JPWO2013002029A1 - Oxide catalyst - Google Patents

Oxide catalyst Download PDF

Info

Publication number
JPWO2013002029A1
JPWO2013002029A1 JP2013522578A JP2013522578A JPWO2013002029A1 JP WO2013002029 A1 JPWO2013002029 A1 JP WO2013002029A1 JP 2013522578 A JP2013522578 A JP 2013522578A JP 2013522578 A JP2013522578 A JP 2013522578A JP WO2013002029 A1 JPWO2013002029 A1 JP WO2013002029A1
Authority
JP
Japan
Prior art keywords
catalyst
reaction
oxide
nitrate
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013522578A
Other languages
Japanese (ja)
Other versions
JP5778770B2 (en
Inventor
吉田 淳
淳 吉田
山口 辰男
辰男 山口
健治 泉山
健治 泉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2013522578A priority Critical patent/JP5778770B2/en
Publication of JPWO2013002029A1 publication Critical patent/JPWO2013002029A1/en
Application granted granted Critical
Publication of JP5778770B2 publication Critical patent/JP5778770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

オレフィン及び/又はアルコールの酸化反応に用いられる酸化物触媒であって、モリブデン、ビスマス、鉄、コバルト、セリウムを含有し、モリブデン12原子に対するビスマスの原子比aが2≰a≰6、鉄の原子比bが2.5<b≰5、コバルトの原子比cが2≰c≰8、セリウムの原子比dが0.5≰d≰6、鉄/コバルトの原子比が0.4≰b/c≰2.5であり、X線回折において33.50?にピークを示すセリウムとモリブデンの複合酸化物の面間隔dを基準にしたとき、dの変化率が5000〜9000ppmである、酸化物触媒。An oxide catalyst used for an oxidation reaction of olefin and / or alcohol, which contains molybdenum, bismuth, iron, cobalt, cerium, the atomic ratio a of bismuth to 12 atoms of molybdenum is 2≰a≰6, iron atoms The ratio b is 2.5 <b≰5, the atomic ratio c of cobalt is 2≰c≰8, the atomic ratio d of cerium is 0.5≰d≰6, and the atomic ratio of iron / cobalt is 0.4≰b /. An oxide having a rate of change of d of 5000 to 9000 ppm when c is 2.5 and the interplanar spacing d of the complex oxide of cerium and molybdenum showing a peak at 33.50? catalyst.

Description

本発明は、オレフィン及び/又はアルコールの酸化反応に用いられる酸化物触媒に関する。   The present invention relates to an oxide catalyst used for an olefin and / or alcohol oxidation reaction.

プロピレン、イソブチレンとt−ブチルアルコールから選ばれる少なくとも1種を原料とし、不飽和アルデヒドを中間体として、酸化的エステル化反応によって、アクリル酸メチル、又はメタクリル酸メチルを製造する方法は、直メタ法と呼ばれる2つの反応工程からなる方法と、直酸法と呼ばれる3つの反応工程からなる方法とが知られている。「石油化学プロセス」(石油学会編、第172〜176頁、講談社サイエンティフィク)によると、直酸法は3つの工程でアクリル酸メチル、又はメタクリル酸メチルを製造するプロセスであり、第1酸化工程はプロピレン、イソブチレンとt−ブチルアルコールから選ばれる少なくとも一つの出発物質を、触媒の存在下で分子状酸素と気相接触酸化反応させて、アクロレイン、又はメタクロレインを製造する工程である。第2酸化工程は、第1酸化工程で得られたアクロレイン、又はメタクロレインを触媒の存在下で分子状酸素と気相接触酸化反応させて、アクリル酸、又はメタクリル酸を製造する工程である。エステル化工程は、第2酸化工程で得られたアクリル酸、又はメタクリル酸をさらにエステル化して、その際にアルコールとしてメタノールを用いた場合には、アクリル酸メチル、又はメタクリル酸メチルを得る工程である。これに対し、直メタ法は、プロピレン又はイソブチレン及び/又はt−ブチルアルコールを原料とし、分子状酸素含有ガスを用いて気相接触酸化反応させてアクロレイン、又はメタクロレインを製造する第1反応工程と、得られたアクロレイン、又はメタクロレインと、例えばアルコールとしてメタノールと分子状酸素とを反応させて、一挙にアクリル酸メチル、又はメタクリル酸メチルを製造する第2反応工程の2つの触媒反応工程からなる方法である。   A method for producing methyl acrylate or methyl methacrylate by an oxidative esterification reaction using at least one selected from propylene, isobutylene and t-butyl alcohol as a raw material and an unsaturated aldehyde as an intermediate is a direct meta method. There are known a method consisting of two reaction steps called and a method consisting of three reaction steps called a direct acid method. According to the "Petrochemical Process" (edited by the Petroleum Institute of Japan, pages 172 to 176, Kodansha Scientific), the direct acid method is a process for producing methyl acrylate or methyl methacrylate in three steps. The process is a process for producing acrolein or methacrolein by subjecting at least one starting material selected from propylene, isobutylene and t-butyl alcohol to a gas phase catalytic oxidation reaction with molecular oxygen in the presence of a catalyst. The second oxidation step is a step of producing acrylic acid or methacrylic acid by subjecting acrolein or methacrolein obtained in the first oxidation step to gas phase catalytic oxidation reaction with molecular oxygen in the presence of a catalyst. The esterification step is a step in which the acrylic acid or methacrylic acid obtained in the second oxidation step is further esterified, and when methanol is used as the alcohol, methyl acrylate or methyl methacrylate is obtained. is there. On the other hand, the direct meta method is a first reaction step in which acrolein or methacrolein is produced by propylene or isobutylene and / or t-butyl alcohol as a raw material and subjected to a gas phase catalytic oxidation reaction using a molecular oxygen-containing gas. And the resulting acrolein or methacrolein, for example, from two catalytic reaction steps of the second reaction step in which methanol and molecular oxygen are reacted as alcohol to produce methyl acrylate or methyl methacrylate all at once. It is a method.

不飽和アルデヒドを主成分として製造する触媒としては、古くはソハイオ社によって見出されたものがあり、その後も必須成分としてMo、Biを含む複合酸化物触媒は数多く報告されている。例えば、特許文献1には、触媒を構成する金属として、Mo、Bi、Ce、K、Fe、Co、Mg、Cs、Rbに着目した触媒が記載されている。また、特許文献2にも、不飽和アルデヒド及び不飽和酸を製造するための触媒が記載されており、中でもSb0.5Cs0.50.25Ni2.5Co4.5FeBiMo12Oxで表される触媒が、パス当たりの収率が最大であることが記載されている。As a catalyst for producing an unsaturated aldehyde as a main component, there is a catalyst found by Sohio in the old days, and many composite oxide catalysts containing Mo and Bi as essential components have been reported. For example, Patent Document 1 describes a catalyst that focuses on Mo, Bi, Ce, K, Fe, Co, Mg, Cs, and Rb as metals constituting the catalyst. Patent Document 2 also describes a catalyst for producing an unsaturated aldehyde and an unsaturated acid. Among them, Sb 0.5 Cs 0.5 S 0.25 Ni 2.5 Co 4.5 Fe 4 is described. It is described that the catalyst represented by Bi 1 Mo 12 Ox has the highest yield per pass.

国際公開95/35273号パンフレットInternational publication 95/35273 pamphlet 米国特許4001317号公報U.S. Pat. No. 4,001317

上記で述べたような酸化反応の生産性には、原料濃度と反応温度が大きく影響する。理論的には、原料濃度が高く、反応度が高いほど生産性が向上すると考えられるものの、実際には反応温度と原料濃度を高く設定しすぎると、かえって生産性が低下するという問題が生じる。
例えば、気相接触酸化反応により不飽和アルデヒドを得ようとする場合、原料濃度が高いと、発熱によって必要となる酸素分圧が高くなり、逐次酸化物の生成が多くなるため、不飽和アルデヒドの選択率が大幅に低下し、生産性が著しく低下する。一方、反応温度についても、350℃〜370℃程度なら不飽和アルデヒドの選択率は高いが、370℃以上では不飽和アルデヒドの選択率が大幅に低下するため、生産性が著しく低下する。従って、高い原料濃度かつ高い反応温度の反応条件においても、目的生成物の高い生産性を示す触媒が望まれている。
The raw material concentration and the reaction temperature greatly affect the productivity of the oxidation reaction as described above. Theoretically, the higher the raw material concentration and the higher the reactivity, the higher the productivity. However, in reality, if the reaction temperature and the raw material concentration are set too high, there is a problem that the productivity is lowered.
For example, when trying to obtain an unsaturated aldehyde by a gas phase catalytic oxidation reaction, if the raw material concentration is high, the oxygen partial pressure required due to heat generation increases, and the generation of sequential oxides increases. Selectivity is greatly reduced, and productivity is significantly reduced. On the other hand, if the reaction temperature is about 350 ° C. to 370 ° C., the selectivity of the unsaturated aldehyde is high, but if it is 370 ° C. or higher, the selectivity of the unsaturated aldehyde is significantly reduced, and the productivity is remarkably lowered. Therefore, there is a demand for a catalyst that exhibits high productivity of the target product even under reaction conditions of high raw material concentration and high reaction temperature.

上述のような観点で、当分野で利用されているビスモリ系(Bi−Mo)や、特許文献1に記載されているような、ビスモリ系にさらに鉄、セリウム等を加えた系の酸化物触媒を検討した結果、このような触媒は全金属が複合化されているのではなく、BiMo12やCeMo12、FeMo12、Bi、Fe、CeOとしても存在していることがX線構造解析等から分かってきた。そして、これら単独又は二成分酸化物は、比較的酸化力が強いために、目的生成物を更に酸化した状態である逐次酸化物を生成させてしまい、目的生成物の生産性を下げてしまうという問題がある。From the above-mentioned viewpoint, the oxide catalyst of the system which added bismol system (Bi-Mo) utilized in this field | area, and also added iron, cerium, etc. to the bismol system as described in patent document 1 As a result, all the metals are not complexed in such a catalyst. Bi 2 Mo 3 O 12 , Ce 2 Mo 3 O 12 , Fe 2 Mo 3 O 12 , Bi 2 O 3 , Fe 2 It has been found from X-ray structural analysis and the like that it exists as O 3 and CeO 2 . And since these single-component or two-component oxides have relatively strong oxidizing power, they produce sequential oxides in a state in which the target product is further oxidized, thereby reducing the productivity of the target product. There's a problem.

そこで、触媒の酸化力を適切にすべく本発明者らが鋭意検討した結果、触媒中のMo、Bi、Fe、Co及びCeの比率を適切にした上で、これらの成分が複合化していない成分の生成を抑制することで、逐次酸化物の生成が抑えられ、目的生成物の生産性が向上することを発見し、本発明に想到した。   Therefore, as a result of intensive studies by the present inventors to make the oxidizing power of the catalyst appropriate, these components are not complexed after the ratio of Mo, Bi, Fe, Co and Ce in the catalyst is made appropriate. By suppressing the generation of components, it was discovered that the generation of sequential oxides was suppressed and the productivity of the target product was improved, and the present invention was conceived.

すなわち、本発明は以下のとおりである。
[1]
オレフィン及び/又はアルコールの酸化反応に用いられる酸化物触媒であって、
モリブデン、ビスマス、鉄、コバルト、セリウムを含有し、モリブデン12原子に対するビスマスの原子比aが2≦a≦6、鉄の原子比bが2.5<b≦5、コバルトの原子比cが2≦c≦8、セリウムの原子比dが0.5≦d≦6、鉄/コバルトの原子比が0.4≦b/c≦2.5であり、
X線回折において33.50°にピークを示すセリウムとモリブデンの複合酸化物の面間隔dを基準にしたとき、dの変化率が5000〜9000ppmである、酸化物触媒。
[2]
下記組成式(1)
Mo12BiFeCoCe (1)
(式中、Moはモリブデン、Biはビスマス、Feは鉄、Coはコバルト、Ceはセリウム、Aはセシウム及びルビジウムからなる群から選ばれる少なくとも1種の元素を示し、Bは銅、ニッケル、マグネシウム及び鉛からなる群から選ばれる少なくとも1種の元素を示し、a〜fは、Mo12原子に対する各元素の原子比を示し、2≦a≦6、2.5<b≦5、2≦c≦8、0.4≦b/c≦2.5、0.5≦d≦6、0.01≦e≦2、0≦f<2であり、gは酸素以外の構成元素の原子価によって決まる酸素の原子数である。)で表される組成を有する、上記[1]記載の酸化物触媒。
[3]
上記[1]又は[2]記載の酸化物触媒の製造方法であって、
モリブデン、ビスマス、鉄、コバルト、セリウムを含む原料スラリーを室温より高い温度で熟成し、乾燥し、120℃以上350℃以下で仮焼成後、400℃以上700℃以下の温度で本焼成する工程を含む、製造方法。
[4]
不飽和アルデヒドの製造方法であって、
上記[1]又は[2]記載の酸化物触媒を用い、プロピレン及びイソブチレンからなる群から選ばれる少なくとも1種のオレフィン及び/又はt−ブチルアルコールを酸化反応させる工程を含む、製造方法。
That is, the present invention is as follows.
[1]
An oxide catalyst used in an oxidation reaction of olefin and / or alcohol,
It contains molybdenum, bismuth, iron, cobalt and cerium, the atomic ratio a of bismuth to 12 atoms of molybdenum is 2 ≦ a ≦ 6, the atomic ratio b of iron is 2.5 <b ≦ 5, and the atomic ratio c of cobalt is 2. ≦ c ≦ 8, the atomic ratio d of cerium is 0.5 ≦ d ≦ 6, and the atomic ratio of iron / cobalt is 0.4 ≦ b / c ≦ 2.5,
An oxide catalyst in which the rate of change of d is 5000 to 9000 ppm, based on the interplanar spacing d of the complex oxide of cerium and molybdenum showing a peak at 33.50 ° in X-ray diffraction.
[2]
The following composition formula (1)
Mo 12 Bi a Fe b Co c Ce d A e B f O g (1)
(Wherein Mo is molybdenum, Bi is bismuth, Fe is iron, Co is cobalt, Ce is cerium, A is at least one element selected from the group consisting of cesium and rubidium, and B is copper, nickel, magnesium And at least one element selected from the group consisting of lead, a to f indicate the atomic ratio of each element to the Mo12 atom, 2 ≦ a ≦ 6, 2.5 <b ≦ 5, 2 ≦ c ≦ 8, 0.4 ≦ b / c ≦ 2.5, 0.5 ≦ d ≦ 6, 0.01 ≦ e ≦ 2, 0 ≦ f <2, and g is determined by the valence of constituent elements other than oxygen It is the number of oxygen atoms.) The oxide catalyst according to the above [1], which has a composition represented by:
[3]
A method for producing an oxide catalyst according to the above [1] or [2],
A step of aging a raw material slurry containing molybdenum, bismuth, iron, cobalt, and cerium at a temperature higher than room temperature, drying, pre-baking at 120 ° C. or higher and 350 ° C. or lower, and then performing main baking at a temperature of 400 ° C. or higher and 700 ° C. or lower. A manufacturing method.
[4]
A method for producing an unsaturated aldehyde comprising:
A production method comprising a step of oxidizing at least one olefin and / or t-butyl alcohol selected from the group consisting of propylene and isobutylene using the oxide catalyst according to the above [1] or [2].

本発明によれば、オレフィン及び/又はアルコールの酸化反応において、高い原料濃度、かつ高い反応温度の反応条件で、目的生成物の生産性の高い触媒を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the oxidation reaction of an olefin and / or alcohol, the catalyst with high productivity of a target product can be provided on the reaction conditions of high raw material concentration and high reaction temperature.

実施例2及び比較例1における酸化物触媒のX線回折ピークを示す。The X-ray-diffraction peak of the oxide catalyst in Example 2 and Comparative Example 1 is shown. 図1におけるX線回折ピークの2θ=32.5〜35°の範囲の拡大図を示す。The enlarged view of the range of 2θ = 32.5 to 35 ° of the X-ray diffraction peak in FIG. 1 is shown.

