JPWO2012153767A1 - Nitriding processing method and nitriding processing apparatus - Google Patents

Nitriding processing method and nitriding processing apparatus Download PDF

Info

Publication number
JPWO2012153767A1
JPWO2012153767A1 JP2013514033A JP2013514033A JPWO2012153767A1 JP WO2012153767 A1 JPWO2012153767 A1 JP WO2012153767A1 JP 2013514033 A JP2013514033 A JP 2013514033A JP 2013514033 A JP2013514033 A JP 2013514033A JP WO2012153767 A1 JPWO2012153767 A1 JP WO2012153767A1
Authority
JP
Japan
Prior art keywords
nitriding
plasma
processing object
nitrogen
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013514033A
Other languages
Japanese (ja)
Other versions
JP6344639B2 (en
Inventor
民夫 原
民夫 原
伸明 大嶋
伸明 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLASMA RESEARCH AND DEVELOPMENT LABORATORY CO., LTD.
Toyota School Foundation
Original Assignee
PLASMA RESEARCH AND DEVELOPMENT LABORATORY CO., LTD.
Toyota School Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLASMA RESEARCH AND DEVELOPMENT LABORATORY CO., LTD., Toyota School Foundation filed Critical PLASMA RESEARCH AND DEVELOPMENT LABORATORY CO., LTD.
Publication of JPWO2012153767A1 publication Critical patent/JPWO2012153767A1/en
Application granted granted Critical
Publication of JP6344639B2 publication Critical patent/JP6344639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

窒素原子を含むプラズマを用いて窒化処理をすることを特徴とする窒化処理法が提案されている。A nitriding method characterized by performing nitriding using a plasma containing nitrogen atoms has been proposed.

Description

関連出願の相互参照Cross-reference of related applications

本国際出願は、2011年5月9日に日本国特許庁に出願された日本国特許出願第2011−104515号に基づく優先権を主張するものであり、日本国特許出願第2011−104515の全内容を参照により本国際出願に援用する。   This international application claims priority based on Japanese Patent Application No. 2011-104515 filed with the Japan Patent Office on May 9, 2011, and all of Japanese Patent Application No. 2011-104515 The contents are incorporated into this international application by reference.

本発明は、金属等に窒化処理を行う窒化処理方法及び窒化処理装置に関する。   The present invention relates to a nitriding method and a nitriding apparatus for nitriding a metal or the like.

我国の基幹産業である自動車・航空機等の分野では、喫緊の課題である地球温暖化抑制や省エネルギー対応のため、金型や工具における表面改質・硬質膜コーティングを高度化することへの要求が強い。   In the fields of automobiles and aircraft, which are our key industries, there is a demand for advanced surface modification and hard film coating in dies and tools in order to respond to urgent issues such as global warming and energy saving. strong.

表面改質・硬質膜コーティングとして、窒化処理がある。現在、実用化されている窒化処理方法は、活性なアンモニアガスや窒素分子のイオンを、電位差を印加することで加速して、鋼材等の処理対象物の表面に衝突させる方法である。この窒化処理方法においては、窒素分子が鋼材の表面に衝突したとき、窒素分子が解離して窒素原子が生成され、その窒素原子により窒化処理が行われる(特許文献1参照)。   There is a nitriding treatment as a surface modification / hard film coating. The nitriding method currently in practical use is a method in which active ammonia gas and ions of nitrogen molecules are accelerated by applying a potential difference to collide with the surface of an object to be processed such as steel. In this nitriding method, when nitrogen molecules collide with the surface of the steel material, the nitrogen molecules are dissociated to generate nitrogen atoms, and nitriding is performed with the nitrogen atoms (see Patent Document 1).

特開2007−131933号公報JP 2007-131933 A

上述した窒化処理方法では、窒素原子が鋼材と化学的に反応して、鋼材表面に厚い鉄窒化物層を形成するため、鋼材表面の曇り、表面粗さの増加、摩擦係数の上昇、離型性の低下(鋼材を金型として使用する場合)等の問題が生じる。また、窒素分子イオンは隙間に侵入し難いため、例えば、狭いスリット内面の窒化ができないという問題もある。   In the nitriding method described above, nitrogen atoms react chemically with the steel material to form a thick iron nitride layer on the steel material surface, so that the steel material surface fogging, surface roughness increase, friction coefficient increase, mold release Problems such as deterioration of properties (when using steel as a mold) occur. In addition, since nitrogen molecular ions hardly enter the gap, there is a problem that, for example, nitriding of the narrow slit inner surface cannot be performed.

本発明の一側面においては、処理対象物の表面に化合物層を形成し難く、狭いスリット内面の窒化処理を可能にする窒化処理方法、及び窒化処理装置を提供することが望ましい。   In one aspect of the present invention, it is desirable to provide a nitriding method and a nitriding apparatus that make it difficult to form a compound layer on the surface of an object to be processed and enable nitriding of a narrow slit inner surface.

本発明の窒化処理方法は、窒素原子を含むプラズマを用いて、処理対象物の窒化処理をすることを特徴とする。本発明の窒化処理方法によれば、処理対象物の表面に化合物層(例えば、処理対象物が鋼材である場合は鉄の窒化物層)が形成され難い。その結果、処理対象物に、表面の曇り、表面粗さの増加、摩擦係数の上昇、離型性の低下等の問題が生じ難い。   The nitriding method of the present invention is characterized in that a processing object is nitrided using plasma containing nitrogen atoms. According to the nitriding method of the present invention, it is difficult to form a compound layer (for example, an iron nitride layer when the processing target is a steel material) on the surface of the processing target. As a result, problems such as surface fogging, an increase in surface roughness, an increase in friction coefficient, and a decrease in releasability are unlikely to occur on the object to be treated.

また、窒素原子は中性であり処理対象物の表面においてよく反射するため、狭いスリットの間へ容易に侵入できる。このため、本発明の窒化処理方法によれば、狭いスリットの内面における窒化が可能となる。さらに、本発明の窒化処理方法を鋼材に適用すると、従来法と同等以上の表面硬度を得ることができる。   Further, since the nitrogen atoms are neutral and reflect well on the surface of the object to be processed, they can easily enter between narrow slits. Therefore, according to the nitriding method of the present invention, nitriding can be performed on the inner surface of the narrow slit. Furthermore, when the nitriding method of the present invention is applied to a steel material, a surface hardness equal to or higher than that of the conventional method can be obtained.

