部材20の厚み寸法を、それぞれ、0.4mm、0.6mm、0.8mmおよび1.0mmとしたときの光束比である。光束比は、参考例2の構造、参考例3の構造および参考例4の構造それぞれの光束と、サブマウント部材20として厚み寸法が1.0mmの高純度アルミナ基板を採用し支持部材170をなくした基準構造での光束と、の相対値である。したがって、図7、8の結果は、光束比が1よりも大きい場合、基準構造よりも光束が大きいことを意味し、光束比が1よりも小さい場合、基準構造よりも光束が小さいことを意味している。
図7の結果から、本願発明者らは、参考例4の構造において支持部材170をAl基板とした場合、サブマウント部材20の厚み寸法を0.8mm以上とすれば、基準構造よりも光束を大きくすることが可能であると考えた。また、図8の結果から、本願発明者らは、参考例4の構造において支持部材170をAg基板とした場合、サブマウント部材20の厚み寸法を0.8mm以上とすれば、基準構造よりも光束を大きくすることが可能であると考えた。逆に言えば、本願発明者らは、参考例4の構造において支持部材170をAl基板やAg基板などの金属板とした場合、光取り出し効率を向上させるという観点から、サブマウント部材20の厚み寸法の薄型化が制限されると考えた。
また、本願発明者らは、LEDチップ4から支持部材170に到達した光を拡散反射させることでLEDチップ4へ戻る光を低減するために、支持部材170として白色系の拡散反射基板を用いることを検討した。
図9は、参考例2の構造、参考例3の構造および参考例4の構造の各々について、サブマウント部材20の平面サイズを2mm□で一定とし、厚み寸法を0.4mmとした場合について、光束を積分球により測定した結果をまとめた図である。
図9のE1は、支持部材170をAl基板とした場合の光束比である。図9のF1は、支持部材170をAg基板とした場合の光束比である。図9のG1は、支持部材170を白色系の拡散反射基板(白色塗装を施した基板)とした場合の光束比である。拡散反射基板の反射率は、約92%である。なお、図10には、本願発明者らが比較検討したAg基板、MIRO2およびセラミックス基板(上述の高純度アルミナ基板)それぞれの全反射率の波長依存性を示す。
図9の光束比は、参考例2の構造、参考例3の構造および参考例4の構造それぞれの光束と、サブマウント部材20として厚み寸法が1.0mmの高純度アルミナ基板を採用し支持部材170をなくした基準構造での光束と、の相対値である。したがって、図9の結果は、光束比が1よりも大きい場合、基準構造よりも光束が大きいことを意味し、光束比が1よりも小さい場合、基準構造よりも光束が小さいことを意味している。
本願発明者らは、図9の結果から、支持部材170として拡散反射基板を採用することにより、支持部材170としてAl基板やAg基板などの金属基板を採用する場合に比べて、光取り出し効率の向上を図ることが可能となるという知見を得た。
そして、本願発明者らは、この知見に基いて、本実施形態のLEDモジュール1を想起するに至った。
LEDモジュール1は、上述のように、透光性の光拡散基板2と、光拡散基板2の一表面2sa側に透明な第1接合部3を介して接合されたLEDチップ4と、光拡散基板2の一表面2sa側でLEDチップ4を覆う色変換部5と、を備えている。ここで、色変換部5は、LEDチップ4から放射される光によって励起されてLEDチップ4とは異なる色の光を放射する蛍光体を含有する透明材料により形成されている。また、LEDモジュール1は、光拡散基板2の他表面2sb側に配置される絶縁部材72が設けられた実装基板7を備えている。絶縁部材72は、LEDチップ4から放射される光および蛍光体から放射される光を拡散反射する拡散反射性を有する非透光性部材からなる。LEDモジュール1は、透光性の光拡散基板2と、光拡散基板2の他表面2sb側に配置され拡散反射性を有する非透光性部材を構成する絶縁部材72と、を備えていることにより、光取り出し効率を向上させることが可能となり、光出力(光束)の高出力化を図ることが可能となる。LEDモジュール1は、光拡散基板2による光の導光効果により、光取り出し効率の向上を図ることが可能となり、また、LEDチップ4から放射されて光拡散基板2の一表面2sa側から他表面2sb側に透過する光を絶縁部材72により拡散反射することにより、色変換部5の蛍光体の変換効率を向上させて光取り出し効率を向上させることが可能となるものと推考される。
実装基板7の配線パターン71は、絶縁部材72の平面視における外周線の位置まで広げてもよいが、LEDモジュール1を搭載する部材(例えば、照明器具の器具本体など)が導電性材料により形成されているような場合には、上述の外周線よりも内側の位置まで広げるにとどめて、この部材との所望の沿面距離を確保できるようすることが好ましい。
また、LEDモジュール1は、実装基板7における配線パターン71の裏面側が絶縁部材72で覆われているので、金属製の部材(例えば、照明器具における金属製の器具本体や放熱部材など)に対して設置して用いるような場合に、耐雷サージ性を高めることが可能となる。
(実施形態2)
以下では、本実施形態のLEDモジュール1について図11に基いて説明する。
本実施形態のLEDモジュール1は、光拡散基板2が、絶縁部材72に埋設されて光拡散基板2の側面2scと他表面2sbとが絶縁部材72に接している点などが実施形態1のLEDモジュール1と相違する。なお、実施形態1と同様の構成要素については、同様の符号を付して説明を省略する。
また、実装基板7は、配線パターン71が、光拡散基板2の一表面2sa上に設けられた部位を備えている。ここで、配線パターン71は、第1導体部71aおよび第2導体部71bそれぞれが、光拡散基板2の一表面2sa上に設けられた部位を備えている。なお、第1導体部71aのうち実装基板7の厚み方向に沿って形成された部位と光拡散基板2の一表面2sa上に設けられた部位とを合わせた第1延設部位71abを、L字状の形状としてある。また、第2導体部71bのうち実装基板7の厚み方向に沿って形成された部位と光拡散基板2の一表面2sa上に設けられた部位とを合わせた第2延設部位71bbを、L字状の形状としてある。
配線パターン71は、第1電極に一端部が接合されたワイヤ8の他端部と、第1導体部71aにおいて光拡散基板2の一表面2sa上に設けられた部位とが、接合されている。また、配線パターン71は、第2電極に一端部が接合されたワイヤ8の他端部と、第2導体部71bにおいて光拡散基板2の一表面2sa上に設けられた部位とが、接合されている。すなわち、配線パターン71は、第1延設部位71ab、第2延設部位71bbの各々の先端部にワイヤ8の他端部が接合されている。配線パターン71は、1つのリードフレームを利用して形成してある。ここで、第1延設部位71ab、第2延設部位71bbは、例えば、リードフレームの元となる金属フープ材において第1延設部位71ab、第2延設部位71bbそれぞれとなる長方形状の領域の3辺に沿ったU字状のスリットを、金属フープ材に対してプレス加工を施すことで形成し、その後で、上記長方形状の領域を折り曲げ加工することにより形成することができる。配線パターン71は、リードフレームを利用して形成してあるものに限らず、金属膜や金属箔などを利用して形成してもよい。配線パターン71を金属膜や金属箔を利用して形成する場合には、光拡散基板2の厚み方向への光拡散基板2の投影領域の全域を含む配線パターン71を形成することが可能となる。
色変換部5は、光拡散基板2の一表面2sa側においてLEDチップ4および各ワイヤ8を覆っている。
本実施形態のLEDモジュール1は、光拡散基板2が、絶縁部材72に埋設されて光拡散基板2の側面2scと他表面2sbとが絶縁部材72に接しており、色変換部5が、光拡散基板2の一表面2sa側においてLEDチップ4および各ワイヤ8を覆っているので、実施形態1のLEDモジュール1のようなカバー部を形成することなく、信頼性を向上させることが可能となる。これにより、本実施形態のLEDモジュール1は、実施形態1のLEDモジュール1に比べて低コスト化を図ることが可能となる。
(実施形態3)
以下では、本実施形態のLEDモジュール1について図12、13に基いて説明する。
本実施形態のLEDモジュール1は、光拡散基板2が厚み方向において重なる二層のセラミック層2a、2bからなる点が、実施形態1のLEDモジュール1と相違する。なお、実施形態1のLEDモジュール1と同様の構成要素については、同様の符号を付して説明を省略する。
光拡散基板2は、各セラミック層2a、2bの光学特性が互いに異なり、LEDチップ4から遠いセラミック層2aの方が、LEDチップ4から放射される光に対する反射率が高くなっている。ここで、光学特性とは、反射率、透過率、吸収率などである。光拡散基板2は、厚み方向において重なる複数のセラミック層からなり、各セラミック層の光学特性が互いに異なり、LEDチップ4から遠いセラミック層ほど、LEDチップ4から放射される光に対する反射率が高い性質を有していればよい。