以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。なお、本発明は、以下の実施形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not restrict | limited to the following embodiment, A various deformation | transformation can be implemented within the range of the summary.

[1]酸化反応用酸化物触媒
本実施形態における酸化物触媒は、
オレフィン及び/又はアルコールの酸化反応に用いられる酸化物触媒であって、
モリブデン、ビスマス、鉄、コバルト、セリウムを含有し、モリブデン12原子に対するビスマスの原子比aが2≦a≦6、鉄の原子比bが2.5<b≦5、コバルトの原子比cが2≦c≦8、セリウムの原子比dが0.5≦d≦6、鉄/コバルトの原子比が0.4≦b/c≦2.5であり、
X線回折において33.50°にピークを示すセリウムとモリブデンの複合酸化物の面間隔dを基準にしたとき、dの変化率が5000〜9000ppmである。
[1] Oxide catalyst for oxidation reaction The oxide catalyst in the present embodiment is
An oxide catalyst used in an oxidation reaction of olefin and / or alcohol,
It contains molybdenum, bismuth, iron, cobalt and cerium, the atomic ratio a of bismuth to 12 atoms of molybdenum is 2 ≦ a ≦ 6, the atomic ratio b of iron is 2.5 <b ≦ 5, and the atomic ratio c of cobalt is 2. ≦ c ≦ 8, the atomic ratio d of cerium is 0.5 ≦ d ≦ 6, and the atomic ratio of iron / cobalt is 0.4 ≦ b / c ≦ 2.5,
When the interplanar spacing d of the complex oxide of cerium and molybdenum showing a peak at 33.50 ° in X-ray diffraction is used as a reference, the rate of change of d is 5000 to 9000 ppm.

目的生成物の生産性の向上には、目的生成物の選択性と逐次酸化抑制が寄与している。面間隔dの変化率が5000〜9000ppmとなる構造を有する複合酸化物は、中間体の安定性に寄与するのではないかと、本発明者らは考えた。酸化的な水素の脱離により、オレフィン及び/又はアルコールからπアリル中間体が生成し、更に付加反応又は脱水素反応によってπアリル中間体が変化し、目的生成物が得られる。πアリル中間体は反応性が高く不安定であるため、通常であれば即時に他の化合物へと変化又は分解するが、本実施形態における酸化物触媒は、πアリル中間体の安定性を制御しており、目的生成物を得る反応が有利に進行すると考えられる。πアリル中間体に酸素が付加すると、アルデヒド又はカルボン酸に、アンモニアが付加するとニトリルに変化する。また、πアリル中間体から水素が脱離すると二重結合が形成され、アルコールからはオレフィンが、オレフィンからはジオレフィンなどが得られる。よって、反応器に供給する原料を適宜選択することによって、本実施形態における酸化物触媒を用いて、各種目的生成物を得ることが可能である。   In order to improve the productivity of the target product, the selectivity of the target product and the sequential oxidation inhibition contribute. The present inventors thought that the composite oxide having a structure in which the change rate of the interplanar spacing d is 5000 to 9000 ppm may contribute to the stability of the intermediate. Oxidative elimination of hydrogen produces a π-allyl intermediate from an olefin and / or alcohol, and further changes the π-allyl intermediate by an addition reaction or a dehydrogenation reaction to obtain the desired product. Since the π-allyl intermediate is highly reactive and unstable, it usually changes or decomposes immediately into another compound, but the oxide catalyst in this embodiment controls the stability of the π-allyl intermediate. Therefore, it is considered that the reaction for obtaining the target product proceeds advantageously. When oxygen is added to the π-allyl intermediate, it is changed to nitrile when ammonia is added to aldehyde or carboxylic acid. Further, when hydrogen is eliminated from the π-allyl intermediate, a double bond is formed, and an olefin is obtained from alcohol and a diolefin is obtained from olefin. Therefore, various target products can be obtained using the oxide catalyst in the present embodiment by appropriately selecting the raw materials to be supplied to the reactor.

本実施形態における酸化物触媒が逐次酸化物の生成を抑制する理由は定かではないが、本発明者らが検討したところによると、目的生成物が不飽和アルデヒドであっても、逐次酸化物が減少することが明らかになった。不飽和アルデヒドは極めて容易に酸化されやすい化合物であり、高い原料濃度かつ高い反応温度条件においても、不飽和アルデヒド由来の逐次酸化物が減少するということは驚くべき結果である。酸化されやすい不飽和アルデヒドであっても逐次酸化反応を抑制できるのであれば、他の目的生成物においても逐次酸化の生成が抑制されると考えられる。逐次酸化物はあらゆる酸化反応において好ましくない副生成物であり、これを抑制できるのであれば、生産性の飛躍的な向上が期待できる。
なお、本明細書において逐次酸化物とは、目的生成物を更に酸化した状態の化合物を示す。よって、不飽和カルボン酸を逐次酸化物の一種とみなすのは、直メタ法の第一反応工程など、目的生成物が不飽和アルデヒドの場合である。他に逐次酸化物としては、二酸化炭素、過酸化物、ジケトン類、エポキシ化合物などが挙げられる。
The reason why the oxide catalyst in the present embodiment suppresses the sequential oxide formation is not clear, but according to the study by the present inventors, even if the target product is an unsaturated aldehyde, the sequential oxide is It became clear that it decreased. It is a surprising result that unsaturated aldehydes are very easily oxidized compounds, and that sequential oxides derived from unsaturated aldehydes are reduced even at high raw material concentrations and high reaction temperature conditions. Even if it is an unsaturated aldehyde that is easily oxidized, if the sequential oxidation reaction can be suppressed, the generation of sequential oxidation is also suppressed in other target products. Sequential oxides are undesirable by-products in all oxidation reactions, and if this can be suppressed, a dramatic improvement in productivity can be expected.
In the present specification, the sequential oxide refers to a compound in a state where the target product is further oxidized. Therefore, the unsaturated carboxylic acid is regarded as a kind of sequential oxide when the target product is an unsaturated aldehyde, such as in the first reaction step of the direct meta method. Other sequential oxides include carbon dioxide, peroxides, diketones, and epoxy compounds.

(1)組成
本実施形態における酸化物触媒は、Mo−Bi系の金属酸化物において各金属元素が複合化するようにする観点から、Mo、Bi、Ce、Feの存在は不可欠であり、Mo12原子に対して、Biの原子比aは、2≦a≦6となるようにする。目的生成物の選択率をより高める観点で、好ましくは2≦a≦5であり、より好ましくは2≦a≦4である。同様の観点で、Ceの原子比dは、0.5≦d≦6であり、好ましくは1≦d≦5、より好ましくは1≦d≦4である。BiとMoは、気相接触酸化、アンモ酸化反応等の活性種とされているBiMo12、BiMoO等の複合酸化物を形成しやすく、触媒活性は高いものの、融点が低く、耐熱性が低い。一方、CeとMoは、CeMo12等の複合酸化物を形成し難いが、融点が高く、耐熱性が非常に高い。両者を適切に複合化させると、耐熱性の高いCeMo12にBiが固溶して複合化された構造を有し、高い活性と耐熱性を併せ持つCe−Bi−Mo−O系の複合酸化物が形成される。
(1) Composition From the viewpoint of making each metal element complex in the Mo—Bi-based metal oxide, the oxide catalyst in the present embodiment is indispensable, and Mo12, Mo12 are indispensable. The atomic ratio a of Bi with respect to the atoms is set to satisfy 2 ≦ a ≦ 6. From the viewpoint of further increasing the selectivity of the target product, 2 ≦ a ≦ 5 is preferable, and 2 ≦ a ≦ 4 is more preferable. From the same viewpoint, the atomic ratio d of Ce is 0.5 ≦ d ≦ 6, preferably 1 ≦ d ≦ 5, and more preferably 1 ≦ d ≦ 4. Bi and Mo are easy to form complex oxides such as Bi 2 Mo 3 O 12 and Bi 2 MoO 6 that are considered to be active species for gas phase catalytic oxidation, ammoxidation reaction, etc. Low and heat resistance is low. On the other hand, Ce and Mo hardly form a composite oxide such as Ce 2 Mo 3 O 12 , but have a high melting point and extremely high heat resistance. When both are appropriately combined, Ce-Bi-Mo-O system has a structure in which Bi is solid-solved in Ce 2 Mo 3 O 12 with high heat resistance and has both high activity and heat resistance. The complex oxide is formed.

目的生成物の選択率を低下させることなく触媒活性を高める観点から、FeはMo、Biと同様に、工業的に目的生成物を合成する上で必須の元素であるが、Fe含量が多くなるとFeが生成し、COやCO等の逐次酸化物が増加する傾向があり、その結果、目的生成物の選択率が低下する。Fe含有量を多くしてもFeが生成しない場合もあるが、この時生成するのはFe−Mo−Oという2成分系の複合酸化物であって、これは触媒活性を示さない不活性成分である。従って、従来、高い収率を示すには、Mo12原子に対するFeの原子比を0<Fe≦2.5とするのが一般的であり、これ以上にFeの原子比を高くして有効な結晶相を生成させるという思想はなかった。これに対し、本発明者らは、従来の技術常識であるFeの原子比の上限を超えた組成域で、FeのみならずBiとCeの含有量も増やすことで、Ce−Bi−Fe−Mo−O系という4成分系の高性能な結晶構造が形成されることを見出した。Ce−Bi−Fe−Mo−O系の結晶を有する酸化物触媒は、CeとFeが活性種とされているBiMo12、BiMoO等の複合酸化物のBi−O−Mo結合のMo−O結合エネルギーが適切であるために、目的生成物の高い収率を示すと本発明者らは推定している。本実施形態における酸化物触媒のMo12原子に対するFeの原子比bは、2.5<b≦5であり、好ましくは2.5<b≦4.5、さらに好ましくは2.5<b≦4である。From the viewpoint of increasing the catalytic activity without reducing the selectivity of the target product, Fe is an essential element for industrially synthesizing the target product, like Mo and Bi, but when the Fe content increases. Fe 2 O 3 is generated, and sequential oxides such as CO and CO 2 tend to increase, and as a result, the selectivity of the target product decreases. Even if the Fe content is increased, Fe 2 O 3 may not be generated, but at this time, it is a binary composite oxide of Fe—Mo—O, which does not exhibit catalytic activity. Inactive ingredient. Therefore, conventionally, in order to show a high yield, it is general that the atomic ratio of Fe to Mo12 atoms is 0 <Fe ≦ 2.5. There was no idea of generating a phase. On the other hand, the present inventors increase the content of not only Fe but also Bi and Ce in a composition range that exceeds the upper limit of the atomic ratio of Fe, which is conventional technical common sense, so that Ce-Bi-Fe- It has been found that a four-component high-performance crystal structure called Mo-O is formed. Oxide catalyst having a Ce-Bi-Fe-MoO system crystals, Ce and Fe Bi-O-composite oxide such as Bi 2 Mo 3 O 12, Bi 2 MoO 6 , which is an active species The inventors presume that the Mo—O bond energy of the Mo bond is appropriate, and therefore shows a high yield of the desired product. The atomic ratio b of Fe to Mo12 atoms of the oxide catalyst in the present embodiment is 2.5 <b ≦ 5, preferably 2.5 <b ≦ 4.5, more preferably 2.5 <b ≦ 4. It is.

本実施形態における酸化物触媒において、Coは、Mo、Bi、Feと同様に工業的に目的生成物を合成する上で必須の元素であり、複合酸化物CoMoOを形成し、Bi−Mo−O等の活性種を高分散させるための担体としての役割と、気相から酸素を取り込み、Bi−Mo−O等に供給する役割を果たしている。不飽和アルデヒドを高収率で得るには、CoをMoと複合化させ、複合酸化物CoMoOを形成させる必要がある。CoやCoO等の単独酸化物の形成を少なくする観点から、Coの原子比cは、2≦c≦8であり、好ましくは2.5≦c≦6、より好ましくは2.5≦c≦4である。触媒の活性を高める観点から、FeとCoの原子比b/cは、0.4≦b/c≦2.5であり、好ましくは0.7≦b/c≦2.0、より好ましくは1≦b/c≦1.5である。In the oxide catalyst according to the present embodiment, Co is an element essential for industrially synthesizing a target product, similarly to Mo, Bi, and Fe, and forms a composite oxide CoMoO 4 to form Bi—Mo—. It plays the role of a carrier for highly dispersing active species such as O and the role of taking oxygen from the gas phase and supplying it to Bi—Mo—O or the like. In order to obtain an unsaturated aldehyde in a high yield, it is necessary to complex Co with Mo to form a complex oxide CoMoO 4 . From the viewpoint of reducing the formation of single oxides such as Co 3 O 4 and CoO, the atomic ratio c of Co is 2 ≦ c ≦ 8, preferably 2.5 ≦ c ≦ 6, more preferably 2.5. ≦ c ≦ 4. From the viewpoint of enhancing the activity of the catalyst, the atomic ratio b / c of Fe to Co is 0.4 ≦ b / c ≦ 2.5, preferably 0.7 ≦ b / c ≦ 2.0, more preferably 1 ≦ b / c ≦ 1.5.

本実施形態における酸化物触媒は、好ましくは、下記組成式(1)で表される組成を有する。
Mo12BiFeCoCe (1)
(式中、Moはモリブデン、Biはビスマス、Feは鉄、Coはコバルト、Ceはセリウム、Aはセシウム及びルビジウムからなる群から選ばれる少なくとも1種の元素を示し、Bは銅、ニッケル、マグネシウム及び鉛からなる群から選ばれる少なくとも1種の元素を示し、a〜fは、Mo12原子に対する各元素の原子比を示し、2≦a≦6、2.5<b≦5、2≦c≦8、0.4≦b/c≦2.5、0.5≦d≦6、0.01≦e≦2、0≦f<2であり、gは酸素以外の構成元素の原子価によって決まる酸素の原子数である。)
The oxide catalyst in the present embodiment preferably has a composition represented by the following composition formula (1).
Mo 12 Bi a Fe b Co c Ce d A e B f O g (1)
(Wherein Mo is molybdenum, Bi is bismuth, Fe is iron, Co is cobalt, Ce is cerium, A is at least one element selected from the group consisting of cesium and rubidium, and B is copper, nickel, magnesium And at least one element selected from the group consisting of lead, a to f indicate the atomic ratio of each element to the Mo12 atom, 2 ≦ a ≦ 6, 2.5 <b ≦ 5, 2 ≦ c ≦ 8, 0.4 ≦ b / c ≦ 2.5, 0.5 ≦ d ≦ 6, 0.01 ≦ e ≦ 2, 0 ≦ f <2, and g is determined by the valence of constituent elements other than oxygen (The number of oxygen atoms.)

上記組成式(1)において、Aはセシウム及び/又はルビジウムを示し、不飽和アルデヒド製造用触媒において、触媒で複合化されなかったMoO等の酸点を中和する役割を示すと考えられる。セシウム及び/又はルビジウムを含有するか否かは、後述するCe−Bi−Fe−Mo−Oの結晶構造には影響しない。Mo12原子に対するこれらの元素の原子比は、触媒活性の観点から、0.01≦e≦2である。Aの原子比eを、この数値範囲に調整する理由としては、アルカリ元素がこれ以上多くなると触媒が塩基性となり、原料であるオレフィンやアルコールが触媒に吸着され難く、充分な触媒活性を発現できなくなる傾向にあるためである。In the compositional formula (1), A represents cesium and / or rubidium, and is considered to exhibit a role of neutralizing acid sites such as MoO 3 that have not been complexed by the catalyst in the catalyst for producing an unsaturated aldehyde. Whether or not cesium and / or rubidium are contained does not affect the crystal structure of Ce-Bi-Fe-Mo-O described later. The atomic ratio of these elements to the Mo12 atom is 0.01 ≦ e ≦ 2 from the viewpoint of catalytic activity. The reason for adjusting the atomic ratio e of A to this numerical range is that the catalyst becomes basic when the alkali element is increased more than this, and the raw material olefin or alcohol is hardly adsorbed by the catalyst, and sufficient catalytic activity can be expressed. This is because it tends to disappear.