本発明において、窒化とは、窒素原子を処理対象物の表面から侵入・拡散させることである。本発明の窒化処理方法においては、十分に高濃度の窒素原子(アトム)を含むプラズマを用い、処理対象物を500℃前後の高温に保つことが好ましい。   In the present invention, nitriding means that nitrogen atoms enter and diffuse from the surface of the object to be treated. In the nitriding treatment method of the present invention, it is preferable to use a plasma containing a sufficiently high concentration of nitrogen atoms (atoms) and keep the object to be treated at a high temperature around 500 ° C.

前記プラズマは、例えば、窒素を含むガス(例えば、窒素のみのガス、又は窒素を主成分とし水素等を含むガス)に電子ビーム又はマイクロ波を照射して生成することができる。上記のプラズマ発生方法(電子ビーム励起プラズマ法、又はマイクロ波励起プラズマ法)を用いることにより、プラズマ中で高濃度の窒素原子を発生させることができる。   The plasma can be generated, for example, by irradiating a gas containing nitrogen (for example, a gas containing only nitrogen or a gas containing nitrogen as a main component and containing hydrogen or the like) with an electron beam or microwave. By using the above plasma generation method (electron beam excitation plasma method or microwave excitation plasma method), a high concentration of nitrogen atoms can be generated in the plasma.

前記プラズマの電位と処理対象物の電位との電位差(処理対象物の方がプラズマよりも低電位)は、50V以下であることが好ましい。電位差が50V以下であることにより、処理対象物の表面に化合物層が一層形成され難くなる。また、電位差は、5〜10Vの範囲内であることが好ましい。この範囲内であることにより、プラズマ中に含まれる電子の処理対象物への流入を抑制できる。   The potential difference between the plasma potential and the potential of the object to be processed (the potential of the object to be processed is lower than that of the plasma) is preferably 50 V or less. When the potential difference is 50 V or less, one compound layer is hardly formed on the surface of the object to be processed. The potential difference is preferably in the range of 5 to 10V. By being in this range, it is possible to suppress the inflow of electrons contained in the plasma into the processing object.

本発明の窒化処理方法においては、プラズマ中の窒素原子の濃度を高めると、窒化処理を短時間で行うことができる。プラズマ中の窒素原子の濃度を高めると、プラズマ中の電子密度も高くなる。この場合、もし、プラズマの電位と処理対象物との電位差が小さいと、処理対象物へ流入する電子電流が増大し、処理対象物が加熱される。そのため、本発明の窒化処理方法では、プラズマ中の電子が処理対象物へ流入することを抑制することが好ましい。プラズマ中の電子が処理対象物へ流入することを抑制することにより、処理対象物の温度上昇を抑制することができる。プラズマ中の電子が処理対象物へ流入することを抑制する方法としては、例えば、処理対象物の付近に印加した磁場を用いる方法がある。この磁場の方向は、処理対象物の表面と平行な方向が好ましい。   In the nitriding method of the present invention, the nitriding treatment can be performed in a short time by increasing the concentration of nitrogen atoms in the plasma. Increasing the concentration of nitrogen atoms in the plasma increases the electron density in the plasma. In this case, if the potential difference between the plasma potential and the object to be processed is small, the electron current flowing into the object to be processed increases and the object to be processed is heated. Therefore, in the nitriding method of the present invention, it is preferable to suppress the electrons in the plasma from flowing into the object to be processed. By suppressing the electrons in the plasma from flowing into the processing object, the temperature increase of the processing object can be suppressed. As a method for suppressing the electrons in the plasma from flowing into the processing object, for example, there is a method using a magnetic field applied in the vicinity of the processing object. The direction of this magnetic field is preferably a direction parallel to the surface of the object to be processed.

本発明の窒化処理装置は、窒素を含むガスに電子ビーム又はマイクロ波を照射して窒素原子を含むプラズマを生成するプラズマ生成部と、前記プラズマを用いて処理対象物の窒化処理をする窒化処理部とを備える。   The nitriding apparatus of the present invention includes a plasma generating unit that generates a plasma containing nitrogen atoms by irradiating a nitrogen-containing gas with an electron beam or microwave; A part.

本発明の窒化処理装置を用いれば、処理対象物の表面に化合物層(例えば、処理対象物が鋼材である場合は鉄の窒化物層)が形成され難い。その結果、処理対象物に、表面の曇り、表面粗さの増加、摩擦係数の上昇、離型性の低下等の問題が生じ難い。   If the nitriding apparatus of the present invention is used, it is difficult to form a compound layer (for example, an iron nitride layer when the processing object is a steel material) on the surface of the processing object. As a result, problems such as surface fogging, an increase in surface roughness, an increase in friction coefficient, and a decrease in releasability are unlikely to occur on the object to be treated.

また、窒素原子は中性であり処理対象物の表面においてよく反射するため、狭いスリットの間へ容易に侵入できる。このため、本発明の窒化処理装置を用いれば、狭いスリットの内面における窒化が可能となる。さらに、本発明の窒化処理装置を用いて鋼材の表面を窒化処理すると、従来法と同等以上の表面硬度を得ることができる。   Further, since the nitrogen atoms are neutral and reflect well on the surface of the object to be processed, they can easily enter between narrow slits. For this reason, if the nitriding apparatus of the present invention is used, nitriding on the inner surface of the narrow slit becomes possible. Furthermore, when the surface of the steel material is nitrided using the nitriding apparatus of the present invention, a surface hardness equal to or higher than that of the conventional method can be obtained.

