JPWO2012091120A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JPWO2012091120A1
JPWO2012091120A1 JP2012551053A JP2012551053A JPWO2012091120A1 JP WO2012091120 A1 JPWO2012091120 A1 JP WO2012091120A1 JP 2012551053 A JP2012551053 A JP 2012551053A JP 2012551053 A JP2012551053 A JP 2012551053A JP WO2012091120 A1 JPWO2012091120 A1 JP WO2012091120A1
Authority
JP
Japan
Prior art keywords
gas
fuel cell
damper
flow direction
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012551053A
Other languages
English (en)
Inventor
洋平 水野
洋平 水野
修平 咲間
修平 咲間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Publication of JPWO2012091120A1 publication Critical patent/JPWO2012091120A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池システム(1)では、発電部(21)から排出されるFCガスを排気する排気経路において、排気口(26)の開閉を切り替えるダンパ(22)が設けられている。そして、流動方向検出部(23)によって排気口(26)に向かって流れる流通ガスの逆流が検出された場合に、ダンパ(22)を閉じてシステムが停止するようになっている。したがって、この燃料電池システム(1)では、発電部(21)側に排ガスが逆流することによるセルスタック(5)や各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。

Description

本発明は、燃料電池システムに関する。
この種の分野の技術として、例えば特許文献1に記載の燃料電池システムがある。この従来の燃料電池システムは、熱交換器で熱交換された後の排ガスをケース外部に排気する排気口を備えている。排気口の手前には、不純物を収集するためのセパレート部材が設けられており、排気口から熱交換器側に不純物が入り込むことを防止している。
特開2009−181701号公報
燃料電池システムの設置態様の一例として、燃料電池システムを屋内に設置し、排気口を煙突に接続する場合がある。その煙突を他の機器と共有している場合、煙突内に充満する外部排ガスには、燃料電池システムにとっては好ましくない成分や、集合煙突内の粉塵が含有されている可能性がある。このとき、他の機器からの排気圧力上昇や煙突自体に閉塞が生じた場合に、煙突内の外部排ガスが燃料電池システム側に流入してくる恐れがある。
上述したような従来の燃料電池システムでは、熱交換器に対して単独の排気口が設けられている。しかしながら、他の機器からの排ガス(外部排ガス)が燃料電池システム側に流入することを十分に抑制することは困難である。燃料電池システムにとって好ましくない成分や、粉塵を含む外部排ガスが燃料電池システム内に流入してくると、燃料電池システムの構成要素であるセルスタックや各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等が短寿命化するおそれがある。したがって、燃料電池システム側への外部排ガスの流入を抑制する技術が必要となっている。
本発明は、上記課題の解決のためになされたものであり、燃料電池システム側への外部排ガスの流入を抑制できる燃料電池システムを提供することを目的とする。
本発明の一側面に係る燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックを含む発電部と、少なくとも発電部から排出される排出ガスをシステムの外部に排出させる排気口と、発電部と排気口との間の排気経路に配置され、当該排気経路中の流通ガスの流動方向を検出する流動方向検出部と、排気経路において流動方向検出部の下流側に配置され、排気口の開閉を切り替えるダンパと、流動方向検出部によって流通ガスの逆流が検出された場合に、ダンパを閉鎖してシステムを停止させる制御部と、を備える。
この燃料電池システムでは、排出ガスを排気する排気経路において、排気経路内の流通ガスの流れを制御するダンパが設けられている。そして、流動方向検出部によって排気経路に流れる流通ガスの逆流が検出された場合に、外部排ガスの流入或いはその恐れがあると判断し、ダンパを閉鎖してシステムを停止させる。したがって、この燃料電池システムでは、システム側に外部排ガスが流入することによるセルスタック、各種触媒もしくは吸着剤、各種補機類等の短寿命化を抑制できる。
本発明に係る燃料電池システムによれば、燃料電池システム側への外部排ガスの流入を抑制できる。
本発明に係る燃料電池システムの一実施形態を示す図である。 図1に示した燃料電池システムの排気経路を示す図である。 流動方向検出部の一例を示す図である。 流動方向検出部の他の例を示す図である。 制御部の動作の第1形態を示すフローチャートである。 制御部の動作の第2形態を示すフローチャートである。 制御部の動作の第3形態を示すフローチャートである。
以下、図面を参照しながら、本発明に係る燃料電池システムの好適な実施形態について詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、熱交換部15とを備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。
水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。
酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。
脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。
水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。
水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガスを発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。
セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。
オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。
水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。
なお、例えば純水素ガスや水素富化ガスなど、改質処理を必要としない水素含有燃料を用いる場合は、脱硫器2、水供給部8、水気化部3、および水素発生部4のうちの一つまたは複数を省略することができる。
パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。
制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。
熱交換部15は、セルスタック5から排出されるオフガスの燃焼ガス(すなわち、オフガス燃焼部6からの排ガス)、及び水(熱媒体)を流通させることで、燃焼ガスから水に熱を移動させて水を加熱する。この水は、例えば燃料電池システム1が設置された施設に湯を供給するための貯湯槽に貯留され、その貯湯槽から熱交換部15に循環供給されるものである。
続いて、上述した燃料電池システム1の排気経路について説明する。図2は、燃料電池システム1の排気経路を示す図である。
図2に示すように、燃料電池システム1の排気経路は、発電部21と、上述の熱交換部15と、ダンパ22と、流動方向検出部23と、制御部24とを含んで構成され、筐体25内に収容されている。筐体25には、少なくとも発電部21側から排出される排出ガス(FC排ガス)が流れる流通ガス流路27及び排気口26が設けられている。詳細は図示しないが、ダンパ22及び流動方向検出部23を含む流通ガス経路27は外部の空気に対して気密性を有している。なお、ここでの気密性とは、筐体25からの排出が予定されている気体以外の外気に対して気密であることを意味する。具体的には、筐体25内からの気体の排出は専用の気体排出路からのみ行われる構造を意味する。
発電部21は、上述したセルスタック5を含んで構成されたものである。発電部21は、少なくともセルスタック5を含むものであって、さらにオフガス燃焼部6や水素発生部4等を含む場合もあれば、オフガス燃焼部6や水素発生部4等を含まない場合もある。また、熱交換部15には、熱回収水系として、例えば貯湯槽から循環供給された水を熱交換部15に流入させる水流路、及びその水を熱交換部15から流出させる水流路がそれぞれポンプ等を介して接続されている。熱交換部15からは、熱交換後の排ガスが筐体25の排気口26に向かって排出される。
ダンパ22は、排気経路内の流通ガス(FC排ガス、外部排ガス、またはそれらの混合ガス)の流れを制御するためのものである。例えば回転軸の周囲に羽根が取り付けられてなる羽根車や、弁体が流路に対して直角に横切るギロチンダンパなどである。ダンパ22は、流通ガス流路27において、熱交換部15及び後述の流動方向検出部23の下流側で排気口26の手前となる位置に設けられ、排気口26の開閉を切り替える。なお、ダンパの代わりにバルブを用いることもできる。
流動方向検出部23は、流通ガス流路27に流れる流通ガスの流動方向を検出する部分である。流動方向検出部23は、例えば図3に示すように、排気口26に向かう流通ガス流路27内に設けられたファン28によって構成されている。ファン28は、流通ガス流路27内に流れる流通ガスの流動方向によって回転方向が変化するため、ファン28の回転方向から流通ガスの流動方向を判断することができる。そして、ファン28は、回転方向を示す信号を制御部24に出力する。
なお、流動方向検出部23は、例えば図4に示すように、排気口26に向かう流通ガス流路27内に設けられたフラップ29であってもよい。フラップ29は、流通ガスが排気口26に向かって流れている場合には排気口26側に傾き、流通ガスが逆流している場合には排気口26と反対側に傾く。フラップ29の傾きは、例えばフラップ29の根元に設けたスイッチのON/OFFによって判断してもよく、レーザ検出等を用いてもよい。また、カメラ等による画像検出であってもよく、フラップ29の根元を固定した状態で歪みゲージによる検出を行ってもよい。
制御部24は、排出経路における流通ガスの流動方向の診断処理を行う部分である。図2において、制御部24は、筐体25内に配置されているが、燃料電池システム1の制御部11に制御部24の機能を付与した形態であってもよい。この制御部24による診断処理は、例えば燃料電池システム1の運転中、所定の間隔で繰り返し実施される。
図5は、制御部24の動作の第1形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断され(ステップS101)、流通ガスの逆流が検出されない場合には、ステップS101が繰り返し実行される。一方、ステップS101において、流通ガスの逆流が検出された場合には、ダンパ22が閉鎖される(ステップS102)。そして、ダンパ22の閉鎖の後、燃料電池システムの停止工程が実行される(ステップS103)。
この実施形態では、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、ダンパ22を閉じてシステムが停止するようになっている。したがって、燃料電池システム1側に流通ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。
また、図6は、制御部24の動作の第2形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断される(ステップS201)。流通ガスの逆流が検出されない場合には、ステップS201が繰り返し実行される。
ステップS201において、流通ガスの逆流が検出された場合には、ダンパ22が閉鎖される(ステップS202)。ダンパ22の閉鎖後、依然として流通ガスの逆流が検出されるか否かが判断される(ステップS203)。流通ガスの逆流が検出される場合には、流動方向検出部23に異常がある、またはダンパ22に異常があり、逆流している流動ガスが閉鎖しきれていないと判断され、ダンパ22が開放された後(ステップS204)、燃料電池システム1が予め定めた第1停止工程を経て停止される(ステップS205)。なお、ここでいう第1停止工程とは、例えば水素含有燃料の供給停止、発電部内に充満するガスのパージ処理、セルスタック5の冷却工程など、予め定められた手順を経て燃料電池システム1を停止させることをいう。
ステップS203において流通ガスの逆流が検出されない場合には、ダンパ22の閉鎖が継続される(ステップS206)。この場合、外部排ガスが流入している、または流入する恐れがあると判断され、燃料電池システム1が第1停止工程の少なくとも一部を省略した第2停止工程を経て停止される(ステップS207)。
この実施形態においても、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、ダンパ22を閉じてシステムが停止するようになっている。したがって、燃料電池システム1側に流通ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。また、この実施形態では、1回目の流通ガスの逆流検出を行った後、暫定的措置としてダンパ22を閉鎖した状態で2回目の流通ガスの逆流検出により排気経路の異常を判定する。これにより、排気経路における異常の有無に応じて燃料電池システム1の停止工程を選択することができる。
具体的には、ステップS303で異常が検出された場合、流動方向検出部23及びダンパ22のいずれか一方または両方の故障が疑われる。流動方向検出部23のみが故障している場合、流通ガスの逆流が発生しないことから、ダンパ22を開放して第1停止工程を実行する。また、ダンパ22のみ、または、流動方向検出部23とダンパ22の両方が故障している場合は、ダンパ22に閉鎖の信号を送っても流通ガスの逆流を遮断することができないため、第1停止工程を実行する。燃料電池システム1の運転を停止して、不具合箇所の修理をする機会を早期に確保することにより、将来発生する恐れがある流通ガスの逆流を抑制することができる。このとき、第1停止工程は、発電部21内または各種触媒が充填されたリアクターに充満するガスのパージ処理や、燃料電池システム1の各部の空気冷却処理等を含むことが好ましい。これにより、停止工程中に燃料電池システム1から排出されるFC排ガスによって、流通ガスの逆流を軽減することができる。
また、図7は、制御部24の動作の第3形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断される(ステップS301)。流通ガスの逆流が検出されない場合には、ステップS301が繰り返し実行される。
ステップS301において、流通ガスの逆流が検出された場合には、ダンパ22が閉鎖される(ステップS302)。ダンパ22の閉鎖後、依然として流通ガスの逆流が検出されるか否かが判断される(ステップS303)。流通ガスの逆流が検出された場合には、流動方向検出部23に異常がある、またはダンパ22に異常があり、逆流している流動ガスが閉鎖しきれていないと判断され、ダンパ22が開放された後(ステップS304)、燃料電池システム1が第1停止工程を経て停止される(ステップS305)。
一方、ステップS303において流通ガスの逆流が検出されない場合には、ダンパ22が一旦開放される(ステップS306)。そして、再び流通ガスの逆流が検出されるか否かが判断される(ステップS307)。流通ガスの逆流が検出された場合には、ダンパ22を閉鎖した後(ステップS308)、燃料電池システム1が第2停止工程を経て停止される(ステップS309)。また、ステップS307で流通ガスの逆流が検出されない場合には、流通ガスの逆流が生じなくなったと判断し、燃料電池システム1の運転が継続される(ステップS310)。
この実施形態においても、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、ダンパ22を閉じてシステムが停止するようになっている。したがって、燃料電池システム1側に流通ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。また、1回目の流通ガスの逆流検出を行った後、暫定的措置としてダンパ22を閉鎖した状態で2回目の流通ガスの逆流検出により排気経路の異常を判定する。これにより、排気経路における異常の有無に応じて燃料電池システム1の停止工程を選択することができる。
さらに、この実施形態では、2回目の流通ガスの逆流検出によって排気経路の異常を判定した後、再びダンパ22を開放した状態で流通ガスの逆流の有無を再度検出する。これにより、瞬時的な流通ガスの逆流が発生する度に燃料電池システム1の停止工程を実行することを回避でき、燃料電池システム1の停止頻度を低減できる。したがって、燃料電池システム1の長寿命化が図られると共に、安定的な発電を行うことができる。
1…燃料電池システム、5…セルスタック、21…発電部、22…ダンパ、23…流動方向検出部、24…制御部、26…排気口、27…排ガス流路、28…ファン、29…フラップ。

Claims (8)

  1. 水素含有ガスを用いて発電を行うセルスタックを含む発電部と、
    少なくとも前記発電部から排出される排出ガスをシステムの外部に排出させる排気口と、
    前記発電部と前記排気口との間の排気経路に配置され、当該排気経路中の流通ガスの流動方向を検出する流動方向検出部と、
    前記排気経路において前記流動方向検出部の下流側に配置され、前記排気口の開閉を切り替えるダンパと、
    前記流動方向検出部によって前記流通ガスの逆流が検出された場合に、前記ダンパを閉鎖してシステムを停止させる制御部と、を備える燃料電池システム。
  2. 前記制御部は、前記流動方向検出部によって前記流通ガスの逆流が検出された場合に、前記流動方向検出部または前記ダンパの異常の有無を判断し、予め定める第1停止工程、または前記第1停止工程の少なくとも一部を省略した第2停止工程のいずれかを実行する請求項1記載の燃料電池システム。
  3. 前記制御部は、前記流動方向検出部または前記ダンパに異常があると判断した場合に、前記ダンパを開放して前記第1停止工程を実行する請求項2記載の燃料電池システム。
  4. 前記制御部は、前記流動方向検出部及び前記ダンパに異常がないと判断した場合に、前記ダンパの閉鎖を継続して前記第2停止工程を実行する請求項2又は3記載の燃料電池システム。
  5. 前記制御部は、前記流動方向検出部または前記ダンパに異常があると判断した場合に、前記ダンパを一旦開放した状態で前記流動方向検出部によって前記流通ガスの逆流が検出されるか否かを判断し、前記流通ガスの逆流が検出された場合に、前記ダンパを再度閉鎖して前記第2停止工程を実行する請求項2又は3記載の燃料電池システム。
  6. 前記制御部は、前記流通ガスの逆流が検出されなかった場合に、前記ダンパの開放を継続してシステムの運転を継続させる請求項5記載の燃料電池システム。
  7. 前記流動方向検出部は、前記排気口に向かう前記燃料ガスの流路内に設けられたファンを有しており、前記ファンの回転方向によって前記燃焼ガスの流動方向を検出する請求項1〜6のいずれか一項記載の燃料電池システム。
  8. 前記流動方向検出部は、前記排気口に向かう前記燃料ガスの流路内に設けられたフラップを有しており、前記フラップの傾きによって前記燃焼ガスの流動方向を検出する請求項1〜6のいずれか一項記載の燃料電池システム。
JP2012551053A 2010-12-28 2011-12-28 燃料電池システム Pending JPWO2012091120A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010292344 2010-12-28
JP2010292344 2010-12-28
PCT/JP2011/080469 WO2012091120A1 (ja) 2010-12-28 2011-12-28 燃料電池システム