Bは、銅、ニッケル、マグネシウム及び鉛からなる群から選ばれる少なくとも1種の元素を示し、酸化物中で一部のコバルトに置換すると考えられている。銅は触媒の活性を向上させる役割があるが、触媒性能を示すCe−Bi−Fe−Mo−O結晶の生成とのバランスを保つ観点で、Bの原子比fの上限は、f<2であることが好ましい。ニッケル、マグネシウム、鉛は、原子比f<2である場合、CoMoOの結晶構造を安定化させ、圧力や温度による相転移等を抑制させる役割がある。Bで示される元素は、触媒の活性の向上、又は、触媒中のCoMoOの結晶構造を安定化させるものであるため、Ce−Bi−Fe−Mo−Oの結晶構造には影響せず、含有量がゼロ(f=0)でもよい任意成分として位置づけられる。B represents at least one element selected from the group consisting of copper, nickel, magnesium and lead, and is considered to be substituted with some cobalt in the oxide. Copper plays a role in improving the activity of the catalyst, but from the viewpoint of maintaining a balance with the formation of Ce—Bi—Fe—Mo—O crystals exhibiting catalytic performance, the upper limit of the atomic ratio f of B is f <2. Preferably there is. When the atomic ratio f <2, nickel, magnesium, and lead have a role of stabilizing the crystal structure of CoMoO 4 and suppressing phase transition due to pressure and temperature. The element represented by B does not affect the crystal structure of Ce—Bi—Fe—Mo—O because it improves the activity of the catalyst or stabilizes the crystal structure of CoMoO 4 in the catalyst. It is positioned as an optional component whose content may be zero (f = 0).

A及びBで示される元素は、触媒中に含まれていても含まれていなくても、後述するCe−Bi−Fe−Mo−Oの結晶構造とは別に結晶構造を形成するため、Ce−Bi−Fe−Mo−Oの結晶構造には影響しない。   The elements represented by A and B form a crystal structure separately from the crystal structure of Ce-Bi-Fe-Mo-O described later, whether or not contained in the catalyst. The crystal structure of Bi—Fe—Mo—O is not affected.

上記組成式(1)で表される組成を有する酸化物触媒は、不飽和アルデヒドの選択率が高いという特徴を有しており、直メタ法の第一反応工程において好適に用いられる。直酸法では、最終酸化生成物が不飽和カルボン酸であるため、中間体の不飽和アルデヒドを得る工程においてメタクリル酸を減らすことのメリットは小さく、メタクロレインとメタクリル酸の合計収率が高いほど望ましい触媒といえる。これに対し、直メタ法は第1反応工程で不飽和アルデヒドを生成させた後、第2反応工程で不飽和アルデヒドから不飽和カルボン酸エステルを生成させるので、不飽和カルボン酸を目的生成物とする工程が存在しない。そのため、複合酸化物触媒による酸化工程において、不飽和アルデヒドのみが生成されるのが望ましく、不飽和カルボン酸の生成は極力抑えられるのが望ましい。すなわち、直メタ法の第1反応工程用の触媒を最適化することを目的とする場合、直酸法用の触媒とは明確に方向性が異なり、目的生成物である不飽和アルデヒドの収率が高く、且つ、逐次酸化物である不飽和カルボン酸の収率は低い触媒が望ましいことになる。   The oxide catalyst having the composition represented by the composition formula (1) has a feature that the selectivity of the unsaturated aldehyde is high, and is suitably used in the first reaction step of the direct meta method. In the direct acid method, since the final oxidation product is an unsaturated carboxylic acid, the merit of reducing methacrylic acid in the step of obtaining an intermediate unsaturated aldehyde is small, and the higher the total yield of methacrolein and methacrylic acid, the higher the yield. This is a desirable catalyst. In contrast, in the direct meta method, an unsaturated aldehyde is produced from an unsaturated aldehyde in the second reaction step after an unsaturated aldehyde is produced in the first reaction step. There is no process to do. Therefore, it is desirable that only the unsaturated aldehyde is produced in the oxidation step using the composite oxide catalyst, and the production of the unsaturated carboxylic acid is desirably suppressed as much as possible. That is, when aiming at optimizing the catalyst for the first reaction step of the direct meta method, the direction of the unsaturated aldehyde as the target product is clearly different from that of the catalyst for the direct acid method. Therefore, a catalyst having a high yield and a low yield of unsaturated carboxylic acid which is a sequential oxide is desirable.

(2)結晶構造
X線回折(XRD)でX線回折角2θ=5°〜60°の範囲を測定すると、セリウムとモリブデンのみからなる酸化物は33.50°にピークを示す。このセリウムとモリブデンのみからなる酸化物に、鉄とビスマスが更に複合すると、このピークのシフトが起こる。本実施態様における酸化物触媒は、セリウムとモリブデンからなる酸化物に、鉄とビスマスが複合化した金属を含むため、33.50°ではなく、33.50°+α°(0<α)にピークを示す。
(2) Crystal structure When an X-ray diffraction angle (XRD) is used to measure an X-ray diffraction angle 2θ = 5 ° to 60 °, an oxide composed only of cerium and molybdenum has a peak at 33.50 °. When iron and bismuth are further combined with the oxide composed only of cerium and molybdenum, this peak shift occurs. Since the oxide catalyst in the present embodiment includes a metal in which iron and bismuth are combined in an oxide composed of cerium and molybdenum, the peak is not 33.50 ° but 33.50 ° + α ° (0 <α). Indicates.

ブラッグの条件式(「固体表面キャラクタリゼーションの実際」、田中康裕・山下弘巳編、第13〜25頁、講談社サイエンティフィク)によると、結晶面の面間隔d、結晶面とX線の入射角と反射角θ、波長λの間に以下の式(II)
2dsinθ=nλ(n:整数) (II)
の関係がある時、つまり入射及び散乱X線の行路差が入射X線の波長の整数倍に等しいとき、回折現象が観察される。本実施形態では、一次反射とし、n=1の反射条件を満たした回折とする。例えば、多成分系の複合酸化物において、ある元素が置換固溶し、X線回折角(2θ)が低角度側にシフトした場合、面間隔dは広がる方向にあり、高角度側にシフトした場合、面間隔dは縮まる方向にある。このことから、XRDで33.50°に現れるピークが高角度側にシフト(0<α)することは、金属の複合化によって酸化物の面間隔dが縮まる方向に変化していることを意味する。
面間隔dの変化率は、以下の式(III)
d変化率[ppm]=(d−d’)/d×1000000 (III)
(式中、dは、33.50°にピークを示すセリウムとモリブデンの複合酸化物の面間隔を示し、d’は、本実施形態における酸化物触媒の面間隔を示す。)で表される。本実施態様における酸化物触媒においては、dの変化率が5000〜9000ppmである。dの変化率が5000ppm未満であると、セリウムとモリブデンの二成分系に近い酸化物を含むことから、酸化力が強く、触媒として使用すると逐次酸化物の収率が高くなる。一方、変化率が9000ppm超であると、活性が低下する。高活性、かつ、高収率で目的生成物を得る観点から、dの変化率は、より好ましくは5500〜8500ppm、さらに好ましくは6000〜8000ppmである。
According to Bragg's conditional expression ("Actual State of Solid Surface Characterization", edited by Yasuhiro Tanaka and Hiroaki Yamashita, pages 13-25, Kodansha Scientific), the crystal plane spacing d, the crystal plane and X-ray incidence angle And the reflection angle θ and the wavelength λ, the following formula (II)
2 dsin θ = nλ (n: integer) (II)
That is, when the path difference between incident and scattered X-rays is equal to an integral multiple of the wavelength of incident X-rays, a diffraction phenomenon is observed. In the present embodiment, the first-order reflection is used, and the diffraction satisfies the reflection condition of n = 1. For example, in a multi-component complex oxide, when an element is substituted and dissolved, and the X-ray diffraction angle (2θ) is shifted to the low angle side, the interplanar spacing d is in the widening direction and shifted to the high angle side. In this case, the surface interval d is in the shrinking direction. From this, the peak appearing at 33.50 ° in XRD shifts to the high angle side (0 <α) means that the interplanar spacing d of the oxide changes in the direction of shrinking due to the composite of the metal. To do.
The rate of change of the surface spacing d is expressed by the following formula (III)
d change rate [ppm] = (d 0 −d ′) / d 0 × 1000000 (III)
(Wherein d 0 represents the interplanar spacing of the complex oxide of cerium and molybdenum having a peak at 33.50 °, and d ′ represents the interplanar spacing of the oxide catalyst in the present embodiment). The In the oxide catalyst in this embodiment, the rate of change of d is 5000 to 9000 ppm. If the rate of change of d is less than 5000 ppm, since it contains an oxide close to a binary system of cerium and molybdenum, the oxidizing power is strong, and when used as a catalyst, the yield of the oxide increases sequentially. On the other hand, if the rate of change exceeds 9000 ppm, the activity decreases. From the viewpoint of obtaining the target product with high activity and high yield, the change rate of d is more preferably 5500 to 8500 ppm, and further preferably 6000 to 8000 ppm.

面間隔dが変化するメカニズムは明らかではないが、Ce、Bi及びMoの複合酸化物に、さらにFeが固溶することによって、複合化されたCe−Bi−Fe−Mo−Oの4成分系の高性能な結晶構造が新たに形成されるためと考えられる。Bi等を分散させて複合化させるための触媒の製造方法については、後で詳述するが、このような結晶構造を形成させるためには、金属の存在比も重要であり、Mo12原子に対するFeの原子比bが2.5<b≦5の範囲を満足する時には生成するが、これより小さいと生成しないか、生成したとしても極少量であり、得られる酸化物触媒は、逐次酸化物の生成を抑制し難くなる。即ち、b≦2.5であると逐次酸化物の収率が高くなり、b>5であるとCO(COやCO等)の収率が高くなるため、その結果、目的生成物の生産性は低下する。Although the mechanism for changing the interplanar spacing d is not clear, a quaternary system of Ce-Bi-Fe-Mo-O which is complexed by further dissolving Fe in the complex oxide of Ce, Bi and Mo. This is probably because a new high-performance crystal structure is formed. The production method of the catalyst for dispersing and complexing Bi and the like will be described in detail later. In order to form such a crystal structure, the abundance ratio of the metal is also important, and Fe to Mo12 atoms is important. Is produced when the atomic ratio b satisfies the range of 2.5 <b ≦ 5. However, if it is smaller than this, it will not be produced, or if it is produced, it will be a very small amount. It becomes difficult to suppress generation. That is, when b ≦ 2.5, the yield of the sequential oxide increases, and when b> 5, the yield of CO x (CO 2 , CO, etc.) increases. Productivity decreases.

なお、Ce−Bi−Fe−Mo−Oの複合化の指標としては、33.50°のシフトを基準とするのが望ましいが、この他のピークについても複合化による影響が起こる。本実施形態における酸化物触媒は、強度の強い順に、X線回折角(2θ)が28.17°±0.05°、33.50°+α°、26.44°±0.05°にピークを有する。この内、28.17°±0.05°、33.50°+α°の2つのピークは主にCe−Mo−Oに由来し、26.44°±0.05°は、主にCo−Mo−Oに由来するピークであり、逐次酸化物の生成抑制の観点で、各ピークの強度は、上記順に従って小さくなることが好ましい。   In addition, as an index of the complexing of Ce—Bi—Fe—Mo—O, it is desirable to use a shift of 33.50 ° as a reference, but the influence of the complexing also occurs on other peaks. The oxide catalyst according to the present embodiment has an X-ray diffraction angle (2θ) that peaks at 28.17 ° ± 0.05 °, 33.50 ° + α °, and 26.44 ° ± 0.05 ° in descending order of strength. Have Among these, two peaks of 28.17 ° ± 0.05 ° and 33.50 ° + α ° are mainly derived from Ce—Mo—O, and 26.44 ° ± 0.05 ° is mainly Co—. It is a peak derived from Mo-O, and the intensity of each peak is preferably reduced in the above order from the viewpoint of suppressing the generation of sequential oxides.

X線回折角(2θ)=33.50°+α°のピークについて、αとは、33.50°からのピークのシフトを示し、d変化率が5000〜9000ppmであるとき、0.10°≦α≦0.25°である。   For the peak at X-ray diffraction angle (2θ) = 33.50 ° + α °, α represents a peak shift from 33.50 °, and when the d change rate is 5000 to 9000 ppm, 0.10 ° ≦ α ≦ 0.25 °.

(3)金属酸化物以外の成分
本実施形態における酸化反応用の酸化物触媒は、金属酸化物を担持するための担体を含有してもよい。担体を含む触媒は、金属酸化物の高分散化の点、及び担持された金属酸化物に高い耐摩耗性を与えるという点で好ましい。ここで、押し出し成型法により触媒を成型する場合には担体を含むことが好ましいが、固定床反応器でメタクロレインを製造する際に、打錠成型した触媒にする場合には担体を含まなくてよい。担体としては、特に限定されず、例えば、シリカ、アルミナ、チタニア、ジルコニアが挙げられる。一般的にシリカは、他の担体に比べてそれ自身不活性であり、目的生成物に対する選択性を減ずることなく、金属酸化物に対して良好なバインド作用を有するため、好ましい担体である。さらに、シリカ担体は担持された金属酸化物に、高い耐摩耗性を与え易いという点でも好ましい。押し出し成型法により触媒を成型する場合、触媒全体に対する担体の含有量は5〜10質量%であることが好ましい。
(3) Components other than metal oxide The oxide catalyst for oxidation reaction in the present embodiment may contain a carrier for supporting a metal oxide. A catalyst containing a support is preferable in terms of high dispersion of the metal oxide and high wear resistance of the supported metal oxide. Here, when the catalyst is molded by an extrusion molding method, it is preferable to include a carrier. However, when producing methacrolein in a fixed bed reactor, when a tablet-molded catalyst is used, the carrier is not included. Good. The carrier is not particularly limited, and examples thereof include silica, alumina, titania, and zirconia. In general, silica is a preferred support because it is inert per se relative to other supports and has a good binding action on metal oxides without reducing the selectivity to the desired product. Further, the silica support is preferable in that it easily imparts high wear resistance to the supported metal oxide. When the catalyst is molded by the extrusion molding method, the content of the carrier with respect to the whole catalyst is preferably 5 to 10% by mass.

流動床反応器で用いる触媒の場合も、上記と同じ観点から、シリカを担体として用いることが好ましい。Ce−Bi−Fe−Mo−Oの結晶構造への影響と、見掛比重を適切にして流動性を良好にする観点で、触媒中の担体の含有量は、触媒の全質量に対して80質量%以下が好ましく、より好ましくは70質量%以下、さらに好ましくは60質量%以下である。流動床反応用のような強度を要する触媒の場合、実用上十分な耐破砕正や耐摩耗性等を示す観点から、担体の含有量は、触媒の全質量に対して20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましい。   In the case of a catalyst used in a fluidized bed reactor, it is preferable to use silica as a carrier from the same viewpoint as described above. In view of the influence on the crystal structure of Ce-Bi-Fe-Mo-O and the improvement of fluidity by making the apparent specific gravity appropriate, the content of the support in the catalyst is 80% of the total mass of the catalyst. It is preferably at most mass%, more preferably at most 70 mass%, still more preferably at most 60 mass%. In the case of a catalyst requiring strength such as for fluidized bed reaction, the content of the carrier is preferably 20% by mass or more with respect to the total mass of the catalyst from the viewpoint of practically sufficient anti-crushing and wear resistance. 30 mass% or more is more preferable, and 40 mass% or more is further more preferable.

[2]酸化反応用触媒の製造方法
上述のように、本発明者らは、Ce、Bi、Fe及びMoを単独及び/又は二成分系酸化物ではなく、4成分が複合化したCe−Bi−Fe−Mo−O系の複合酸化物を得ることに着目し、その組成比や調製方法を総合的に検討した。
[2] Method for Producing Oxidation Reaction Catalyst As described above, the present inventors have used Ce, Bi, Fe, and Mo alone and / or not a binary oxide but a Ce-Bi compounded with four components. Focusing on obtaining a —Fe—Mo—O-based composite oxide, the composition ratio and the preparation method were comprehensively studied.