本発明の窒化処理装置は、プラズマ中の電子が処理対象物へ流入することを抑制する抑制部を備えることが望ましい。プラズマ中の電子が処理対象物へ流入することを抑制することにより、処理対象物の温度上昇を抑制することができる。プラズマ中の電子が処理対象物へ流入することを抑制する抑制部としては、例えば、処理対象物の付近に磁場を印加し、その磁場により電子の流入を抑制する手段がある。この磁場の方向は、処理対象物の表面と平行な方向が好ましい。   The nitriding apparatus of the present invention preferably includes a suppressing unit that suppresses electrons in the plasma from flowing into the object to be processed. By suppressing the electrons in the plasma from flowing into the processing object, the temperature increase of the processing object can be suppressed. An example of the suppression unit that suppresses the electrons in the plasma from flowing into the processing object includes a means for applying a magnetic field in the vicinity of the processing object and suppressing the inflow of electrons by the magnetic field. The direction of this magnetic field is preferably a direction parallel to the surface of the object to be processed.

窒化処理装置1の構成を表す説明図である。2 is an explanatory diagram illustrating a configuration of a nitriding apparatus 1. FIG. 窒化処理を行った処理対象物の断面を表す写真であって、図2Aは処理対象物Xの写真であり、図2Bは処理対象物Yの写真である。FIG. 2A is a photograph of the processing object X, and FIG. 2B is a photograph of the processing object Y. 処理対象物について、X線回折の測定結果を表すグラフである。It is a graph showing the measurement result of a X-ray diffraction about a process target object. 処理対象物100の構成を表す説明図であって、図4Aは長手方向の側面から見た側面図であり、図4Bは短手方向の側面から見た側面図であり、図4Cは斜視図である。FIG. 4A is a side view seen from the side surface in the longitudinal direction, FIG. 4B is a side view seen from the side surface in the short direction, and FIG. 4C is a perspective view. It is. 処理対象物100について、エッジからの距離とビッカース硬度との関係を表すグラフである。It is a graph showing the relationship between the distance from an edge and Vickers hardness about the process target object 100. FIG. 窒化処理装置201の構成を表す説明図である。2 is an explanatory diagram illustrating a configuration of a nitriding apparatus 201. FIG.

1、201・・・窒化処理装置、3、203・・・チャンバー、5・・・カソード、7・・・予備アノード、9・・・アノード、11・・・加速電極、13・・・アルゴン導入口、15、211・・・窒素導入口、17、213・・・真空排気口、19・・・初期放電形成領域、21、215・・・反応室、23、100・・・処理対象物、25・・・導線、27・・・アルゴンプラズマ、29・・・電子ビーム、31・・・プラズマ、101、103・・・板状部材、105、107・・・スペーサ、109、111、113・・・カバー部材、115・・・スリット、117・・・側面、205・・・石英ガラス窓、207・・・処理対象物ホルダー、209・・・導波路 1, 201 ... Nitriding treatment device, 3, 203 ... Chamber, 5 ... Cathode, 7 ... Preliminary anode, 9 ... Anode, 11 ... Accelerating electrode, 13 ... Argon introduction , Nitrogen inlet, 17, 213 ... vacuum exhaust port, 19 ... initial discharge formation region, 21, 215 ... reaction chamber, 23, 100 ... object to be treated, 25 ... conductive wire, 27 ... argon plasma, 29 ... electron beam, 31 ... plasma, 101, 103 ... plate member, 105, 107 ... spacer, 109, 111, 113 .... Cover member, 115 ... slit, 117 ... side, 205 ... quartz glass window, 207 ... processing object holder, 209 ... waveguide

以下、図面に基づき本発明の実施形態について説明する。
<第1の実施形態>
1.窒化処理装置1の構成
窒化処理装置1の構成を、図1に基づいて説明する。窒化処理装置1は、チャンバー3内に、カソード5、予備アノード7、アノード9、及び加速電極11を備えている。また、チャンバー3には、アルゴン導入口13、窒素導入口15、真空排気口17が設けられている。チャンバー3内において、カソード5と予備アノード7とに挟まれ、アルゴン導入口13に面している領域は、初期放電形成領域19である。また、チャンバー3内において、加速電極11よりも右側の部分であって、窒素導入口15、及び真空排気口17に面している部分は、反応室21である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
1. Configuration of Nitriding Apparatus 1 The configuration of the nitriding apparatus 1 will be described with reference to FIG. The nitriding apparatus 1 includes a cathode 5, a preliminary anode 7, an anode 9, and an acceleration electrode 11 in a chamber 3. The chamber 3 is provided with an argon inlet 13, a nitrogen inlet 15, and a vacuum exhaust 17. In the chamber 3, a region sandwiched between the cathode 5 and the auxiliary anode 7 and facing the argon inlet 13 is an initial discharge formation region 19. In the chamber 3, a portion on the right side of the acceleration electrode 11 and facing the nitrogen inlet 15 and the vacuum exhaust port 17 is a reaction chamber 21.

ここで、文言の対応関係を説明する。カソード5、予備アノード7、アノード9、加速電極11、アルゴン導入口13、及び窒素導入口15がプラズマ生成部の一例に相当する。また、反応室21が窒化処理部の一例に相当する。   Here, the correspondence between words will be described. The cathode 5, the preliminary anode 7, the anode 9, the acceleration electrode 11, the argon inlet 13, and the nitrogen inlet 15 correspond to an example of a plasma generation unit. The reaction chamber 21 corresponds to an example of a nitriding unit.

2.窒化処理装置1を用いた窒化処理方法
窒化処理装置1を用いた窒化処理方法を、図1に基づいて説明する。まず、処理対象物23を反応室21内に設置する。反応室21内には、窒素導入口15から窒素ガスを導入する。処理対象物23の周囲には、コイル状に導線25を巻いておく。このとき、導線25は処理対象物23の表面に接触しないようにする。導線25の両端は、図示しない電源に接続されており、導線25に電流を流すことができる。導線25に電流が流れた場合、処理対象物23の表面に沿う方向(図1中の矢印Aの方向)の磁場が発生する。この磁場により、処理対象物23と後述するプラズマ31との電位差が小さくても、プラズマ31中の電子が処理対象物23へ流入することを抑制することができる。
2. Nitriding Method Using Nitriding Apparatus 1 A nitriding method using the nitriding apparatus 1 will be described with reference to FIG. First, the processing object 23 is installed in the reaction chamber 21. Nitrogen gas is introduced into the reaction chamber 21 from the nitrogen inlet 15. A conductive wire 25 is wound around the processing object 23 in a coil shape. At this time, the conductive wire 25 is prevented from contacting the surface of the processing object 23. Both ends of the conducting wire 25 are connected to a power source (not shown), and a current can flow through the conducting wire 25. When a current flows through the conductor 25, a magnetic field is generated in a direction along the surface of the processing object 23 (in the direction of arrow A in FIG. 1). Due to this magnetic field, even if the potential difference between the processing object 23 and the plasma 31 described later is small, it is possible to suppress the electrons in the plasma 31 from flowing into the processing object 23.