これにより、LEDモジュール1は、LEDチップ4の発光層43(図2A参照)からLEDチップ4の厚み方向の他面側へ放射された光が、セラミック層2bとセラミック層2aとの界面で拡散反射されやすくなる。これにより、LEDモジュール1は、LEDチップ4から光拡散基板2側へ出射した光がLEDチップ4へ戻るのを抑制することが可能となるとともに、実装基板7の一表面7saへ入射するのを抑制することが可能となり、光拡散基板2の一表面2saや側面2scから光を取り出しやすくなる。よって、LEDモジュール1は、光取り出し効率の向上を図ることが可能となり、且つ、実装基板7の反射率が光取り出し効率に与える影響を低減することが可能となり、光取り出し効率の経時変化を抑制することが可能となる。
光拡散基板2については、説明の便宜上、LEDチップ4に最も近い最上層のセラミック層2bを第1セラミック層2bと称し、LEDチップ4から最も遠い最下層のセラミック層2aを第2セラミック層2aと称することもある。
第1セラミック層2bの材料としては、例えば、アルミナ(Al23)を採用することができる。ここで、第1セラミック層2bは、例えば、アルミナ基板により構成することができる。第1セラミック層2bは、アルミナ基板により構成する場合、アルミナ粒子の粒径が、1μm〜30μmであることが好ましい。第1セラミック層2bは、アルミナ粒子の粒径が大きい方が、反射率を小さくでき、アルミナ粒子の粒径が小さいほうが散乱効果を大きくできる。要するに、反射率を小さくすることと、散乱効果を大きくすることとは、トレードオフの関係にある。
上述の粒径とは、個数基準粒度分布曲線により得られる値である。個数基準粒度分布曲線は、画像イメージング法により粒度分布を測定し得られるもので、具体的には、走査型電子顕微鏡(scanning electron microscope:SEM)によって観察してSEM画像を取得し、そのSEM画像を画像処理して求めた粒子の大きさ(二軸平均径)と個数とから得られるものである。この個数基準粒度分布曲線において積算値が50%のときの粒径値をメディアン径(d50)といい、上述の粒径は、メディアン径を意味している。
なお、理論上、アルミナ基板における球形のアルミナ粒子の粒径と反射率との関係は、図14に示すような関係にあり、粒径が小さくなるほど反射率が高くなる。第1セラミック層2bのメディアン径(d50)と反射率の測定値との関係は、図14の理論値と略同じであった。反射率の測定値は、分光光度計および積分球を用いて測定した値である。
第2セラミック層2aの材料としては、例えば、SiO2とAl23とAl23よりも高屈折率の材料(例えば、ZrO2、TiO2など)とCaOとBaOとを成分として含む複合材料を採用することができる。第2セラミック層2aは、Al23粒子の粒径が、0.1μm〜1μmであることが好ましい。第2セラミック層2aは、複合材料の成分、組成、粒径、厚さなどを調整することで、光学特性(反射率、透過率、吸収率など)を調整することが可能である。光拡散基板2は、第1セラミック層2bと第2セラミック層2aとで同じ材料を採用する場合、第1セラミック層2bの粒径を第2セラミック層2aの粒径よりも大きくすればよい。
LEDモジュール1の実施例は、光拡散基板2の厚さHsを0.5mm、第2セラミック層2aの厚さHsaを0.1mm、波長が450nmの光に対する第2セラミック層2aの反射率を96%、第1セラミック層2bの厚さHsbを0.4mm、波長が450nmの光に対する第1セラミック層2bの反射率を80%としてあるが、これらの数値は一例であり、特に限定するものではない。また、LEDモジュール1の実施例は、光拡散基板2の平面サイズを、2mm□(2mm×2mm)としてあるが、特に限定するものではない。
LEDモジュール1の実施例に用いた光拡散基板2の反射率−波長特性は、図15中のA1に示した通りである。また、厚さが0.4mmの単一層のアルミナ基板の反射率−波長特性は、図15中のA2に示した通りであった。なお、図15の反射率−波長特性は、分光光度計および積分球を用いて測定した結果である。
第1セラミック層2bは、1500℃〜1600℃程度の高温で焼成されたセラミックスからなる第1の緻密質層である。第1セラミック層2bは、高温焼成によってセラミック粒子同士が強固に結合されており、第2セラミック層2aよりも良好な剛性を有している。ここで、良好な剛性とは、相対的に抗折強度が高いことを意味する。第1セラミック層2bの材料としては、アルミナが好ましい。
また、第2セラミック層2aは、第1セラミック層2bに比べて比較的低温である1000℃以下(例えば、850℃〜1000℃)で焼成されたセラミックスである。第2セラミック層2aを構成するセラミックスは、例えば、セラミックフィラー(セラミックの微粒子)とガラス成分を含んだ第2の緻密質層や、セラミックフィラー(セラミックの微粒子)とガラス成分を含んだ多孔質層とすることができる。
第2の緻密質層は、セラミックフィラー同士が焼結により結合し、ガラス成分がセラミックフィラーの周りにマトリックス(matrix)となり配置され、緻密質セラミックとなったものである。第2の緻密質層では、主に、セラミックフィラーが光反射機能を発揮する。第2の緻密質層は、例えば、硼珪酸ガラス、硼珪酸亜鉛ガラスおよびアルミナを含むガラスセラミックス、ソーダ石灰ガラスおよびアルミナを含むガラスセラミックスなどにセラミックフィラーを混合した材料を採用することができる。ガラスセラミックスに含まれるガラスの含有量は、35〜60wt%程度の範囲で設定するのが好ましい。また、ガラスセラミックスに含まれるセラミックスの含有量は、40〜60wt%程度の範囲で設定するのが好ましい。なお、第2の緻密質層は、硼珪酸亜鉛ガラスの亜鉛成分を酸化チタンや酸化タンタルに置換してガラスセラミックスの屈折率を高くすることもできる。セラミックフィラーの材料としては、ガラスセラミックスよりも屈折率の高い材料が好ましく、例えば、五酸化タンタル、五酸化ニオブ、酸化チタン、酸化バリウム、硫酸バリウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化亜鉛、酸化ジルコニウム、ケイ酸塩酸化物(ジルコン)などを採用することができる。
第2セラミック層2aを多孔質層により構成する場合(以下、この場合の「第2セラミック層2a」を「多孔質層2a」とも称する。)には、図16に示す模式図のように、多数の気孔20cを有する多孔質層2aと第1セラミック層2bとの間に第1ガラス層20aaを介在させ、多孔質層2aにおける第1セラミック層2b側とは反対側に第2ガラス層20abを積層してあるのが好ましい。多孔質層2aの気孔率は、40%程度に設定してあるが、特に限定するものではない。第1ガラス層20aaおよび第2ガラス層20abは、いずれも、ガラス成分からなる透明層であり、可視光を透過する。第1ガラス層20aaおよび第2ガラス層20abの厚みは、例えば10μm程度に設定すればよいが、特に限定するものではない。第1ガラス層20aaおよび第2ガラス層20abの各ガラス成分は、いずれも、約半分がSiO2で構成されているが、特に限定するものではない。
第1ガラス層20aaは、多孔質層2aと第1セラミック層2bとの間に介在するように配され、製造時の焼成によって多孔質層2aの表面および第1セラミック層2bの表面と密着している。
第2ガラス層20abは、多孔質層2aにおける第1セラミック層2b側とは反対側に配され、多孔質層2aを保護する。これにより、多孔質層2aにおける第1セラミック層2b側とは反対側の表面に存在する気孔20cは、第2ガラス層20abにより封孔されている。
多孔質層2aは、セラミックフィラー(セラミックの微粒子)とガラス成分を含んでなる。多孔質層2aは、セラミックフィラー同士が焼結により結合してクラスターとなり、多孔質構造が形成されている。ガラス成分はセラミックフィラーのバインダとなる。多孔質層2aでは、セラミックフィラーと多数の気孔20cが主たる光反射機能を発揮する。なお、多孔質層2aは、例えば、国際公開番号WO2012/039442 A1の段落〔0023〕−〔0026〕および〔図4〕に開示されているパッケージの製造工程に準じて形成することができる。
多孔質層2aは、例えば、ガラス成分とセラミック成分(アルミナ、ジルコニアなど)との重量比率を変えることにより、反射率を変えることが可能である。つまり、多孔質層2aは、ガラス配合率を変えることにより、反射率を変えることが可能である。図17は、横軸がガラス配合率、縦軸が多孔質層2aに光を入射したときの反射光についての積分球による積分強度である。積分球では、波長が380〜780nmの反射光を積分した。図17からは、ガラス配合率を低くすることにより、反射率を高めることが可能となることが分かる。