ビスモリ系(Bi−Mo)触媒と呼ばれるように、BiはMoと共に活性種の形成のための必須元素であるため、活性の観点から多く含まれていることが有利であるが、Bi含有量を多くすると触媒が不均質になることが知られている。例えば、従来、工業的に使用されているBi原料である硝酸Biは難水溶解性物質であり、硝酸Biを溶解させるためには大量の硝酸を必要とし、その結果、焼成後の触媒組成が不均質になるため、従来の触媒調製技術では、Bi含有量を多くするには限界があった。即ち、Bi等の単独酸化物が生成し、均質な触媒が得られず、目的生成物の生産性が低くなるという問題がある。また、目的生成物の選択率を低下させることなく触媒活性を高める観点から、FeはMoやBiと同様に工業的に目的生成物を合成する上で必須の元素であることが古くから報告されているが、国際公開95/35273号パンフレットに報告されているように、少量の添加が最適であり、Fe含量が多くなるとCOやCO等の逐次酸化物の生成が増加する傾向が現れ、目的生成物の選択率が低下してしまう。Bi is an essential element for the formation of active species together with Mo as called a Bismoly catalyst (Bi-Mo), so it is advantageous that it is contained in a large amount from the viewpoint of activity. It is known that the catalyst becomes inhomogeneous when the amount increases. For example, Bi nitrate, which is a Bi raw material that has been used industrially in the past, is a hardly water-soluble substance, and a large amount of nitric acid is required to dissolve Bi nitrate. Due to the inhomogeneity, the conventional catalyst preparation technique has a limit in increasing the Bi content. That is, there is a problem that a single oxide such as Bi 2 O 3 is generated, a homogeneous catalyst cannot be obtained, and the productivity of the target product is lowered. From the viewpoint of enhancing catalytic activity without reducing the selectivity of the target product, it has long been reported that Fe is an essential element for synthesizing the target product industrially, like Mo and Bi. However, as reported in International Publication No. 95/35273 pamphlet, the addition of a small amount is optimal, and when the Fe content increases, the generation of sequential oxides such as CO and CO 2 tends to increase. The selectivity of the target product is reduced.

本発明者らはこの課題を解決すべく試行錯誤を重ねた結果、驚くべきことに、硝酸が多い触媒で、従来よりもBi、Fe含有量の多い触媒成分に、さらにCeを加えることによって、(a)特定の構成比率と、(b)特定の金属塩スラリーの熟成条件、(c)特定の焼成方法の3つの要件を満たした新たな触媒製造技術によって、はじめて単純酸化物の生成を抑制し、4つの成分が複合化したCe−Bi−Fe−Mo−Oの結晶が新たに形成されることを見出した。単に、硝酸Biを増やし、且つ硝酸を多くしただけでは、所望の複合化は起こらなかった。すなわち、硝酸が多い触媒で、Bi、Fe含有量の多い触媒成分にし、さらにCeを加えることによって、はじめてCe−Bi−Fe−Mo−Oの4成分が相溶した結晶構造が得られることを見出した。   As a result of repeated trial and error in order to solve this problem, the present inventors surprisingly added a Ce to a catalyst component having a higher amount of nitric acid, Bi and Fe than conventional catalysts, Suppressing the formation of simple oxides for the first time by a new catalyst manufacturing technology that satisfies the three requirements of (a) specific composition ratio, (b) aging conditions of specific metal salt slurry, and (c) specific calcination method And it discovered that the crystal | crystallization of Ce-Bi-Fe-Mo-O which four components compounded is newly formed. Simply increasing Bi nitrate and increasing nitric acid did not result in the desired complexation. That is, it is possible to obtain a crystal structure in which the four components of Ce-Bi-Fe-Mo-O are compatible for the first time by adding a catalyst component with a high amount of nitric acid to a catalyst component with a high Bi and Fe content and further adding Ce. I found it.

すなわち、(a)特定の構成比率と、(b)特定の金属塩スラリーの熟成方法、(c)特定の焼成方法の3条件が揃って初めて、複合化されたCe−Bi−Fe−Mo−Oの4成分系の結晶構造が形成され、不飽和アルデヒドの収率の高い触媒を得ることが可能となる。この3条件のうち1つでも欠けた場合、Ce−Mo−OやBi−Mo−O、Fe−Mo−O等の2成分系の複合酸化物や、FeやBi、MoO、CeO等の単純酸化物が生成し、面間隔dの変化率の範囲も5000〜9000ppmから外れ、その結果、不飽和アルデヒドの収率が低下する。That is, the complexed Ce—Bi—Fe—Mo— is only combined when three conditions of (a) a specific composition ratio, (b) a specific metal salt slurry aging method, and (c) a specific firing method are prepared. A four-component crystal structure of O is formed, and a catalyst with a high yield of unsaturated aldehyde can be obtained. If any one of the three conditions is missing, a binary composite oxide such as Ce—Mo—O, Bi—Mo—O, or Fe—Mo—O, Fe 2 O 3 or Bi 2 O 3 , Simple oxides such as MoO 3 and CeO 2 are generated, and the range of the rate of change of the interplanar spacing d is also outside the range of 5000 to 9000 ppm. As a result, the yield of unsaturated aldehyde is reduced.

本実施態様における酸化物触媒は、例えば、原料スラリーを調製する第1の工程、原料スラリーを噴霧乾燥する第2の工程、第2の工程で得られた乾燥粒子を焼成する第3の工程を包含する方法によって得ることができる。第1〜第3の工程を有する酸化物触媒の製造方法の好ましい態様について以下に説明する。   The oxide catalyst in this embodiment includes, for example, a first step of preparing a raw material slurry, a second step of spray drying the raw material slurry, and a third step of firing the dried particles obtained in the second step. It can be obtained by the method of inclusion. The preferable aspect of the manufacturing method of the oxide catalyst which has a 1st-3rd process is demonstrated below.

(1)原料スラリーの調製
第1の工程では触媒を構成する各金属元素の触媒原料を混合して原料スラリーを得る。モリブデン、ビスマス、セリウム、鉄、コバルト、ルビジウム、セシウム、銅、ニッケル、マグネシウム及び鉛の各元素源としては、水又は硝酸に可溶なアンモニウム塩、硝酸塩、塩酸塩、有機酸塩を挙げることができ、酸化物や水酸化物、炭酸塩等でもよい。酸化物の場合は、水又は有機溶媒に分散された分散液が好ましく、より好ましくは水に分散された酸化物であり、水に分散されている場合、酸化物を分散させるために高分子等の分散安定剤が含まれていてもよい。酸化物の粒子径は、好ましくは1〜500nm、より好ましくは10〜80nmである。担体を含有する触媒を製造する場合は、原料スラリーにシリカ原料としてシリカゾルを添加するのが好ましい。
(1) Preparation of Raw Material Slurry In the first step, raw materials slurry is obtained by mixing catalyst raw materials of each metal element constituting the catalyst. Sources of molybdenum, bismuth, cerium, iron, cobalt, rubidium, cesium, copper, nickel, magnesium, and lead include ammonium salts, nitrates, hydrochlorides, and organic acid salts that are soluble in water or nitric acid. Oxides, hydroxides, carbonates, etc. may be used. In the case of an oxide, a dispersion liquid dispersed in water or an organic solvent is preferable, more preferably an oxide dispersed in water. When dispersed in water, a polymer or the like is used to disperse the oxide. The dispersion stabilizer may be included. The particle diameter of the oxide is preferably 1 to 500 nm, more preferably 10 to 80 nm. When producing a catalyst containing a carrier, it is preferable to add silica sol as a silica raw material to the raw slurry.

スラリーを均一に分散化させる観点で、原料スラリー中に、ポリエチレングリコール、メチルセルロース、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミドなどの水溶性ポリマーや、アミン類、アミノカルボン酸類、しゅう酸、マロン酸、コハク酸などの多価カルボン酸、グリコール酸、りんご酸、酒石酸、クエン酸などの有機酸を適宜添加することもできる。有機酸の添加量は特に限定されないが、均一性と生産量のバランスの観点から、金属酸化物に対して0〜30質量%の範囲で添加することが好ましい。   From the viewpoint of uniformly dispersing the slurry, water-soluble polymers such as polyethylene glycol, methylcellulose, polyvinyl alcohol, polyacrylic acid, and polyacrylamide, amines, aminocarboxylic acids, oxalic acid, malonic acid, and succinic acid are added to the raw material slurry. A polyvalent carboxylic acid such as an acid, or an organic acid such as glycolic acid, malic acid, tartaric acid, or citric acid may be added as appropriate. Although the addition amount of the organic acid is not particularly limited, it is preferably added in the range of 0 to 30% by mass with respect to the metal oxide from the viewpoint of the balance between the uniformity and the production amount.

原料スラリーの調製方法は通常用いられる方法であれば、特に限定されないが、例えば、モリブデンのアンモニウム塩を温水に溶解させた溶液と、ビスマス、セリウム、鉄、コバルト、アルカリ金属を硝酸塩として水又は硝酸水溶液に溶解させた溶液を混合することにより調製することができる。混合後のスラリー中の金属元素濃度は、均一性と生産量のバランスの観点から、通常1〜50質量%であり、好ましくは10〜40質量%、より好ましくは20〜40質量%である。   The method of preparing the raw slurry is not particularly limited as long as it is a commonly used method. It can be prepared by mixing a solution dissolved in an aqueous solution. The metal element concentration in the slurry after mixing is usually 1 to 50% by mass, preferably 10 to 40% by mass, more preferably 20 to 40% by mass, from the viewpoint of the balance between uniformity and production.

アンモニウム塩と硝酸塩を混合すると沈殿を生じ、スラリーとなり易いが、原料スラリーは懸濁状態にし、熟成を実施するのが好ましい。本明細書中、スラリーの「熟成」とはスラリーを懸濁させた状態で保持することを示す。懸濁させるためには、継続的及び/又は断続的にスラリーを攪拌するのが好ましく、この攪拌の工程で、固形分を粉砕し、触媒前駆体の生成を促し、より微細で均一なスラリーにすることができる。Biの含有量が多い場合には、硝酸が多く分散性の低いスラリーになり易いことから、熟成を行うことが特に好ましい。   When the ammonium salt and nitrate are mixed, precipitation occurs and the slurry tends to be formed. However, it is preferable that the raw slurry is suspended and aged. In the present specification, “aging” of the slurry means holding the slurry in a suspended state. In order to suspend the slurry, it is preferable to stir the slurry continuously and / or intermittently. In this stirring step, the solid content is pulverized to promote the formation of the catalyst precursor, and to a finer and more uniform slurry. can do. When the content of Bi is large, aging is particularly preferable because a slurry with a large amount of nitric acid and low dispersibility tends to be formed.

スラリーを熟成する場合、目的とする複合結晶及び/又はその前駆体を得るために、室温より高い温度であって、スラリーの媒体が液状を保つ温度に加熱することが望ましく、具体的には、20℃〜90℃が好ましく、より好ましくは30℃〜80℃、さらに好ましくは50℃〜70℃である。スラリーの攪拌には、攪拌羽根や攪拌子等、一般的な攪拌手段を使用することができ、スラリーの粘度等にもよるが、攪拌速度は50〜3000rpmが好ましい。スラリーの温度や攪拌エネルギーによっても、触媒前駆体の生成に必要な熟成時間は異なり、温度が高いほど、また攪拌エネルギーが大きいほど、適切な熟成時間は短くなる傾向にある。例えば、スラリー温度が20℃〜90℃で、スターラーを使って攪拌処理をする場合、熟成時間は生産性の観点から1〜24時間が好ましく、より好ましくは1〜20時間、さらに好ましくは1〜10時間である。   When the slurry is aged, in order to obtain the target composite crystal and / or precursor thereof, it is desirable to heat the slurry to a temperature higher than room temperature and keep the slurry medium in a liquid state. 20 to 90 degreeC is preferable, More preferably, it is 30 to 80 degreeC, More preferably, it is 50 to 70 degreeC. For stirring the slurry, a general stirring means such as a stirring blade or a stirring bar can be used, and the stirring speed is preferably 50 to 3000 rpm although it depends on the viscosity of the slurry. The aging time necessary for the production of the catalyst precursor also varies depending on the temperature of the slurry and the stirring energy. The higher the temperature and the larger the stirring energy, the shorter the appropriate aging time tends to be. For example, when the slurry temperature is 20 ° C. to 90 ° C. and stirring is performed using a stirrer, the aging time is preferably 1 to 24 hours from the viewpoint of productivity, more preferably 1 to 20 hours, still more preferably 1 to 10 hours.

固形分量の多いスラリーの場合、熟成に先立って、ホモジナイザー等を使用してスラリー中の固形分を粉砕するのが好ましい。前述のとおり、Bi含有量の多い組成にすると、スラリー中の硝酸含有量も高くなる傾向にあり、分散性が低くなり易いことから、ホモジナイザー処理が特に有効である。固形分をより小さく粉砕する観点で、ホモジナイザーの回転数は、5000〜30000rpmが好ましく、10000〜20000rpmがより好ましく、15000〜20000rpmがさらに好ましい。ホモジナイザー処理の時間は、回転数や固形分量にもよるが、一般的には5分〜2時間とするのが好ましい。   In the case of a slurry having a large solid content, it is preferable to crush the solid content in the slurry using a homogenizer or the like prior to aging. As described above, when the composition has a high Bi content, the content of nitric acid in the slurry tends to be high, and the dispersibility tends to be low. Therefore, the homogenizer treatment is particularly effective. From the viewpoint of pulverizing the solid content smaller, the homogenizer rotation speed is preferably 5000 to 30000 rpm, more preferably 10000 to 20000 rpm, and even more preferably 15000 to 20000 rpm. The time for the homogenizer treatment is generally 5 minutes to 2 hours, although it depends on the rotational speed and the solid content.

原料スラリーが均質でない場合、焼成後の触媒組成が不均質になり、均質に複合化された結晶構造は形成され難くなるため、得られた酸化物の複合化が十分でない場合に、スラリーの調製工程の適正化を試みるのは好ましい態様である。なお、上述の原料スラリーの調製工程は一例であって限定的なものではなく、各元素源の添加手順を変えたり、硝酸濃度を調整したり、アンモニア水をスラリー中に添加してスラリーのpHや粘度を改質させたりしてもよい。より多くCe−Bi−Fe−Mo−Oの結晶構造を形成させるには、均質なスラリーにすることが重要であり、この観点から、原料スラリーのpHは2.0以下であることが好ましい。原料スラリーのpHは、より好ましくは1.5以下、さらに好ましくは1.0以下である。原料スラリーのpHが2.0を超えると、ビスマス化合物の沈殿が生成し、Ce−Bi−Fe−Mo−Oの結晶構造の生成を妨げる場合がある。   If the raw slurry is not homogeneous, the catalyst composition after calcination will be heterogeneous, and it will be difficult to form a homogeneous composite crystal structure. It is a preferred embodiment to try to optimize the process. In addition, the preparation process of the above-mentioned raw material slurry is an example and is not limited. The addition procedure of each element source is changed, the nitric acid concentration is adjusted, or ammonia water is added to the slurry to adjust the pH of the slurry. Or the viscosity may be modified. In order to form more Ce—Bi—Fe—Mo—O crystal structure, it is important to use a homogeneous slurry. From this viewpoint, the pH of the raw slurry is preferably 2.0 or less. The pH of the raw material slurry is more preferably 1.5 or less, and still more preferably 1.0 or less. When the pH of the raw material slurry exceeds 2.0, precipitation of a bismuth compound is generated, which may hinder the generation of a crystal structure of Ce—Bi—Fe—Mo—O.