次に、アルゴン導入口13から、初期放電形成領域19にアルゴンガスを導入し、カソード5と予備アノード7間で放電を発生させる。その後、カソード5とアノード9間に放電を移行し、安定したアルゴンプラズマ27を生成する。このアルゴンプラズマ27から、加速電極11によって電子のみを加速することで電子ビーム29を生成し、その電子ビーム29を反応室21へ引き出す。   Next, argon gas is introduced from the argon inlet 13 into the initial discharge formation region 19 to generate a discharge between the cathode 5 and the auxiliary anode 7. Thereafter, discharge is transferred between the cathode 5 and the anode 9 to generate a stable argon plasma 27. From the argon plasma 27, only the electrons are accelerated by the acceleration electrode 11 to generate an electron beam 29, and the electron beam 29 is extracted to the reaction chamber 21.

反応室21では、窒素ガスに電子ビーム29が照射され、窒素ガスが効率良く解離・電離して、窒素原子密度が高いプラズマ31が生成する。処理対象物23は、プラズマ31の中に含まれる。プラズマ31により、処理対象物23の表面が窒化処理される。   In the reaction chamber 21, the nitrogen gas is irradiated with the electron beam 29, and the nitrogen gas is efficiently dissociated and ionized to generate a plasma 31 having a high nitrogen atom density. The processing object 23 is included in the plasma 31. The surface of the processing object 23 is nitrided by the plasma 31.

なお、反応室21の温度は、窒化処理装置1が備える図示しないヒータにより、適切な温度(400〜600℃)に制御される。また、電子ビーム29のエネルギーは、加速電極11に印加する電圧により、任意に設定可能である。   The temperature of the reaction chamber 21 is controlled to an appropriate temperature (400 to 600 ° C.) by a heater (not shown) provided in the nitriding apparatus 1. The energy of the electron beam 29 can be arbitrarily set by the voltage applied to the acceleration electrode 11.

3.窒化処理装置1を用いた窒化処理方法が奏する効果
窒化処理装置1を用いた窒化処理方法が奏する効果を確かめるために実施した試験について説明する。
(1)第1の試験
次の条件下、窒化処理装置1を用い、上述した窒化処理方法を実施した。
3. Effects of the nitriding method using the nitriding apparatus 1 Tests conducted to confirm the effects of the nitriding method using the nitriding apparatus 1 will be described.
(1) First Test The above-described nitriding method was performed using the nitriding apparatus 1 under the following conditions.

処理対象物23:熱間工具鋼のSKD61
チャンバー3内の圧力:0.2Pa
電子ビーム29の加速電圧:80V
電子ビーム29の電流:8A
反応室21の温度:500℃
窒化処理の時間:5時間
バイアス電圧(プラズマ31の電位を基準とする、処理対象物23の電位):−50V又は−5V
導線25の電流:ON又はOFF
バイアス電圧が−50Vであり、導線25の電流をOFFとした条件で窒化処理を行った処理対象物(以下、処理対象物Xとする)と、バイアス電圧が−5Vであり、導線25の電流をONとした条件で窒化処理を行った処理対象物(以下、処理対象物Yとする)について、切断し、断面をナイタール液で腐食させて観察した。図2A,2Bに、その観察における断面写真を示す。図2Aの写真は、処理対象物X(バイアス電圧:−50V、導線25の電流:OFF)の写真であり、図2Bの写真は、処理対象物Y(バイアス電圧:−5V、導線25の電流:ON)の写真である。
Processing object 23: SKD61 of hot work tool steel
Pressure in chamber 3: 0.2 Pa
Electron beam 29 acceleration voltage: 80V
Current of electron beam 29: 8A
Temperature in reaction chamber 21: 500 ° C
Time of nitriding treatment: 5 hours Bias voltage (potential of the object to be treated 23 based on the potential of the plasma 31): -50V or -5V
Conductor 25 current: ON or OFF
A processing object (hereinafter referred to as processing object X) that has been subjected to nitriding under the condition that the bias voltage is −50 V and the current of the conductor 25 is OFF, and the bias voltage is −5 V and the current of the conductor 25 A processing object (hereinafter referred to as processing object Y) subjected to nitriding under the condition of ON was cut and observed by corroding the cross section with a nital liquid. 2A and 2B show cross-sectional photographs in the observation. The photograph of FIG. 2A is a photograph of the processing object X (bias voltage: −50 V, current of the conductive wire 25: OFF), and the photograph of FIG. 2B is a photograph of the processing object Y (bias voltage: −5 V, current of the conductive wire 25). : ON).

処理対象物Xにおいては、表面に白層と呼ばれる化合物層がわずかではあるが形成されており、その下部に黒く変色した、窒素が拡散している拡散層が形成されている。なお、処理対象物Xにおける白層の厚みは、従来の窒化処理方法で形成される白層の厚みと比べると、顕著に薄い。   In the processing object X, a slight compound layer called a white layer is formed on the surface, and a diffusion layer in which nitrogen is diffused and is turned black is formed below the compound layer. In addition, the thickness of the white layer in the processing object X is significantly thinner than the thickness of the white layer formed by the conventional nitriding method.

