JPWO2013065714A1 - Polyamideimide resin composition for compression molding - Google Patents

Polyamideimide resin composition for compression molding Download PDF

Info

Publication number
JPWO2013065714A1
JPWO2013065714A1 JP2012552182A JP2012552182A JPWO2013065714A1 JP WO2013065714 A1 JPWO2013065714 A1 JP WO2013065714A1 JP 2012552182 A JP2012552182 A JP 2012552182A JP 2012552182 A JP2012552182 A JP 2012552182A JP WO2013065714 A1 JPWO2013065714 A1 JP WO2013065714A1
Authority
JP
Japan
Prior art keywords
polyamideimide
polyamideimide resin
compression molding
resin composition
dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012552182A
Other languages
Japanese (ja)
Inventor
永原 重徳
重徳 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012552182A priority Critical patent/JPWO2013065714A1/en
Publication of JPWO2013065714A1 publication Critical patent/JPWO2013065714A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/343Polycarboxylic acids having at least three carboxylic acid groups
    • C08G18/345Polycarboxylic acids having at least three carboxylic acid groups having three carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/343Polycarboxylic acids having at least three carboxylic acid groups
    • C08G18/346Polycarboxylic acids having at least three carboxylic acid groups having four carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】ポリアミドイミド樹脂は、耐熱性、機械的強度、電気特性、耐薬品性に優れた材料であるが溶融成形性が劣り特にイソシアネート重合法の製法から得られるポリアミドイミド樹脂は、高温加熱成形でゲル化し成形ができなかった。
【解決手段】ポリアミドイミド樹脂の分子構造に剛直成分の導入と靭性を有するポリアミドイミド樹脂骨格とし、ポリアミドイミド分子末端イソシアネート官能基を封鎖し重合反応を抑制し、特定の対数粘度によって得られるポリアミドイミド樹脂を粉末にすることにより圧縮成形が可能とする圧縮成形用ポリアミドイミド樹脂組成物。
【選択図】なし
Polyamideimide resin is a material excellent in heat resistance, mechanical strength, electrical properties, and chemical resistance, but has poor melt moldability, and in particular, polyamideimide resin obtained from an isocyanate polymerization method is subjected to high temperature thermoforming. Gelled and could not be molded.
Polyamideimide obtained by a specific logarithmic viscosity with a polyamideimide resin skeleton having a rigid component introduced in the molecular structure of the polyamideimide resin and a toughness, blocking the isocyanate functional group at the end of the polyamideimide molecule and suppressing the polymerization reaction. A polyamide-imide resin composition for compression molding that enables compression molding by making the resin into a powder.
[Selection figure] None

Description

本発明は、耐熱性と溶融成形性に優れ特に圧縮成形用途として有用なポリアミドイミド樹脂組成物に関するものである。   The present invention relates to a polyamide-imide resin composition that is excellent in heat resistance and melt moldability and is particularly useful for compression molding applications.

ポリアミドイミド樹脂は、耐熱性、機械的強度、電気特性、耐薬品性等に優れた材料としてワニスやフィルムとして最も多く使用されている。また、耐熱性や機械的強度等の優れた特性を生かし工業材料用途への展開も進められ例えば、射出成形、押出成形、圧縮成形などの成形方法によって得られた板材や丸棒などは、電気・電子部品、自動車部品、軍需・航空機、産業機器などの用途に使用されている。   Polyamideimide resins are most frequently used as varnishes and films as materials having excellent heat resistance, mechanical strength, electrical properties, chemical resistance, and the like. In addition, taking advantage of excellent properties such as heat resistance and mechanical strength, development for industrial materials has been promoted.For example, plate materials and round bars obtained by molding methods such as injection molding, extrusion molding, compression molding, etc.・ Used in applications such as electronic parts, automotive parts, military / aircraft, industrial equipment.

ポリアミドイミド樹脂の重合法は、直接重合法、イソシアネート重合法、酸クロライド法、イミドジカルボン酸法等の製法によって重合し得ることが出来る。一般的には溶融成形が可能なポリアミドイミド樹脂の重合製法は、直接重合法によって得られた対数粘度が低いガラス転移温度(Tg)が250℃前後のポリアミドイミド樹脂のみであって、簡便なイソシアネート重合製法で得られるポリアミドイミド樹脂は溶融成形が困難と言われている。その主な理由は、分子末端イソシアネート官能基の加熱反応による重合が進行しゲル状物が発生するゲル化現象によるもので、成形機台内部でゲル化が発生するとそのゲル化物の除去に多大の費用が必要であったり、或いは成形機械そのものを廃棄しなくてはならない場合もある。   The polymerization method of the polyamideimide resin can be polymerized by a production method such as a direct polymerization method, an isocyanate polymerization method, an acid chloride method, or an imide dicarboxylic acid method. Generally, the process for polymerizing a polyamide-imide resin that can be melt-molded is only a polyamide-imide resin obtained by a direct polymerization method and having a low logarithmic viscosity and a glass transition temperature (Tg) of around 250 ° C. Polyamideimide resin obtained by the polymerization process is said to be difficult to melt mold. The main reason is due to the gelation phenomenon in which polymerization by heating reaction of the molecular terminal isocyanate functional group proceeds and a gel-like product is generated. When gelation occurs inside the molding machine table, the gelled product is greatly removed. Costs may be required or the molding machine itself may need to be discarded.

そこで、イソシアネート重合製法によって得られるポリアミドイミド樹脂の溶融成形性の改良方法として、特許文献1では、ポリアミドイミドを製造するに際して、実質的にアミド基の生成が終了してからイミド基の生成反応を行う方法、特許文献2では、芳香族ポリアミドイミド樹脂の酸成分とイソシアネート成分の割合を変える方法がそれぞれ開示されている。確かにこの製造方法によって得られたポリアミドイミド樹脂の流動開始温度やガラス転移温度(Tg)の特性値から射出成形法や押出成形法などの成形方法で成形出来そうに思えるが実際に成形してみると、成形機台内部でゲル状物などが発生し成形出来なくなった。このゲル状物が発生した理由として考えられることは、2回に渡る熱処理の影響で劣化したものである。即ち、射出成形法や押出成形法などから板材など得る場合には、一般的に樹脂を成形し易くするために射出成形機または押出成形機などで熱溶融しペレットを作製する。次に、得られたこのペレットを用い再度、射出成形機や押出成形機に投入して目的とする板材などを得る訳であるがこの2度に渡る熱処理によって重合反応が進行しゲル状物が発生したものと考えられる。この様にイソシアネート重合製法からなるポリアミドイミド樹脂の課題を必ずしも解決するには至っていないのが現状である。その他、成形性を得る解決手段として、ポリアミドイミド樹脂骨格に柔軟性や溶融性を付与する基の導入とか可塑剤などを配合することも考えられるが上記同様に問題解決に至っていないのが現状である。   Therefore, as a method for improving the melt moldability of the polyamideimide resin obtained by the isocyanate polymerization method, in Patent Document 1, the production reaction of the imide group is substantially completed after the formation of the amide group in the production of the polyamideimide. In the method of performing, and patent document 2, the method of changing the ratio of the acid component and isocyanate component of aromatic polyamide-imide resin is each disclosed. Certainly, it seems that it can be molded by the molding method such as injection molding method and extrusion molding method from the flow start temperature and glass transition temperature (Tg) characteristic value of the polyamideimide resin obtained by this manufacturing method. As a result, gel-like materials were generated inside the molding machine table, making it impossible to mold. A possible reason for the occurrence of this gel-like material is that it has deteriorated due to the influence of heat treatment twice. That is, when a plate material or the like is obtained from an injection molding method, an extrusion molding method, or the like, generally, in order to make the resin easy to mold, it is melted by an injection molding machine or an extrusion molding machine to produce pellets. Next, the obtained pellets are used again to obtain an objective plate or the like by being put into an injection molding machine or an extrusion molding machine. It is thought that it occurred. Thus, the present situation has not necessarily solved the problem of the polyamideimide resin comprising the isocyanate polymerization method. In addition, as a means for obtaining moldability, it is conceivable to introduce a group that imparts flexibility or meltability to the polyamide-imide resin skeleton or to add a plasticizer or the like. is there.

特許第3183305号公報Japanese Patent No. 3183305 特許第3183307号公報Japanese Patent No. 3183307

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、圧縮成形が可能で、耐熱性、機械的強度、電気特性、耐薬品性等に優れた工業材料を得ることができる圧縮成形用ポリアミドイミド樹脂組成物を提供することにある。 The present invention was devised in view of the current state of the prior art, and its purpose is to obtain an industrial material that can be compression-molded and has excellent heat resistance, mechanical strength, electrical properties, chemical resistance, and the like. An object of the present invention is to provide a polyamideimide resin composition for compression molding.

本発明者らは上記イソシアネート重合製法からなるポリアミドイミド樹脂の成形性の課題を解決するために、鋭意検討した結果、本発明の完成に至った。 As a result of intensive investigations to solve the problem of moldability of the polyamideimide resin comprising the above-mentioned isocyanate polymerization method, the present inventors have completed the present invention.

すなわち、本発明によれば以下の樹脂組成物が提供される。
(1)トリメリット酸無水物とテトラカルボン酸二無水物からなる酸成分と4,4‘―ジフェニルメタンジイソシアネートのジイソシアネート成分と反応させて得られるポリアミドイミド分子の末端イソシアネート官能基が末端封鎖剤で封鎖されてなり、対数粘度0.4〜0.7dl/gであることを特徴とする圧縮成形用ポリアミドイミド樹脂組成物。
(2)テトラカルボン酸二無水物が、オキシジフタル酸二無水物、3,3‘4,4’―ビフェニルテトラカルボン酸二無水物、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’−ジフェニルスルホンテトラカルボン酸二無水物からなる群より選択される少なくとも1種以上である(1)の圧縮成形用ポリアミドイミド樹脂組成物。
(3)末端封鎖剤が無水フタル酸、p−ビニル安息香酸、アルコール類、フェノール類からなる群より選択される少なくとも1種以上である(1)の圧縮成形用ポリアミドイミド樹脂組成物。
(4)粉末状であることを特徴とする(1)から(3)のいずれかの圧縮成形用ポリアミドイミド樹脂組成物。
(5)粉末の平均粒子径(メジアンd50)が30μmから100μmであることを特徴とする(4)の圧縮成形用ポリアミドイミド樹脂組成物。
That is, according to the present invention, the following resin composition is provided.
(1) The terminal isocyanate functional group of the polyamideimide molecule obtained by reacting with an acid component consisting of trimellitic anhydride and tetracarboxylic dianhydride and the diisocyanate component of 4,4'-diphenylmethane diisocyanate is blocked with a terminal blocking agent. A polyamideimide resin composition for compression molding, which has a logarithmic viscosity of 0.4 to 0.7 dl / g.
(2) Tetracarboxylic dianhydride is oxydiphthalic dianhydride, 3,3′4,4′-biphenyltetracarboxylic dianhydride, 3,3′4,4′-benzophenone tetracarboxylic dianhydride Polyamideimide resin composition for compression molding according to (1), which is at least one selected from the group consisting of 3,3′4,4′-diphenylsulfonetetracarboxylic dianhydride.
(3) The polyamideimide resin composition for compression molding according to (1), wherein the terminal blocking agent is at least one selected from the group consisting of phthalic anhydride, p-vinylbenzoic acid, alcohols, and phenols.
(4) The polyamideimide resin composition for compression molding according to any one of (1) to (3), which is in a powder form.
(5) The polyamideimide resin composition for compression molding according to (4), wherein the powder has an average particle diameter (median d50) of 30 μm to 100 μm.

本発明の圧縮成形用ポリアミドイミド樹脂組成物によれば、圧縮成形法により成形が可能となり耐熱性、機械的強度、電気特性、耐薬品性等に優れた有用な工業材料を得ることができる組成物である。 According to the polyamideimide resin composition for compression molding of the present invention, a composition that can be molded by a compression molding method and can obtain a useful industrial material excellent in heat resistance, mechanical strength, electrical properties, chemical resistance, etc. It is a thing.

本発明からなる圧縮成形用ポリアミドイミド樹脂組成物は、ポリアミドイミド樹脂骨格に剛直成分を導入し耐熱性を付与させると共に樹脂に靭性を与えて樹脂が脆く成らない様に組成設計し、ポリアミドイミド分子末端イソシアネート官能基を封鎖し重合反応の進行を停止させると共に最適な対数粘度のポリアミドイミドポリマー溶液を得る。更に、水沈・固化したポリアミドイミド樹脂を粉砕処理により最適粒子径の粉末にすることなどによって圧縮成形法による成形を可能にするものである。 The polyamide-imide resin composition for compression molding according to the present invention is designed so that a rigid component is introduced into a polyamide-imide resin skeleton to impart heat resistance and toughness is imparted to the resin so that the resin does not become brittle. The terminal isocyanate functional group is blocked to stop the progress of the polymerization reaction, and a polyamideimide polymer solution having an optimal logarithmic viscosity is obtained. Further, the compacted polyamideimide resin is formed into a powder having an optimum particle size by pulverization, thereby enabling molding by a compression molding method.

ところで、特許文献1によるとポリアミドイミド樹脂をプレス成形するプレス温度は、ポリアミドイミド樹脂の熱分解温度に近い高温であることが必要であると記載されている。これらポリアミドイミド樹脂の多くは流動軟化温度が熱分解温度より高目かあるいはその近傍にあるため、成形が限定されるかあるいは事実上成形不可能であると言えるものである。 By the way, according to Patent Document 1, it is described that the press temperature for press-molding the polyamideimide resin needs to be a high temperature close to the thermal decomposition temperature of the polyamideimide resin. Many of these polyamideimide resins have a flow softening temperature higher than or near the thermal decomposition temperature, so that molding is limited or practically impossible to mold.

そこで本発明の圧縮成形用ポリアミドイミド樹脂組成物に於いては、下記の点を留意し組成設計をしたものである。 Therefore, the polyamideimide resin composition for compression molding according to the present invention has been designed with the following points in mind.

まず本発明の圧縮成形用ポリアミドイミド樹脂組成物のポリアミドイミド樹脂骨格に剛直成分を導入し熱分解開始温度を高くする。 First, a rigid component is introduced into the polyamideimide resin skeleton of the polyamideimide resin composition for compression molding of the present invention to increase the thermal decomposition starting temperature.

但し、剛直成分を導入すれば耐熱性は得られるものの樹脂が硬く脆くなりやすく割れが発生し易くなることを本願発明者は見出し、ポリアミドイミド樹脂に靭性を付与させ脆さをカバーするような樹脂設計とした。 However, if the rigid component is introduced, the present inventor finds that although heat resistance is obtained, the resin becomes hard and brittle and easily cracks, and the present inventor finds that the polyamideimide resin is provided with toughness and covers the brittleness. Designed.

上記のようにポリアミドイミド樹脂骨格を変えるだけではなく、成形時に起こり易い重合反応を抑制するため予めポリアミドイミド樹脂の末端反応基を封鎖しておく手段を採用することにより、さらに成形性が飛躍的に改良された。 In addition to changing the polyamide-imide resin skeleton as described above, by adopting a means to block the terminal reactive group of the polyamide-imide resin in advance in order to suppress the polymerization reaction that tends to occur at the time of molding, the moldability is further improved. Improved.

上記技術思想による本発明の圧縮成形用ポリアミドイミド樹脂組成物は、酸成分としてトリメリット酸無水物と3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物で剛直成分を導入し、靭性が得られる4,4‘−ジフェニルメタンジイソシアネート(MDI)との重合からなるポリアミドイミドポリマー末端を無水フタル酸で封鎖した組成物である。 The polyamide-imide resin composition for compression molding of the present invention based on the above technical idea introduces a rigid component with trimellitic anhydride and 3,3'4,4'-benzophenonetetracarboxylic dianhydride as acid components, and toughness Is a composition in which the ends of polyamideimide polymer consisting of polymerization with 4,4′-diphenylmethane diisocyanate (MDI) are obtained blocked with phthalic anhydride.

本発明の組成物によって熱分解開始温度が高く得られること以外の特徴的な特性として、ポリアミドイミド樹脂フィルムの線膨張率(CTE)が低いことが挙げられる。つまり水分の吸収や熱などによる寸法変化が低減できる効果を有している。 Characteristic characteristics other than the high thermal decomposition starting temperature obtained by the composition of the present invention include a low coefficient of linear expansion (CTE) of the polyamideimide resin film. That is, it has an effect of reducing dimensional changes due to moisture absorption or heat.

以下、本発明の圧縮成形用ポリアミドイミド樹脂組成物についてより具体的に説明する。本発明のポリアミドイミド樹脂組成物は、イソシアネート重合製法からなるポリアミドイミド樹脂組成物であって、トリメリット酸無水物とテトラカルボン酸二無水物からなる酸成分とジイソシアネート成分とを重合反応して得られるポリアミドイミドの分子の末端イシシアネート官能基を末端封鎖剤で封鎖し対数粘度0.4〜0.7dl/gのポリアミドイミドポリマー溶液を得る。そして、ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後に粉砕処理して平均粒子径(メジアンd50)30μmから100μmのポリアミドイミド樹脂粉末を得ることによって圧縮成形機で成形可能となる。 Hereinafter, the polyamideimide resin composition for compression molding according to the present invention will be described more specifically. The polyamide-imide resin composition of the present invention is a polyamide-imide resin composition comprising an isocyanate polymerization process, and obtained by polymerizing an acid component comprising a trimellitic anhydride and a tetracarboxylic dianhydride and a diisocyanate component. The terminal isocyanate functional group of the resulting polyamideimide molecule is blocked with a terminal blocking agent to obtain a polyamideimide polymer solution having a logarithmic viscosity of 0.4 to 0.7 dl / g. Then, the polyamideimide polymer solution is submerged, solidified, dried and then pulverized to obtain a polyamideimide resin powder having an average particle diameter (median d50) of 30 μm to 100 μm, which can be molded by a compression molding machine.

本発明の圧縮成形用ポリアミドイミド樹脂組成物に用いられるトリメリット酸無水物は、全酸成分100モル%に対して、75〜85モル%が好ましく使用でき、好ましくは83モル%である。 The trimellitic anhydride used in the polyamideimide resin composition for compression molding of the present invention can be preferably used in an amount of 75 to 85 mol%, preferably 83 mol%, based on 100 mol% of the total acid component.

本発明の圧縮成形用ポリアミドイミド樹脂組成物に用いられるテトラカルボン酸二無水物として、無水ピロメリット酸、オキシジフタル酸二無水物、3,3‘4,4’−ビフェニルテトラカルボン酸二無水物、3,3‘4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’−ジフェニルスルホンテトラカルボン酸二無水物、4,4‘―(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、m(p)―ターフェニルー3,4,3’、4‘−テトラカルボン酸二無水物、シクロブタンー1,2,3,4−テトラカルボン酸二無水物、1−カルボキシメチルー2,3,5−シクロペンタントリカルボン酸―2,6:3,5−二無水物などが例示され、この中で、オキシギフタル酸二無水物、3,3‘4,4’−ビフェニルテトラカルボン酸二無水物、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’−ジフェニルスルホンテトラカルボン酸二無水物が好ましく使用でき、特に好ましくは、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物が使用できる。全酸成分100モル%に対して5〜20モル%の範囲で共重合でき、好ましくは15モル%である。 As tetracarboxylic dianhydride used in the polyamideimide resin composition for compression molding of the present invention, pyromellitic anhydride, oxydiphthalic dianhydride, 3,3′4,4′-biphenyltetracarboxylic dianhydride, 3,3′4,4′-benzophenonetetracarboxylic dianhydride, 3,3′4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4 ′-(2,2-hexafluoroisopropylidene) Diphthalic dianhydride, m (p) -terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1-carboxymethyl- Examples include 2,3,5-cyclopentanetricarboxylic acid-2,6: 3,5-dianhydride, among which oxygiphthalic dianhydride, 3,3′4,4′-biphenyl Tetratetracarboxylic dianhydride, 3,3′4,4′-benzophenonetetracarboxylic dianhydride, 3,3′4,4′-diphenylsulfonetetracarboxylic dianhydride can be preferably used, and particularly preferably 3,3′4,4′-benzophenonetetracarboxylic dianhydride can be used. Copolymerization can be carried out in the range of 5 to 20 mol%, preferably 15 mol%, based on 100 mol% of the total acid component.

本発明の圧縮成形用ポリアミドイミド樹脂組成物に用いられる全成分100モル%のジイソシアネートとして、イソシアネート重合製法で使用されるジイソシアネート類の中でも4,4‘−ジフェニルメタンジイソシアネート(MDI)が好ましく使用できる。 Of the diisocyanates used in the isocyanate polymerization method, 4,4′-diphenylmethane diisocyanate (MDI) can be preferably used as the 100 mol% diisocyanate used in the polyamideimide resin composition for compression molding of the present invention.

本発明の圧縮成形用ポリアミドイミド樹脂組成物に用いられる末端封鎖剤として、無水フタル酸、p−ビニル安息香酸、アルコール類、フェノール類が例示できる。これ等末端封鎖剤は、一種または混合で使用できるが沸点が200℃以上、好ましくは250℃以上の化合物の使用が好ましく、中でも無水フタル酸が好ましく4〜20モル%の範囲で使用でき、好ましくは4モル%である。 Examples of the terminal blocking agent used in the polyamideimide resin composition for compression molding of the present invention include phthalic anhydride, p-vinylbenzoic acid, alcohols and phenols. These end-capping agents can be used alone or as a mixture, but compounds having a boiling point of 200 ° C. or higher, preferably 250 ° C. or higher are preferred, and phthalic anhydride is preferred, preferably in the range of 4 to 20 mol%, preferably Is 4 mol%.