(2)乾燥
第2の工程では、第1の工程で得られた原料スラリーを乾燥して乾燥粒子を得る。乾燥方法は、特に制限はなく一般に用いられている方法によって行うことができ、蒸発乾涸法、噴霧乾燥法、減圧乾燥法など任意の方法で行なうことができる。噴霧乾燥法では、通常工業的に実施される遠心方式、二流体ノズル方式及び高圧ノズル方式等の方法によって行うことができ、乾燥熱源としては、スチーム、電気ヒーター等によって加熱された空気を用いることが好ましい。この際、噴霧乾燥装置の乾燥機入口の温度は、通常150〜400℃、好ましくは180〜400℃、より好ましくは200〜350℃である。
(2) Drying In the second step, the raw material slurry obtained in the first step is dried to obtain dry particles. The drying method is not particularly limited and can be performed by a generally used method, and can be performed by any method such as an evaporation drying method, a spray drying method, or a reduced pressure drying method. The spray drying method can be performed by a method such as a centrifugal method, a two-fluid nozzle method, a high-pressure nozzle method, etc., which are usually carried out industrially, and air heated by steam, an electric heater or the like is used as a drying heat source Is preferred. At this time, the temperature at the inlet of the dryer of the spray dryer is usually 150 to 400 ° C, preferably 180 to 400 ° C, more preferably 200 to 350 ° C.

(3)焼成
第3の工程では、第2の工程で得られた乾燥粒子を焼成する。焼成は回転炉、トンネル炉、マッフル炉等の焼成炉を用いて行うことができる。乾燥粒子の焼成は、仮焼成と本焼成の2段焼成で行うのが好ましい。1段目は、通常120〜350℃、好ましくは150℃〜350℃、より好ましくは200℃〜350℃の温度範囲で仮焼成を行う。仮焼成の目的は、乾燥粒子中に残存している硝酸の除去とアンモニウム塩である原料と硝酸塩である原料に由来する硝酸アンモニウム及び含有有機物をおだやかに燃焼させることにあるので、1段目の焼成では、この目的を達成できる程度に乾燥粒子を加熱すればよい。仮焼成の時間は、通常0.1〜72時間、好ましくは1〜48時間、さらに好ましくは3〜24時間である。150℃以下の低温の場合、長時間の仮焼成を行うこが好ましく、330℃以上の高温の場合、2時間以下の短時間の仮焼成を行うことが好ましい。仮焼成の温度が高すぎたり、時間が長すぎたりすると、仮焼成の段階でセリウムとモリブデンの2成分系のみで酸化物が成長し易くなってしまう結果、後述の本焼成においてCe−Bi−Fe−Mo−Oの結晶構造が生成し難くなってしまう。よって仮焼成温度及び時間の上限は、セリウムとモリブデンの2成分系酸化物の生成が起こらない程度に設定するのが好ましい態様である。
(3) Firing In the third step, the dried particles obtained in the second step are fired. Firing can be performed using a firing furnace such as a rotary furnace, a tunnel furnace, or a muffle furnace. Firing of the dried particles is preferably performed by two-stage firing of temporary firing and main firing. The first stage is usually calcined in a temperature range of 120 to 350 ° C, preferably 150 to 350 ° C, more preferably 200 to 350 ° C. The purpose of the pre-firing is to remove nitric acid remaining in the dried particles and to gently burn ammonium nitrate and the organic material derived from the raw material that is ammonium salt and the raw material that is nitrate. Then, what is necessary is just to heat a dry particle to such an extent that this objective can be achieved. The calcination time is usually 0.1 to 72 hours, preferably 1 to 48 hours, and more preferably 3 to 24 hours. In the case of a low temperature of 150 ° C. or lower, it is preferable to carry out temporary baking for a long time, and in the case of a high temperature of 330 ° C. or higher, it is preferable to perform temporary baking for a short time of 2 hours or less. If the pre-baking temperature is too high or the time is too long, the oxide is likely to grow only in the two-component system of cerium and molybdenum at the pre-baking stage. As a result, in the main baking described later, Ce-Bi- It becomes difficult to produce a crystal structure of Fe—Mo—O. Therefore, it is preferable that the upper limit of the calcination temperature and time is set to such an extent that the generation of the two-component oxide of cerium and molybdenum does not occur.

仮焼成の際、昇温速度は、急激な燃焼反応を抑える観点からも遅い方が望ましい。本実施形態における酸化物触媒は、多成分系であるため、原料を、例えば金属硝酸塩とした場合、各金属硝酸塩の分解温度が異なり、焼成中に硝酸が動くため、焼成後の触媒組成が不均質になりやすい。特に、Bi含有量が多い場合、水に難溶解性の硝酸Bi量が多いため、溶解させるための硝酸量が多くなる。このため、より均質に複合化された構造を形成させるためには、ゆっくりと昇温し、硝酸や有機物などの燃焼や分解成分を除去するのが好ましい。昇温速度は、通常0.1℃/min〜100℃/min、より好ましくは0.1℃/min〜75℃/min、さらに好ましくは0.1℃/min〜50℃/minである。   In the pre-baking, it is desirable that the rate of temperature rise is slow from the viewpoint of suppressing a rapid combustion reaction. Since the oxide catalyst in this embodiment is a multi-component system, when the raw material is, for example, metal nitrate, the decomposition temperature of each metal nitrate is different, and nitric acid moves during firing, so the catalyst composition after firing is not good. It tends to be homogeneous. In particular, when the Bi content is large, the amount of Bi nitrate that is hardly soluble in water is large, so that the amount of nitric acid for dissolution is large. For this reason, in order to form a more homogeneous composite structure, it is preferable to slowly raise the temperature and remove combustion and decomposition components such as nitric acid and organic matter. The rate of temperature rise is usually 0.1 ° C / min to 100 ° C / min, more preferably 0.1 ° C / min to 75 ° C / min, and still more preferably 0.1 ° C / min to 50 ° C / min.

仮焼成の後、2段目の本焼成を行うのが好ましいが、この目的は、所望の結晶構造を形成し易くすることにある。本発明者らの知見によると、結晶構造は焼成温度と焼成時間の積の影響を受けるため、焼成温度と焼成時間を適切に設定することが好ましい。本焼成の温度は、Ce−Bi−Fe−Mo−Oの結晶を生成させる観点で仮焼成の温度より高く、700℃以下の温度に設定することが好ましい。本焼成の焼成温度は、Ce−Bi−Fe−Mo−Oの結晶構造の生成し易さの観点で、400〜700℃が好ましく、より好ましくは400℃〜650℃、さらに好ましくは450℃〜600℃である。このような温度で焼成を行う場合、焼成温度と焼成時間の積を適切にして結晶生成を促す観点から、本焼成の時間は、通常0.1〜72時間、好ましくは2〜48時間、より好ましくは3〜24時間である。結晶構造の生成のために焼成温度×焼成時間を適切にする観点で、400℃以下の低温の場合、例えば24〜72時間程度の長時間の本焼成を行うことが好ましく、600℃以上の高温の場合、表面積が小さくなりすぎて触媒の活性が下がってしまうのを防ぐ観点から、1時間以下の短時間の本焼成を行うことが好ましい。
以上の工程を全て行うことで、複合化されたCe−Bi−Fe−Mo−Oの4成分系の結晶構造が形成され易くなる。
Although it is preferable to perform the second main firing after the preliminary firing, the purpose is to facilitate formation of a desired crystal structure. According to the knowledge of the present inventors, since the crystal structure is affected by the product of the firing temperature and the firing time, it is preferable to appropriately set the firing temperature and the firing time. The temperature for the main baking is preferably set to a temperature of 700 ° C. or lower than the temperature of the temporary baking from the viewpoint of generating Ce—Bi—Fe—Mo—O crystals. The firing temperature of the main firing is preferably 400 to 700 ° C., more preferably 400 to 650 ° C., and further preferably 450 ° C. to 450 ° C. from the viewpoint of easy generation of the Ce—Bi—Fe—Mo—O crystal structure. 600 ° C. When firing at such a temperature, from the viewpoint of promoting the formation of crystals by appropriately setting the product of the firing temperature and firing time, the firing time is usually 0.1 to 72 hours, preferably 2 to 48 hours. Preferably it is 3 to 24 hours. From the viewpoint of appropriately setting the firing temperature × the firing time for the generation of the crystal structure, it is preferable to perform the main firing for a long time of about 24 to 72 hours, for example, at a low temperature of 400 ° C. or lower, and a high temperature of 600 ° C. or higher In this case, from the viewpoint of preventing the surface area from becoming too small and reducing the activity of the catalyst, it is preferable to perform the main calcination for a short time of 1 hour or less.
By performing all of the above steps, a complex Ce-Bi-Fe-Mo-O quaternary crystal structure is easily formed.

本焼成工程において、Ce−Bi−Fe−Mo−Oの4成分系の結晶構造が生成したことは、本焼成の後にX線構造解析を行うことによって確認できる。本焼成の後でX線構造解析を行うと、Ce−Bi−Fe−Mo−Oの4成分系の結晶構造が生成していれば、33.50°+α°にピークが観察される。セリウムとモリブデンのみからなる酸化物の結晶が生成する場合は33.50°にピークが現れるが、Ce−Bi−Fe−Mo−Oの4成分系の場合は、このピークがシフトするので、このシフトを指標として4成分系結晶の生成を確認することができる。
このシフト(α°)の大きさを調べ、33.50°にピークを示すセリウムとモリブデンの複合酸化物の面間隔dを基準にして、
2dsinθ=nλ(n:整数) (II)
d変化率[ppm]=(d―d’)/d×1000000 (III)
を用いてdの変化率を調べる。本実施形態においては、dの変化率が5000〜9000ppmであれば、Ce−Bi−Fe−Mo−Oの4成分系の結晶構造が生成したと判断する。
It can be confirmed by performing an X-ray structural analysis after the main baking that a quaternary crystal structure of Ce—Bi—Fe—Mo—O is generated in the main baking step. When X-ray structural analysis is performed after the main baking, a peak is observed at 33.50 ° + α ° if a quaternary crystal structure of Ce—Bi—Fe—Mo—O is generated. When an oxide crystal consisting only of cerium and molybdenum is formed, a peak appears at 33.50 °. However, in the case of a four-component system of Ce—Bi—Fe—Mo—O, this peak shifts. The formation of quaternary crystals can be confirmed using the shift as an index.
The magnitude of this shift (α °) was examined, and based on the interplanar spacing d of the cerium-molybdenum complex oxide having a peak at 33.50 °,
2 dsin θ = nλ (n: integer) (II)
d change rate [ppm] = (d 0 −d ′) / d 0 × 1000000 (III)
To examine the rate of change of d. In this embodiment, when the change rate of d is 5000 to 9000 ppm, it is determined that a quaternary crystal structure of Ce—Bi—Fe—Mo—O has been generated.

[3]不飽和アルデヒドの製造方法
本実施形態における酸化物触媒を用い、プロピレン及びイソブチレンからなる群から選ばれる少なくとも1種のオレフィン及び/又はt−ブチルアルコールを酸化反応させることにより、不飽和アルデヒドを製造することができる。以下、その具体例について説明するが、本実施形態の製造方法は、以下の具体例に限定されるものではない。
[3] Method for Producing Unsaturated Aldehyde Unsaturated aldehyde is obtained by oxidizing at least one olefin selected from the group consisting of propylene and isobutylene and / or t-butyl alcohol using the oxide catalyst in the present embodiment. Can be manufactured. Hereinafter, although the specific example is demonstrated, the manufacturing method of this embodiment is not limited to the following specific examples.

(1)メタクロレインの製造方法
メタクロレインは、例えば、本実施形態の酸化物触媒を用いて、イソブチレン、t−ブチルアルコールの気相接触酸化反応を行うことにより得ることができる。気相接触酸化反応は、固定床反応器内の触媒層に、1〜10容量%のイソブチレン、t−ブチルアルコール又は両者の混合ガスに対して分子状酸素濃度が1〜20容量%になるように、分子状酸素含有ガスと希釈ガスを添加した混合ガスからなる原料ガスを導入する。イソブチレン、t−ブチルアルコールの濃度は、通常1〜10容量%、好ましくは6〜10容量%、より好ましくは7〜9容量%である。反応温度は300〜480℃、好ましくは350℃〜450℃、より好ましくは400℃〜450℃である。圧力は、常圧〜5気圧であり、空間速度400〜4000/hr[Normal temperature pressure (NTP)条件下]で原料ガスを導入することで行うことができる。酸素と、イソブチレン若しくはt−ブチルアルコール、又は両者の混合ガスのモル比は、不飽和アルデヒドの収率を向上させるために反応器の出口酸素濃度を制御する観点から、通常1.0〜2.0であり、好ましくは1.1〜1.8、より好ましくは1.2〜1.8である。
(1) Method for producing methacrolein Methacrolein can be obtained, for example, by performing a gas phase catalytic oxidation reaction of isobutylene and t-butyl alcohol using the oxide catalyst of the present embodiment. In the gas phase catalytic oxidation reaction, the molecular oxygen concentration in the catalyst layer in the fixed bed reactor is 1 to 20% by volume with respect to 1 to 10% by volume of isobutylene, t-butyl alcohol or a mixed gas of both. A raw material gas comprising a mixed gas to which a molecular oxygen-containing gas and a diluent gas are added is introduced. The concentration of isobutylene and t-butyl alcohol is usually 1 to 10% by volume, preferably 6 to 10% by volume, more preferably 7 to 9% by volume. The reaction temperature is 300 to 480 ° C, preferably 350 ° C to 450 ° C, more preferably 400 ° C to 450 ° C. The pressure is normal pressure to 5 atm, and can be performed by introducing the raw material gas at a space velocity of 400 to 4000 / hr (under normal temperature pressure (NTP) conditions). The molar ratio of oxygen to isobutylene or t-butyl alcohol, or a mixed gas of both is usually 1.0 to 2 from the viewpoint of controlling the outlet oxygen concentration of the reactor in order to improve the yield of unsaturated aldehyde. 0, preferably 1.1 to 1.8, more preferably 1.2 to 1.8.

分子状酸素含有ガスとしては、例えば、純酸素ガス、及びNO、空気等の酸素を含むガスが挙げられ、工業的観点から空気が好ましい。希釈ガスとしては、例えば、窒素、二酸化炭素、水蒸気及びこれらの混合ガスが挙げられる。混合ガスにおける、分子状酸素含有ガスと希釈ガスの混合比に関しては、体積比で0.01<分子状酸素/(分子状酸素含有ガス+希釈ガス)<0.3の条件を満足することが好ましい。さらに、原料ガスにおける分子状酸素の濃度は1〜20容量%であることが好ましい。Examples of the molecular oxygen-containing gas include pure oxygen gas, and gas containing oxygen such as N 2 O and air, and air is preferable from an industrial viewpoint. As dilution gas, nitrogen, a carbon dioxide, water vapor | steam, and these mixed gas are mentioned, for example. Regarding the mixing ratio of the molecular oxygen-containing gas and the dilution gas in the mixed gas, the volume ratio of 0.01 <molecular oxygen / (molecular oxygen-containing gas + dilution gas) <0.3 may be satisfied. preferable. Furthermore, the concentration of molecular oxygen in the source gas is preferably 1 to 20% by volume.

原料ガス中の水蒸気は、触媒へのコーキングを防ぐ観点からは必要であるが、メタクリル酸や酢酸等のカルボン酸の副生を抑制するために、できるだけ希釈ガス中の水蒸気濃度を下げることが好ましい。原料ガス中の水蒸気は、通常0〜30容量%の範囲で使用される。   The water vapor in the raw material gas is necessary from the viewpoint of preventing coking to the catalyst, but it is preferable to reduce the water vapor concentration in the diluting gas as much as possible in order to suppress by-production of carboxylic acids such as methacrylic acid and acetic acid. . The water vapor in the raw material gas is usually used in the range of 0 to 30% by volume.