一方、処理対象物Yにおいては、表面に白層は認められず、黒く変色した拡散層のみが形成されている。拡散層の厚さは、バイアス電圧が異なっていても、処理対象物Xと処理対象物Yとで違いはなかった。   On the other hand, in the processing target Y, no white layer is recognized on the surface, and only the diffusion layer that has turned black is formed. The thickness of the diffusion layer was not different between the processing object X and the processing object Y even when the bias voltage was different.

また、処理対象物X、処理対象物Y、及び未処理のSKD61(以下、未処理品とする)について、X線回折を行った。その結果を図3に示す。
未処理品(図3では「Untreated」と表記)では、鉄のピークのみが確認されるのに対して、処理対象物X(図3では「バイアス電圧:−50V」と表記)では、鉄と窒素の化合物であるFe3N及びFe4Nのピークが確認される。処理対象物Y(図3では「バイアス電圧:−5V」と表記)では、鉄と窒素の化合物のピークは認められず、α鉄のピークが広がりをもっている。これは、鉄の格子間に窒素が拡散したために、ピークの幅が拡がったものである。以上のことより、バイアス電圧が低いほど(イオンの衝突エネルギーが低いほど)、化合物層の形成を抑制できることが確認できた。
(2)第2の試験
基本的には前記第1の試験と同様にして、窒化処理方法を実施した。ただし、本第2の試験では、処理対象物として、図4A、図4B、図4Cに示す処理対象物100を用いた。図4Aは、処理対象物100を長手方向の側面から見た側面図であり、図4Bは、処理対象物100を短手方向の側面から見た側面図であり、図4Cは、処理対象物100の斜視図である。
Further, X-ray diffraction was performed on the processing object X, the processing object Y, and the unprocessed SKD61 (hereinafter referred to as an unprocessed product). The result is shown in FIG.
In the untreated product (indicated as “Untreated” in FIG. 3), only the iron peak is confirmed, whereas in the processing object X (indicated as “bias voltage: −50 V” in FIG. 3), iron and The peaks of Fe 3 N and Fe 4 N, which are nitrogen compounds, are confirmed. In the processing object Y (shown as “bias voltage: −5V” in FIG. 3), the peak of the compound of iron and nitrogen is not recognized, and the peak of α iron is broadened. This is because the width of the peak is expanded due to the diffusion of nitrogen between the iron lattices. From the above, it was confirmed that the lower the bias voltage (the lower the ion collision energy), the more the formation of the compound layer can be suppressed.
(2) Second Test Basically, the nitriding method was carried out in the same manner as the first test. However, in the second test, the processing object 100 shown in FIGS. 4A, 4B, and 4C was used as the processing object. 4A is a side view of the processing object 100 as viewed from the side surface in the longitudinal direction, FIG. 4B is a side view of the processing object 100 as viewed from the side surface in the short direction, and FIG. 4C is a processing object. FIG.

処理対象物100は、ともにSKD61から成る一対の板状部材101、103を、間にスペーサ105、107を介して固定し、3側面を、銅から成るカバー部材109、111、113で覆ったものである。一対の板状部材101、103の間には、スペーサ105、107の厚みに対応する幅のスリット115が形成されており、そのスリット115は、カバー部材109、111、113で覆われていない側面117において露出している。処理対象物100の各部の寸法は図4A、図4Bに記載したとおりであり、スリット115の幅は1mmである。   The object 100 to be processed has a pair of plate-like members 101 and 103 made of SKD61 fixed via spacers 105 and 107, and three sides covered with cover members 109, 111 and 113 made of copper. It is. A slit 115 having a width corresponding to the thickness of the spacers 105 and 107 is formed between the pair of plate-like members 101 and 103, and the slit 115 is a side surface not covered with the cover members 109, 111, and 113. It is exposed at 117. The dimensions of each part of the processing object 100 are as described in FIGS. 4A and 4B, and the width of the slit 115 is 1 mm.

窒化処理方法を実施した後の処理対象物100について、スリット115内部のビッカース硬度を測定した。なお、窒化処理は、バイアス電圧が−50Vの条件で行い、電子ビーム29の方向は、図4Cで示すように、側面117に直交する方向であって、外からスリット115内に入り込む方向とした。また、窒化処理は、処理時間が5時間の場合、10時間の場合、20時間の場合のそれぞれにおいて実施した。また、硬度の測定は、スリット115の開口部(エッジ)115aからの距離が異なる複数の点で行った。   The Vickers hardness inside the slit 115 was measured for the processing object 100 after the nitriding method was performed. The nitriding process is performed under the condition that the bias voltage is −50 V, and the direction of the electron beam 29 is a direction orthogonal to the side surface 117 and entering the slit 115 from the outside as shown in FIG. 4C. . The nitriding treatment was carried out in each of the case where the treatment time was 5 hours, 10 hours, and 20 hours. Further, the hardness was measured at a plurality of points with different distances from the opening (edge) 115a of the slit 115.

ビッカース硬度の測定結果を図5に示す。図5には、窒化処理を行っていない処理対象物100(図5では「未処理」と表示)の結果も示す。この図5から明らかなように、スリット115内の奥の方まで窒化処理が行われ、硬度が上昇している。   The measurement result of Vickers hardness is shown in FIG. FIG. 5 also shows the result of the processing object 100 that has not been subjected to nitriding (shown as “unprocessed” in FIG. 5). As is apparent from FIG. 5, the nitriding process is performed to the depth inside the slit 115, and the hardness is increased.

スリット115内の奥の方まで硬度が上昇した原因は、プラズマ31中に多く含まれる窒素原子の影響である。窒素原子は、他の窒素原子と再結合して分子に戻るまでの平均時間が長く、再結合するまで処理対象物100(スリット115の内部も含む)の表面に何度も衝突と反射を繰り返す。その結果、窒素原子は、狭いスリット115内の奥まで到達できる。   The reason why the hardness has increased to the depth inside the slit 115 is the influence of nitrogen atoms contained in the plasma 31 in a large amount. Nitrogen atoms have a long average time to recombine with other nitrogen atoms and return to the molecule, and repeatedly collide and reflect on the surface of the processing object 100 (including the inside of the slit 115) until recombination. . As a result, nitrogen atoms can reach the back of the narrow slit 115.

なお、処理対象物100の電位がプラズマ31の電位より低いため、プラズマ31中に含まれるイオンは、スリット115の入口に近い材料表面に引き寄せられ、そこで再結合する。そのため、イオンは、スリット115内に深く侵入することは出来ない。   Since the potential of the object 100 to be processed is lower than the potential of the plasma 31, ions contained in the plasma 31 are attracted to the material surface near the entrance of the slit 115 and recombine there. Therefore, ions cannot penetrate deep into the slit 115.

図5に示されているように、窒化処理時間が20時間と長い条件では、5時間の場合と比べて、スリット115内の硬度がより上昇している。さらに長い時間窒化処理を行うことで、スリット115内全てにおいて均一な硬さを得ることも可能である。   As shown in FIG. 5, the hardness in the slit 115 is further increased under the condition that the nitriding time is as long as 20 hours, compared with the case where the nitriding time is as long as 5 hours. It is also possible to obtain uniform hardness in the entire slit 115 by performing nitriding for a longer time.

従来の窒化処理方法と大きく異なるこの実験結果は、本発明の窒化処理方法では、高濃度の窒素原子が窒化処理において重要な役割を果たしていることを明確に示している。
以上の結果から、窒化処理装置1を用いた窒化処理方法によれば、工具や金型などの金属表面に鉄等の窒素化合物層を形成することなく、また、表面の粗さを増加させることなく、表面付近の硬度を高める窒化処理が可能となる。また、スリット(微細な構造)を持つ工具や金型においても、狭いスリットの内面を均一に窒化処理することが可能になる。
<第2の実施形態>
1.窒化処理装置201の構成
窒化処理装置201の構成を、図6に基づいて説明する。窒化処理装置201は、チャンバー203内に、複数のスリット202を備えた金属板204、その金属板204と接する石英ガラス窓205、及び処理対象物ホルダー207を備えている。処理対象物ホルダー207は、その上面に、処理対象物23を保持することができる。また、処理対象物ホルダー207は、図示しないヒータを内蔵しており、処理対象物23を加熱することができる。さらに、チャンバー203には、マイクロ波を送り込むための導波路209、窒素導入口211、及び真空排気口213が設けられている。チャンバー203の内部は、反応室215である。
This experimental result, which is greatly different from the conventional nitriding method, clearly shows that the high concentration of nitrogen atoms plays an important role in the nitriding method of the present invention.
From the above results, according to the nitriding method using the nitriding apparatus 1, the surface roughness can be increased without forming a nitrogen compound layer such as iron on the metal surface such as a tool or a mold. Therefore, nitriding treatment that increases the hardness near the surface is possible. In addition, even in a tool or mold having a slit (fine structure), the inner surface of the narrow slit can be uniformly nitrided.
<Second Embodiment>
1. Configuration of Nitriding Apparatus 201 The configuration of the nitriding apparatus 201 will be described with reference to FIG. The nitriding apparatus 201 includes a metal plate 204 having a plurality of slits 202, a quartz glass window 205 in contact with the metal plate 204, and a processing object holder 207 in a chamber 203. The processing object holder 207 can hold the processing object 23 on its upper surface. Further, the processing object holder 207 includes a heater (not shown) and can heat the processing object 23. Further, the chamber 203 is provided with a waveguide 209 for sending microwaves, a nitrogen inlet 211, and a vacuum exhaust 213. Inside the chamber 203 is a reaction chamber 215.

ここで、文言の対応関係を説明する。窒素導入口211、後述するマイクロ波、金属板204及び石英ガラス窓205がプラズマ生成部の一例に相当する。また、反応室215が窒化処理部の一例に相当する。   Here, the correspondence between words will be described. The nitrogen inlet 211, the microwave, the metal plate 204, and the quartz glass window 205 described later correspond to an example of the plasma generation unit. The reaction chamber 215 corresponds to an example of a nitriding unit.

2.窒化処理装置201を用いた窒化処理方法
窒化処理装置201を用いた窒化処理方法を説明する。まず、処理対象物23を処理対象物ホルダー207に取り付け、反応室215内に設置する。処理対象物23を500℃まで加熱し、次に、窒素導入口211から反応室215内に窒素ガスを導入する。次に、導波路209からマイクロ波を導入する。マイクロ波は、複数のスリット202を備えた金属板204及び石英ガラス窓205を透過し、その下側表面で表面波プラズマを発生させる。その表面波プラズマが反応室215内の窒素ガスに作用して、反応室215内で、高濃度の窒素原子を含むプラズマが発生する。この高濃度の窒素原子を含むプラズマにより、処理対象物23の表面が窒化処理される。
2. Nitriding Method Using Nitriding Apparatus 201 A nitriding method using the nitriding apparatus 201 will be described. First, the processing object 23 is attached to the processing object holder 207 and installed in the reaction chamber 215. The processing object 23 is heated to 500 ° C., and then nitrogen gas is introduced into the reaction chamber 215 from the nitrogen inlet 211. Next, a microwave is introduced from the waveguide 209. The microwaves pass through the metal plate 204 and the quartz glass window 205 having a plurality of slits 202, and generate surface wave plasma on the lower surface thereof. The surface wave plasma acts on the nitrogen gas in the reaction chamber 215 to generate a plasma containing a high concentration of nitrogen atoms in the reaction chamber 215. The surface of the object to be processed 23 is nitrided by the plasma containing high-concentration nitrogen atoms.

なお、窒化処理装置201を用いて、処理対象物23の表面をクリーニングすることもできる。クリーニングは、処理対象物23を500℃に加熱しているとき、アルゴンガスや水素ガスを反応室215内に導入し、表面波プラズマを発生させることにより行う。   Note that the surface of the processing object 23 can be cleaned using the nitriding apparatus 201. Cleaning is performed by introducing surface-wave plasma by introducing argon gas or hydrogen gas into the reaction chamber 215 when the processing object 23 is heated to 500 ° C.

3.窒化処理装置201を用いた窒化処理方法が奏する効果
窒化処理装置201を用いた窒化処理方法によっても、工具や金型などの金属表面に鉄等の窒素化合物層を形成することなく、また、表面の粗さを増加させることなく、表面付近の硬度を高める窒化処理が可能となる。また、スリット(微細な構造)を持つ工具や金型においても、狭いスリットの内面を均一に窒化処理することが可能になる。
3. Advantages of the nitriding method using the nitriding apparatus 201 The nitriding method using the nitriding apparatus 201 can also be used without forming a nitrogen compound layer such as iron on the surface of a metal such as a tool or a mold. The nitriding treatment can be performed to increase the hardness near the surface without increasing the roughness. In addition, even in a tool or mold having a slit (fine structure), the inner surface of the narrow slit can be uniformly nitrided.

Claims (7)

窒素原子を含むプラズマを用いて、処理対象物の窒化処理をすることを特徴とする窒化処理方法。   A nitriding method for nitriding a processing object using a plasma containing nitrogen atoms. 前記プラズマは、窒素を含むガスに電子ビーム又はマイクロ波を照射して生成したものであることを特徴とする請求項1記載の窒化処理方法。   2. The nitriding method according to claim 1, wherein the plasma is generated by irradiating a gas containing nitrogen with an electron beam or a microwave. 前記プラズマの電位と前記処理対象物との電位差が50V以下であることを特徴とする請求項1又は2記載の窒化処理方法。   3. The nitriding method according to claim 1, wherein a potential difference between the plasma potential and the object to be processed is 50 V or less. 前記プラズマ中の電子が前記処理対象物へ流入することを抑制すること特徴とする請求項1〜請求項3のいずれか1項に記載の窒化処理方法。   The nitriding method according to any one of claims 1 to 3, wherein electrons in the plasma are suppressed from flowing into the object to be processed. 前記処理対象物の付近に印加した磁場により、前記プラズマ中の電子が前記処理対象物へ流入することを抑制することを特徴とする請求項4記載の窒化処理方法。   The nitriding method according to claim 4, wherein electrons in the plasma are prevented from flowing into the processing object by a magnetic field applied in the vicinity of the processing object. 窒素を含むガスに電子ビーム又はマイクロ波を照射して窒素原子を含むプラズマを生成するプラズマ生成部と、
前記プラズマを用いて処理対象物の窒化処理をする窒化処理部と、
を備える窒化処理装置。
A plasma generating unit that generates a plasma containing nitrogen atoms by irradiating a gas containing nitrogen with an electron beam or microwave;
A nitriding section for nitriding a processing object using the plasma;
A nitriding apparatus comprising:
前記プラズマ中の電子が前記処理対象物へ流入することを抑制する抑制部を備えることを特徴とする請求項6記載の窒化処理装置。   The nitriding apparatus according to claim 6, further comprising a suppressing unit that suppresses electrons in the plasma from flowing into the object to be processed.
JP2013514033A 2011-05-09 2012-05-09 Nitriding processing method and nitriding processing apparatus Active JP6344639B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011104515 2011-05-09
JP2011104515 2011-05-09
PCT/JP2012/061888 WO2012153767A1 (en) 2011-05-09 2012-05-09 Nitriding method and nitriding equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018043161A Division JP6614514B2 (en) 2011-05-09 2018-03-09 Nitriding processing method and nitriding processing apparatus

Publications (2)

Publication Number Publication Date
JPWO2012153767A1 true JPWO2012153767A1 (en) 2014-07-31
JP6344639B2 JP6344639B2 (en) 2018-06-20

Family

ID=47139243

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013514033A Active JP6344639B2 (en) 2011-05-09 2012-05-09 Nitriding processing method and nitriding processing apparatus
JP2018043161A Active JP6614514B2 (en) 2011-05-09 2018-03-09 Nitriding processing method and nitriding processing apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018043161A Active JP6614514B2 (en) 2011-05-09 2018-03-09 Nitriding processing method and nitriding processing apparatus

Country Status (2)

Country Link
JP (2) JP6344639B2 (en)
WO (1) WO2012153767A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650569B2 (en) * 2011-03-22 2015-01-07 エア・ウォーター株式会社 Apparatus and method for surface hardening of ferrous material
JP2016196696A (en) * 2015-04-06 2016-11-24 学校法人トヨタ学園 Nitriding treatment apparatus and nitriding treatment method
JP6832537B2 (en) * 2017-02-21 2021-02-24 株式会社岡本 Rolled dies with excellent durability and their manufacturing methods
CN108486525A (en) * 2017-02-22 2018-09-04 学校法人丰田学园 The manufacturing method of metal product
JP7078220B2 (en) * 2017-02-22 2022-05-31 学校法人トヨタ学園 Manufacturing method of metal products
JP7295511B2 (en) * 2019-02-15 2023-06-21 中日本炉工業株式会社 Plasma nitriding method
JP6839884B2 (en) * 2019-03-05 2021-03-10 国立大学法人東海国立大学機構 Cutting method using a diamond cutting tool
JPWO2021187508A1 (en) * 2020-03-19 2021-09-23