本実施形態のLEDモジュール1の実施例では、第1セラミック層2bを、アルミナを1600℃で焼成することによって形成し、多孔質層2aを、ガラス成分とセラミック成分とを20:80の重量比率となるように配合した材料を850℃で焼成することによって形成している。また、実施例では、ガラス成分としてメディアン径が約3μmの硼珪酸ガラスを採用し、アルミナとして、メディアン径が約0.5μmのものとメディアン径が約2μmのものとを配合したものを採用し、ジルコニアとしてメディアン径が約0.2μmのものを採用している。また、実施例では、第1セラミック層2bの厚さを0.38mm、多孔質層2aの厚さを0.10mmとしている。実施例における光拡散基板2の反射率−波長特性は、図18中のA3に示した通りであった。また、厚さが0.38mmの単一層のアルミナ基板の反射率−波長特性は、図18中のA4に示した通りであった。なお、多孔質層2aにおけるガラス成分とセラミック成分との重量比率や、各材料の粒径(メディアン径)は、特に限定するものではない。
多孔質層2aは、製造時において第1ガラス層20aa、第2ガラス層20abの各ガラス成分が浸み込むことにより、厚み方向の両面から内部に向けて、ガラス成分の濃度が漸減する傾斜組成を有している。
具体的には、厚みが100μm程度の多孔質層2aの厚み方向に沿った断面を顕微鏡で観察した結果、多孔質層2aの厚み方向の両面から深さが約20μmまでの各領域では、単位面積当たりでガラスが70%以上の面積を占め、ガラスの緻密質層が存在している。これに対し、多孔質層2aの厚み方向の両面から深さが20μmよりも深い内部領域では、単位面積当たりでガラスが20%程度の面積を占め、ガラスとセラミックフィラーとが互いにある程度の割合で混在する疎な層が存在している。
本実施形態のLEDモジュール1は、光拡散基板2が、互いに光学特性が異なる二層のセラミック層2a、2bからなり、LEDチップ4から遠いセラミック層2aの方が、LEDチップ4に近いセラミック層2bに比べて、LEDチップ4から放射される光に対する反射率が高い。これにより、本実施形態のLEDモジュール1は、光拡散基板2が単一層のアルミナ基板のみにより構成されている場合に比べて、光取り出し効率を向上させることが可能となる。本実施形態のLEDモジュール1では、光拡散基板2の一表面2saで反射される光を低減することが可能となってLEDチップ4での吸収損失を低減することが可能となる。更に、本実施形態のLEDモジュール1では、光拡散基板2での光の吸収率(略0%)を実装基板7での光の吸収率(例えば、2〜8%程度)よりも低下させることが可能であり、光拡散基板2の一表面2saに入射した光の一部が第1セラミック層2b内で散乱されたり、第1セラミック層2bと第2セラミック層2aとの界面で反射されたりすることが可能となる。よって、LEDモジュール1は、光拡散基板2を透過して実装基板7の一表面7saに達する光を低減することが可能となって、実装基板7での吸収損失を低減することが可能となり、光取り出し効率の向上が可能となる。
ところで、本実施形態のLEDモジュール1では、第1セラミック層2bと第2セラミック層2aとで、相対的に、第1セラミック層2bの光の透過率を高くし、第2セラミック層2aでの光の散乱率を高くしている。これにより、LEDモジュール1は、LEDチップ4から遠い第2セラミック層2aで光を拡散させることが可能となり、第1セラミック層2bのみの場合に比べて、実装基板7に到達する前に拡散される光が多くなると推考される。また、LEDモジュール1は、光拡散基板2直下で実装基板7に反射された光がLEDチップ4に戻らずに拡散される可能性も高くなると推考される。また、LEDモジュール1は、光拡散基板2を第2セラミック層2aのみにより構成すると、LEDチップ4から光拡散基板2側へ放射された光がLEDチップ4の近くで散乱される可能性が高くなるので、LEDチップ4の近くで散乱された光がLEDチップ4に戻ってしまう可能性が高くなると推考される。よって、LEDモジュール1は、光拡散基板2を第2セラミック層2aのみにより構成する場合に比べて、LEDチップ4に戻る光を少なくできるものと推考される。また、LEDモジュール1は、光拡散基板2を第1セラミック層2bのみにより構成する場合に比べて、光拡散基板2として同じ反射率を得るために必要な光拡散基板2の厚さを薄くすることが可能となる。
色変換部5は、光拡散基板2の一表面2sa上でLEDチップ4と各ワイヤ8の各々の一部とを覆う半球状に形成されている。このため、LEDモジュール1では、各ワイヤ8の各々の残りの部分と色変換部5とを覆う封止部(図示せず)を設けることが好ましい。封止部は、透明材料からなることが好ましい。封止部の透明材料としては、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用することができる。封止部の透明材料は、色変換部5の透明材料との線膨張率差が小さい材料が好ましく、線膨張率が同じ材料がより好ましい。これにより、LEDモジュール1は、封止部と色変換部5との線膨張率差に起因して封止部と色変換部5との界面付近で各ワイヤ8の各々に応力が集中するのを抑制することが可能となる。よって、LEDモジュール1は、各ワイヤ8の断線が発生するのを抑制することが可能となる。さらに、LEDモジュール1は、封止部と色変換部5との線膨張率差に起因して封止部または色変換部5にクラックが発生するのを抑制することが可能となる。また、封止部は、例えば、半球状に形成することが好ましいが、これに限らず、例えば、半楕円球状や半円柱状などの形状としてもよい。
LEDモジュール1の光取り出し効率が向上する原理については、図19、20A、20Bおよび20Cの推定メカニズム図で説明する。なお、本実施形態のLEDモジュール1は、仮に推定メカニズムが別であっても、本発明の範囲内である。
図19、20A、20Bおよび20Cに示した矢印は、LEDチップ4の発光層43(図2A参照)から放射された光の進行経路を模式的に示したものである。図19、20Aおよび20Bにおける実線の矢印は、発光層43から放射され光拡散基板2の一表面2saで反射された光の進行経路を模式的に示している。また、図19、20A、20Bおよび20Cの各々における破線の矢印は、発光層43から放射され光拡散基板2内に進入した光の進行経路を模式的に示している。
本願発明者らは、図19、20Aおよび20Bに示すように、第1セラミック層2bにおいて、セラミック粒子と粒界相(ガラス成分が主成分)との屈折率差に起因して、セラミック粒子と粒界相との界面で、反射や屈折が生じる、と推定した。また、本願発明者らは、図19、20Cに示すように、第2セラミック層2aにおいて、セラミック粒子と気孔や粒界相(ガラス成分が主成分)との屈折率差に起因して、セラミック粒子と気孔や粒界相との界面で、反射や屈折が生じる、と推定した。また、本願発明者らは、図19、20Cに示すように、第2セラミック層2aにおいて、気孔と粒界相との屈折率差に起因して、気孔と粒界相との界面で、反射や屈折が生じる、と推定した。また、本願発明者らは、セラミックの板材に関して、板厚が同じであれば、セラミック粒子の粒径が大きいほど、界面の数が少なくなり、光が単位長さだけ進行する場合にセラミック粒子と粒界相との界面を通る確率が小さくなるため、反射率が小さくなり透過率が大きくなる、と推定した。
そして、本願発明者らは、LEDチップ4から放射された光を、第1セラミック層2bにおいてできるだけ透過させ、第2セラミック層2aにおいてできるだけ反射させることにより、LEDモジュール1の光取り出し効率を向上できるものと推考した。このため、光拡散基板2は、第1セラミック層2bと第2セラミック層2aとで、第1セラミック層2bにおけるセラミック粒子の粒径を相対的に大きくすることが好ましく、第2セラミック層2aにおけるセラミック粒子の粒径を相対的に小さくし、かつ第2セラミック層2aが気孔を含んだ構成とすることが好ましい。
本実施形態のLEDモジュール1では、光拡散基板2が厚み方向において重なる二層のセラミック層2a、2bからなることにより、光取り出し効率の向上を図ることが可能となる。
本実施形態のLEDモジュール1では、光拡散基板2における複数のセラミック層(第1セラミック層2b、第2セラミック層2a)が、互いに光学特性の異なる透光層を構成している。
要するに、光拡散基板2は、厚み方向において重なる複数の透光層からなり、当該複数の透光層の光学特性が互いに異なり、LEDチップ4から遠い透光層ほど、LEDチップ4から放射される光に対する反射率が高い性質を有していればよい。以下では、LEDチップ4に最も近い最上層の透光層を第1透光層と称し、LEDチップ4から最も遠い最下層の透光層を第2透光層と称することもある。
第1透光層は、LEDチップ4から放射される光の透過率が高く、屈折率がLEDチップ4の屈折率に近い材料が好ましい。第1透光層の屈折率がLEDチップ4の屈折率に近いとは、第1透光層の屈折率と、LEDチップ4における基板41(図2A、2B参照)の屈折率との差が0.1以下であることを意味し、屈折率差が0であるのがより好ましい。また、第1透光層は、耐熱性が高い材料が好ましい。
第1透光層の材料は、セラミックに限らず、例えば、ガラス、SiC、GaN、GaP、サファイア、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどを採用することもできる。セラミックの材料としては、Al23に限らず、他の金属酸化物(例えば、マグネシア、ジルコニア、チタニアなど)や、金属窒化物(例えば、窒化アルミニウムなど)などでもよい。第1透光層の材料は、LEDチップ4から放射された光を前方散乱させる観点から、単結晶よりもセラミックのほうが好ましい。
透光性セラミックスとしては、例えば、株式会社村田製作所の製品であるルミセラ(登録商標)、日本ガイシ株式会社のハイセラム(製品名)などを採用することもできる。ルミセラ(登録商標)は、Ba(Mg,Ta)O3系の複合ペロブスカイト構造を主結晶相としている。ハイセラムは、透光性アルミナセラミックスである。
第1透光層の材料は、セラミックの場合、粒径が1μm〜5μm程度であるのが好ましい。
第1透光層は、単結晶の内部に空隙や、屈折率を変化させた改質部などを形成したものでもよい。空隙や改質部などは、例えば、フェムト秒レーザからのレーザ光を、単結晶における空隙や改質部の形成予定領域に集光照射することで形成することができる。フェムト秒レーザのレーザ光の波長や照射条件などは、単結晶の材料や、形成対象(空隙、改質部)、形成対象の大きさなどによって、適宜変更すればよい。また、第1透光層は、ベース樹脂(例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなど)に、このベース樹脂(以下、「第1ベース樹脂」という。)とは屈折率の異なるフィラー(以下、「第1フィラー」という。)を含有させたものでもよい。第1フィラーは、第1ベース樹脂との屈折率差が小さいほうが好ましい。また、第1フィラーは、熱伝導率が高いほうが好ましい。また、第1透光層は、熱伝導性を高める観点では第1フィラーの充填密度が高いほうが好ましい。第1フィラーの形状は、入射する光の全反射を抑制する観点から、球状であるのが好ましい。第1フィラーは、粒径が大きいほうが、反射、屈折が少ない。第1透光層は、この第1透光層の厚み方向においてLEDチップ4に近い側に、相対的に粒径の大きな第1フィラーがあり、LEDチップ4から遠い側に、相対的に粒径の小さな第1フィラーがあるように構成してもよい。この場合には、第1透光層を、互いに第1フィラーの粒径の異なる複数の層を多層化して構成してもよい。
第1透光層におけるLEDチップ4側の表面(光拡散基板2の一表面2sa)のうちLEDチップ4の搭載領域の周囲には、LEDチップ4から光拡散基板2側へ放射され光拡散基板2の内部で反射されたり屈折された光が全反射するのを抑制するための微細な凹凸構造部が形成されているのが好ましい。凹凸構造部は、第1透光層の表面を例えばサンドブラスト加工などによって粗面化することにより形成してもよい。凹凸構造部の表面粗さは、例えば、JIS B 0601−2001(ISO 4287−1997)で規定されている算術平均粗さRaが、0.05μm程度であるのが好ましい。
また、光拡散基板2は、第1透光層におけるLEDチップ4側の表面のうちLEDチップ4の搭載領域の周囲に、第1透光層よりも屈折率の小さな樹脂層を形成したものを採用してもよい。樹脂層の材料としては、例えば、シリコーン樹脂、エポキシ樹脂などを採用することができる。樹脂層の材料としては、蛍光体を含有させた樹脂を採用してもよい。
第2透光層は、LEDチップ4から放射された光を正反射させるように構成されたものよりも、拡散反射させるように構成されたものが好ましい。
第2透光層の材料は、セラミックに限らず、例えば、ガラス、SiC、GaN、GaP、サファイア、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどを採用することもできる。セラミックの材料としては、Al23に限らず、他の金属酸化物(例えば、マグネシア、ジルコニア、チタニアなど)や、金属窒化物(例えば、窒化アルミニウムなど)などでもよい。
第2透光層の材料は、セラミックの場合、粒径が、1μm以下であるのが好ましく、0.1μm〜0.3μm程度あるのがより好ましい。また、第2透光層は、例えば、上述の多孔質層2aにより構成することができる。第1透光層は、純度が99.5%のアルミナからなる第1セラミック層2bにより構成した場合、嵩密度が、3.8〜3.95g/cm3であった。また、第1透光層は、純度が96%のアルミナからなる第1セラミック層2bにより構成した場合、嵩密度が、3.7〜3.8g/cm3であった。これに対し、第2透光層は、多孔質層2aにより構成した場合、嵩密度が、3.7〜3.8g/cm3であった。なお、上述の嵩密度は、SEMによって観察してSEM画像を取得し、そのSEM画像を画像処理して推定した値である。
第2透光層は、単結晶の内部に空隙や、屈折率を変化させた改質部などを形成したものでもよい。空隙や改質部などは、例えば、フェムト秒レーザからのレーザ光を、単結晶における空隙や改質部の形成予定領域に集光照射することで形成することができる。フェムト秒レーザのレーザ光の波長や照射条件などは、単結晶の材料や、形成対象(空隙、改質部)、形成対象の大きさなどによって、適宜変更すればよい。また、第2透光層は、ベース樹脂(例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステル、フッ素樹脂など)に、このベース樹脂(以下、「第2ベース樹脂」という。)とは屈折率の異なるフィラー(以下、「第2フィラー」という。)を含有させたものでもよい。第2透光層は、この第2透光層の厚み方向においてLEDチップ4に近い側に、相対的に粒径の大きな第2フィラーがあり、LEDチップ4から遠い側に、相対的に粒径の小さな第2フィラーがあるように構成してもよい。また、第2フィラーの材料としては、例えば、白色の無機材料が好ましく、例えば、TiO2やZnOなどの金属酸化物を採用することができる。また、第2フィラーの粒径は、例えば、0.1μm〜0.3μm程度が好ましい。また、第2フィラーの充填率は、例えば、50〜75wt%程度が好ましい。また、第2ベース樹脂のシリコーン樹脂としては、例えば、メチルシリコーンや、フェニルシリコーンなどを採用することができる。第2フィラーは、中実粒子の場合、第2ベース樹脂との屈折率差が大きいほうが好ましい。第2ベース樹脂に第2フィラーを含有させた材料としては、例えば、信越化学工業株式会社のKER−3200−T1などを採用することもできる。
また、第2フィラーとしては、コアシェル粒子(core-shell particle)や中空粒子(hollow particle)などを採用することもできる。コアシェル粒子については、コアの屈折率を任意に設定できるが、第2ベース樹脂の屈折率よりも小さいほうが好ましい。中空粒子については、内部が気体(例えば、空気、不活性ガスなど)もしくは真空で、第2ベース樹脂よりも屈折率が小さいほうが好ましい。
また、第2透光層は、光拡散シートにより構成してもよい。光拡散シートとしては、例えば、多数の気泡の入った白色のポリエチレンテレフタレートシートなどを採用することができる。
光拡散基板2は、第1透光層と第2透光層との両方がセラミックの場合、それぞれを形成するためのセラミックグリーンシート(ceramic green sheet)を重ね合わせて焼結させることで形成することができる。なお、光拡散基板2は、第2透光層が気泡を備えている場合、第1透光層も気泡を備えていてもよいが、第1透光層のほうが第2透光層よりも気泡の数が少なく、嵩密度が大きいことが好ましい。
第1透光層および第2透光層は、いずれも、LEDチップ4や蛍光体からの光や熱に対する耐性の高い材料が好ましい。
LEDモジュール1は、光拡散基板2の他表面2sb側に、LEDチップ4などからの光を反射する反射層を備えていてもよい。反射層の材料としては、銀、アルミニウム、銀アルミニウム合金、それ以外の銀合金またはアルミニウム合金などを採用することができる。反射層は、例えば、薄膜、金属箔、ソルダーレジスト(半田)などにより構成することができる。反射層は、光拡散基板2に設けてもよいし、実装基板7に設けてもよい。
LEDモジュール1は、図21に示す第1変形例のように、色変換部5が、LEDチップ4、各ワイヤ8および光拡散基板2を覆う形状であってもよい。これにより、LEDモジュール1は、各ワイヤ8の断線を抑制することが可能となり、信頼性の向上を図ることが可能となる。
色変換部5の形状は、半球状としてあるが、これに限らず、例えば、半楕円球状や、半円柱状などの形状でもよい。
以下では、本実施形態のLEDモジュール1の第2変形例について図22に基いて説明する。
第2変形例のLEDモジュール1は、実装基板7が長尺状の形状であり、複数個のLEDチップ4(図21参照)を備えている。なお、第1変形例のLEDモジュール1と同様の構成要素については、同様の符号を付して説明を省略する。
LEDモジュール1は、複数個のLEDチップ4が実装基板7の一表面7sa側で規定方向に配列されている。また、LEDモジュール1は、上記規定方向に配列された各LEDチップ4及び各LEDチップ4の各々に接続された各ワイヤ8(図21参照)がライン状の色変換部5で覆われている。色変換部5は、上記規定方向において隣り合うLEDチップ4同士の間に、隣り合うLEDチップ4から放射される光の全反射を抑制する凹部5bが設けられているのが好ましい。