(2)アクロレインの製造方法
プロピレンの気相接触酸化によりアクロレインを製造する際の条件等に特に制限はなく、プロピレンの気相接触酸化によりアクロレインを製造する際に一般に用いられている方法によって行うことができる。例えば、プロピレン1〜15容量%、分子状酸素3〜30容量%、水蒸気0〜60容量%、窒素、炭酸ガスなどの不活性ガス20〜80容量%、などからなる混合ガスを、反応器内の触媒層に、250〜450℃、0.1〜1MPaの加圧下、空間速度(SV)300〜5000hr−1で導入すればよい。また、反応器については、一般の固定床反応器、流動床反応器あるいは移動床反応器が用いられる。
(2) Acrolein production method There are no particular restrictions on the conditions for producing acrolein by vapor phase catalytic oxidation of propylene, and the method is generally used when producing acrolein by vapor phase catalytic oxidation of propylene. Can do. For example, a mixed gas composed of 1 to 15% by volume of propylene, 3 to 30% by volume of molecular oxygen, 0 to 60% by volume of water vapor, 20 to 80% by volume of inert gas such as nitrogen and carbon dioxide, etc. The catalyst layer may be introduced at 250 to 450 ° C. under a pressure of 0.1 to 1 MPa at a space velocity (SV) of 300 to 5000 hr −1 . As the reactor, a general fixed bed reactor, fluidized bed reactor or moving bed reactor is used.

以下に実施例を示して、本実施形態をより詳細に説明するが、本実施形態は以下に記載の実施例によって限定されるものではない。尚、酸化物触媒における酸素原子の原子比は、他の元素の原子価条件により決定されるものであり、実施例及び比較例においては、触媒の組成を表す式中、酸素原子の原子比は省略する。また、酸化物触媒における各元素の組成比は、仕込みの組成比から算出した。   Hereinafter, the present embodiment will be described in more detail with reference to examples. However, the present embodiment is not limited to the examples described below. The atomic ratio of oxygen atoms in the oxide catalyst is determined by the valence conditions of other elements. In the examples and comparative examples, the atomic ratio of oxygen atoms in the formulas representing the composition of the catalyst is Omitted. Further, the composition ratio of each element in the oxide catalyst was calculated from the composition ratio of preparation.

<X線回折角度の測定>
XRDの測定は、National Institute of Standards & Technologyが標準参照物質660として定めるところのLaB化合物の(111)面、(200)面を測定し、それぞれの値を37.441°、43.506°となるように規準化した。
XRDの装置としては、ブルカー社製:D8 ADVANCEを用いた。XRDの測定条件は、X線出力:40kV−40mA、発散スリット(DS):0.3°、Step幅:0.02°/step、計数Time:2.0sec、測定範囲:2θ=5°〜60°とした。
<Measurement of X-ray diffraction angle>
XRD was measured by measuring the (111) plane and (200) plane of the LaB 6 compound as defined by National Institute of Standards & Technology as the standard reference material 660. The respective values were 37.441 ° and 43.506 °. It was standardized to become.
As an XRD apparatus, Bruker's D8 ADVANCE was used. The XRD measurement conditions are: X-ray output: 40 kV-40 mA, divergent slit (DS): 0.3 °, Step width: 0.02 ° / step, counting time: 2.0 sec, measurement range: 2θ = 5 ° to The angle was 60 °.

実施例及び比較例において、反応成績を示すために用いた、転化率、選択率、及び収率は次式で定義される。
転化率=(反応した原料のモル数/供給した原料のモル数)×100
選択率=(生成した化合物のモル数/反応した原料のモル数)×100
収率=(生成した化合物のモル数/供給した原料のモル数)×100
In Examples and Comparative Examples, the conversion rate, selectivity, and yield used to show reaction results are defined by the following equations.
Conversion rate = (number of moles of reacted raw material / number of moles of supplied raw material) × 100
Selectivity = (number of moles of compound produced / number of moles of reacted raw material) × 100
Yield = (Mole number of produced compound / Mole number of supplied raw material) × 100

目的生成物の生産性は、各触媒1t当りの目的生成物の生成量を算出後、触媒10tで8000時間連続運転を行ったものと仮定して次式で定義される。
生産性(t)=({時間当たりの供給した原料のモル数(mol/h)×収率)/触媒量(t)}×10(t)×8000(hr)/目的生成物の分子量
The productivity of the target product is defined by the following equation on the assumption that a continuous operation was performed for 8000 hours with the catalyst 10t after calculating the amount of the target product generated per 1t of the catalyst.
Productivity (t) = ({number of moles of raw material fed per hour (mol / h) × yield) / catalyst amount (t)} × 10 (t) × 8000 (hr) / molecular weight of target product

[実施例1]
約90℃の温水197.0gにヘプタモリブデン酸アンモニウム65.7gを溶解させた(A液)。また、硝酸ビスマス43.8g、硝酸セリウム25.5g、硝酸鉄36.4g、硝酸セシウム0.66g、及び硝酸コバルト34.5gを18質量%の硝酸水溶液42.4gに溶解させ、約90℃の温水205.0gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度マグネチックスターラーを使って撹拌を継続することによって熟成させ、原料スラリーを得た。この原料スラリーを、噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を530℃で8時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒4.0gを直径14mmのジャケット付SUS製反応管に充填し、反応温度430℃でイソブチレン8容量%、酸素12.8容量%、水蒸気3.0容量%及び窒素容量76.2%からなる混合ガスを120mL/min(NTP)の流量で通気し、メタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 1]
65.7 g of ammonium heptamolybdate was dissolved in 197.0 g of warm water at about 90 ° C. (solution A). Also, 43.8 g of bismuth nitrate, 25.5 g of cerium nitrate, 36.4 g of iron nitrate, 0.66 g of cesium nitrate, and 34.5 g of cobalt nitrate were dissolved in 42.4 g of 18% by mass nitric acid aqueous solution, 205.0 g of warm water was added (Liquid B). After mixing both liquid A and liquid B, using a homogenizer and treating at 20000 rpm for 1 hour, the mixture was aged by continuing stirring with a magnetic stirrer at about 65 ° C. for about 4 hours, Obtained. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcined at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 530 ° C. for 8 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
For the reaction evaluation of the catalyst, 4.0 g of catalyst was packed in a 14 mm diameter jacketed SUS reaction tube, and at a reaction temperature of 430 ° C., isobutylene was 8 vol%, oxygen was 12.8 vol%, water vapor was 3.0 vol%, and nitrogen capacity. A mixed gas comprising 76.2% was aerated at a flow rate of 120 mL / min (NTP) to perform a methacrolein synthesis reaction. The reaction evaluation results are shown in Table 3.

[実施例2]
約90℃の温水206.3gにヘプタモリブデン酸アンモニウム68.8gを溶解させた(A液)。また、硝酸ビスマス33.2g、硝酸セリウム29.6g、硝酸鉄44.7g、硝酸セシウム0.57g、及び硝酸コバルト32.3gを18質量%の硝酸水溶液42.6gに溶解させ、約90℃の温水196.2gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を520℃で14時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。また、X線回折パターンを図1及び2に示す。触媒のBiリッチ相のSTEM−EDX分析を行った結果、Bi原子比を1とすると、Ce原子比は0.32、Fe原子比は0.16、Mo原子比は1.1となり、Biが多く存在する部位にCe、Fe、Moが存在し、Ce−Bi−Fe−Mo−Oの4成分系の結晶構造が生成していた。
触媒の反応評価として、触媒3.5gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 2]
68.8 g of ammonium heptamolybdate was dissolved in 206.3 g of warm water at about 90 ° C. (solution A). Also, 33.2 g of bismuth nitrate, 29.6 g of cerium nitrate, 44.7 g of iron nitrate, 0.57 g of cesium nitrate, and 32.3 g of cobalt nitrate were dissolved in 42.6 g of an 18% by mass nitric acid aqueous solution, 196.2 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 520 ° C. for 14 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2. X-ray diffraction patterns are shown in FIGS. As a result of STEM-EDX analysis of the Bi-rich phase of the catalyst, when the Bi atomic ratio is 1, the Ce atomic ratio is 0.32, the Fe atomic ratio is 0.16, the Mo atomic ratio is 1.1, and Bi is Ce, Fe, and Mo existed in many sites, and a quaternary crystal structure of Ce—Bi—Fe—Mo—O was generated.
As a catalyst reaction evaluation, 3.5 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例3]
約90℃の温水202.3gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄50.3g、硝酸セシウム0.56g、及び硝酸コバルト28.0gを18質量%の硝酸水溶液42.7gに溶解させ、約90℃の温水201.5gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を540℃で3時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.5gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 3]
67.4 g of ammonium heptamolybdate was dissolved in 202.3 g of warm water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 50.3 g of iron nitrate, 0.56 g of cesium nitrate, and 28.0 g of cobalt nitrate were dissolved in 42.7 g of an 18% by mass nitric acid aqueous solution, 201.5 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 540 ° C. for 3 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As a catalyst reaction evaluation, 3.5 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例4]
約90℃の温水202.2gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト24.2gを18質量%の硝酸水溶液42.9gに溶解させ、約90℃の温水202.7gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を530℃で8時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.5gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 4]
67.4 g of ammonium heptamolybdate was dissolved in 202.2 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, and 24.2 g of cobalt nitrate were dissolved in 42.9 g of 18% by mass nitric acid aqueous solution, 202.7 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 530 ° C. for 8 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As a catalyst reaction evaluation, 3.5 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例5]
約90℃の温水201.6gにヘプタモリブデン酸アンモニウム67.2gを溶解させた(A液)。また、硝酸ビスマス40.2g、硝酸セリウム23.4g、硝酸鉄60.4g、硝酸セシウム0.55g、及び硝酸コバルト18.6g及び硝酸鉛1.0gを18質量%の硝酸水溶液37.9gに溶解させ、約90℃の温水203.9gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を540℃で5時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.6gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 5]
67.2 g of ammonium heptamolybdate was dissolved in 201.6 g of hot water at about 90 ° C. (solution A). Also, 40.2 g of bismuth nitrate, 23.4 g of cerium nitrate, 60.4 g of iron nitrate, 0.55 g of cesium nitrate, 18.6 g of cobalt nitrate and 1.0 g of lead nitrate were dissolved in 37.9 g of 18% by mass nitric acid aqueous solution. And 203.9 g of warm water at about 90 ° C. was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 540 ° C. for 5 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As an evaluation of the reaction of the catalyst, 3.6 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例6]
約90℃の温水198.56gにヘプタモリブデン酸アンモニウム66.2gを溶解させた(A液)。また、硝酸ビスマス39.6g、硝酸セリウム23.0g、硝酸鉄59.5g、硝酸セシウム0.36g、及び硝酸コバルト18.3g及び硝酸ニッケル9.1gを18質量%の硝酸水溶液38.4gに溶解させ、約90℃の温水210.0gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を520℃で14時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.0gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 6]
69.2 g of ammonium heptamolybdate was dissolved in 198.56 g of warm water at about 90 ° C. (solution A). Also, 39.6 g of bismuth nitrate, 23.0 g of cerium nitrate, 59.5 g of iron nitrate, 0.36 g of cesium nitrate, 18.3 g of cobalt nitrate and 9.1 g of nickel nitrate were dissolved in 38.4 g of 18% by mass nitric acid aqueous solution. Then, 210.0 g of warm water at about 90 ° C. was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 520 ° C. for 14 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
For the reaction evaluation of the catalyst, 3.0 g of catalyst was filled in a reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例7]
約90℃の温水202.1gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.4g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト22.3g、硝酸銅1.5gを18質量%の硝酸水溶液37.9gに溶解させ、約90℃の温水203.1gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を550℃で3時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.2gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 7]
67.4 g of ammonium heptamolybdate was dissolved in 202.1 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.4 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, 22.3 g of cobalt nitrate, and 1.5 g of copper nitrate were dissolved in 37.9 g of 18% by mass nitric acid aqueous solution. And 203.1 g of warm water at about 90 ° C. was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 550 ° C. for 3 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As an evaluation of the reaction of the catalyst, 3.2 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例8]
約90℃の温水202.1gにヘプタモリブデン酸アンモニウム67.0gを溶解させた(A液)。また、硝酸ビスマス44.7g、硝酸セリウム26.1g、硝酸鉄37.2g、硝酸ルビジウム0.51g、及び硝酸コバルト18.5g、硝酸マグネシウム14.6gを18質量%の硝酸水溶液37.7gに溶解させ、約90℃の温水203.1gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を540℃で3時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.1gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 8]
67.0 g of ammonium heptamolybdate was dissolved in 202.1 g of hot water at about 90 ° C. (solution A). Also, 44.7 g of bismuth nitrate, 26.1 g of cerium nitrate, 37.2 g of iron nitrate, 0.51 g of rubidium nitrate, 18.5 g of cobalt nitrate, and 14.6 g of magnesium nitrate were dissolved in 37.7 g of 18% by mass nitric acid aqueous solution. And 203.1 g of warm water at about 90 ° C. was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 540 ° C. for 3 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
For the reaction evaluation of the catalyst, 3.1 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例9]
約90℃の温水202.2gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト24.2gを18質量%の硝酸水溶液42.9gに溶解させ、約90℃の温水202.7gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、150℃で36時間仮焼成した。得られた仮焼成触媒前駆体を520℃で8時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.9gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 9]
67.4 g of ammonium heptamolybdate was dissolved in 202.2 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, and 24.2 g of cobalt nitrate were dissolved in 42.9 g of 18% by mass nitric acid aqueous solution, 202.7 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 150 ° C. for 36 hours. The obtained calcined catalyst precursor was calcined at 520 ° C. for 8 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
For the reaction evaluation of the catalyst, 3.9 g of the catalyst was filled in a reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例10]
約90℃の温水202.2gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト24.2gを18質量%の硝酸水溶液42.9gに溶解させ、約90℃の温水202.7gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度75℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を530℃で4時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.9gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 10]
67.4 g of ammonium heptamolybdate was dissolved in 202.2 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, and 24.2 g of cobalt nitrate were dissolved in 42.9 g of 18% by mass nitric acid aqueous solution, 202.7 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the obtained spray-dried catalyst precursor is heated from room temperature at a heating rate of 75 ° C./min. Pre-baking was performed at 0 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 530 ° C. for 4 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
For the reaction evaluation of the catalyst, 3.9 g of the catalyst was filled in a reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例11]
約90℃の温水202.2gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト24.2gを18質量%の硝酸水溶液42.9gに溶解させ、約90℃の温水202.7gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を400℃で48時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.2gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 11]
67.4 g of ammonium heptamolybdate was dissolved in 202.2 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, and 24.2 g of cobalt nitrate were dissolved in 42.9 g of 18% by mass nitric acid aqueous solution, 202.7 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 400 ° C. for 48 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As an evaluation of the reaction of the catalyst, 3.2 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例12]
約90℃の温水202.2gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト24.2gを18質量%の硝酸水溶液42.9gに溶解させ、約90℃の温水202.7gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合することによってスラリーを熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を640℃で30分本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒5.4gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 12]
67.4 g of ammonium heptamolybdate was dissolved in 202.2 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, and 24.2 g of cobalt nitrate were dissolved in 42.9 g of 18% by mass nitric acid aqueous solution, 202.7 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 640 ° C. for 30 minutes. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As a reaction evaluation of the catalyst, 5.4 g of the catalyst was charged into a reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例13]
実施例3と同じ触媒を用い、触媒の反応評価として、触媒6.4gを反応管に充填し、反応温度を400℃に変更したこと以外は実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 13]
The same catalyst as in Example 3 was used. As a catalyst reaction evaluation, 6.4 g of catalyst was charged in a reaction tube, and the reaction temperature was changed to 400 ° C., and methacrolein synthesis reaction under the same reaction conditions as in Example 1. Went. The reaction evaluation results are shown in Table 3.

[実施例14]
実施例3と同じ触媒を用い、触媒の反応評価として、触媒3.0gを反応管に充填し、反応温度を460℃に変更したこと以外は実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 14]
The same catalyst as in Example 3 was used, and as a reaction evaluation of the catalyst, methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1 except that 3.0 g of catalyst was charged in a reaction tube and the reaction temperature was changed to 460 ° C. Went. The reaction evaluation results are shown in Table 3.