Publications (1)

Publication Number Publication Date
JPWO2012091120A1 true JPWO2012091120A1 (ja) 2014-06-05

Family

ID=46383207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012551053A Pending JPWO2012091120A1 (ja) 2010-12-28 2011-12-28 燃料電池システム

Country Status (2)

Country Link
JP (1) JPWO2012091120A1 (ja)
WO (1) WO2012091120A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102432357B1 (ko) * 2020-08-03 2022-08-11 주식회사 두산 연료전지 운용시스템
KR102611295B1 (ko) * 2021-07-15 2023-12-06 주식회사 두산 연료전지 시스템 및 운용방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727781A (ja) * 1993-07-14 1995-01-31 Sony Corp 流体の流速及び流れ方向検出器
JPH0922711A (ja) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd 燃料電池および燃料電池の故障診断方法
JPH0922714A (ja) * 1995-07-07 1997-01-21 Fuji Electric Co Ltd 燃料電池発電装置のオフガスリサイクル方式
JPH10227455A (ja) * 1998-03-23 1998-08-25 Takagi Ind Co Ltd 燃焼器具
JPH11325550A (ja) * 1998-05-08 1999-11-26 Hitachi Ltd 空気調和機
JP2005127905A (ja) * 2003-10-24 2005-05-19 Deicy Corp 流向流速計
JP2008135267A (ja) * 2006-11-28 2008-06-12 Kyocera Corp 燃料電池装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727781A (ja) * 1993-07-14 1995-01-31 Sony Corp 流体の流速及び流れ方向検出器
JPH0922711A (ja) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd 燃料電池および燃料電池の故障診断方法
JPH0922714A (ja) * 1995-07-07 1997-01-21 Fuji Electric Co Ltd 燃料電池発電装置のオフガスリサイクル方式
JPH10227455A (ja) * 1998-03-23 1998-08-25 Takagi Ind Co Ltd 燃焼器具
JPH11325550A (ja) * 1998-05-08 1999-11-26 Hitachi Ltd 空気調和機
JP2005127905A (ja) * 2003-10-24 2005-05-19 Deicy Corp 流向流速計
JP2008135267A (ja) * 2006-11-28 2008-06-12 Kyocera Corp 燃料電池装置

Also Published As

Publication number Publication date
WO2012091120A1 (ja) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5852011B2 (ja) 燃料電池システム
JP2009004346A (ja) 改質器、燃料電池システム、及び改質器の停止方法
JP2009266541A (ja) 間接内部改質型固体酸化物形燃料電池システムの運転方法
JP5536636B2 (ja) 燃料電池システム
WO2012091121A1 (ja) 燃料電池システム
JP6114197B2 (ja) 燃料電池システム
WO2012161217A1 (ja) 燃料電池システム
JP2011018534A (ja) 燃料電池システム
JP5536635B2 (ja) 燃料電池システム
WO2012091120A1 (ja) 燃料電池システム
JP5728497B2 (ja) 燃料電池システム
JP5291915B2 (ja) 間接内部改質型固体酸化物形燃料電池とその運転方法
JP5782458B2 (ja) 燃料電池システム
WO2012090875A1 (ja) 燃料電池システム及び脱硫装置
JP5738319B2 (ja) 燃料電池システム
JPWO2010134317A1 (ja) 水素生成装置および燃料電池システム
WO2012091037A1 (ja) 燃料電池システム
JP2010275118A (ja) 水素生成装置
JP2017016816A (ja) 燃料電池システム、燃料電池システムの停止方法及び電力生産方法
WO2012091131A1 (ja) 燃料電池システム
KR101358132B1 (ko) 선박용 연료배출시스템
JP5390887B2 (ja) 水素製造装置及び燃料電池システム
JP5400425B2 (ja) 水素製造装置及び燃料電池システム
WO2012090964A1 (ja) 燃料電池システム
JP2016021282A (ja) 脱硫システム、及び、脱硫方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811