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887272A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Planar magnetron sputtering device
JPS6386857A (en) * 1986-09-30 1988-04-18 Toshiba Corp Surface treatment of metal member with plasma
JPH0657435A (en) * 1992-08-12 1994-03-01 Shinko Seiki Co Ltd Plasma cvd device
JP2002194527A (en) * 2000-12-27 2002-07-10 Kawasaki Heavy Ind Ltd Nitriding equipment with electron beam excitation plasma
JP2002263473A (en) * 2001-03-08 2002-09-17 Ricoh Co Ltd Film deposition system
JP2003183839A (en) * 2001-12-13 2003-07-03 Tadahiro Omi Process and apparatus for substrate treatment
JP2004238705A (en) * 2003-02-07 2004-08-26 Riken Corp External heating type plasma nitriding furnace
WO2006046634A1 (en) * 2004-10-28 2006-05-04 Tokyo Electron Limited Method for forming gate insulating film, semiconductor device and computer recording medium
JP2006206959A (en) * 2005-01-27 2006-08-10 Plus:Kk Method for nitriding aluminum alloy
JP2006249508A (en) * 2005-03-10 2006-09-21 Shonan Chikka Kogyo Kk Method for nitriding titanium and titanium alloy
JP2007131933A (en) * 2005-11-14 2007-05-31 Dowa Holdings Co Ltd Nitriding method and nitriding apparatus
JP2008027816A (en) * 2006-07-24 2008-02-07 Canon Inc Plasma processing device, and plasma processing method
JP2010040417A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Electron beam generating device
JP2010196129A (en) * 2009-02-26 2010-09-09 Toyota Motor Corp Method of manufacturing steel material
JP2011052313A (en) * 2009-09-04 2011-03-17 Meijo Univ Nitriding treatment device and nitriding treatment method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536549A (en) * 1993-08-02 1996-07-16 Tulip Memory Systems, Inc. Austenitic stainless steel substrate for magnetic-recording media
EP0872569B1 (en) * 1997-04-18 2003-12-17 Plasma Metal S.A. Nitriding process and nitriding furnace thereof
JP2868120B2 (en) * 1997-06-11 1999-03-10 川崎重工業株式会社 Electron beam excited plasma generator
JP2848590B1 (en) * 1998-01-08 1999-01-20 川崎重工業株式会社 Electron beam excited plasma generator
JP2002356764A (en) * 2001-05-29 2002-12-13 Kawasaki Heavy Ind Ltd Nitriding method and device using electron beam excitation plasma
JP2005332838A (en) * 2004-05-18 2005-12-02 Ken Takahashi Tunneling magneto-resistive element and its manufacturing method and apparatus
JP4936276B2 (en) * 2006-05-26 2012-05-23 株式会社デンソー Nitriding equipment
US8420456B2 (en) * 2007-06-12 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing for thin film transistor
JP5388306B2 (en) * 2010-04-13 2014-01-15 富士フイルム株式会社 Plasma oxidation method and plasma oxidation apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887272A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Planar magnetron sputtering device
JPS6386857A (en) * 1986-09-30 1988-04-18 Toshiba Corp Surface treatment of metal member with plasma
JPH0657435A (en) * 1992-08-12 1994-03-01 Shinko Seiki Co Ltd Plasma cvd device
JP2002194527A (en) * 2000-12-27 2002-07-10 Kawasaki Heavy Ind Ltd Nitriding equipment with electron beam excitation plasma
JP2002263473A (en) * 2001-03-08 2002-09-17 Ricoh Co Ltd Film deposition system
JP2003183839A (en) * 2001-12-13 2003-07-03 Tadahiro Omi Process and apparatus for substrate treatment
JP2004238705A (en) * 2003-02-07 2004-08-26 Riken Corp External heating type plasma nitriding furnace
WO2006046634A1 (en) * 2004-10-28 2006-05-04 Tokyo Electron Limited Method for forming gate insulating film, semiconductor device and computer recording medium
JP2006206959A (en) * 2005-01-27 2006-08-10 Plus:Kk Method for nitriding aluminum alloy
JP2006249508A (en) * 2005-03-10 2006-09-21 Shonan Chikka Kogyo Kk Method for nitriding titanium and titanium alloy
JP2007131933A (en) * 2005-11-14 2007-05-31 Dowa Holdings Co Ltd Nitriding method and nitriding apparatus
JP2008027816A (en) * 2006-07-24 2008-02-07 Canon Inc Plasma processing device, and plasma processing method
JP2010040417A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Electron beam generating device
JP2010196129A (en) * 2009-02-26 2010-09-09 Toyota Motor Corp Method of manufacturing steel material
JP2011052313A (en) * 2009-09-04 2011-03-17 Meijo Univ Nitriding treatment device and nitriding treatment method

Also Published As

Publication number Publication date
JP6344639B2 (en) 2018-06-20
JP6614514B2 (en) 2019-12-04
JP2018111884A (en) 2018-07-19
WO2012153767A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP6614514B2 (en) Nitriding processing method and nitriding processing apparatus
Yasuda Some important aspects of plasma polymerization
KR20120024544A (en) Atomic layer etching with pulsed plasmas
Ryabchikov et al. Modification of the microstructure and properties of martensitic steel during ultra-high dose high-intensity implantation of nitrogen ions
Jafarpour et al. Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel in cold wall reactor: Influence of plasma conditions
JP7078220B2 (en) Manufacturing method of metal products
Maniee et al. Improved hardness, wear and corrosion resistance of inconel 718 treated by hot wall plasma nitriding
US20090032143A1 (en) Electron beam enhanced nitriding system
CN101713065A (en) Device for microwave plasma based low-energy ion implantation on internal surface of metal round pipe with small pipe diameter
JP5606707B2 (en) Nitriding processing apparatus and nitriding processing method
Muratore et al. Low-temperature nitriding of stainless steel in an electron beam generated plasma
Malinský et al. The structural and compositional changes of graphene oxide induced by irradiation with 500 keV helium and gallium ions
Ricard Discharges in N2 flowing gas for steel surface nitriding
USH2212H1 (en) Method and apparatus for producing an ion-ion plasma continuous in time
Boris et al. Effect of varying plasma properties on III-nitride film growth by plasma enhanced atomic layer epitaxy
Sahu et al. Utilizing upper hybrid resonance for high density plasma production and negative ion generation in a downstream region
Andrei et al. Study of ceramic‐like aluminum oxide thin films developed using plasma electrolytic oxidation applied on austenitic steels
JP2005252031A (en) Plasma nitriding method
Camps et al. Microwave plasma characteristics in steel nitriding process
Li et al. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N2-H2 microwave plasma torch
JP6415133B2 (en) Method for producing conductive diamond electrode
Valencia et al. Nitriding of AISI 304 stainless steel by PIII in DC and RF toroidal discharges
Lima et al. Effects of Sodium Octaborate on AISI 4140 Steel Machined by Die-sinking EDM
Ray et al. Optimizing gas-assisted processes for Ga and Xe FIB circuit edit application
Camps et al. Influence of microwave plasma parameters on the nitriding of T-304 stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170710

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180510

R150 Certificate of patent or registration of utility model

Ref document number: 6344639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250