[実施例15]
約90℃の温水208.5gにヘプタモリブデン酸アンモニウム69.5gを溶解させた(A液)。また、硝酸ビスマス32.0g、硝酸セリウム7.2g、硝酸鉄39.9g、硝酸セシウム1.3g、及び硝酸コバルト43.2g、硝酸ニッケル24.2gを18質量%の硝酸水溶液38.3gに溶解させ、約90℃の温水208.5gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約60℃で約4時間程度撹拌混合して熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、280℃で3時間仮焼成した。得られた仮焼成触媒前駆体を550℃で10時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒4.0gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 15]
69.5 g of ammonium heptamolybdate was dissolved in 208.5 g of warm water at about 90 ° C. (solution A). Also, 32.0 g of bismuth nitrate, 7.2 g of cerium nitrate, 39.9 g of iron nitrate, 1.3 g of cesium nitrate, 43.2 g of cobalt nitrate, and 24.2 g of nickel nitrate were dissolved in 38.3 g of 18% by mass nitric acid aqueous solution. 208.5 g of warm water at about 90 ° C. was added (Liquid B). Both liquid A and liquid B were mixed and treated with a homogenizer at 20000 rpm for 1 hour, then stirred and mixed at about 60 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. Pre-baking was performed at 280 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 550 ° C. for 10 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As a catalyst reaction evaluation, 4.0 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例16]
実施例1と同じ組成でA液とB液の両液を混合し、ホモジナイザー処理をしないで、約65℃で1時間程度マグネチックスターラーを使って撹拌を継続することによって熟成させ、原料スラリーを得た。この原料スラリーを、噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を530℃で8時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒4.0gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 16]
Mixing both liquid A and liquid B with the same composition as in Example 1 and aging the material slurry by continuing stirring with a magnetic stirrer at about 65 ° C. for about 1 hour without homogenizer treatment. Obtained. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcined at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 530 ° C. for 8 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As a catalyst reaction evaluation, 4.0 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例17]
実施例1と同じ組成でA液とB液の両液を混合し、ホモジナイザー処理をしないで、約65℃で24時間程度マグネチックスターラーを使って撹拌を継続することによって熟成させ、原料スラリーを得た。この原料スラリーを、噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を530℃で8時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒4.0gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 17]
Mixing both liquid A and liquid B with the same composition as in Example 1 and aging the material slurry by continuing stirring with a magnetic stirrer at about 65 ° C. for about 24 hours without homogenizer treatment. Obtained. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcined at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 530 ° C. for 8 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As a catalyst reaction evaluation, 4.0 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[実施例18]
実施例1と同じ触媒を用いて、触媒の反応評価として、触媒4.5gを反応管に充填し、反応温度を350℃としたこと以外は実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 18]
Using the same catalyst as in Example 1, as a reaction evaluation of the catalyst, methacrolein synthesis reaction under the same reaction conditions as in Example 1 except that 4.5 g of catalyst was charged in a reaction tube and the reaction temperature was 350 ° C. Went. The reaction evaluation results are shown in Table 3.

[実施例19]
実施例1と同じ触媒を用いて、触媒の反応評価として、触媒4.0gを反応管に充填し、反応温度を480℃としたこと以外は実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 19]
Using the same catalyst as in Example 1, as a catalyst reaction evaluation, 4.0 g of catalyst was charged in a reaction tube and the reaction temperature was 480 ° C., and methacrolein synthesis reaction under the same reaction conditions as in Example 1. Went. The reaction evaluation results are shown in Table 3.

[実施例20]
実施例1と同じ触媒を用いて、触媒の反応評価として、触媒4.0gを反応管に充填し、反応温度430℃でイソブチレン6容量%、酸素9.6容量%、水蒸気3.0容量%及び窒素容量81.4%からなる混合ガスを100mL/min(NTP)の流量で通気し、メタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 20]
Using the same catalyst as in Example 1, as a catalyst reaction evaluation, 4.0 g of the catalyst was charged into a reaction tube, 6% by volume of isobutylene, 9.6% by volume of oxygen, and 3.0% by volume of water vapor at a reaction temperature of 430 ° C. And the mixed gas which consists of nitrogen capacity 81.4% was ventilated by the flow volume of 100 mL / min (NTP), and the methacrolein synthesis reaction was performed. The reaction evaluation results are shown in Table 3.

[実施例21]
実施例1と同じ触媒を用いて、触媒の反応評価として、触媒4.0gを反応管に充填し、反応温度を350℃としたこと以外は実施例20と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Example 21]
Using the same catalyst as in Example 1, as a reaction evaluation of the catalyst, methacrolein synthesis reaction under the same reaction conditions as in Example 20 except that 4.0 g of catalyst was charged in a reaction tube and the reaction temperature was 350 ° C. Went. The reaction evaluation results are shown in Table 3.

[比較例1]
約90℃の温水218.4gにヘプタモリブデン酸アンモニウム72.8gを溶解させた(A液)。また、硝酸ビスマス26.8g、硝酸セリウム7.5g、硝酸鉄19.5g、硝酸セシウム2.0g、及び硝酸コバルト79.5gを18質量%の硝酸水溶液42.1gに溶解させ、約90℃の温水177.8gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合して熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を520℃で5時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。また、X線回折パターンを図1及び2に示す。
触媒のBiリッチ相のSTEM−EDX分析を行った結果、Bi原子比を1とすると、Ce原子比は0.07、Fe原子比は0.06、Mo原子比は1.1となり、実施例2と比較するとBiに対してCeとFeの含有量が少なく、2成分系のBi−Mo−Oが生成しており、Ce−Bi−Mo−Oの4成分系の結晶構造の生成量が少なかった。
触媒の反応評価として、触媒4.2gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 1]
72.8 g of ammonium heptamolybdate was dissolved in 218.4 g of warm water at about 90 ° C. (solution A). Also, 26.8 g of bismuth nitrate, 7.5 g of cerium nitrate, 19.5 g of iron nitrate, 2.0 g of cesium nitrate, and 79.5 g of cobalt nitrate were dissolved in 42.1 g of an 18% by mass nitric acid aqueous solution, 177.8 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 520 ° C. for 5 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2. X-ray diffraction patterns are shown in FIGS.
As a result of STEM-EDX analysis of the Bi rich phase of the catalyst, when the Bi atomic ratio is 1, the Ce atomic ratio is 0.07, the Fe atomic ratio is 0.06, and the Mo atomic ratio is 1.1. Compared to 2, the content of Ce and Fe is smaller than Bi, and two-component Bi—Mo—O is produced, and the production amount of the quaternary crystal structure of Ce—Bi—Mo—O is small. There were few.
As a catalyst reaction evaluation, 4.2 g of catalyst was charged in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[比較例2]
約90℃の温水197.9gにヘプタモリブデン酸アンモニウム66.0gを溶解させた(A液)。また、硝酸ビスマス39.5g、硝酸セリウム23.0g、硝酸鉄75.7g、硝酸セシウム0.54g、及び硝酸コバルト15.5gを18質量%の硝酸水溶液42.1gに溶解させ、約90℃の温水214.4gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合して熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を540℃で5時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒4.3gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 2]
66.0 g of ammonium heptamolybdate was dissolved in 197.9 g of hot water at about 90 ° C. (solution A). Also, 39.5 g of bismuth nitrate, 23.0 g of cerium nitrate, 75.7 g of iron nitrate, 0.54 g of cesium nitrate, and 15.5 g of cobalt nitrate were dissolved in 42.1 g of an 18% by mass nitric acid aqueous solution, 214.4 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 540 ° C. for 5 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
For the reaction evaluation of the catalyst, 4.3 g of the catalyst was filled in the reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[比較例3]
約90℃の温水202.2gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト24.2gを18質量%の硝酸水溶液42.9gに溶解させ、約90℃の温水202.7gを添加した(B液)。A液とB液の両液を混合し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を540℃で5時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒4.6gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 3]
67.4 g of ammonium heptamolybdate was dissolved in 202.2 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, and 24.2 g of cobalt nitrate were dissolved in 42.9 g of 18% by mass nitric acid aqueous solution, 202.7 g of warm water was added (Liquid B). Both liquids A and B were mixed to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 540 ° C. for 5 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
For the reaction evaluation of the catalyst, 4.6 g of the catalyst was filled in a reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[比較例4]
約90℃の温水202.2gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト24.2gを18質量%の硝酸水溶液42.9gに溶解させ、約90℃の温水202.7gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合して熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、105℃で12時間仮焼成した。得られた仮焼成触媒前駆体を530℃で8時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒4.9gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 4]
67.4 g of ammonium heptamolybdate was dissolved in 202.2 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, and 24.2 g of cobalt nitrate were dissolved in 42.9 g of 18% by mass nitric acid aqueous solution, 202.7 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcined at 105 ° C. for 12 hours. The obtained calcined catalyst precursor was calcined at 530 ° C. for 8 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As a reaction evaluation of the catalyst, 4.9 g of the catalyst was charged into a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[比較例5]
約90℃の温水202.2gにヘプタモリブデン酸アンモニウム67.4gを溶解させた(A液)。また、硝酸ビスマス40.3g、硝酸セリウム23.5g、硝酸鉄55.4g、硝酸セシウム0.56g、及び硝酸コバルト24.2gを18質量%の硝酸水溶液42.9gに溶解させ、約90℃の温水202.7gを添加した(B液)。A液とB液の両液を混合し、ホモジナイザーを用い、20000rpmで1時間処理した後、約65℃で約4時間程度撹拌混合して熟成し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を720℃で30分本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒5.9gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 5]
67.4 g of ammonium heptamolybdate was dissolved in 202.2 g of hot water at about 90 ° C. (solution A). Also, 40.3 g of bismuth nitrate, 23.5 g of cerium nitrate, 55.4 g of iron nitrate, 0.56 g of cesium nitrate, and 24.2 g of cobalt nitrate were dissolved in 42.9 g of 18% by mass nitric acid aqueous solution, 202.7 g of warm water was added (Liquid B). Both liquid A and liquid B were mixed, treated at 20000 rpm for 1 hour using a homogenizer, and then stirred and mixed at about 65 ° C. for about 4 hours to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 720 ° C. for 30 minutes. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As an evaluation of the reaction of the catalyst, 5.9 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[比較例6]
原料スラリーを熟成しなかったこと以外は実施例15と同様の方法により触媒を調製した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒4.5gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 6]
A catalyst was prepared in the same manner as in Example 15 except that the raw slurry was not aged. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As a reaction evaluation of the catalyst, 4.5 g of catalyst was filled in a reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[比較例7]
原料スラリーの熟成をしなかったこと以外は実施例1と同様の方法により触媒を調製した。得られた触媒を用いて、触媒の反応評価として、触媒4.0gを反応管に充填し、実施例1と同じ反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 7]
A catalyst was prepared in the same manner as in Example 1 except that the raw slurry was not aged. Using the obtained catalyst, 4.0 g of the catalyst was charged into a reaction tube as a catalyst reaction evaluation, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

[比較例8]
原料スラリーの熟成をしなかったこと以外は実施例1と同様の方法により触媒を調製した。得られた触媒を用いて、触媒の反応評価として、触媒5.0gを反応管に充填し、実施例18と同じ反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 8]
A catalyst was prepared in the same manner as in Example 1 except that the raw slurry was not aged. Using the obtained catalyst, as a reaction evaluation of the catalyst, 5.0 g of catalyst was filled in a reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 18. The reaction evaluation results are shown in Table 3.

[比較例9]
原料スラリーの熟成をしなかったこと以外は実施例1と同様の方法により触媒を調製した。得られた触媒を用いて、触媒の反応評価として、触媒4.0gを反応管に充填し、実施例19と同じ反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 9]
A catalyst was prepared in the same manner as in Example 1 except that the raw slurry was not aged. Using the obtained catalyst, 4.0 g of the catalyst was charged in a reaction tube as a catalyst reaction evaluation, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 19. The reaction evaluation results are shown in Table 3.

[比較例10]
原料スラリーの熟成をしなかったこと以外は実施例1と同様の方法により触媒を調製した。得られた触媒を用いて、触媒の反応評価として、触媒5.0gを反応管に充填し、実施例20と同じ反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 10]
A catalyst was prepared in the same manner as in Example 1 except that the raw slurry was not aged. Using the obtained catalyst, as a reaction evaluation of the catalyst, 5.0 g of catalyst was filled in a reaction tube, and methacrolein synthesis reaction was performed under the same reaction conditions as in Example 20. The reaction evaluation results are shown in Table 3.

[比較例11]
原料スラリーの熟成をしなかったこと以外は実施例1と同様の方法により触媒を調製した。得られた触媒を用いて、触媒の反応評価として、触媒6.0gを反応管に充填し、実施例21と同じ反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 11]
A catalyst was prepared in the same manner as in Example 1 except that the raw slurry was not aged. Using the obtained catalyst, as a reaction evaluation of the catalyst, 6.0 g of catalyst was filled in a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 21. The reaction evaluation results are shown in Table 3.

[比較例12]
約90℃の温水213.7gにヘプタモリブデン酸アンモニウム71.2gを溶解させた(A液)。また、硝酸ビスマス32.8g、硝酸セリウム14.6g、硝酸鉄34.1g、硝酸セシウム2.6g、硝酸コバルト49.2g及び、硝酸カリウム0.35gを18質量%の硝酸水溶液37.0gに溶解させ、約90℃の温水183.2gを添加した(B液)。A液とB液の両液を混合し、原料スラリーを得た。この原料スラリーを噴霧乾燥器に送り、入り口温度250℃、出口温度約140℃で噴霧乾燥し、さらに得られた噴霧乾燥触媒前駆体を室温から昇温速度1.4℃/minで昇温し、250℃で3時間仮焼成した。得られた仮焼成触媒前駆体を510℃で3時間本焼成した。得られた酸化物触媒の組成を表1に、粉末X線回折の測定結果を表2に示す。
触媒の反応評価として、触媒3.8gを反応管に充填し、実施例1と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表3に示す。
[Comparative Example 12]
71.2 g of ammonium heptamolybdate was dissolved in 213.7 g of warm water at about 90 ° C. (solution A). Also, 32.8 g of bismuth nitrate, 14.6 g of cerium nitrate, 34.1 g of iron nitrate, 2.6 g of cesium nitrate, 49.2 g of cobalt nitrate, and 0.35 g of potassium nitrate were dissolved in 37.0 g of 18% by mass nitric acid aqueous solution. Then, 183.2 g of warm water of about 90 ° C. was added (Liquid B). Both liquids A and B were mixed to obtain a raw material slurry. This raw material slurry is sent to a spray dryer, spray dried at an inlet temperature of 250 ° C. and an outlet temperature of about 140 ° C., and the resulting spray-dried catalyst precursor is heated from room temperature at a heating rate of 1.4 ° C./min. And calcining at 250 ° C. for 3 hours. The obtained calcined catalyst precursor was calcined at 510 ° C. for 3 hours. The composition of the obtained oxide catalyst is shown in Table 1, and the measurement result of powder X-ray diffraction is shown in Table 2.
As an evaluation of the reaction of the catalyst, 3.8 g of the catalyst was charged into a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 1. The reaction evaluation results are shown in Table 3.

Figure 2013002029
Figure 2013002029

Figure 2013002029
Figure 2013002029

Figure 2013002029
Figure 2013002029

[実施例22]
実施例1で得られた触媒を用い、触媒の反応評価として、触媒4.0gを直径14mmのジャケット付SUS製反応管に充填し、反応温度430℃でt−ブチルアルコール8容量%、酸素12.8容量%、水蒸気3.0容量%及び窒素容量76.2%からなる混合ガスを120mL/min(NTP)の流量で通気し、メタクロレイン合成反応を行った。反応評価結果を表4に示す。
[Example 22]
Using the catalyst obtained in Example 1, as a catalyst reaction evaluation, 4.0 g of catalyst was charged into a 14 mm diameter jacketed SUS reaction tube, t-butyl alcohol 8 vol%, oxygen 12 at a reaction temperature of 430 ° C. A mixed gas composed of 0.8 volume%, water vapor 3.0 volume% and nitrogen volume 76.2% was aerated at a flow rate of 120 mL / min (NTP) to carry out a methacrolein synthesis reaction. The reaction evaluation results are shown in Table 4.