本発明によるイソシアネート重合製法による重合は、上記の酸成分とジイソシアネート成分を、溶媒中、固相中いずれかの方法で合成できるが、特に汎用的な溶液重合が好ましく、溶液重合に用いる溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチル尿素、ジメチルスルホキシド、γ―ブチロラクトン、ジメチルジノン等の高沸点極性溶媒が例示され、好ましくN−メチル−2−ピロリドンが使用できる。この溶媒中、70℃〜200℃の温度で反応することができ、好ましくは130〜150℃の温度で反応させる。 In the polymerization by the isocyanate polymerization process according to the present invention, the above-mentioned acid component and diisocyanate component can be synthesized by any method in a solvent or in a solid phase, but general-purpose solution polymerization is preferable, and as a solvent used for solution polymerization, , High-polarity polar solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethylurea, dimethyl sulfoxide, γ-butyrolactone, dimethyldinone, and the like, and preferably N-methyl-2-pyrrolidone can be used. In this solvent, it can react at the temperature of 70 to 200 degreeC, Preferably it is made to react at the temperature of 130 to 150 degreeC.

また、本発明によるイソシアネート重合製法による重合には必要に応じて、アミン類、アルカリ金属、アルカリ土類金属化合物、およびこれ等の塩の触媒を添加して反応を速めることもでき限定するものではない。使用する例示として、KF(フッ化カリウム)、DBU(1,8−ジアザビシクロー7−ウンデセン)が挙げられ1モル%程度添加し重合する。 In addition, the polymerization by the isocyanate polymerization production method according to the present invention is not limited in that it can accelerate the reaction by adding a catalyst of amines, alkali metals, alkaline earth metal compounds, and salts thereof, if necessary. Absent. Examples of use include KF (potassium fluoride) and DBU (1,8-diazabicyclo-7-undecene).

本発明の末端封鎖したポリアミドイミド樹脂組成物を得るための末端封鎖剤の添加時期は、重合当初から他の原料と共に一括添加してもよく、また、アミド化反応が開始した直後に添加するなどのいずれかでも構わない。製造作業性の煩雑性を低減する意味では一括添加が好ましい。 The addition time of the end-capping agent for obtaining the end-capped polyamideimide resin composition of the present invention may be added together with other raw materials from the beginning of polymerization, or added immediately after the amidation reaction starts, etc. Either one of them. Batch addition is preferable in terms of reducing the complexity of manufacturing workability.

本発明のポリアミドイミド分子末端イソシアネート官能基封鎖することによる効果として、ポリアミドイミド重合時の異常加熱による暴走重合反応の抑制、重合によって得たポリアミドイミドポリマー溶液の長期保存安定性の確保、成形時の重合反応進行によるゲル化現象の防止などが挙げられる。 As an effect of blocking the polyamide-imide molecule terminal isocyanate functional group of the present invention, suppression of runaway polymerization reaction due to abnormal heating during polyamide-imide polymerization, ensuring long-term storage stability of the polyamide-imide polymer solution obtained by polymerization, Examples thereof include prevention of gelation due to progress of the polymerization reaction.

本発明によって得られたポリアミドイミドポリマー溶液は、水沈・固化した後乾燥し粉砕機によって粉砕し粉末の形態で使用されることが好ましい。 The polyamideimide polymer solution obtained according to the present invention is preferably used in the form of a powder after water precipitation and solidification, followed by drying, pulverization by a pulverizer.

本発明で得られたポリアミドイミド樹脂の粉末化は、水沈・固化し乾燥して得られた不揃いのポリアミドイミド樹脂をまず粗粉砕し不揃いのポリアミドイミド樹脂の粉砕長を出来る限り揃え粉末し易くする。次の段階の粉砕で平均粒子径(メジアンd50)が30〜100μm範囲の粉末を使用することが出来、好ましくは平均粒子径40〜70μmの範囲、最頻度50〜100μmの範囲の粉末が圧縮成形するに際し細密充填し易いので好ましい。粉砕機は、状況に応じて任意に選択でき限定するものではないが冷凍粉砕機、スピードミル、ターボミル、ジェットミル、ビーズミル、ミキサー、振動粉砕機、相対流粉砕機、衝撃粉砕機、圧縮粉砕機など多種の粉砕機が用途に合わせて使用できる。 The pulverization of the polyamide-imide resin obtained in the present invention is performed by first coarsely crushing the irregular polyamide-imide resin obtained by submerging, solidifying and drying, and making the pulverization length of the irregular polyamide-imide resin as uniform as possible. To do. In the next stage of pulverization, a powder having an average particle size (median d50) in the range of 30 to 100 μm can be used, preferably a powder having an average particle size in the range of 40 to 70 μm, and most frequently in the range of 50 to 100 μm. In doing so, it is preferable because it is easy to pack closely. The pulverizer can be arbitrarily selected according to the situation and is not limited, but it is a freeze pulverizer, speed mill, turbo mill, jet mill, bead mill, mixer, vibration pulverizer, relative flow pulverizer, impact pulverizer, compression pulverizer. Various pulverizers can be used according to the application.

本発明によって得られるポリアミドイミド樹脂粉末は、圧縮成形機の加熱した金型に充填して樹脂の軟化点・融点以上の温度で加熱しながら金型内のポリアミドイミド樹脂粉末を加圧・成形する。成形後、冷却して成形材料を取り出す。 The polyamideimide resin powder obtained by the present invention is filled into a heated mold of a compression molding machine, and the polyamideimide resin powder in the mold is pressed and molded while being heated at a temperature above the softening point and melting point of the resin. . After molding, the molding material is taken out by cooling.

通常、熱可塑性樹脂の成形加工として、射出成形法、押出成形法、中空成形法、ブロー成形法、圧縮成形法がある。この中で圧縮成形法は、加熱した上下の金型の中に成形材料を投入し、軟化・溶融状態にして加圧することによって金型間で賦形する方法で、単動式圧縮成形機、復動式圧縮成形機などその他に合理的に成形を行うものとして複数の金型を回転プレートに固定し回転させながら順次工程を進めるロータリ式圧縮成形機などがある。 Usually, there are injection molding, extrusion, hollow molding, blow molding, and compression molding as thermoplastic resin molding. Among them, the compression molding method is a method in which a molding material is put into heated upper and lower molds, and is molded between molds by pressing in a softened and molten state. In addition to a return type compression molding machine and the like, there is a rotary type compression molding machine that performs a process step by step while rotating a plurality of molds fixed to a rotating plate.

上記圧縮成形法にて成形する樹脂の形態は、粉体、粒体、またはこれらの混合物のいずれかである。この理由としては、粉体、粒体、またはこれらの混合物にすることで金型へ細密充填が良くなり欠陥の少ない成形品に出来ることにある。しかしながら平均粒子径が30μm以下は嵩高くなり成形性を悪くし、100μm以上は細密充填性が低下し空隙欠点を有する成形材となる。 The form of the resin molded by the compression molding method is any one of powder, granules, or a mixture thereof. The reason for this is that, by using powder, granules, or a mixture thereof, fine filling into the mold is improved and a molded product with few defects can be obtained. However, when the average particle size is 30 μm or less, the bulkiness is increased and the moldability is deteriorated.

本発明の圧縮成形用ポリアミドイミド樹脂組成物からなるポリアミドイミド樹脂フィルムの線膨張率(CTE)は、50ppm/K以下、好ましくは40ppm/K以下、更に好ましくは35ppm/K以下である。大概線膨張率が50ppm/Kであると水分や熱などのよる寸法変化が1%以内または0.5%以内にすることができる。 The linear expansion coefficient (CTE) of the polyamideimide resin film comprising the polyamideimide resin composition for compression molding of the present invention is 50 ppm / K or less, preferably 40 ppm / K or less, more preferably 35 ppm / K or less. When the linear expansion coefficient is approximately 50 ppm / K, the dimensional change due to moisture or heat can be made within 1% or within 0.5%.

本発明の圧縮成形用ポリアミドイミド樹脂組成物からなるポリアミドイミド樹脂のガラス転移(Tg)は、250℃以上が好ましい。 The glass transition (Tg) of the polyamideimide resin comprising the polyamideimide resin composition for compression molding of the present invention is preferably 250 ° C. or higher.

本発明の圧縮成形用ポリアミドイミド樹脂組成物からなるポリアミドイミド樹脂のTGA(5%減量温度)は、350℃以上、好ましくは400℃以上である。 The TGA (5% weight loss temperature) of the polyamideimide resin comprising the polyamideimide resin composition for compression molding of the present invention is 350 ° C. or higher, preferably 400 ° C. or higher.

次に本発明の実施例について具体的に説明するが、本発明はこれらの実施例により制限されるものではなく、発明の主旨に基づいたこれら以外の多くの実施態様を含むことは言うまでもない。 EXAMPLES Next, examples of the present invention will be specifically described. However, the present invention is not limited to these examples, and it is needless to say that the present invention includes many other embodiments based on the gist of the invention.

(1)対数粘度(dl/g)
試料0.5gをN-メチルー2−ピロリドン100mlに溶解して得られたポリアミドイミドポリマー溶液を用いて、ウベローデ粘度管で25℃において測定した。
(1) Logarithmic viscosity (dl / g)
A polyamideimide polymer solution obtained by dissolving 0.5 g of a sample in 100 ml of N-methyl-2-pyrrolidone was measured at 25 ° C. with an Ubbelohde viscosity tube.

(2)ガラス転移温度(Tg)
ポリアミドイミドポリマー溶液をミラーウェハにギャップ0.2mmでブレートコートしマッフロー炉にて250℃3時間熱処理して得られた30〜50μmフィルムを用い、動的粘弾性測定(DMA装置)により得られる損失tanδの主分散を示すピーク温度をガラス転移温度とし測定した。
DMA装置 Rheogel−E4000 (株)ユービーエム製
測定条件 周波数 11HZ
開始温度 30℃
終了温度 300℃
昇温速度 5℃/min

試料 幅5mm、長さ15mm、厚み30〜50μm
(2) Glass transition temperature (Tg)
Loss obtained by dynamic viscoelasticity measurement (DMA device) using a 30-50 μm film obtained by brate coating a polyamide-imide polymer solution on a mirror wafer with a gap of 0.2 mm and heat-treating at 250 ° C. for 3 hours in a muffle furnace The peak temperature showing the main dispersion of tan δ was measured as the glass transition temperature.
DMA device Rheogel-E4000 Co., Ltd. UBM measurement condition Frequency 11HZ
Starting temperature 30 ° C
End temperature 300 ℃
Temperature rising rate 5 ℃ / min

Sample width 5 mm, length 15 mm, thickness 30-50 μm

(3)引張り応力、弾性率
ポリアミドイミドポリマー溶液をミラーウェハにギャップ0.2mmでブレートコートしマッフロー炉にて250℃3時間熱処理して得られた30〜50μmフィルムを用い、JIS K6301に準拠してテンシロンを用い測定した。
テンシロン装置 AUTOGRAPH AGS−J SHIMADZU製
測定条件 引張速度 200mm/min
ロードセル100kgf
レンジ 10%
試料 幅10mm、長さ90mm(試料長40mm)、厚み30〜50μm
(3) Tensile stress, elastic modulus Using a 30-50 μm film obtained by brazing a polyamide-imide polymer solution onto a mirror wafer with a gap of 0.2 mm and heat-treating at 250 ° C. for 3 hours in a muffle furnace, in accordance with JIS K6301 And measured using Tensilon.
Tensilon device AUTOGRAPH AGS-J manufactured by SHIMADZU Tensile speed 200mm / min
Load cell 100kgf
Range 10%
Sample width 10 mm, length 90 mm (sample length 40 mm), thickness 30-50 μm

(4)CTE(線膨張率)
ポリアミドイミドポリマー溶液をミラーウェハにギャップ0.2mmでブレートコートしマッフロー炉にて250℃3時間熱処理して得られた30〜50μmフィルムを用い、JIS K7197に準拠して熱機械分析装置(TMA)を用い測定し、50〜180℃間の線膨張率を求めた。
TMA装置 Q400EM TA INSTRUMENTS製
測定条件 加重 0.010N
温度 40℃〜380℃/min
試料 幅3mm、長さ8mm、厚み30〜50μm
(4) CTE (linear expansion coefficient)
Thermomechanical analyzer (TMA) based on JIS K7197 using a 30-50μm film obtained by brate coating a polyamide-imide polymer solution on a mirror wafer with a gap of 0.2 mm and heat-treating at 250 ° C. for 3 hours in a muffle furnace The linear expansion coefficient between 50-180 degreeC was calculated | required.
TMA equipment Q400EM Made by TA INSTRUMENTS Measurement conditions Weight 0.010N
Temperature 40 ℃ ~ 380 ℃ / min
Sample width 3 mm, length 8 mm, thickness 30-50 μm

(5)重量減少開始温度
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後、冷凍粉砕機で粉砕した試料を熱重量測定装置(TGA)にて400℃まで熱処理し、5%重量減量した温度を読んだ。
TGA装置 Q50 TA INSTRUMENTS製
測定条件 温度 30℃〜400℃
昇温速度 50℃/min
雰囲気 大気
試料 10mg
(5) Weight decrease start temperature After the polyamideimide polymer solution was submerged and solidified and dried, the sample pulverized with a freeze pulverizer was heat-treated to 400 ° C. with a thermogravimetric apparatus (TGA) to reduce the weight by 5%. I read the temperature.
TGA device Q50 Made by TA INSTRUMENTS Measurement conditions Temperature 30 ℃ ~ 400 ℃
Temperature increase rate 50 ℃ / min
Atmosphere
Sample 10mg

(6)冷凍粉砕
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した樹脂をフリーザーミルを用い粉砕し粉末試料とした。
フリーザーミル#6770-115 SPEX社製
粉末処理方法 SPEX社製のマニュアルに従い、液体窒素で冷やし粉砕した。
(6) Freezing and grinding The polyamideimide polymer solution was submerged and solidified, and the dried resin was ground using a freezer mill to obtain a powder sample.
Freezer mill # 6770-115 Powder processing method manufactured by SPEX Cooled with liquid nitrogen and pulverized according to a manual manufactured by SPEX.

(7)粉末の粒子径
ポリアミドイミドポリマー溶液を水沈・固化して乾燥した後、数回冷凍粉砕した試料をレーザ
回析/散乱式粒度分布測定装置「LA−910
for Windows(登録商標)」<HORIBA>を用い測定した。
(7) Particle size of powder A sample obtained by subjecting a polyamideimide polymer solution to water precipitation, solidification, drying and then freeze-grinding several times is used as a laser diffraction / scattering particle size distribution analyzer “LA-910”.
for Windows (registered trademark) "<HORIBA>.

(8)フィルム製膜性
ポリアミドイミドポリマー溶液をミラーウェハにギャップ0.2mmでブレートコートしマッフロー炉にて250℃3時間熱処理して得られた30〜50μmフィルムの剥離性、折り曲げ性を評価した。
○:ミラーウェハからの剥離性良好で折り曲げで脆くない
△:ミラーウェハからの剥離性がやや難で折り曲げやや脆い
×:ミラーウェハからの剥離不可非常に脆い
(8) Film-forming property The releasability and bendability of a 30-50 μm film obtained by brazing a polyamide-imide polymer solution on a mirror wafer with a gap of 0.2 mm and heat-treating at 250 ° C. for 3 hours in a muffle furnace were evaluated. .
○: Good peelability from mirror wafer and not fragile when folded △: Slightly difficult peelability from mirror wafer and slightly brittle ×: Not peelable from mirror wafer Very brittle

(9)板材加圧溶融成形性
冷凍粉砕機で数回粉砕して得たポリアミドイミド樹脂粉末を、5cm×5cm四方の金型に10g入れ上から鉄板で押さえて、加熱溶融プレス機(テスターサンゴ(株)製)を用い400℃の温度設定で20〜40kgf/cm2の加圧でプレス成形して板材を作製し肉眼で目視検査した。
○:成形後の割れなし
×:成形後に割れあり
(9) Sheet material pressure melt moldability 10 g of polyamideimide resin powder obtained by pulverizing several times with a freeze pulverizer is put into a 5 cm × 5 cm square mold and pressed with an iron plate from above, and a heat melting press machine (tester coral) (Made by Co., Ltd.) was used, press-molded at a pressure of 20 to 40 kgf / cm @ 2 at a temperature setting of 400 DEG C. to produce a plate material, and visually inspected.
○: No cracking after molding ×: Cracking after molding

(実施例1)
反応容器に仕込み0.4モル、NCO/酸=0.98として、トリメリット酸無水物(TMA)83モル%、3,3‘4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)15モル%、無水フタル酸(OPA)4モル%、4、4‘−ジフェニルメタンジイソシアネート(MDI)100モル%、フッ化カリウム(KF)0.01モル%を固形分が20%になるようにN-メチルー2−ピロリドンと共に仕込み攪拌しながらスタートから20分で100℃に立上げて100℃60分継続し、100℃から120℃へ10分で立上げて120℃で60分継続し、120℃から150℃へ20分で立上げて150℃で3時間反応して終了してポリアミドイミドポリマー溶液を得た後室温まで冷却した。このポリアミドイミドポリマー溶液を水中に投入し凝固させ充分水洗した後乾燥した。得られたポリアミドイミドポリマーの対数粘度は0.62dl/gであった。次に、このポリアミドイミドポリマー溶液をミラーウェハ上にブレート塗工しマッフロー炉にて250℃3時間の熱処理を行いミラーウェハからポリアミドイミド樹脂フィルムを剥離し評価試料を作成した。ポリアミドイミド樹脂フィルムの5%減量開始温度は480℃、線膨張率(CTE)が24ppm/kであった。次に、冷凍粉砕処理して得られた平均粒子径(d50)69μmのポリアミドイミド樹脂粉末を設定400℃×30kgf/cm2でプレス成形し数mm厚みの成形板材を作製し肉眼観察では割れがなかった。表1に評価結果を示した。
(Example 1)
The reaction vessel was charged with 0.4 mol, NCO / acid = 0.98, trimellitic anhydride (TMA) 83 mol%, 3,3′4,4′-benzophenone tetracarboxylic dianhydride (BTDA) 15 Mol%, phthalic anhydride (OPA) 4 mol%, 4,4′-diphenylmethane diisocyanate (MDI) 100 mol%, potassium fluoride (KF) 0.01 mol% so that the solid content is 20%. Starting with stirring with methyl-2-pyrrolidone, the temperature was raised to 100 ° C. in 20 minutes from the start and continued at 100 ° C. for 60 minutes, then raised from 100 ° C. to 120 ° C. in 10 minutes and continued at 120 ° C. for 60 minutes. The temperature was raised to 150 ° C. in 20 minutes, the reaction was terminated at 150 ° C. for 3 hours to obtain a polyamideimide polymer solution, and then cooled to room temperature. This polyamideimide polymer solution was poured into water, solidified, thoroughly washed with water and dried. The logarithmic viscosity of the obtained polyamideimide polymer was 0.62 dl / g. Next, this polyamide-imide polymer solution was coated on a mirror wafer and heat-treated at 250 ° C. for 3 hours in a muffle furnace to peel the polyamide-imide resin film from the mirror wafer to prepare an evaluation sample. The polyamideimide resin film had a 5% weight loss starting temperature of 480 ° C. and a linear expansion coefficient (CTE) of 24 ppm / k. Next, a polyamideimide resin powder having an average particle size (d50) of 69 μm obtained by freeze-grinding is press-molded at a setting of 400 ° C. × 30 kgf / cm 2 to produce a molded plate material having a thickness of several millimeters. It was. Table 1 shows the evaluation results.

(実施例2)
トリメリット酸無水物(TMA)80モル%、無水フタル酸(OPA)10モル%とした以外、実施例1と同様にポリアミドイミドポリマー溶液およびポリアミドイミド樹脂粉末を作製し同様な評価を行った。ポリアミドイミド樹脂フィルムの5%減量開始温度は480℃、CTEが32ppm/kであった。平均粒子径50μmの粉末をプレス成形したところ、割れ見られなかった。表1に評価結果を示した。
(Example 2)
A polyamideimide polymer solution and a polyamideimide resin powder were prepared and evaluated in the same manner as in Example 1 except that trimellitic anhydride (TMA) was 80 mol% and phthalic anhydride (OPA) was 10 mol%. The polyamideimide resin film had a 5% weight loss starting temperature of 480 ° C. and a CTE of 32 ppm / k. When a powder having an average particle diameter of 50 μm was press-molded, no cracks were observed. Table 1 shows the evaluation results.

(実施例3)
トリメリット酸無水物(TMA)75モル%、無水フタル酸(OPA)20モル%とした以外、実施例1と同様にポリアミドイミドポリマー溶液およびポリアミドイミド樹脂粉末を作製し同様な評価を行った。ポリアミドイミド樹脂フィルムの5%減量開始温度は480℃、CTEが34.5ppm/kであった。平均粒子径80μmの粉末をプレス成形したところ割れ見られなかった。表1に評価結果を示した。
(Example 3)
A polyamideimide polymer solution and a polyamideimide resin powder were prepared and evaluated in the same manner as in Example 1 except that trimellitic anhydride (TMA) was 75 mol% and phthalic anhydride (OPA) was 20 mol%. The polyamideimide resin film had a 5% weight loss starting temperature of 480 ° C. and a CTE of 34.5 ppm / k. When a powder having an average particle diameter of 80 μm was press-molded, no cracks were observed. Table 1 shows the evaluation results.

(比較例1)
トリメリット酸無水物(TMA)100モル%、4、4‘−ジフェニルメタンジイソシアネート(MDI)100モル%、フッ化カリウム(KF)0.01モル%を固形分が20%になるようにN-メチルー2−ピロリドンと共に実施例1と同様な重合反応条件で重合し末端封鎖しない対数粘度0.75dl/gのポリアミドイミドポリマー溶液を得た。実施例1と同様にして評価試料を作製し評価した。ポリアミドイミド樹脂フィルムの5%減量開始温度は420℃、CTEは50ppm/kであった。平均粒子径100μmの粉末をプレス成形したところゲル状物が見ら割れを観察した。表1に評価結果を示した。
(Comparative Example 1)
Trimellitic anhydride (TMA) 100 mol%, 4,4′-diphenylmethane diisocyanate (MDI) 100 mol%, potassium fluoride (KF) 0.01 mol% so that the solid content is 20%, N-methyl- A polyamidoimide polymer solution having a logarithmic viscosity of 0.75 dl / g, which was polymerized under the same polymerization reaction conditions as in Example 1 together with 2-pyrrolidone and was not end-capped, was obtained. Evaluation samples were prepared and evaluated in the same manner as in Example 1. The 5% weight loss starting temperature of the polyamideimide resin film was 420 ° C., and the CTE was 50 ppm / k. When a powder having an average particle size of 100 μm was press-molded, cracks were observed in the gel-like material. Table 1 shows the evaluation results.

(比較例2)
トリメリット酸無水物(TMA)98モル%、4、4‘−ジフェニルメタンジイソシアネート (MDI)100モル%、無水フタル酸4モル%、フッ化カリウム(KF)0.01モル%とし
た末端封鎖した低対数粘度0.24dl/gのポリアミドイミドポリマー溶液を作製し実施例1と同様にしてポリアミドイミド樹脂フィルムを作製したがフィルムがやや脆かった。ポリアミドイミド樹脂フィルムの5%減量開始温度は170℃でCTEは58.2ppm/kであった。平均粒子径40μmの粉末をプレス成形したところ割れた。表1に評価結果を示した。
(Comparative Example 2)
Trimellitic anhydride (TMA) 98 mol%, 4,4'-diphenylmethane diisocyanate (MDI) 100 mol%, phthalic anhydride 4 mol%, potassium fluoride (KF) 0.01 mol% A polyamideimide polymer solution having a logarithmic viscosity of 0.24 dl / g was prepared and a polyamideimide resin film was prepared in the same manner as in Example 1, but the film was somewhat brittle. The polyamideimide resin film had a 5% weight loss starting temperature of 170 ° C. and a CTE of 58.2 ppm / k. When a powder having an average particle size of 40 μm was press-molded, it cracked. Table 1 shows the evaluation results.

(比較例3)
トリメリット酸無水物(TMA)83モル%、3,3‘4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)15モル%と4、4‘−ジフェニルメタンジイソシアネート(MDI)100モル%とした末端封鎖しない実施例1とほぼ同様な組成で重合し対数粘度0.65dl/gのポリアミドイミドポリマー溶液を作製した。実施例1と同様にしてポリアミドイミド樹脂フィルムを作製し、5%減量開始温度は480℃、CTEは40ppm/kであった。平均粒子径70μmの粉末をプレス成形したところ割れを観察した。表1に評価結果を示した。
(Comparative Example 3)
Trimellitic anhydride (TMA) 83 mol%, 3,3′4,4′-benzophenone tetracarboxylic dianhydride (BTDA) 15 mol% and 4,4′-diphenylmethane diisocyanate (MDI) 100 mol% A polyamidoimide polymer solution having a logarithmic viscosity of 0.65 dl / g was prepared by polymerization with the same composition as in Example 1 without end-capping. A polyamideimide resin film was produced in the same manner as in Example 1, and the 5% weight loss starting temperature was 480 ° C. and the CTE was 40 ppm / k. When a powder having an average particle diameter of 70 μm was press-molded, cracks were observed. Table 1 shows the evaluation results.

(比較例4)
トリメリット酸無水物(TMA)、ピロメリット酸無水物、無水フタル酸の酸成分とアミン成分として4,4‘−ジアミノジフェニルエーテル、1,4−フェニレンジアミンからなる対数粘度0.5dl/gのポリアミドイミド樹脂(市販品)をN-メチルー2−ピロリドンで固形分濃度20%に溶解してポリアミドイミドポリマー溶液を作製し、実施例1と同様に塗工・乾燥してポリアミドイミド樹脂フィルムを得た。このポリアミドイミド樹脂フィルムの5%減量開始温度は450℃、CTEは45.6ppm/kであった。市販品の粉末の平均粒子径を測定したところ28μmでこの粉末をプレス成形したところ脆く割れが見られた。表1に評価結果を示した。
(Comparative Example 4)
Polyamide with a logarithmic viscosity of 0.5 dl / g consisting of trimellitic anhydride (TMA), pyromellitic anhydride, phthalic anhydride and 4,4'-diaminodiphenyl ether and 1,4-phenylenediamine as amine components An imide resin (commercial product) was dissolved in N-methyl-2-pyrrolidone to a solid content concentration of 20% to prepare a polyamideimide polymer solution, and coated and dried in the same manner as in Example 1 to obtain a polyamideimide resin film. . The polyamideimide resin film had a 5% weight loss starting temperature of 450 ° C. and a CTE of 45.6 ppm / k. When the average particle diameter of the commercially available powder was measured, when this powder was press-molded at 28 μm, it was brittle and cracked. Table 1 shows the evaluation results.

Figure 2013065714
Figure 2013065714

本発明の圧縮成形用ポリアミドイミド樹脂組成物は、圧縮成形が可能で、耐熱性、機械的強度、電気特性、耐薬品性等に優れ電気・電子部品、自動車部品、軍需・航空機、産業機器などの工業材料用途に好適に使用されるものである。 The polyamide-imide resin composition for compression molding of the present invention can be compression-molded and has excellent heat resistance, mechanical strength, electrical properties, chemical resistance, etc., electrical / electronic parts, automobile parts, military / aircraft, industrial equipment, etc. It is suitably used for industrial material applications.

Claims (5)

トリメリット酸無水物とテトラカルボン酸二無水物からなる酸成分と4,4‘―ジフェニルメタンジイソシアネートのジイソシアネート成分と反応させて得られるポリアミドイミド分子の末端イソシアネート官能基が末端封鎖剤で封鎖されてなり、対数粘度0.4〜0.7dl/gであることを特徴とする圧縮成形用ポリアミドイミド樹脂組成物。 The terminal isocyanate functional group of the polyamideimide molecule obtained by reacting the acid component consisting of trimellitic anhydride and tetracarboxylic dianhydride with the diisocyanate component of 4,4'-diphenylmethane diisocyanate is blocked with a terminal blocking agent. A polyamideimide resin composition for compression molding, which has a logarithmic viscosity of 0.4 to 0.7 dl / g. テトラカルボン酸二無水物が、オキシジフタル酸二無水物、3,3‘4,4’―ビフェニルテトラカルボン酸二無水物、3,3‘4,4’―ベンゾフェノンテトラカルボン酸二無水物、3,3‘4,4’−ジフェニルスルホンテトラカルボン酸二無水物からなる群より選択される少なくとも1種以上である請求項1記載の圧縮成形用ポリアミドイミド樹脂組成物。 Tetracarboxylic dianhydride is oxydiphthalic dianhydride, 3,3′4,4′-biphenyltetracarboxylic dianhydride, 3,3′4,4′-benzophenone tetracarboxylic dianhydride, 3, The polyamideimide resin composition for compression molding according to claim 1, wherein the composition is at least one selected from the group consisting of 3'4,4'-diphenylsulfonetetracarboxylic dianhydride. 末端封鎖剤が無水フタル酸、p−ビニル安息香酸、アルコール類、フェノール類からなる群より選択される少なくとも1種以上である請求項1記載の圧縮成形用ポリアミドイミド樹脂組成物。 The polyamideimide resin composition for compression molding according to claim 1, wherein the end-capping agent is at least one selected from the group consisting of phthalic anhydride, p-vinylbenzoic acid, alcohols and phenols. 粉末状であることを特徴とする請求項1から請求項3のいずれかに記載の圧縮成形用ポリアミドイミド樹脂組成物。 The polyamideimide resin composition for compression molding according to any one of claims 1 to 3, wherein the composition is powdery. 粉末の平均粒子径(メジアンd50)が30μmから100μmであることを特徴とする請求項4に記載の圧縮成形用ポリアミドイミド樹脂組成物。 The polyamideimide resin composition for compression molding according to claim 4, wherein the average particle size (median d50) of the powder is from 30 µm to 100 µm.
JP2012552182A 2011-10-31 2012-10-31 Polyamideimide resin composition for compression molding Pending JPWO2013065714A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012552182A JPWO2013065714A1 (en) 2011-10-31 2012-10-31 Polyamideimide resin composition for compression molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011238932 2011-10-31
JP2011238932 2011-10-31
JP2012552182A JPWO2013065714A1 (en) 2011-10-31 2012-10-31 Polyamideimide resin composition for compression molding

Publications (1)

Publication Number Publication Date
JPWO2013065714A1 true JPWO2013065714A1 (en) 2015-04-02

Family

ID=48192059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012552182A Pending JPWO2013065714A1 (en) 2011-10-31 2012-10-31 Polyamideimide resin composition for compression molding

Country Status (2)

Country Link
JP (1) JPWO2013065714A1 (en)
WO (1) WO2013065714A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112434A1 (en) * 2013-01-18 2014-07-24 東洋紡株式会社 Polyamideimide composition for use in molding

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614517A (en) * 1979-07-13 1981-02-12 Kanegafuchi Chem Ind Co Ltd Production of polyamideimide
JPS5614518A (en) * 1979-07-16 1981-02-12 Kanegafuchi Chem Ind Co Ltd Production of polyamideimide resin
JPS5626923A (en) * 1979-08-11 1981-03-16 Hitachi Chem Co Ltd Preparation of heat-resistant resin
JPS57131229A (en) * 1981-02-05 1982-08-14 Sumitomo Chem Co Ltd Production of aromatic polyamide-imide
JPS5813619A (en) * 1981-07-15 1983-01-26 Hitachi Chem Co Ltd Preparation of heat-resistant resin
JPS58208323A (en) * 1982-05-28 1983-12-05 Hitachi Chem Co Ltd Production of polyamide-imide resin
JPS5880326A (en) * 1981-11-06 1983-05-14 Hitachi Chem Co Ltd Production of polyamide-imide resin
JPS6020921A (en) * 1983-07-15 1985-02-02 Hitachi Chem Co Ltd Heat-resistant resin composition
JPS6116918A (en) * 1984-07-04 1986-01-24 Hitachi Chem Co Ltd Production of alcohol-modified polyamide-imide resin powder
US4923960A (en) * 1989-02-27 1990-05-08 Hoechst Celanese Corp. Polyamide-imide polymers having fluorine-containing linking groups
US4954611A (en) * 1989-02-27 1990-09-04 Hoechst Celanese Corp. Shaped articles from polyamide-imide polymers having fluorine containing linking groups
JP3134956B2 (en) * 1991-11-27 2001-02-13 東洋紡績株式会社 Copolyamideimide
JP3183305B2 (en) * 1992-06-17 2001-07-09 三菱瓦斯化学株式会社 Method for producing polyamideimide for molding material
JP3183307B2 (en) * 1992-07-10 2001-07-09 三菱瓦斯化学株式会社 Aromatic polyamide-imide copolymer for molding material
JP4563536B2 (en) * 1999-12-17 2010-10-13 株式会社クレハ Method for producing resin composition pellets

Also Published As

Publication number Publication date
WO2013065714A1 (en) 2013-05-10

Similar Documents

Publication Publication Date Title
CN102143989B (en) Soluble terminally modified imide oligomer using 2-phenyl-4,4&#39;-diaminodiphenyl ether, varnish, cured product thereof, imide prepreg thereof, and fiber-reinforced laminate having excellent heat resistance
WO2010050491A1 (en) Polyimide precursor solution composition
JP4787552B2 (en) Soluble end-modified imide oligomer and varnish and cured product thereof
JP6997493B2 (en) Method for manufacturing polyimide powder
TWI816790B (en) Resin molded body
CN110591359A (en) Colorless transparent polyimide film
WO2013074120A1 (en) Crosslinking compounds for high glass transition temperature polymers
JP4263182B2 (en) Soluble end-modified imide oligomer and varnish and cured product thereof
JP4214531B2 (en) Soluble end-modified imide oligomer and varnish and cured product thereof
CN113412307B (en) Polyimide resin composition
JP4968540B2 (en) Soluble end-modified imide oligomer and varnish and cured product thereof
JP5765801B2 (en) End-modified imide oligomer for resin transfer molding with excellent moldability using 2-phenyl-4,4&#39;-diaminodiphenyl ether, and its mixture
JP2009263570A (en) Terminus modified imide oligomer, varnish, and highly elastic cured product thereof
JPWO2013065714A1 (en) Polyamideimide resin composition for compression molding
JP5435207B2 (en) Terminal-modified imide oligomer
JP5129192B2 (en) Method for producing polyimide-containing polyamide-imide mixed film
WO2017130703A1 (en) Production method for polyimide molded body
TW202225267A (en) Polyimide resin composition and molded article
WO2014112434A1 (en) Polyamideimide composition for use in molding
JP7250593B2 (en) Particulate imide oligomer and method for producing the same
JP3544043B2 (en) Method for producing polyimide powder and polyimide powder
JP5210269B2 (en) Imide oligomer blend composition
CN112119124A (en) Polyimide resin composition
TW202337955A (en) Polyimide resin composition and molded article
JP2009173847A (en) Thermoplastic resin composition and molded article