第1導体部71aおよび第2導体部71bは、上記規定方向に配列されたLEDチップ4の一群に対して1つずつ設けられている。
第1導体部71aおよび第2導体部71bの各々の平面形状は、櫛形状に形成されている。第1導体部71aと第2導体部71bとは、実装基板7の短手方向に沿った方向において互いに入り組むように配置されている。ここで、配線パターン71は、第1導体部71aの第1櫛骨部71a1と第2導体部71bの第2櫛骨部71b1とが対向している。配線パターン71は、実装基板7の長手方向に沿った方向において、第1導体部71aの第1櫛歯部71a2と第2導体部71bの第2櫛歯部71b2とが隙間を介して交互に並んでいる。
LEDモジュール1は、実装基板7の長手方向(上記規定方向)に配列された複数個(例えば、9個)のLEDチップ4が並列接続されている。LEDモジュール1は、これら複数個のLEDチップ4が並列接続された並列回路に対して給電可能となっている。要するに、LEDモジュール1は、第1導体部71aと第2導体部71bとの間に給電することにより、全てのLEDチップ4に対して給電することができる。また、複数個のLEDモジュール1を並べて用いるような場合には、隣り合うLEDモジュール1同士を、例えば、導電性部材や、送り配線用の電線(図示せず)やコネクタ(図示せず)などにより電気的に接続するようにすればよい。この場合には、複数個のLEDモジュール1に対して、1つの電源ユニットから電力を供給して、各LEDモジュール1の全てのLEDチップ4を発光させることが可能となる。
色変換部5は、上述のように、上記規定方向において隣り合うLEDチップ4同士の間に、隣り合うLEDチップ4から放射される光の全反射を抑制する凹部5bが設けられているのが好ましい。これにより、LEDモジュール1は、LEDチップ4から放射され色変換部5と空気との境界面に入射する光の全反射を抑制することが可能となる。よって、LEDモジュール1は、色変換部5が半円柱状である場合に比べて、全反射に起因して閉じ込められる光を低減できるから、光取り出し効率の向上を図ることが可能となる。要するに、LEDモジュール1は、全反射損失を低減することが可能となり、光取り出し効率の向上を図ることが可能となる。
色変換部5は、各LEDチップ4の上記一面と実装基板7の一表面7saとの段差を反映した断面形状に形成されている。よって、色変換部5は、LEDチップ4の配列方向に直交する断面形状が凸形状であり、LEDチップ4の配列方向に沿った断面形状が凹凸形状となっている。要するに、LEDモジュール1は、ライン状の色変換部5に、光取り出し効率を向上させる凹凸構造が形成されている。
この凹凸構造の周期は、LEDチップ4の配列ピッチと同じである。凹凸構造の周期とは、各LEDチップ4の各々を覆う凸部5aの配列ピッチである。
色変換部5の表面の形状は、色変換部5の上記表面においてLEDチップ4からの光線が交わる点の法線と上記光線とのなす角が臨界角よりも小さくなるように設計するのが好ましい。ここで、LEDモジュール1は、色変換部5の各凸部5aの表面の略全面で、LEDチップ4からの上記光線の入射角(光入射角度)が臨界角よりも小さくなるように、色変換部5の上記表面の形状を設計することが好ましい。
このため、色変換部5は、各LEDチップ4の各々を覆う各凸部5aが、半球状に形成されているのが好ましい。各凸部5aの各々は、光拡散基板2の厚み方向において重なる凸部5aの光軸とLEDチップ4の光軸とが一致するように設計されている。これにより、LEDモジュール1は、色変換部5の上記表面(色変換部5と空気との境界面)での全反射を抑制することが可能となるだけでなく、色むらを抑制することが可能となる。色むらとは、光の照射方向によって色度が変化している状態である。LEDモジュール1は、色むらを視認できない程度に抑制することが可能となる。
LEDモジュール1は、LEDチップ4から凸部5aの表面までの光路長をLEDチップ4からの光の放射方向によらず略均一化することが可能となり、色むらをより抑制することが可能となる。色変換部5の各凸部5aは、半球状に限らず、例えば、半楕円球状の形状でもよい。なお、各凸部5aの各々は、半円柱状や、直方体状などの形状でもよい。
LEDモジュール1の製造にあたっては、まず、実装基板7を準備する。その後には、実装基板7上に各LEDチップ4の各々に対応付けられた光拡散基板2を接合する。その後には、ダイボンド装置などにより、各LEDチップ4を対応する光拡散基板2の一表面2sa側にダイボンドする。その後には、ワイヤボンディング装置などにより、各LEDチップ4の第1電極および第2電極それぞれと配線パターン71とをワイヤ8を介して接続する。その後には、ディスペンサシステム(dispenser system)などを利用して色変換部5を形成する。
ディスペンサシステムにより色変換部5を形成する際には、例えば、ディスペンサヘッドをLEDチップ4の配列方向に沿って移動させつつ、ノズルから色変換部5の材料を吐出させて塗布する。
ここで、色変換部5の材料を色変換部5の表面形状に基づく塗布形状となるようにディスペンサシステムにより塗布する場合には、例えば、ディスペンサヘッドを移動させながら、材料を吐出させて塗布すればよい。例としては、ディスペンサヘッドの移動速度を変化させることにより、塗布量を変化させ、また、ディスペンサヘッドを上下させることにより、ノズルとノズル直下の実装基板7の一表面7saとの距離を変化させている。より具体的には、色変換部5の各凸部5aの元になる箇所に材料を塗布する場合と、色変換部5の隣り合う凸部5a間の部分の元になる箇所に材料を塗布する場合とで、移動速度を相対的に異ならせてあり、前者の場合に移動速度を遅くし、後者の場合に移動速度を速くしている。また、色変換部5の表面形状に基づいてディスペンサヘッドを上下させている。これらにより、ディスペンサシステムにより色変換部5を形成する方法では、材料を色変換部5の表面形状に基づく塗布形状とすることが可能となる。塗布形状は、材料を硬化させるときの収縮を考慮して設定すればよい。
ディスペンサシステムは、ディスペンサヘッドを移動させるロボットからなる移動機構と、実装基板7の一表面7saおよびノズルそれぞれのテーブルからの高さを測定するセンサ部と、移動機構およびノズルからの材料の吐出量を制御するコントローラと、を備えているのが好ましい。コントローラは、例えば、マイクロコンピュータに適宜のプログラムを搭載することにより実現することができる。また、ディスペンサシステムは、コントローラに搭載されたプログラムを適宜変更することにより、LEDチップ4の配列ピッチや、LEDチップ4の個数、色変換部5のライン幅などの異なる複数種の品種に対応することが可能となる。
また、色変換部5の表面形状は、例えば、材料の粘度などを調整することで制御することも可能である。各凸部5aの各々の表面(凸曲面)の曲率は、材料の粘度や表面張力、ワイヤ8の高さなどによって設計可能である。曲率を大きくするには、材料の粘度を高くしたり、表面張力を大きくしたり、ワイヤ8の高さを高くすることで実現可能となる。また、ライン状の色変換部5の幅(ライン幅)を狭くするには、材料の粘度を高くしたり、表面張力を大きくしたりすることで実現可能となる。材料の粘度は、100〜2000mPa・s程度の範囲に設定するのが好ましい。なお、粘度の値は、例えば、円錐平板型回転粘度計を用いて常温下で測定した値を採用することができる。
また、ディスペンサシステムは、未硬化の材料が所望の粘度になるように加熱するヒータを備えていてもよい。これにより、ディスペンサシステムは、材料の塗布形状の再現性を向上させることが可能となり、色変換部5の表面形状の再現性を向上させることが可能となる。
ところで、LEDモジュール1は、種々の照明装置の光源として用いることが可能である。LEDモジュール1を備えた照明装置の一例としては、例えば、LEDモジュール1を光源として器具本体に配置した照明器具や、ランプ(例えば、直管形LEDランプ、電球形ランプなど)などを好適に挙げることができるが、これら以外の照明装置でもよい。ここにおいて、LEDモジュール1は、器具本体が金属製で導電性を有しているような場合でも、絶縁部材72を備えていることにより、配線パターン71と器具本体との間の所望の沿面距離を確保することが可能となる。照明器具では、器具本体を金属製とすれば、LEDモジュール1で発生した熱をより効率良く放熱させることが可能となる。
器具本体の材料としては、熱伝導率の高い材料が好ましく、絶縁部材72よりも熱伝導率の高い材料がより好ましい。ここで、器具本体の材料としては、アルミニウム、銅などの熱伝導率の高い金属を採用することが好ましい。
器具本体へのLEDモジュール1の取り付け手段としては、例えば、螺子などの取付具を採用してもよいし、熱硬化型のシート状接着剤のエポキシ樹脂層を器具本体とLEDモジュール1との間に介在させて接合してもよい。シート状接着剤としては、シリカやアルミナなどのフィラーからなる充填材を含有し且つ加熱時に低粘度化するとともに流動性が高くなる性質を有するBステージのエポキシ樹脂層(熱硬化性樹脂)とプラスチックフィルム(PETフィルム)とが積層されたシート状接着剤を用いることができる。このようなシート状接着剤としては、例えば、東レ株式会社製の接着剤シートTSAなどがある。フィラーとしては、熱硬化性樹脂であるエポキシ樹脂よりも熱伝導率の高い電気絶縁性材料を用いればよい。上述のエポキシ樹脂層の厚みは、100μmに設定してあるが、この値は一例であり、特に限定するものではなく、例えば、50μm〜150μm程度の範囲で適宜設定すればよい。上述のエポキシ樹脂層の熱伝導率は、4W/m・K以上であることが好ましい。
上述のシート状接着剤のエポキシ樹脂層は、電気絶縁性を有するとともに熱伝導率が高く加熱時の流動性が高く凹凸面への密着性が高いという性質を有している。したがって、照明器具は、上述のエポキシ樹脂層から形成される絶縁層とLEDモジュール1および器具本体との間に空隙が発生するのを防止することができて密着信頼性を向上させることが可能となり、また、密着不足による熱抵抗の増大やばらつきの発生を抑制することが可能となる。絶縁層は、電気絶縁性および熱伝導性を有し、LEDモジュール1と器具本体とを熱結合する機能を有している。
しかして、照明器具は、LEDモジュール1と器具本体との間に例えばサーコン(登録商標)のようなゴムシート状やシリコーンゲル状の放熱シート(熱伝導シート)などを挟む場合に比べて、各LEDチップ4から器具本体までの熱抵抗を低減することが可能となるとともに、熱抵抗のばらつきを低減することが可能となる。これにより、照明器具は、放熱性が向上し、各LEDチップ4のジャンクション温度の温度上昇を抑制することが可能となるから、入力電力を大きくすることが可能となり、光出力の高出力化を図ることが可能となる。上述のエポキシ樹脂層の厚みは、100μmに設定してあるが、この値は一例であり、特に限定するものではなく、例えば、50μm〜150μm程度の範囲で適宜設定すればよい。なお、上述のエポキシ樹脂層の熱伝導率は、4W/m・K以上であることが好ましい。
また、直管形LEDランプについては、例えば、社団法人日本電球工業会により、「L型ピン口金GX16t−5付直管形LEDランプシステム(一般照明用)」(JEL 801:2010)が規格化されている。
このような直管形LEDランプを構成する場合には、例えば、透光性材料(例えば、乳白色のガラス、乳白色の樹脂など)により形成された直管状の管本体と、管本体の長手方向の一端部および他端部それぞれに設けられた第1口金、第2口金とを備え、管本体内に、実装基板7が長尺状であり複数個のLEDチップ4が実装基板7の長手方向に配列されたLEDモジュール1を収納した構成とすればよい。
以下では、第2変形例のLEDモジュール1を光源として備えた照明器具50について、図23A、23Bに基いて説明する。
照明器具50は、LED照明器具であり、器具本体51と、器具本体51に保持された光源であるLEDモジュール1と、を備えている。
器具本体51は、LEDモジュール1よりも平面サイズの大きな長尺状(ここでは、矩形板状)に形成されている。照明器具50は、器具本体51の厚み方向の一表面51b側にLEDモジュール1が配置されている。照明器具50は、LEDモジュール1の長手方向と器具本体51の長手方向とが揃うように、器具本体51に対してLEDモジュール1が配置されている。また、照明器具50は、器具本体51の一表面51b側に、LEDモジュール1を覆うカバー52が配置されている。カバー52は、LEDモジュール1から放射された光を透過させる機能を有する。
また、照明器具50は、LEDモジュール1へ直流電力を供給して各LEDチップ4(図21参照)を点灯(発光)させる点灯装置53を備えている。照明器具50は、点灯装置53とLEDモジュール1とが、リード線などの電線54を介して電気的に接続されている。
照明器具50は、器具本体51の厚み方向の他表面51c側に、点灯装置53を収納する凹所51aが形成されている。凹所51aは、器具本体51の長手方向に沿って形成されている。また、器具本体51には、一表面51bと凹所51aの内底面との間の薄肉部を貫通し電線54が挿通される貫通孔(図示せず)が形成されている。
LEDモジュール1は、配線パターン71の露出した部位において電線54を接続することが可能となっている。配線パターン71と電線54との接続部は、例えば、半田などの導電性接合材からなる接続部や、雄型のコネクタと雌型のコネクタとからなる接続部などを採用することができる。
照明器具50は、点灯装置53からLEDモジュール1へ直流電力を供給してLEDモジュール1を点灯させることができる。なお、点灯装置53は、例えば、商用電源のような交流電源から電力供給される構成のものでもよいし、太陽電池や蓄電池などの直流電源から電力供給される構成のものでもよい。
照明器具50の光源は、第2変形例のLEDモジュール1に限らず、実施形態1〜3、実施形態3の第1変形例のいずれかのLEDモジュール1において、第2変形例と同様に実装基板7を長尺状の形状とし1つの実装基板7に対して複数のLEDチップ4を備えた構成としたものでもよい。
器具本体51の材料としては、熱伝導率の高い材料が好ましく、実装基板7よりも熱伝導率の高い材料がより好ましい。ここで、器具本体51の材料としては、アルミニウム、銅などの熱伝導率の高い金属を採用することが好ましい。照明器具50は、器具本体51の材料を金属とすることにより、放熱性を向上させることが可能となる。
器具本体51へのLEDモジュール1の取り付け手段としては、例えば、螺子などの取付具を採用してもよいし、熱硬化型のシート状接着剤のエポキシ樹脂層を器具本体51とLEDモジュール1との間に介在させて接合してもよい。
カバー52の材料としては、例えば、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂、ガラスなどを採用することができる。
カバー52は、LEDモジュール1から放射された光の配光を制御するレンズ部(図示せず)を一体に備えていることが好ましい。これにより、照明器具50は、カバー52と別体のレンズをカバー52に取り付けた構成に比べて、低コスト化を図ることが可能となる。
以上説明した照明器具50では、光源として上述のLEDモジュール1を備えていることにより、光取り出し効率の向上を図ることが可能となり、低コスト化および光出力の高出力化を図ることが可能となる。
以下では、第2変形例のLEDモジュール1を光源として備えた直管形LEDランプ60について図24A、24Bに基いて説明する。
直管形LEDランプ60は、透光性材料により形成された直管状(円筒状)の管本体61と、管本体61の長手方向の一端部、他端部それぞれに設けられた第1口金62、第2口金63と、を備え、管本体61内に第2変形例のLEDモジュール1が収納されている。LEDモジュール1は、第2変形例のLEDモジュール1に限らず、実施形態1〜3、実施形態3の第1変形例のいずれかのLEDモジュール1において、第2変形例と同様に実装基板7を長尺状の形状とし1つの実装基板7に対して複数のLEDチップ4を備えた構成としたものでもよい。
管本体61の材料としては、例えば、透明なガラス、乳白色のガラス、透明な樹脂、乳白色の樹脂などを採用することができる。
第1口金62には、LEDモジュール1に電気的に接続された2本の給電端子(以下、「第1ランプピン」という。)64、64が設けられている。これら2本の第1ランプピン64、64は、照明器具(図示せず)の器具本体に保持された給電用のランプソケットの2つの給電用接触子それぞれに電気的に接続可能となるように構成されている。
第2口金63には、アース用の1本の接地端子(以下、「第2ランプピン」という。)65が設けられている。この1本の第2ランプピン65は、器具本体に保持された接地用のランプソケットの接地用接触子に電気的に接続可能となるように構成されている。
各第1ランプピン64の各々は、L字状に形成されており、管本体61の長手方向に沿って突出したピン本体64aと、ピン本体64aの先端部から管本体61の1つの径方向に沿って延設された鍵部64bと、で構成されている。2つの鍵部64bは、互いに離れる向きに延設されている。なお、各第1ランプピン64は、細長の金属板を折曲することにより形成されている。
第2ランプピン65は、第2口金63の端面(口金基準面)から管本体61とは反対側へ突出している。また、第2ランプピン65は、T字状に形成されている。なお、直管形LEDランプ60は、例えば、社団法人日本電球工業会により規格化されている「L型ピン口金GX16t−5付直管形LEDランプシステム(一般照明用)」(JEL 801:2010)の規格などを満たすように構成されていることが好ましい。
以上説明した直管形LEDランプ60では、管本体61内に上述のLEDモジュール1を備えていることにより、光取り出し効率の向上を図ることが可能となり、低コスト化および光出力の高出力化を図ることが可能となる。
LEDモジュール1を備えたランプは、上述の直管形LEDランプに限らず、例えば、管本体内に、LEDモジュール1と、LEDモジュール1を点灯させる点灯装置とを備えた構成の直管形LEDランプとしてもよい。なお、点灯装置は、外部電源からランプピンを介して給電される。
第2変形例のLEDモジュール1は、実装基板7が長尺状の形状であり、複数個のLEDチップ4を備えているが、適用する照明器具の種別などによって実装基板7の形状や、配線パターン71の形状、LEDチップ4の個数、配置などを適宜変更することが可能である。
以下では、LEDモジュール1を備えた照明器具90の一形態について図25、26に基いて説明する。なお、第2変形例と同様の構成要素には、同一の符号を付して説明を適宜省略する。
照明器具90は、ダウンライトとして使用可能なLED照明器具であり、器具本体91aと、器具本体91aに保持された光源であるLEDモジュール1と、を備えている。また、照明器具90は、LEDモジュール1を点灯させる点灯装置が収納された矩形箱状のケース98を備えている。点灯装置とLEDモジュール1とは、図示しない電線などにより電気的に接続されている。
照明器具90は、器具本体91が円板状に形成されており、器具本体91aの一面側にLEDモジュール1が配置されている。また、照明器具90は、器具本体91の他面から突出する複数のフィン91abを備えている。器具本体91と各フィン91abとは一体に形成されている。
LEDモジュール1は、実装基板7の平面形状が正方形状の形状であり、複数(例えば、48個)のLEDチップ4(図21参照)が2次元アレイ状に配列されている。また、LEDモジュール1は、仮想線上に並ぶ一群(例えば、8個)のLEDチップ4が直列接続されている。LEDモジュール1は、規定数(例えば、6つ)の仮想線を想定しており、一群のLEDチップ4を直列接続した直列回路を上記規定数だけ備えており、上記規定数の直列回路が並列接続されるように配線パターン71を設計してある。なお、実装基板7の平面形状は、正方形状に限らず、例えば、正方形以外の多角形状や円形状などでもよい。また、実装基板7の一表面7sa側に配置する複数のLEDチップ4の電気的な接続関係も特に限定するものではない。LEDモジュール1は、LEDチップ4と同じ数の光拡散基板2(図21参照)を備えていてもよいし、一群のLEDチップ4に対して1つの光拡散基板2を備えているようにしてもよい。
また、照明器具90は、LEDモジュール1から側方へ放射された光を反射する第1リフレクタ93と、カバー92と、カバー92から出射する光の配光を制御する第2リフレクタ94とを備えている。なお、照明器具90は、器具本体91と、第2リフレクタ94とで、LEDモジュール1、第1リフレクタ93およびカバー92を収納する器具外郭を構成している。
器具本体91は、上記一面側に、2つの突台部91aが互いに対向して設けられている。そして、照明器具90は、LEDモジュール1を固定する板状の固定部材95が2つの突台部91aに架設されている。固定部材95は、板金により形成されており、各突台部91aの各々に螺子97により固定されている。第1リフレクタ93は、器具本体91に固定されている。LEDモジュール1は、第1リフレクタ93と固定部材95とで挟持されるようにしてもよい。第1リフレクタ93は、白色の合成樹脂により形成してある。
固定部材95は、LEDモジュール1の実装基板7の一部を露出させる開孔部95aが形成されている。照明器具90は、実装基板7と器具本体91との間に、熱伝導部96を介在させてある。熱伝導部96は、実装基板7から器具本体91へ熱を伝熱させる機能を有する。熱伝導部96は、熱伝導性グリースにより形成してあるが、これに限らず、例えば、熱伝導性シートを用いてもよい。
熱伝導性シートとしては、電気絶縁性および熱伝導性を有するシリコーンゲルのシートを用いることができる。また、熱伝導性シートとして用いるシリコーンゲルのシートは、軟質なものが好ましい。この種のシリコーンゲルのシートとしては、例えば、サーコン(登録商標)などを用いることができる。
また、熱伝導性シートの材料は、シリコーンゲルに限らず、電気絶縁性および熱伝導性を有していれば、例えば、エラストマーでもよい。
照明器具90は、LEDモジュール1で発生した熱を、熱伝導部96を通して器具本体91へ効率よく伝熱させることが可能となる。よって、照明器具90は、LEDモジュール1で発生した熱を器具本体91およびフィン91abから効率良く放熱させることが可能となる。
器具本体91およびフィン91abの材料としては、熱伝導率の高い材料が好ましく、実装基板7よりも熱伝導率の高い材料がより好ましい。ここで、器具本体91およびフィン91abの材料としては、アルミニウム、銅などの熱伝導率の高い金属を採用することが好ましい。
カバー92の材料としては、例えば、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂、ガラスなどを採用することができる。
カバー92は、LEDモジュール1から放射された光の配光を制御するレンズ部(図示せず)を一体に備えていてもよい。
第2リフレクタ94の材料としては、例えば、アルミニウム、ステンレス、樹脂、セラミックなどを採用することができる。
以上説明した照明器具90では、光源として上述のLEDモジュール1を備えていることにより、低コスト化および光出力の高出力化を図ることが可能となる。また、照明器具90では、器具本体91が、LEDモジュール1の実装基板7を兼ねる構成としてもよい。
本実施形態のLEDモジュール1は、光拡散基板2の他表面2sb側が、透明な第2接合部(図示せず)を介して実装基板7に接合されている。要するに、光拡散基板2と実装基板7とは、透明な第2接合部を介して接合されている。第2接合部の材料としては、例えば、シリコーン樹脂、エポキシ樹脂、シリコーン樹脂とエポキシ樹脂とのハイブリッド材料などを採用することができる。
照明器具90は、ダウンライトとして使用可能なLED照明器具であり、器具本体91と、器具本体91に保持された光源であるLEDモジュール1と、を備えている。また、照明器具90は、LEDモジュール1を点灯させる点灯装置が収納された矩形箱状のケース98を備えている。点灯装置とLEDモジュール1とは、図示しない電線などにより電気的に接続されている。
照明器具90は、器具本体91が円板状に形成されており、器具本体91の一面側にLEDモジュール1が配置されている。また、照明器具90は、器具本体91の他面から突出する複数のフィン91abを備えている。器具本体91と各フィン91abとは一体に形成されている。

Claims (3)

  1. 透光性の光拡散基板と、前記光拡散基板の一表面側に透明な第1接合部を介して接合されたLEDチップと、前記光拡散基板の前記一表面側で前記LEDチップを覆う色変換部と、前記光拡散基板の他表面側に配置された実装基板と、を備え、前記色変換部は、前記LEDチップから放射される光によって励起されて前記LEDチップとは異なる色の光を放射する蛍光体を含有する透明材料により形成され、前記実装基板は、電気絶縁性を有する絶縁部材と、前記絶縁部材に埋設され前記LEDチップが電気的に接続される配線パターンと、を備え、前記絶縁部材は、拡散反射性を有する非透光性部材であることを特徴とするLEDモジュール。
  2. 前記LEDチップは、厚み方向の一面側に第1電極と第2電極とが設けられたものであり、前記第1電極および前記第2電極の各々が前記配線パターンとワイヤを介して電気的に接続されており、前記配線パターンの一部が、前記光拡散基板の前記実装基板側への垂直投影領域に設けられていることを特徴とする請求項1記載のLEDモジュール。
  3. 前記光拡散基板は、前記絶縁部材に埋設されて側面と前記他表面とが前記絶縁部材に接しており、前記実装基板は、前記配線パターンが、前記光拡散基板の前記一表面上に設けられた部位を備え、前記配線パターンは、前記第1電極および前記第2電極に一端部がそれぞれ接合された各前記ワイヤの他端部と前記部位とが接合されており、前記色変換部は、前記光拡散基板の前記一表面側において前記LEDチップおよび各前記ワイヤを覆っていることを特徴とする請求項2記載のLEDモジュール。
JP2014518271A 2012-05-31 2013-05-24 Ledモジュール Active JP6145945B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518271A JP6145945B2 (ja) 2012-05-31 2013-05-24 Ledモジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012125018 2012-05-31
JP2012125018 2012-05-31
JP2014518271A JP6145945B2 (ja) 2012-05-31 2013-05-24 Ledモジュール
PCT/JP2013/003300 WO2013179623A1 (ja) 2012-05-31 2013-05-24 Ledモジュール

Publications (2)

Publication Number Publication Date
JPWO2013179623A1 true JPWO2013179623A1 (ja) 2016-01-18
JP6145945B2 JP6145945B2 (ja) 2017-06-14

Family

ID=49672849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014518271A Active JP6145945B2 (ja) 2012-05-31 2013-05-24 Ledモジュール

Country Status (2)

Country Link
JP (1) JP6145945B2 (ja)
WO (1) WO2013179623A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004795B2 (ja) * 2012-07-06 2016-10-12 シチズンホールディングス株式会社 Led光源装置及び光反射性基板
JP2015002232A (ja) * 2013-06-14 2015-01-05 株式会社ディスコ 発光デバイス
JP2018148095A (ja) * 2017-03-07 2018-09-20 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018148096A (ja) * 2017-03-07 2018-09-20 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018148094A (ja) * 2017-03-07 2018-09-20 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018148093A (ja) * 2017-03-07 2018-09-20 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018182167A (ja) * 2017-04-18 2018-11-15 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018182166A (ja) * 2017-04-18 2018-11-15 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ
JP2018182170A (ja) * 2017-04-18 2018-11-15 株式会社ディスコ 発光ダイオードチップの製造方法及び発光ダイオードチップ

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449247A (en) * 1987-08-19 1989-02-23 Mitsubishi Electric Corp Semiconductor light emitting device
JP2001284656A (ja) * 2000-03-31 2001-10-12 Okaya Electric Ind Co Ltd Ledランプ
JP2005209958A (ja) * 2004-01-23 2005-08-04 Kyocera Corp 発光素子収納パッケージおよび発光装置
JP2007059781A (ja) * 2005-08-26 2007-03-08 Toyoda Gosei Co Ltd サブマウント付発光素子および発光装置
JP2007287713A (ja) * 2006-04-12 2007-11-01 Showa Denko Kk 発光装置及びその製造方法
JP2008109079A (ja) * 2006-09-26 2008-05-08 Kyocera Corp 表面実装型発光素子用配線基板および発光装置
JP2009032850A (ja) * 2007-07-26 2009-02-12 Toyoda Gosei Co Ltd 発光装置
JP2009099771A (ja) * 2007-10-17 2009-05-07 Rohm Co Ltd 半導体発光モジュール
JP2009123908A (ja) * 2007-11-14 2009-06-04 Mitsubishi Chemicals Corp 発光装置
JP2011114006A (ja) * 2009-11-24 2011-06-09 Seiko Epson Corp 発光装置、およびプロジェクター
JP2011249768A (ja) * 2010-04-27 2011-12-08 Mitsubishi Chemicals Corp 半導体発光素子支持部材及び半導体発光装置
JP2013038221A (ja) * 2011-08-08 2013-02-21 Citizen Holdings Co Ltd 発光デバイス

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449247A (en) * 1987-08-19 1989-02-23 Mitsubishi Electric Corp Semiconductor light emitting device
JP2001284656A (ja) * 2000-03-31 2001-10-12 Okaya Electric Ind Co Ltd Ledランプ
JP2005209958A (ja) * 2004-01-23 2005-08-04 Kyocera Corp 発光素子収納パッケージおよび発光装置
JP2007059781A (ja) * 2005-08-26 2007-03-08 Toyoda Gosei Co Ltd サブマウント付発光素子および発光装置
JP2007287713A (ja) * 2006-04-12 2007-11-01 Showa Denko Kk 発光装置及びその製造方法
JP2008109079A (ja) * 2006-09-26 2008-05-08 Kyocera Corp 表面実装型発光素子用配線基板および発光装置
JP2009032850A (ja) * 2007-07-26 2009-02-12 Toyoda Gosei Co Ltd 発光装置
JP2009099771A (ja) * 2007-10-17 2009-05-07 Rohm Co Ltd 半導体発光モジュール
JP2009123908A (ja) * 2007-11-14 2009-06-04 Mitsubishi Chemicals Corp 発光装置
JP2011114006A (ja) * 2009-11-24 2011-06-09 Seiko Epson Corp 発光装置、およびプロジェクター
JP2011249768A (ja) * 2010-04-27 2011-12-08 Mitsubishi Chemicals Corp 半導体発光素子支持部材及び半導体発光装置
JP2013038221A (ja) * 2011-08-08 2013-02-21 Citizen Holdings Co Ltd 発光デバイス

Also Published As

Publication number Publication date
WO2013179623A1 (ja) 2013-12-05
JP6145945B2 (ja) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5997766B2 (ja) Ledモジュール
JP5861115B2 (ja) Ledモジュールおよびその製造方法、照明器具
JP6229953B2 (ja) 発光装置
JP6145945B2 (ja) Ledモジュール
JP6170495B2 (ja) 発光モジュール、ランプ、照明器具及び表示装置
US20150016107A1 (en) Led module having a highly reflective carrier
JP2010263242A (ja) 照明装置
WO2011024861A1 (ja) 発光装置および照明装置
JP2012015330A (ja) 発光モジュールおよび照明装置
JP2010251805A (ja) 照明装置
JP2015103561A (ja) 発光装置
JP2018088485A (ja) 発光装置
JP2014049625A (ja) Ledモジュール
JP2015103714A (ja) 発光装置
JP2012009696A (ja) 発光装置およびそれを用いたled照明器具
JP2006049715A (ja) 発光光源、照明装置及び表示装置
JP2014120660A (ja) 発光モジュール
JP2013201380A (ja) 反射材及び照明装置
JP6249335B2 (ja) 発光装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R151 Written notification of patent or utility model registration

Ref document number: 6145945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151