[比較例12]
比較例1で得られた触媒を用いて、触媒の反応評価として、触媒4.2gを反応管に充填し、実施例22と同様の反応条件でメタクロレイン合成反応を行った。反応評価結果を表4に示す。
[Comparative Example 12]
Using the catalyst obtained in Comparative Example 1, as a catalyst reaction evaluation, 4.2 g of catalyst was charged into a reaction tube, and a methacrolein synthesis reaction was performed under the same reaction conditions as in Example 22. The reaction evaluation results are shown in Table 4.

Figure 2013002029
Figure 2013002029

[実施例23]
実施例1で得られた触媒を用い、触媒20mLを内径15mmのSUS製ジャケット付反応管に充填し、プロピレン濃度10容量%、水蒸気濃度17容量%及び空気濃度73容量%の原料ガスを常圧にて接触時間2.3秒にて通過させて、反応温度430℃にてアクロレイン合成反応を実施した。反応評価結果を表5に示す。
[Example 23]
Using the catalyst obtained in Example 1, 20 mL of catalyst was filled into a 15 mm inner diameter reaction tube with a jacket made of SUS, and a raw material gas having a propylene concentration of 10 vol%, a water vapor concentration of 17 vol% and an air concentration of 73 vol% was used at normal pressure. The acrolein synthesis reaction was carried out at a reaction temperature of 430 ° C. with a contact time of 2.3 seconds. The reaction evaluation results are shown in Table 5.

[比較例13]
比較例1で得られた触媒を用いて、触媒20mLを反応管に充填し、実施例23と同様の反応条件でアクロレイン合成反応を行った。反応評価結果を表5に示す。
[Comparative Example 13]
Using the catalyst obtained in Comparative Example 1, 20 mL of catalyst was charged into a reaction tube, and acrolein synthesis reaction was performed under the same reaction conditions as in Example 23. The reaction evaluation results are shown in Table 5.

Figure 2013002029
Figure 2013002029

上記反応評価結果から明らかなように、本実施形態における酸化物触媒は、オレフィン及び/又はアルコールを酸化反応において、逐次酸化物の生成が少なく、不飽和アルデヒドの選択率を高くすることが可能であった。   As is clear from the above reaction evaluation results, the oxide catalyst in this embodiment is capable of increasing the selectivity of unsaturated aldehydes with less generation of sequential oxides in the oxidation reaction of olefins and / or alcohols. there were.

本出願は、2011年6月28日に日本国特許庁へ出願された日本特許出願(特願2011−143284)に基づくものであり、その内容はここに参照として取り込まれる。   This application is based on the Japanese patent application (Japanese Patent Application No. 2011-143284) for which it applied to Japan Patent Office on June 28, 2011, The content is taken in here as a reference.

本発明の酸化物触媒は、オレフィン及び/又はアルコールの酸化反応に用いる触媒としての産業上利用可能性を有する。   The oxide catalyst of the present invention has industrial applicability as a catalyst used for the oxidation reaction of olefins and / or alcohols.

Claims (4)

オレフィン及び/又はアルコールの酸化反応に用いられる酸化物触媒であって、
モリブデン、ビスマス、鉄、コバルト、セリウムを含有し、モリブデン12原子に対するビスマスの原子比aが2≦a≦6、鉄の原子比bが2.5<b≦5、コバルトの原子比cが2≦c≦8、セリウムの原子比dが0.5≦d≦6、鉄/コバルトの原子比が0.4≦b/c≦2.5であり、
X線回折において33.50°にピークを示すセリウムとモリブデンの複合酸化物の面間隔dを基準にしたとき、dの変化率が5000〜9000ppmである、酸化物触媒。
An oxide catalyst used in an oxidation reaction of olefin and / or alcohol,
It contains molybdenum, bismuth, iron, cobalt and cerium, the atomic ratio a of bismuth to 12 atoms of molybdenum is 2 ≦ a ≦ 6, the atomic ratio b of iron is 2.5 <b ≦ 5, and the atomic ratio c of cobalt is 2. ≦ c ≦ 8, the atomic ratio d of cerium is 0.5 ≦ d ≦ 6, and the atomic ratio of iron / cobalt is 0.4 ≦ b / c ≦ 2.5,
An oxide catalyst in which the rate of change of d is 5000 to 9000 ppm, based on the interplanar spacing d of the complex oxide of cerium and molybdenum showing a peak at 33.50 ° in X-ray diffraction.
下記組成式(1)
Mo12BiFeCoCe (1)
(式中、Moはモリブデン、Biはビスマス、Feは鉄、Coはコバルト、Ceはセリウム、Aはセシウム及びルビジウムからなる群から選ばれる少なくとも1種の元素を示し、Bは銅、ニッケル、マグネシウム及び鉛からなる群から選ばれる少なくとも1種の元素を示し、a〜fは、Mo12原子に対する各元素の原子比を示し、2≦a≦6、2.5<b≦5、2≦c≦8、0.4≦b/c≦2.5、0.5≦d≦6、0.01≦e≦2、0≦f<2であり、gは酸素以外の構成元素の原子価によって決まる酸素の原子数である。)で表される組成を有する、請求項1記載の酸化物触媒。
The following composition formula (1)
Mo 12 Bi a Fe b Co c Ce d A e B f O g (1)
(Wherein Mo is molybdenum, Bi is bismuth, Fe is iron, Co is cobalt, Ce is cerium, A is at least one element selected from the group consisting of cesium and rubidium, and B is copper, nickel, magnesium And at least one element selected from the group consisting of lead, a to f indicate the atomic ratio of each element to the Mo12 atom, 2 ≦ a ≦ 6, 2.5 <b ≦ 5, 2 ≦ c ≦ 8, 0.4 ≦ b / c ≦ 2.5, 0.5 ≦ d ≦ 6, 0.01 ≦ e ≦ 2, 0 ≦ f <2, and g is determined by the valence of constituent elements other than oxygen 2. The oxide catalyst according to claim 1, wherein the oxide catalyst has a composition represented by:
請求項1又は2記載の酸化物触媒の製造方法であって、
モリブデン、ビスマス、鉄、コバルト、セリウムを含む原料スラリーを室温より高い温度で熟成し、乾燥し、120℃以上350℃以下で仮焼成後、400℃以上700℃以下の温度で本焼成する工程を含む、製造方法。
A method for producing an oxide catalyst according to claim 1 or 2,
A step of aging a raw material slurry containing molybdenum, bismuth, iron, cobalt, and cerium at a temperature higher than room temperature, drying, pre-baking at 120 ° C. or higher and 350 ° C. or lower, and then performing main baking at a temperature of 400 ° C. or higher and 700 ° C. or lower. A manufacturing method.
不飽和アルデヒドの製造方法であって、
請求項1又は2記載の酸化物触媒を用い、プロピレン及びイソブチレンからなる群から選ばれる少なくとも1種のオレフィン及び/又はt−ブチルアルコールを酸化反応させる工程を含む、製造方法。
A method for producing an unsaturated aldehyde comprising:
A production method comprising the step of oxidizing at least one olefin selected from the group consisting of propylene and isobutylene and / or t-butyl alcohol using the oxide catalyst according to claim 1.
JP2013522578A 2011-06-28 2012-06-13 Oxide catalyst Expired - Fee Related JP5778770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522578A JP5778770B2 (en) 2011-06-28 2012-06-13 Oxide catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011143284 2011-06-28
JP2011143284 2011-06-28
PCT/JP2012/065139 WO2013002029A1 (en) 2011-06-28 2012-06-13 Oxide catalyst
JP2013522578A JP5778770B2 (en) 2011-06-28 2012-06-13 Oxide catalyst

Publications (2)

Publication Number Publication Date
JPWO2013002029A1 true JPWO2013002029A1 (en) 2015-02-23
JP5778770B2 JP5778770B2 (en) 2015-09-16

Family

ID=47423927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522578A Expired - Fee Related JP5778770B2 (en) 2011-06-28 2012-06-13 Oxide catalyst

Country Status (9)

Country Link
US (1) US9346036B2 (en)
EP (1) EP2727648B1 (en)
JP (1) JP5778770B2 (en)
KR (1) KR101603394B1 (en)
CN (1) CN103619473B (en)
BR (1) BR112013033277B1 (en)
MY (1) MY184980A (en)
TW (1) TWI468222B (en)
WO (1) WO2013002029A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615762C2 (en) 2012-09-28 2017-04-11 Асахи Касеи Кемикалз Корпорейшн Oxide catalyst and method of producing thereof, as well as methods of producing unsaturated aldehyde, diolefin and unsaturated nitrile
JP6180754B2 (en) * 2013-02-22 2017-08-16 旭化成株式会社 Oxide catalyst, method for producing the same, and method for producing unsaturated aldehyde
JP6185255B2 (en) * 2013-02-22 2017-08-23 旭化成株式会社 Oxide catalyst, method for producing the same, and method for producing unsaturated aldehyde
JP6302318B2 (en) * 2014-03-27 2018-03-28 旭化成株式会社 Molded catalyst and method for producing the same, and method for producing unsaturated aldehyde
JP6204242B2 (en) * 2014-03-27 2017-09-27 旭化成株式会社 Oxide catalyst and method for producing the same, and method for producing unsaturated aldehyde or unsaturated nitrile
JP6204862B2 (en) * 2014-03-27 2017-09-27 旭化成株式会社 Molded catalyst and method for producing the same, and method for producing unsaturated aldehyde
EP3148692B1 (en) * 2014-05-29 2019-07-10 Ineos Europe AG Improved selective ammoxidation catalysts
US10675612B2 (en) 2014-10-01 2020-06-09 Lg Chem, Ltd. Molybdenum oxide composite and preparation method therefor
MY189256A (en) * 2016-05-30 2022-01-31 Asahi Chemical Ind Metal oxide catalyst, method for producing same, and apparatus for producing same
US11433383B2 (en) 2016-06-14 2022-09-06 Asahi Kasei Kabushiki Kaisha Method for producing ammoxidation catalyst and method for producing acrylonitrtie
US10626082B2 (en) 2016-10-11 2020-04-21 Ineos Europe Ag Ammoxidation catalyst with selective co-product HCN production
US11446643B2 (en) * 2017-07-14 2022-09-20 Asahi Kasei Kabushiki Kaisha Method for producing catalyst and method for producing unsaturated nitrile
CN107649143A (en) * 2017-09-24 2018-02-02 柳州若思纳米材料科技有限公司 A kind of preparation method of molybdenum cobalt oxide catalyst
DE102018200841A1 (en) * 2018-01-19 2019-07-25 Basf Se Mo, Bi, Fe and Cu-containing multimetal oxide materials
KR102519507B1 (en) * 2019-09-30 2023-04-07 주식회사 엘지화학 Ammoyidation catalyst for propylene, manufacturing method of the same catalyst, and ammoyidation methode using the same catalyst
CN114950404B (en) * 2022-05-19 2023-11-17 中国科学院兰州化学物理研究所 Wear-resistant ammonia oxidation catalyst and preparation method and application thereof
CN117352756B (en) * 2023-12-06 2024-03-01 新乡学院 CeO for lithium air battery 2 /CoMoO 4 Preparation method of composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237592A (en) * 1999-02-19 2000-09-05 Mitsubishi Rayon Co Ltd Catalyst for synthesis of methacrolein and methacrylic acid and production of methacrolein and methacrylic acid
JP2001025664A (en) * 1999-05-13 2001-01-30 Nippon Shokubai Co Ltd Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and production on unsaturated aldehyde and unsaturated carboxylic acid by using the catalyst
JP2008502567A (en) * 2004-06-15 2008-01-31 ビーエーエスエフ アクチェンゲゼルシャフト Multi-metal oxides containing silver, vanadium and phosphorus group elements and uses thereof
JP2010172851A (en) * 2009-01-30 2010-08-12 Asahi Kasei Chemicals Corp Catalyst for producing acrylonitrile, and method of producing acrylonitrile
JP2011072909A (en) * 2009-09-30 2011-04-14 Sumitomo Chemical Co Ltd Method for producing complex oxide catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001317A (en) 1974-07-22 1977-01-04 Standard Oil Company Process for the oxidation of olefins using catalysts containing various promoter elements
JPH0735273A (en) 1993-07-22 1995-02-07 Higashio Mec Kk Pipe joint
WO1995035273A1 (en) 1994-06-22 1995-12-28 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing methacrolein
WO2003053570A1 (en) * 2001-12-21 2003-07-03 Asahi Kasei Chemicals Corporation Oxide catalyst composition
JP2010172651A (en) 2009-02-02 2010-08-12 Fujifilm Corp Endoscope and endoscope system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237592A (en) * 1999-02-19 2000-09-05 Mitsubishi Rayon Co Ltd Catalyst for synthesis of methacrolein and methacrylic acid and production of methacrolein and methacrylic acid
JP2001025664A (en) * 1999-05-13 2001-01-30 Nippon Shokubai Co Ltd Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and production on unsaturated aldehyde and unsaturated carboxylic acid by using the catalyst
JP2008502567A (en) * 2004-06-15 2008-01-31 ビーエーエスエフ アクチェンゲゼルシャフト Multi-metal oxides containing silver, vanadium and phosphorus group elements and uses thereof
JP2010172851A (en) * 2009-01-30 2010-08-12 Asahi Kasei Chemicals Corp Catalyst for producing acrylonitrile, and method of producing acrylonitrile
JP2011072909A (en) * 2009-09-30 2011-04-14 Sumitomo Chemical Co Ltd Method for producing complex oxide catalyst

Also Published As

Publication number Publication date
MY184980A (en) 2021-04-30
BR112013033277B1 (en) 2020-03-10
US20140171303A1 (en) 2014-06-19
CN103619473B (en) 2015-09-02
EP2727648A4 (en) 2014-07-09
WO2013002029A1 (en) 2013-01-03
CN103619473A (en) 2014-03-05
KR101603394B1 (en) 2016-03-14
RU2013157588A (en) 2015-08-10
US9346036B2 (en) 2016-05-24
JP5778770B2 (en) 2015-09-16
EP2727648A1 (en) 2014-05-07
EP2727648B1 (en) 2015-10-28
TW201302304A (en) 2013-01-16
TWI468222B (en) 2015-01-11
BR112013033277A2 (en) 2017-03-01
KR20140002799A (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5778770B2 (en) Oxide catalyst
JP6205044B2 (en) Method for producing oxide catalyst
JP5794862B2 (en) Oxides containing molybdenum, bismuth, iron and cobalt
TWI511784B (en) Oxide catalysts and methods for their manufacture, and methods for producing unsaturated aldehydes, diolefins and unsaturated nitriles
KR101741888B1 (en) Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile
JP4317211B2 (en) Catalyst for gas phase partial oxidation reaction and method for producing the same
JP6180754B2 (en) Oxide catalyst, method for producing the same, and method for producing unsaturated aldehyde
JP6961358B2 (en) Oxide catalyst, method for producing oxide catalyst, and method for producing unsaturated aldehyde
JP6122278B2 (en) Oxide catalyst
JP6204242B2 (en) Oxide catalyst and method for producing the same, and method for producing unsaturated aldehyde or unsaturated nitrile
JP6185255B2 (en) Oxide catalyst, method for producing the same, and method for producing unsaturated aldehyde
JP5982214B2 (en) Method for producing oxidation product
JP5378041B2 (en) Method for producing composite oxide catalyst for acrylonitrile synthesis
JP4503315B2 (en) Method for producing iron / antimony / tellurium-containing metal oxide catalyst
CN108778505B (en) Process for preparing catalyst
RU2575346C2 (en) Oxide catalyst
KR101462633B1 (en) PROCESS FOR PREPARING Mo-Bi BASED MULTI-METAL OXIDE CATALYST
JP3999972B2 (en) Method for producing acrylic acid or methacrylic acid
JP2021154222A (en) Catalyst precursor and complex oxide catalyst
JP2021133272A (en) Catalyst precursor and complex oxide catalyst
JP2009095713A (en) Catalyst for manufacturing methacrylic acid, manufacturing method of this catalyst and manufacturing method of methacrylic acid

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150709

R150 Certificate of patent or registration of utility model

Ref document number: 5778770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees