JPWO2011118716A1 - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
JPWO2011118716A1
JPWO2011118716A1 JP2012507064A JP2012507064A JPWO2011118716A1 JP WO2011118716 A1 JPWO2011118716 A1 JP WO2011118716A1 JP 2012507064 A JP2012507064 A JP 2012507064A JP 2012507064 A JP2012507064 A JP 2012507064A JP WO2011118716 A1 JPWO2011118716 A1 JP WO2011118716A1
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
conversion device
linear
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012507064A
Other languages
Japanese (ja)
Other versions
JP5318281B2 (en
Inventor
誠一郎 稲井
誠一郎 稲井
田中 勇
勇 田中
一輝 山田
一輝 山田
塁 鎌田
塁 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012507064A priority Critical patent/JP5318281B2/en
Publication of JPWO2011118716A1 publication Critical patent/JPWO2011118716A1/en
Application granted granted Critical
Publication of JP5318281B2 publication Critical patent/JP5318281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

変換効率が向上された光電変換装置を提供することを図る。この目的を達成するために、光電変換装置は、一主面に線状の窪み部が延在し且つ第1の導電型を有している第1半導体層と、該第1半導体層の一主面の上に配されている第2の導電型を有する第2半導体層と、を備えている。A photoelectric conversion device with improved conversion efficiency is provided. In order to achieve this object, a photoelectric conversion device includes a first semiconductor layer in which a linear depression extends on one main surface and has a first conductivity type, and one of the first semiconductor layers. And a second semiconductor layer having a second conductivity type disposed on the main surface.

Description

本発明は、光電変換装置、および光電変換装置の製造方法に関する。   The present invention relates to a photoelectric conversion device and a method for manufacturing the photoelectric conversion device.

太陽電池として、主にI−III−VI族化合物半導体から成る光吸収層を具備した光電変換装置を用いたものがある(例えば、特許文献1参照)。I−III−VI族化合物半導体は、CIGS等といったカルコパイライト系の化合物半導体である。CIGSは、光吸収係数が高く、光電変換装置の薄膜化、大面積化および製造コストの低減に適している。   As a solar cell, there is one using a photoelectric conversion device including a light absorption layer mainly composed of an I-III-VI group compound semiconductor (for example, see Patent Document 1). The I-III-VI group compound semiconductor is a chalcopyrite compound semiconductor such as CIGS. CIGS has a high light absorption coefficient and is suitable for reducing the thickness and area of the photoelectric conversion device and reducing the manufacturing cost.

この光電変換装置では、複数の光電変換セルが、平面的に並設されている。各光電変換セルでは、ガラス等の基板の上に、主に金属電極等から成る下部電極と、光吸収層およびバッファ層等を主に含む半導体層から成る光電変換層と、主に透明電極および金属電極等から成る上部電極とが、この順に積層されている。また、複数の光電変換セルは、隣り合う一方の光電変換セルの上部電極と他方の光電変換セルの下部電極とが接続導体によって電気的に接続されることで、電気的に直列に接続されている。   In this photoelectric conversion device, a plurality of photoelectric conversion cells are arranged side by side in a plane. In each photoelectric conversion cell, on a substrate such as glass, a lower electrode mainly made of a metal electrode, a photoelectric conversion layer mainly made of a semiconductor layer mainly including a light absorption layer and a buffer layer, a mainly transparent electrode and An upper electrode made of a metal electrode or the like is laminated in this order. In addition, the plurality of photoelectric conversion cells are electrically connected in series by electrically connecting the upper electrode of one adjacent photoelectric conversion cell and the lower electrode of the other photoelectric conversion cell by a connecting conductor. Yes.

特開2007−311578号公報JP 2007-311578 A

カルコパイライト系の光電変換装置では、例えば、製造工程における熱処理時の膨張と収縮ならびに屋外での使用時における外力の付与に起因する応力の発生等によって、光吸収層にクラックが生じる虞がある。このクラックの発生は、光電変換装置における変換効率の低下を招く。そして、この問題は、カルコパイライト系の光電変換装置以外の光電変換装置にも生じ得る。   In a chalcopyrite photoelectric conversion device, cracks may occur in the light absorption layer due to, for example, expansion and contraction during heat treatment in the manufacturing process and generation of stress due to application of external force during outdoor use. Generation | occurrence | production of this crack causes the fall of the conversion efficiency in a photoelectric conversion apparatus. This problem may also occur in photoelectric conversion devices other than chalcopyrite type photoelectric conversion devices.

そこで、変換効率が向上された光電変換装置が望まれている。   Therefore, a photoelectric conversion device with improved conversion efficiency is desired.

上記課題を解決するために、第1の態様に係る光電変換装置は、一主面に線状の窪み部が延在し且つ第1の導電型を有している第1半導体層と、前記一主面の上に配されている第2の導電型を有する第2半導体層と、を備える。   In order to solve the above-described problem, a photoelectric conversion device according to a first aspect includes a first semiconductor layer in which a linear depression extends on one main surface and has a first conductivity type, And a second semiconductor layer having a second conductivity type disposed on one main surface.

また、第2の態様に係る光電変換装置の製造方法は、原料溶液および化合物半導体の微粒子を含有する微粒子含有溶液を準備する工程と、前記微粒子含有溶液を電極層の上に塗布して皮膜を形成する工程と、前記皮膜に対して熱処理を施すことで、一主面に線状の窪み部が延在している半導体層を形成する工程と、を備え、前記原料溶液に、ルイス塩基性有機化合物、カルコゲン元素を含有する有機化合物および金属元素を含ませ、前記化合物半導体の微粒子に、前記金属元素を含ませる。   In addition, a method for manufacturing a photoelectric conversion device according to the second aspect includes a step of preparing a raw material solution and a fine particle-containing solution containing fine particles of a compound semiconductor, and applying the fine particle-containing solution onto an electrode layer to form a film. And a step of forming a semiconductor layer in which a linear depression extends on one main surface by subjecting the film to a heat treatment. An organic compound, an organic compound containing a chalcogen element, and a metal element are included, and the metal element is included in the fine particles of the compound semiconductor.

本発明の上記態様によれば、変換効率が向上された光電変換装置が実現される。   According to the above aspect of the present invention, a photoelectric conversion device with improved conversion efficiency is realized.

光電変換装置を上方から見た様子を示す模式図である。It is a schematic diagram which shows a mode that the photoelectric conversion apparatus was seen from upper direction. 図1の切断面線II−IIにおける光電変換装置の断面を示す模式図である。It is a schematic diagram which shows the cross section of the photoelectric conversion apparatus in cut surface line II-II of FIG. 線状の窪み部が延在している光吸収層の一主面を例示するSEM写真である。It is a SEM photograph which illustrates one main surface of the light absorption layer where the linear hollow part is extending. 線状の窪み部が延在している光吸収層の一主面を例示するSEM写真である。It is a SEM photograph which illustrates one main surface of the light absorption layer where the linear hollow part is extending. 線状の窪み部およびその周辺の構成を模式的に示す断面図である。It is sectional drawing which shows typically a linear hollow part and the periphery structure. 線状の窪み部の形成途中の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state in the middle of formation of a linear hollow part. 線状の窪み部の形成途中の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state in the middle of formation of a linear hollow part. 線状の窪み部が形成された状態を模式的に示す断面図である。It is sectional drawing which shows typically the state in which the linear hollow part was formed. 光電変換装置の製造途中の様子を示す断面図である。It is sectional drawing which shows the mode in the middle of manufacture of a photoelectric conversion apparatus. 光電変換装置の製造途中の様子を示す断面図である。It is sectional drawing which shows the mode in the middle of manufacture of a photoelectric conversion apparatus. 光電変換装置の製造途中の様子を示す断面図である。It is sectional drawing which shows the mode in the middle of manufacture of a photoelectric conversion apparatus. 光電変換装置の製造途中の様子を示す断面図である。It is sectional drawing which shows the mode in the middle of manufacture of a photoelectric conversion apparatus. 光電変換装置の製造途中の様子を示す断面図である。It is sectional drawing which shows the mode in the middle of manufacture of a photoelectric conversion apparatus. 光電変換装置の製造途中の様子を示す断面図である。It is sectional drawing which shows the mode in the middle of manufacture of a photoelectric conversion apparatus.

以下、本発明の一実施形態を図面に基づいて説明する。なお、図面においては同様な構成および機能を有する部分については同一符号が付されており、下記説明では重複説明が省略される。また、図面は模式的に示されたものであり、各図における各種構造のサイズおよび位置関係等は正確に図示されたものではない。なお、図1から図14には、光電変換セル10の配列方向(図1の図面視左右方向)をX軸方向とする右手系のXYZ座標系が付されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, parts having similar configurations and functions are denoted by the same reference numerals, and redundant description is omitted in the following description. Further, the drawings are schematically shown, and the sizes, positional relationships, and the like of various structures in the drawings are not accurately illustrated. 1 to 14 are provided with a right-handed XYZ coordinate system in which the arrangement direction of photoelectric conversion cells 10 (the horizontal direction in the drawing in FIG. 1) is the X-axis direction.

<(1)光電変換装置の構成>
光電変換装置21は、基板1と、該基板1の上に平面的に並べられた複数の光電変換セル10とを備えている。図1では、図示の都合上、2つの光電変換セル10の一部のみが示されている。但し、実際の光電変換装置21には、図面の左右方向に、多数の光電変換セル10が平面的に配列され得る。
<(1) Configuration of photoelectric conversion device>
The photoelectric conversion device 21 includes a substrate 1 and a plurality of photoelectric conversion cells 10 arranged in a plane on the substrate 1. In FIG. 1, only a part of the two photoelectric conversion cells 10 is shown for convenience of illustration. However, in the actual photoelectric conversion device 21, a large number of photoelectric conversion cells 10 can be arranged in a plane in the left-right direction of the drawing.

各光電変換セル10は、下部電極層2と、光電変換層3と、上部電極層4と、グリッド電極5と、接続部45とを備えている。光電変換装置21では、上部電極層4およびグリッド電極5が配されている側の主面が受光面側となっている。また、光電変換装置21には、第1溝部P1、第2溝部P2および第3溝部P3といった3種類の溝部が延在している。   Each photoelectric conversion cell 10 includes a lower electrode layer 2, a photoelectric conversion layer 3, an upper electrode layer 4, a grid electrode 5, and a connection portion 45. In the photoelectric conversion device 21, the main surface on which the upper electrode layer 4 and the grid electrode 5 are arranged is the light receiving surface side. Further, in the photoelectric conversion device 21, three kinds of groove portions such as a first groove portion P1, a second groove portion P2, and a third groove portion P3 extend.

基板1は、複数の光電変換セル10を支持するものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が採用され得る。本実施形態では、基板1は、1mm以上で且つ3mm以下程度の厚さを有する青板ガラス(ソーダライムガラス)である。   The substrate 1 supports a plurality of photoelectric conversion cells 10. As a material used for the substrate 1, for example, glass, ceramics, resin, metal and the like can be adopted. In the present embodiment, the substrate 1 is blue plate glass (soda lime glass) having a thickness of 1 mm or more and 3 mm or less.

下部電極層2は、基板1の+Z側の主面(一主面とも言う)の上に配されている導電層である。下部電極層2に含まれる主な材料としては、例えば、Mo、Al、Ti、TaまたはAu等の導電性を有する各種金属等が採用され得る。また、下部電極層2の厚さは、0.2μm以上で且つ1μm以下程度であれば良い。下部電極層2は、例えば、スパッタリング法または蒸着法等の公知の薄膜形成方法によって形成され得る。   The lower electrode layer 2 is a conductive layer disposed on the main surface (also referred to as one main surface) on the + Z side of the substrate 1. As main materials included in the lower electrode layer 2, various conductive metals such as Mo, Al, Ti, Ta, or Au can be employed, for example. Moreover, the thickness of the lower electrode layer 2 should just be about 0.2 micrometer or more and 1 micrometer or less. The lower electrode layer 2 can be formed by a known thin film forming method such as a sputtering method or a vapor deposition method.

光電変換層3は、第1半導体層としての光吸収層31と第2半導体層としてのバッファ層32とを備える。光吸収層31とバッファ層32とは、積層されている。   The photoelectric conversion layer 3 includes a light absorption layer 31 as a first semiconductor layer and a buffer layer 32 as a second semiconductor layer. The light absorption layer 31 and the buffer layer 32 are laminated.

光吸収層31は、下部電極層2の+Z側の主面(一主面とも言う)の上に配されており、第1の導電型を有する半導体を含んでいる。ここでは、第1の導電型は、p型である。光吸収層31の厚さは、例えば、1μm以上で且つ3μm以下程度であれば良い。光吸収層31がカルコパイライト系(CIS系とも言う)の化合物半導体であるI−III−VI族化合物半導体の層であれば、光吸収層31の厚さが薄くても変換効率が高められ得る。これにより、光吸収層31が少ない材料で安価に生成され得る。本実施形態では、光吸収層31が、p型の導電型を有するI−III−VI族化合物半導体の層である。   The light absorption layer 31 is disposed on the main surface (also referred to as one main surface) on the + Z side of the lower electrode layer 2 and includes a semiconductor having the first conductivity type. Here, the first conductivity type is p-type. The thickness of the light absorption layer 31 may be about 1 μm or more and about 3 μm or less, for example. If the light absorption layer 31 is a layer of a I-III-VI group compound semiconductor that is a chalcopyrite (also referred to as CIS) compound semiconductor, the conversion efficiency can be improved even if the light absorption layer 31 is thin. . Thereby, the light absorption layer 31 can be produced inexpensively with a small amount of material. In this embodiment, the light absorption layer 31 is a layer of an I-III-VI group compound semiconductor having p-type conductivity.

I−III−VI族化合物半導体とは、I−III−VI族化合物を主に含む半導体である。なお、I−III−VI族化合物を主に含む半導体とは、半導体がI−III−VI族化合物を70mol%以上含むことを言う。以下の記載においても、「主に含む」は「70mol%以上含む」ことを意味する。I−III−VI族化合物とは、I−B族元素(11族元素とも言う)とIII−B族元素(13族元素とも言う)とVI−B族元素(16族元素とも言う)とを主に含む化合物である。I−III−VI族化合物としては、例えば、CuInSe2(CISとも言う)、Cu(In,Ga)Se2(CIGSとも言う)、Cu(In,Ga)(Se,S)2(CIGSSとも言う)等が採用され得る。なお、Cu(In,Ga)Se2は、CuとInとGaとSeとを主に含む化合物である。また、Cu(In,Ga)(Se,S)2は、CuとInとGaとSeとSとを主に含む化合物である。また、光吸収層31は、薄膜のCu(In,Ga)(Se,S)2層が表面層として配されているCu(In,Ga)Se2等といった多元化合物半導体の薄膜であっても良い。The I-III-VI group compound semiconductor is a semiconductor mainly containing an I-III-VI group compound. Note that the semiconductor mainly containing the I-III-VI group compound means that the semiconductor contains 70 mol% or more of the I-III-VI group compound. Also in the following description, “mainly included” means “70 mol% or more included”. An I-III-VI group compound is a group IB element (also referred to as a group 11 element), a group III-B element (also referred to as a group 13 element), and a group VI-B element (also referred to as a group 16 element). Mainly included compounds. Examples of the I-III-VI group compound include CuInSe 2 (also referred to as CIS), Cu (In, Ga) Se 2 (also referred to as CIGS), and Cu (In, Ga) (Se, S) 2 (also referred to as CIGSS). ) Etc. may be employed. Note that Cu (In, Ga) Se 2 is a compound mainly containing Cu, In, Ga, and Se. Cu (In, Ga) (Se, S) 2 is a compound mainly containing Cu, In, Ga, Se, and S. Further, the light absorption layer 31 may be a thin film of a multi-component compound semiconductor such as Cu (In, Ga) Se 2 or the like in which a thin Cu (In, Ga) (Se, S) 2 layer is arranged as a surface layer. good.

また、第1半導体層としての光吸収層31のうちのバッファ層32側(図中の+Z側)の主面(一主面とも言う)には、複数の線状の窪み部31HW(図3等参照)が延在している。そして、各窪み部31HWの内壁は、光吸収層31の表面部によって形成されている。   In addition, a plurality of linear depressions 31HW (FIG. 3) are formed on the main surface (also referred to as one main surface) on the buffer layer 32 side (+ Z side in the drawing) of the light absorption layer 31 as the first semiconductor layer. Etc.) are extended. And the inner wall of each hollow part 31HW is formed of the surface part of the light absorption layer 31. As shown in FIG.

図3および図4は、光吸収層31の一主面に線状の窪み部31HWが延在している具体例を示すSEM写真である。図5は、窪み部31HWの長手方向に垂直な面における該窪み部31HWおよびその周辺の構成の断面を例示する模式図である。   3 and 4 are SEM photographs showing a specific example in which a linear depression 31HW extends on one main surface of the light absorption layer 31. FIG. FIG. 5 is a schematic view illustrating a cross-section of the configuration of the recess 31HW and its periphery on a plane perpendicular to the longitudinal direction of the recess 31HW.

窪み部31HWは、光吸収層31の一主面において、平坦な面(基準面)31SFを基準として窪んだ部分である。基準面31SFは、若干の粗さを有する略平坦な面であっても良い。窪み部31HWは、例えば、長手方向に垂直な断面が半円状の内部空間を有する。つまり、窪み部31HWの底部の形状が下部電極層2側に凸の円弧状の形状を有している。また、窪み部31HWの深さは、例えば、1μm以上で且つ5μm以下であれば良く、窪み部31HWの幅は、例えば、2μm以上で且つ10μm以下であれば良い。また、窪み部31HWが一主面上で長手方向に延在している距離は、例えば、100μm以上で且つ数100μm以下であれば良い。   The recessed portion 31HW is a portion that is recessed with respect to a flat surface (reference surface) 31SF on one main surface of the light absorption layer 31. The reference surface 31SF may be a substantially flat surface having a slight roughness. The hollow portion 31HW has, for example, an internal space whose cross section perpendicular to the longitudinal direction is semicircular. That is, the shape of the bottom of the hollow portion 31HW has a circular arc shape that is convex toward the lower electrode layer 2 side. Further, the depth of the recess 31HW may be, for example, 1 μm or more and 5 μm or less, and the width of the recess 31HW may be, for example, 2 μm or more and 10 μm or less. Moreover, the distance which the hollow part 31HW is extended in the longitudinal direction on one main surface should just be 100 micrometers or more and several hundred micrometers or less, for example.

なお、ここで言う窪み部31HWの深さは、基準面31SFの位置を基準として−Z方向に窪み部31HWが窪んでいる、基準面31SFから窪み部31HWの底までの距離を意味する。換言すれば、窪み部31HWの深さは、基準面31SFに垂直な方向(法線方向とも言い、ここでは−Z方向)に窪み部31HWが窪んでいる、基準面31SFからの窪み部31HWの窪みの大きさを表わす距離(窪み距離とも言う)を意味する。基準面31SFの位置としては、窪み部31HWの周囲の所定範囲における基準面31SFのZ座標の平均値等が採用され得る。所定範囲は、例えば窪み部31HWを中心とする100μm四方の領域であれば良い。また、ここで言う窪み部31HWの幅は、窪み部31HWにおけるバッファ層32側の開口のうち窪み部31HWの長手方向に垂直な方向の開口の大きさを表わす距離を意味する。   In addition, the depth of the hollow part 31HW here means the distance from the reference surface 31SF to the bottom of the hollow part 31HW where the hollow part 31HW is depressed in the −Z direction with reference to the position of the reference surface 31SF. In other words, the depth of the recess 31HW is such that the recess 31HW is recessed in a direction perpendicular to the reference surface 31SF (also referred to as a normal direction, in this case, the -Z direction). This means a distance (also referred to as a depression distance) representing the size of the depression. As the position of the reference surface 31SF, an average value of the Z coordinates of the reference surface 31SF in a predetermined range around the depression 31HW can be adopted. The predetermined range may be, for example, a 100 μm square area centered on the depression 31HW. The width of the depression 31HW referred to here means a distance representing the size of the opening in the direction perpendicular to the longitudinal direction of the depression 31HW among the openings on the buffer layer 32 side in the depression 31HW.

上記線状の窪み部31HWの延在により、例えば、光吸収層31に対してバッファ層32側から押圧力が付与される場合には、開口が狭まったり拡がったりする窪み部31HWの変形によって、光吸収層31に付与される応力が緩和される。その結果、光吸収層31におけるクラックの発生が低減される。また、図3で示されるように、光吸収層31の一主面において複数の線状の窪み部31HWが相互に異なる方向に延在していれば、光吸収層31に付与される種々の方向の応力が緩和され易い。   By the extension of the linear depression 31HW, for example, when a pressing force is applied to the light absorption layer 31 from the buffer layer 32 side, the deformation of the depression 31HW in which the opening narrows or expands, The stress applied to the light absorption layer 31 is relaxed. As a result, generation of cracks in the light absorption layer 31 is reduced. In addition, as shown in FIG. 3, if a plurality of linear depressions 31 </ b> HW extend in different directions on one main surface of the light absorption layer 31, various types of light applied to the light absorption layer 31 are provided. Directional stress is easily relaxed.

なお、光吸収層31は、いわゆる塗布法または印刷法と称されるプロセスによって形成され得る。塗布法では、まず、光吸収層31の主な構成元素が溶解されている状態および微粒子の状態でそれぞれ含有されている溶液(微粒子含有溶液とも言う)が下部電極層2の上に塗布された後に、乾燥処理が施されることで、半乾き状態の皮膜が形成される。そして、該皮膜に対する熱処理が行われる。   The light absorbing layer 31 can be formed by a process called a so-called coating method or printing method. In the coating method, first, a solution containing the main constituent elements of the light absorption layer 31 in a dissolved state and a state of fine particles (also referred to as a fine particle-containing solution) was applied on the lower electrode layer 2. Later, a semi-dry film is formed by performing a drying process. And the heat processing with respect to this membrane | film | coat is performed.

ここで、微粒子含有溶液としては、I−B族元素とIII−B族元素とVI−B族元素とが溶解した溶液(原料溶液とも言う)に、I−B族元素とIII−B族元素とVI−B族元素とを含むI−III−VI族化合物半導体の微粒子が分散している溶液が採用される。   Here, as the fine particle-containing solution, a IB group element and a III-B group element are dissolved in a solution (also referred to as a raw material solution) in which the IB group element, the III-B group element, and the VI-B group element are dissolved. And a solution in which fine particles of a group I-III-VI compound semiconductor containing a group VI-B element are dispersed is employed.

また、熱処理では、例えば、毎分20℃以上昇温される比較的速い昇温速度で560℃以上まで皮膜が加熱され、所定の温度域(例えば560℃以上で且つ600℃以下)に所定時間(例えば約1時間)保持された後、自然対流による冷却(自然冷却)が行われる。   In the heat treatment, for example, the film is heated to 560 ° C. or higher at a relatively high temperature rising rate of 20 ° C. or more per minute, and a predetermined time in a predetermined temperature range (for example, 560 ° C. or higher and 600 ° C. or lower). After being held (for example, about 1 hour), cooling by natural convection (natural cooling) is performed.

図6から図8は、熱処理によって線状の窪み部31HWが形成される際における皮膜の状態の変化を模式的に示す図である。熱処理によって線状の窪み部31HWが形成される工程には主に次の3つの段階(i)〜(iii)が存在する。   6 to 8 are diagrams schematically showing changes in the state of the film when the linear depression 31HW is formed by heat treatment. There are mainly the following three stages (i) to (iii) in the process of forming the linear depression 31HW by the heat treatment.

(i)熱処理の直前では、図6で示されるように、原料溶液31LQに多数のI−III−VI族化合物半導体の微粒子31PAが分散している皮膜が形成された状態となっている。   (i) Immediately before the heat treatment, as shown in FIG. 6, a film is formed in which a large number of fine particles 31PA of the I-III-VI group compound semiconductor are dispersed in the raw material solution 31LQ.

(ii)次に、皮膜が、毎分20℃以上昇温される比較的速い昇温速度で560℃以上まで加熱される。これにより、I−III−VI族化合物半導体の多数の微粒子31PAが核となって、微粒子31PAの凝集と結晶の発生と結晶の成長とが急速に生じる。このとき、図7で示されるように、ある程度の粒径まで成長した多数の結晶31SCが生じるとともに、多数の微粒子の凝集等に起因する収縮力によって多数の結晶31SCの間に線状のクラック31CLが生じる。その結果、皮膜は、多数の結晶31SCの間に発生した線状のクラック31CL内に原料溶液31LQが残存している状態となる。   (ii) Next, the film is heated to 560 ° C. or higher at a relatively high rate of temperature increase of 20 ° C. or more per minute. Thereby, the numerous fine particles 31PA of the I-III-VI group compound semiconductor serve as nuclei, and the aggregation of fine particles 31PA, the generation of crystals, and the growth of crystals occur rapidly. At this time, as shown in FIG. 7, a large number of crystals 31SC grown to a certain particle size are generated, and linear cracks 31CL are formed between the large number of crystals 31SC due to contraction force caused by aggregation of a large number of fine particles. Occurs. As a result, the film is in a state where the raw material solution 31LQ remains in the linear cracks 31CL generated between the numerous crystals 31SC.

(iii)その次に、皮膜が、所定の温度域(例えば560℃以上で且つ600℃以下)に所定時間(例えば約1時間)保持されると、クラック31CL内等に存在していた原料溶液31LQの有機成分が徐々に蒸散する。そして、I−III−VI族化合物半導体の結晶の析出および成長が生じ、図8で示されるように、I−III−VI族化合物半導体の比較的大きな結晶(大結晶とも言う)31LCが生じる。このとき、クラック31CL内の原料溶液31LQが、クラック31CLの領域よりも相対的に体積が小さな大結晶31LCに変化することで、光吸収層31の一主面に線状の窪み部31HWが形成される。なお、所定の温度域が600℃以下であれば、基板1および下部電極層2から光吸収層31が剥離し難くなる。   (iii) Next, when the film is held in a predetermined temperature range (for example, 560 ° C. or higher and 600 ° C. or lower) for a predetermined time (for example, about 1 hour), the raw material solution that existed in the crack 31CL or the like 31LQ of organic components gradually evaporate. Then, precipitation and growth of a crystal of the I-III-VI group compound semiconductor occurs, and as shown in FIG. 8, a relatively large crystal (also referred to as a large crystal) 31LC of the I-III-VI group compound semiconductor is generated. At this time, the raw material solution 31LQ in the crack 31CL changes to the large crystal 31LC having a relatively smaller volume than the region of the crack 31CL, so that a linear depression 31HW is formed on one main surface of the light absorption layer 31. Is done. If the predetermined temperature range is 600 ° C. or lower, the light absorption layer 31 is difficult to peel from the substrate 1 and the lower electrode layer 2.

このようにして形成された光吸収層31では、線状の窪み部31HWの直下の部分におけるI−III−VI族化合物半導体の結晶粒径の平均値(第1平均粒径とも言う)は、残余の部分における結晶粒径の平均値(第2平均粒径とも言う)よりも大きい。ここで、光吸収層31における線状の窪み部31HWの直下の部分は、線状の窪み部31HWの位置を基準として一主面に垂直な方向(法線方向とも言い、具体的には−Z方向)に位置する部分である。   In the light absorption layer 31 thus formed, the average value (also referred to as the first average particle size) of the crystal grain size of the I-III-VI group compound semiconductor in the portion immediately below the linear depression 31HW is: It is larger than the average value of crystal grain size (also referred to as second average grain size) in the remaining part. Here, the portion immediately below the linear depression 31HW in the light absorption layer 31 is a direction perpendicular to one principal surface with respect to the position of the linear depression 31HW (also referred to as a normal direction, specifically − (Z direction).

具体的には、図8で示されるように、大結晶31LCの第1平均粒径が、結晶31SCの第2平均粒径よりも大きい。そして、光吸収層31のうちの線状の窪み部31HWの直下の部分に大結晶31LCが配されており、窪み部31HWの内壁における凹凸は小さい。このため、光吸収層31のうちの線状の窪み部31HWが存在する部分と、バッファ層32との密着性が良好である。これにより、窪み部31HWによる応力の緩和時に、窪み部31HWが変形しても、バッファ層32が光吸収層31から剥離し難い。   Specifically, as shown in FIG. 8, the first average particle size of the large crystal 31LC is larger than the second average particle size of the crystal 31SC. And the large crystal 31LC is distribute | arranged to the part directly under the linear hollow part 31HW of the light absorption layer 31, and the unevenness | corrugation in the inner wall of the hollow part 31HW is small. For this reason, the adhesiveness of the buffer layer 32 with the part in which the linear hollow part 31HW exists in the light absorption layer 31 is favorable. Thereby, even when the dent 31HW is deformed when the stress due to the dent 31HW is relieved, the buffer layer 32 is hardly peeled off from the light absorption layer 31.

バッファ層32は、光吸収層31の一主面の上に配されている半導体層である。この半導体層は、光吸収層31の導電型とは異なる導電型を有している。ここでは、異なる導電型は、n型である。また、バッファ層32と光吸収層31とが、ヘテロ接合領域を形成している。光電変換セル10では、光吸収層31とバッファ層32とが積層された光電変換層3において光電変換が生じる。なお、導電型が異なる半導体とは、伝導担体(キャリア)が異なる半導体のことである。また、光吸収層31の導電型がp型であれば、バッファ層32の導電型はn型でなく、i型であっても良い。さらに、光吸収層31の導電型がn型またはi型であれば、バッファ層32の導電型はp型であっても良い。   The buffer layer 32 is a semiconductor layer disposed on one main surface of the light absorption layer 31. This semiconductor layer has a conductivity type different from that of the light absorption layer 31. Here, the different conductivity types are n-type. Further, the buffer layer 32 and the light absorption layer 31 form a heterojunction region. In the photoelectric conversion cell 10, photoelectric conversion occurs in the photoelectric conversion layer 3 in which the light absorption layer 31 and the buffer layer 32 are stacked. Note that semiconductors having different conductivity types are semiconductors having different conductive carriers. Further, if the conductivity type of the light absorption layer 31 is p-type, the conductivity type of the buffer layer 32 may be i-type instead of n-type. Furthermore, if the conductivity type of the light absorption layer 31 is n-type or i-type, the conductivity type of the buffer layer 32 may be p-type.

バッファ層32は、化合物半導体を主に含む。バッファ層32に含まれる化合物半導体としては、例えば、CdS、In23、ZnS、ZnO、In2Se3、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等が採用され得る。そして、バッファ層32の抵抗率が1Ω・cm以上であれば、リーク電流が低減される。なお、バッファ層32は、例えば、ケミカルバスデポジション(CBD)法等で形成され得る。The buffer layer 32 mainly includes a compound semiconductor. Examples of the compound semiconductor included in the buffer layer 32 include CdS, In 2 S 3 , ZnS, ZnO, In 2 Se 3 , In (OH, S), (Zn, In) (Se, OH), and (Zn). , Mg) O or the like can be employed. If the resistivity of the buffer layer 32 is 1 Ω · cm or more, the leakage current is reduced. The buffer layer 32 can be formed by, for example, a chemical bath deposition (CBD) method.

また、バッファ層32の厚さ方向は、光吸収層31の一主面に垂直な方向と略一致する。バッファ層32の厚さは、例えば、10nm以上で且つ200nm以下であれば良い。バッファ層32の厚さが100nm以上で且つ200nm以下であれば、高温高湿の条件下における変換効率の低下が顕著に低減され得る。   The thickness direction of the buffer layer 32 substantially coincides with the direction perpendicular to one main surface of the light absorption layer 31. The thickness of the buffer layer 32 may be, for example, 10 nm or more and 200 nm or less. When the thickness of the buffer layer 32 is not less than 100 nm and not more than 200 nm, a decrease in conversion efficiency under high temperature and high humidity conditions can be remarkably reduced.

この場合、光吸収層31における線状の窪み部31HWの窪み距離(第1距離とも言う)は、バッファ層32が光吸収層31の一主面(具体的には基準面31SF)の法線方向(図中Z方向)に設けられている距離(バッファ層32の厚さに相当し、第2距離とも言う)よりも長い。別の観点から言えば、同一の長さを示す単位(例えばnm)で比較した場合に、光吸収層31の基準面31SFの位置を基準とした窪み部31HWの−Z方向における深さを示す数値は、バッファ層32のZ方向における厚さを示す数値よりも大きい。このように、線状の窪み部31HWがある程度深ければ、線状の窪み部31HWの変形による応力緩和の効果が明確に得られる。   In this case, the depression distance (also referred to as the first distance) of the linear depression 31HW in the light absorption layer 31 is a normal line of the buffer layer 32 to one main surface (specifically, the reference surface 31SF) of the light absorption layer 31. It is longer than the distance (corresponding to the thickness of the buffer layer 32, also referred to as the second distance) provided in the direction (Z direction in the figure). From another viewpoint, the depth in the −Z direction of the recess 31HW with respect to the position of the reference surface 31SF of the light absorption layer 31 when compared in units (for example, nm) indicating the same length is shown. The numerical value is larger than the numerical value indicating the thickness of the buffer layer 32 in the Z direction. Thus, if the linear depression 31HW is deep to some extent, the effect of stress relaxation due to the deformation of the linear depression 31HW can be clearly obtained.

上部電極層4は、バッファ層32の+Z側の主面(一主面とも言う)の上に配されている。この上部電極層4は、例えば、n型の導電型を有する透明の導電膜(透明電極層とも言う)である。そして、上部電極層4は、光電変換層3において生じた電荷を取り出す電極(取出電極とも言う)である。また、上部電極層4に主に含まれる材料は、バッファ層32よりも低い抵抗率を有する。上部電極層4には、いわゆる窓層と呼ばれるものが含まれても良いし、窓層と透明の導電膜とが含まれていても良い。   The upper electrode layer 4 is disposed on the main surface (also referred to as one main surface) on the + Z side of the buffer layer 32. The upper electrode layer 4 is, for example, a transparent conductive film (also referred to as a transparent electrode layer) having an n-type conductivity type. The upper electrode layer 4 is an electrode that extracts charges generated in the photoelectric conversion layer 3 (also referred to as an extraction electrode). The material mainly contained in the upper electrode layer 4 has a lower resistivity than the buffer layer 32. The upper electrode layer 4 may include what is called a window layer, or may include a window layer and a transparent conductive film.

上部電極層4は、禁制帯幅が広く且つ透明で低抵抗の材料を主に含んでいる。このような材料としては、例えば、ZnO、In23、およびSnO2等の金属酸化物半導体等が採用され得る。これらの金属酸化物半導体には、Al、B、Ga、InおよびF等のうちの何れかの元素が含まれてもよい。このような元素が含まれた金属酸化物半導体の具体例としては、例えば、AZO(Aluminum Zinc Oxide)、GZO(Gallium Zinc Oxide)、IZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)、FTO(fluorine tin oxide)等がある。The upper electrode layer 4 mainly includes a transparent and low resistance material having a wide forbidden band width. As such a material, for example, a metal oxide semiconductor such as ZnO, In 2 O 3 , and SnO 2 can be adopted. These metal oxide semiconductors may contain any element of Al, B, Ga, In, F, and the like. Specific examples of the metal oxide semiconductor containing such an element include, for example, AZO (Aluminum Zinc Oxide), GZO (Gallium Zinc Oxide), IZO (Indium Zinc Oxide), ITO (Indium Tin Oxide), FTO ( fluorine tin oxide).

上部電極層4は、スパッタリング法、蒸着法、または化学的気相成長(CVD)法等によって形成され得る。上部電極層4の厚さは、0.05μm以上で且つ3μm以下であれば良い。ここで、上部電極層4が、例えば、1Ω・cm未満の抵抗率と、50Ω/□以下のシート抵抗とを有していれば、上部電極層4を介して光電変換層3から電荷が良好に取り出され得る。   The upper electrode layer 4 can be formed by sputtering, vapor deposition, chemical vapor deposition (CVD), or the like. The thickness of the upper electrode layer 4 may be 0.05 μm or more and 3 μm or less. Here, if the upper electrode layer 4 has, for example, a resistivity of less than 1 Ω · cm and a sheet resistance of 50 Ω / □ or less, the electric charge is good from the photoelectric conversion layer 3 through the upper electrode layer 4. Can be taken out.

バッファ層32および上部電極層4が、光吸収層31が吸収し得る光の波長帯域に対して、光を透過させ易い性質(光透過性とも言う)を有していれば、光吸収層31における光の吸収効率の低下が低減され得る。   If the buffer layer 32 and the upper electrode layer 4 have a property (also referred to as light transmittance) that allows light to easily pass through the wavelength band of light that can be absorbed by the light absorption layer 31, the light absorption layer 31. The decrease in the light absorption efficiency in can be reduced.

また、上部電極層4の厚さが0.05μm以上で且つ0.5μm以下であれば、上部電極層4における光透過性が高められるとともに、光電変換によって生じた電流が良好に伝送され得る。さらに、上部電極層4の絶対屈折率とバッファ層32の絶対屈折率とが略同一であれば、上部電極層4とバッファ層32との界面で光が反射することで生じる入射光のロスが低減され得る。   Further, when the thickness of the upper electrode layer 4 is 0.05 μm or more and 0.5 μm or less, the light transmittance in the upper electrode layer 4 can be improved and the current generated by the photoelectric conversion can be transmitted well. Further, if the absolute refractive index of the upper electrode layer 4 and the absolute refractive index of the buffer layer 32 are substantially the same, the incident light loss caused by the reflection of light at the interface between the upper electrode layer 4 and the buffer layer 32 is reduced. Can be reduced.

グリッド電極5は、上部電極層4の+Z側の主面(一主面とも言う)の上に設けられている導電性を有する線状の電極部である。このグリッド電極5は、複数の集電部5aと連結部5bとを備えている。複数の集電部5aは、Y軸方向に離間して設けられ、それぞれがX軸方向に延在する。連結部5bは、各集電部5aが接続されており、Y軸方向に延在する。グリッド電極5の材料としては、例えば、Ag等の金属が採用され得る。また、グリッド電極5に含まれる金属は、例えば、Cu、Al、Ni等であっても良い。   The grid electrode 5 is a conductive linear electrode portion provided on the main surface (also referred to as one main surface) on the + Z side of the upper electrode layer 4. The grid electrode 5 includes a plurality of current collecting portions 5a and connecting portions 5b. The plurality of current collectors 5a are provided separately in the Y-axis direction, and each extend in the X-axis direction. Each of the current collectors 5a is connected to the connecting part 5b and extends in the Y-axis direction. As a material of the grid electrode 5, for example, a metal such as Ag can be adopted. Further, the metal contained in the grid electrode 5 may be, for example, Cu, Al, Ni or the like.

集電部5aは、光電変換層3において発生した後に上部電極層4によって取り出された電荷を集電する。集電部5aが配されていることで、上部電極層4の薄層化が可能となる。上部電極層4は、光吸収層31の上方に配されているので、上部電極層4が出来るだけ薄く形成されれば、上部電極層4における光透過性が高められ得る。しかし、上部電極層4では、該上部電極層4の厚さが薄くなれば薄くなるほど抵抗が大きくなり、電荷の取り出し効率が低下する。そこで、集電部5aが配されることで、電荷の取り出し効率が確保され、上部電極層4の薄層化による光透過性の向上が可能となる。   The current collector 5 a collects the electric charges generated by the upper electrode layer 4 after being generated in the photoelectric conversion layer 3. By providing the current collector 5a, the upper electrode layer 4 can be thinned. Since the upper electrode layer 4 is disposed above the light absorption layer 31, if the upper electrode layer 4 is formed as thin as possible, the light transmittance in the upper electrode layer 4 can be enhanced. However, in the upper electrode layer 4, as the thickness of the upper electrode layer 4 decreases, the resistance increases and the charge extraction efficiency decreases. Therefore, by arranging the current collector 5a, the charge extraction efficiency is ensured, and the light transmittance can be improved by making the upper electrode layer 4 thinner.

グリッド電極5および上部電極層4によって集電された電荷は、第2溝部P2に配されている接続部45を通じて、隣の光電変換セル10に伝達される。接続部45は、上部電極層4の延在部分4aと、その上に配されている連結部5bからの垂下部分5cとを有している。これにより、光電変換装置21においては、隣り合う光電変換セル10の一方の下部電極層2と、他方の上部電極層4およびグリッド電極5とが、第2溝部P2に設けられている接続導体としての接続部45によって電気的に直列接続されている。   The electric charges collected by the grid electrode 5 and the upper electrode layer 4 are transmitted to the adjacent photoelectric conversion cell 10 through the connection part 45 arranged in the second groove part P2. The connecting portion 45 has an extending portion 4a of the upper electrode layer 4 and a hanging portion 5c from the connecting portion 5b disposed thereon. Thereby, in the photoelectric conversion apparatus 21, one lower electrode layer 2, the other upper electrode layer 4, and the grid electrode 5 of the adjacent photoelectric conversion cell 10 are connected conductors provided in the second groove portion P2. Are electrically connected in series by the connecting portion 45.

グリッド電極5の幅は、50μm以上で且つ400μm以下であれば、良好な導電性が確保されつつ、光吸収層31への光の入射量を左右する受光面積の低下が低減され得る。   If the width of the grid electrode 5 is not less than 50 μm and not more than 400 μm, a decrease in the light receiving area that affects the amount of light incident on the light absorption layer 31 can be reduced while ensuring good conductivity.

なお、グリッド電極5のうちの少なくとも連結部5bの表面は、例えば、光吸収層31が吸収する波長帯域の光を反射する材料によって形成され得る。この場合、光電変換装置21がモジュール化された際に、連結部5bが反射した光を、このモジュール内で再び反射させて光吸収層31に再度入射させることが可能となる。これにより、光吸収層31への光の入射量が増大し、光電変換装置21における変換効率が向上する。このような表面が形成されるためには、例えば、透光性を有する樹脂に光反射率が高いAg等の金属粒子が添加されたペーストが、上部電極層4の一主面上に塗布され、その後の乾燥によって該ペーストが固化されることでグリッド電極5が形成されれば良い。また、例えば、Al等の光反射率の高い金属がグリッド電極5の表面に蒸着されても良い。   Note that at least the surface of the connecting portion 5b of the grid electrode 5 can be formed of, for example, a material that reflects light in a wavelength band that the light absorption layer 31 absorbs. In this case, when the photoelectric conversion device 21 is modularized, the light reflected by the connecting portion 5b can be reflected again in the module and incident again on the light absorption layer 31. Thereby, the amount of light incident on the light absorption layer 31 is increased, and the conversion efficiency in the photoelectric conversion device 21 is improved. In order to form such a surface, for example, a paste in which metal particles such as Ag having a high light reflectance are added to a light-transmitting resin is applied onto one main surface of the upper electrode layer 4. The grid electrode 5 may be formed by solidifying the paste by subsequent drying. Further, for example, a metal having high light reflectance such as Al may be deposited on the surface of the grid electrode 5.

<(2)光電変換装置の製造方法>
図9から図14で示される各断面図は、図2で示された光電変換装置21の断面に対応する部分の製造途中の様子を示す。
<(2) Manufacturing method of photoelectric conversion device>
Each of the cross-sectional views shown in FIGS. 9 to 14 shows a state in the middle of manufacturing a portion corresponding to the cross section of the photoelectric conversion device 21 shown in FIG.

まず、図9で示されるように、洗浄された基板1の略全面に、スパッタリング法等が用いられて、Mo等を主に含む下部電極層2が形成される。そして、下部電極層2の上面のうちのY方向に沿った直線状の形成対象位置からその直下の基板1の上面にかけて、第1溝部P1が形成される。第1溝部P1は、例えば、YAGレーザー等によるレーザー光が走査されつつ形成対象位置に照射されることで形成され得る。図10は、第1溝部P1が形成された後の状態を示す図である。   First, as shown in FIG. 9, a lower electrode layer 2 mainly containing Mo or the like is formed on the substantially entire surface of the cleaned substrate 1 by using a sputtering method or the like. Then, the first groove portion P1 is formed from the linear formation target position along the Y direction on the upper surface of the lower electrode layer 2 to the upper surface of the substrate 1 immediately below the formation position. The first groove portion P1 can be formed by, for example, irradiating the formation target position while scanning with laser light from a YAG laser or the like. FIG. 10 is a diagram illustrating a state after the first groove portion P1 is formed.

第1溝部P1が形成された後、下部電極層2の上に、光吸収層31とバッファ層32とが順に形成される。図11は、光吸収層31およびバッファ層32が形成された後の状態を示す図である。   After the first groove portion P1 is formed, the light absorption layer 31 and the buffer layer 32 are sequentially formed on the lower electrode layer 2. FIG. 11 is a diagram illustrating a state after the light absorption layer 31 and the buffer layer 32 are formed.

光吸収層31が形成される際には、まず、光吸収層31を形成するための微粒子含有溶液が準備される。この微粒子含有溶液は、溶液に微粒子が分散されている。この溶液は、光吸収層31を形成するための原料となる金属元素(原料金属元素とも言う)と、カルコゲン元素を含有する有機化合物(カルコゲン元素含有有機化合物とも言う)と、ルイス塩基性有機化合物とが溶媒に溶解したものである。また、微粒子は原料金属元素を含む。上記溶液および微粒子に含まれる原料金属元素は、I−III−VI族化合物半導体に含まれる金属元素であり、原料金属元素には、例えば、I−B族元素およびIII−B族元素が含まれる。溶液に含まれる原料金属元素と微粒子に含まれる原料金属元素とは同じであっても異なっていてもよい。溶液に含まれる原料金属元素と微粒子に含まれる原料金属元素とが同じであれば、I−III−VI族化合物半導体の形成が良好となる。   When the light absorption layer 31 is formed, first, a fine particle-containing solution for forming the light absorption layer 31 is prepared. In the fine particle-containing solution, fine particles are dispersed in the solution. This solution includes a metal element (also referred to as a raw metal element) that is a raw material for forming the light absorption layer 31, an organic compound containing a chalcogen element (also referred to as a chalcogen element-containing organic compound), and a Lewis basic organic compound. Are dissolved in a solvent. The fine particles contain a raw metal element. The source metal element contained in the solution and the fine particles is a metal element contained in the I-III-VI group compound semiconductor, and the source metal element includes, for example, an I-B group element and a III-B group element. . The source metal element contained in the solution and the source metal element contained in the fine particles may be the same or different. If the source metal element contained in the solution and the source metal element contained in the fine particles are the same, the formation of the I-III-VI group compound semiconductor will be good.

カルコゲン元素含有有機化合物とは、カルコゲン元素を主に含む有機化合物である。カルコゲン元素は、VI−B族元素のうちのS、Se、Teである。ここで、カルコゲン元素としてSeが採用される場合、カルコゲン元素含有有機化合物としては、例えば、セレノール、セレニド、ジセレニド、セレノキシドおよびセレノン等が採用され得る。セレノール、セレニドまたはジセレニド等が採用されれば、金属と錯体を形成して金属溶液が良好に生成され得る。特に、フェニル基を有するものが採用されれば、良好な塗布の容易性(塗布性とも言う)が高められる。このようなフェニル基を有するものとしては、例えば、フェニルセレノール、フェニルセレナイド、ジフェニルジセレナイド等およびこれらの誘導体が採用され得る。   The chalcogen element-containing organic compound is an organic compound mainly containing a chalcogen element. The chalcogen elements are S, Se, and Te among VI-B group elements. Here, when Se is employed as the chalcogen element, examples of the chalcogen element-containing organic compound include selenol, selenide, diselenide, selenoxide, and selenone. If selenol, selenide, diselenide or the like is employed, a metal solution can be formed favorably by forming a complex with the metal. In particular, if a material having a phenyl group is employed, the ease of good coating (also referred to as coating property) is enhanced. As what has such a phenyl group, phenyl selenol, phenyl selenide, diphenyl diselenide, etc., and derivatives thereof may be employed, for example.

ルイス塩基性有機化合物とは、ルイス塩基となり得る官能基を有する有機化合物である。ルイス塩基となり得る官能基としては、非共有電子対を有するV−B族元素(15族元素とも言う)を具備した官能基、および非共有電子対を有するVI−B族元素を具備した官能基等が採用され得る。これらの官能基の具体例としては、例えば、アミノ基(1〜3級アミンの何れでも良い)、カルボニル基、シアノ基等がある。ルイス塩基性有機化合物の具体例としては、ピリジン、アニリン、トリフェニルフォスフィン、2,4−ペンタンジオン、3−メチル−2,4−ペンタンジオン、トリエチルアミン、トリエタノ−ルアミン、アセトニトリル、ベンジル、ベンゾイン等およびこれらの誘導体がある。特に、ルイス塩基性有機化合物として含窒素有機化合物が採用されれば、原料金属元素の溶解性が高められる。さらに沸点が100℃以上のルイス塩基性有機化合物が採用されれば、微粒子含有溶液の塗布性が高められる。   A Lewis basic organic compound is an organic compound having a functional group that can be a Lewis base. The functional group that can be a Lewis base includes a functional group having a VB group element having an unshared electron pair (also referred to as a Group 15 element), and a functional group having a VI-B group element having an unshared electron pair. Etc. may be employed. Specific examples of these functional groups include amino groups (any of primary to tertiary amines), carbonyl groups, cyano groups, and the like. Specific examples of Lewis basic organic compounds include pyridine, aniline, triphenylphosphine, 2,4-pentanedione, 3-methyl-2,4-pentanedione, triethylamine, triethanolamine, acetonitrile, benzyl, benzoin and the like. And derivatives thereof. In particular, if a nitrogen-containing organic compound is employed as the Lewis basic organic compound, the solubility of the starting metal element can be enhanced. Furthermore, if a Lewis basic organic compound having a boiling point of 100 ° C. or higher is employed, the coating property of the fine particle-containing solution is improved.

上記の微粒子含有溶液は、例えば、次の工程(A),(B)が順に行われることで、作製される。   The fine particle-containing solution is produced, for example, by sequentially performing the following steps (A) and (B).

(A)単体の地金、合金または金属塩の何れかの状態の原料金属元素が、カルコゲン元素含有有機化合物とルイス塩基性有機化合物とが混合された溶媒(混合溶媒Sとも言う)に溶解されて原料溶液が調製される。原料金属元素が単体の地金または合金の状態で混合溶媒Sに溶解されれば、不純物の混入が低減される。原料溶液では、金属元素とカルコゲン元素含有有機化合物とルイス塩基性有機化合物とが錯体を成しているため、金属元素とカルコゲン元素とが接近した状態で安定に存在している。なお、混合溶媒Sの採用により、カルコゲン元素含有有機化合物のみ、またはルイス塩基性有機化合物のみで原料金属元素が溶解されて原料溶液が作製される場合よりも、高濃度(例えば10質量%以上)の原料金属元素が含有されている原料溶液が生成され得る。また、混合溶媒Sにおけるカルコゲン元素含有有機化合物の含有量がルイス塩基性有機化合物に対して1mol%以上で且つ250mol%以下であれば、混合溶媒Sは、室温で液状となるため、取り扱い易い。   (A) A raw metal element in a state of a simple metal, alloy or metal salt is dissolved in a solvent (also referred to as a mixed solvent S) in which a chalcogen element-containing organic compound and a Lewis basic organic compound are mixed. A raw material solution is prepared. If the raw metal element is dissolved in the mixed solvent S in the state of a simple metal or alloy, the contamination of impurities is reduced. In the raw material solution, since the metal element, the chalcogen element-containing organic compound, and the Lewis basic organic compound form a complex, the metal element and the chalcogen element are stably present in a close state. In addition, by the use of the mixed solvent S, the concentration is higher (for example, 10% by mass or more) than when the raw material metal element is dissolved only with the chalcogen element-containing organic compound or the Lewis basic organic compound to prepare the raw material solution. A raw material solution containing the raw metal element can be produced. Further, when the content of the chalcogen element-containing organic compound in the mixed solvent S is 1 mol% or more and 250 mol% or less with respect to the Lewis basic organic compound, the mixed solvent S becomes liquid at room temperature and is easy to handle.

(B)原料溶液が加熱されることで、原料金属元素とカルコゲン元素との化合物が多数の微粒子として形成され、原料溶液中に多数の微粒子が分散している微粒子含有溶液が作製される。なお、微粒子が、光吸収層31に含まれるI−III−VI族化合物半導体と同じ成分を有していれば、光吸収層31への不純物の混入が低減されて光吸収層31の純度が高められる。なお、原料溶液が加熱されることで多数の微粒子が析出され、この多数の微粒子が一旦抽出された後に、原料溶液に対して多数の微粒子が混合されることで原料溶液中に多数の微粒子が分散している微粒子含有溶液が作製されても良い。   (B) By heating the raw material solution, a compound containing a raw metal element and a chalcogen element is formed as a large number of fine particles, and a fine particle-containing solution in which a large number of fine particles are dispersed in the raw material solution is produced. In addition, if the fine particles have the same components as the I-III-VI group compound semiconductor contained in the light absorption layer 31, the contamination of the light absorption layer 31 is reduced and the purity of the light absorption layer 31 is increased. Enhanced. When the raw material solution is heated, a large number of fine particles are precipitated. After the large number of fine particles are once extracted, a large number of fine particles are mixed with the raw material solution, so that a large number of fine particles are contained in the raw material solution. A dispersed fine particle-containing solution may be prepared.

本実施形態では、原料金属元素として、I−B族元素のCuとIII−B族元素のInおよびGaとが採用され、カルコゲン元素含有有機化合物としてフェニルセレノールが採用され、ルイス塩基性有機化合物としてアニリンが採用されて、原料溶液が調製される。この場合、原料溶液が150℃以上で且つ200℃以下の温度域で所定時間(例えば1分間以上で且つ60分間以内)加熱されると、原料溶液中において50nm以上で且つ300nm以下の粒径を有し且つCIGSを含む多数の微粒子が形成される。これにより、多数の微粒子が分散している微粒子含有溶液が生成される。   In this embodiment, Cu of the IB group element and In and Ga of the III-B group element are employed as the raw metal element, phenyl selenol is employed as the chalcogen element-containing organic compound, and a Lewis basic organic compound An aniline is employed as a raw material solution. In this case, when the raw material solution is heated in a temperature range of 150 ° C. or higher and 200 ° C. or lower for a predetermined time (for example, 1 minute or longer and within 60 minutes), the particle size of 50 nm or more and 300 nm or less in the raw material solution A large number of microparticles are formed that contain and contain CIGS. Thereby, a fine particle-containing solution in which a large number of fine particles are dispersed is generated.

次に、微粒子含有溶液が下部電極層2の表面に塗布された後に、乾燥されることで前駆体としての皮膜(前駆体層とも言う)が形成され得る。その後、この前駆体層に対して熱処理が施されることで光吸収層31が形成される。   Next, the fine particle-containing solution is applied to the surface of the lower electrode layer 2 and then dried to form a film as a precursor (also referred to as a precursor layer). Then, the light absorption layer 31 is formed by heat-processing with respect to this precursor layer.

ここで、微粒子含有溶液の塗布には、例えば、スピンコータ、スクリーン印刷、ディッピング、スプレーまたはダイコータ等が適用され得る。多数の微粒子の分散によって微粒子含有溶液の粘度は高いため、下部電極層2の表面に対する一度の微粒子含有溶液の塗布によって、比較的厚く且つ所望の厚さを有する前駆体層が容易に形成され得る。   Here, for example, a spin coater, screen printing, dipping, spraying, or a die coater can be applied to the application of the fine particle-containing solution. Since the viscosity of the fine particle-containing solution is high due to the dispersion of a large number of fine particles, a precursor layer having a relatively thick and desired thickness can be easily formed by applying the fine particle-containing solution once to the surface of the lower electrode layer 2. .

前駆体層を形成するための乾燥は、例えば、不活性ガス雰囲気または還元ガス雰囲気において行われれば良い。その乾燥温度は、例えば、50℃以上で且つ300℃以下であれば良い。前駆体層に対して熱処理が施される際の雰囲気は、例えば、窒素雰囲気、水素雰囲気および水素と窒素またはアルゴンとの混合気体の雰囲気のうちの何れかの雰囲気であれば良い。   The drying for forming the precursor layer may be performed, for example, in an inert gas atmosphere or a reducing gas atmosphere. The drying temperature should just be 50 degreeC or more and 300 degrees C or less, for example. The atmosphere in which the heat treatment is performed on the precursor layer may be any atmosphere of, for example, a nitrogen atmosphere, a hydrogen atmosphere, and a mixed gas atmosphere of hydrogen and nitrogen or argon.

熱処理では、毎分20℃以上昇温される昇温速度で560℃以上まで加熱され、560℃以上で且つ600℃以下の温度域で約1時間保持された後に、自然対流による冷却(自然冷却)が行われれば良い。このような熱処理によって、図6から図8で示された状態の変化を経て、一主面に線状の窪み部31HWが延在しており、厚さが1μm以上で且つ3μm以下の光吸収層31が形成される。なお、この熱処理時には、多数の微粒子の存在と、微粒子間における原料溶液の存在とによって、微粒子を核とした結晶成長の促進と、光吸収層31の緻密化とが図られ得る。また、熱処理の途中で発生したクラックが埋められて、線状の窪み部31HWが形成される。このため、欠陥の少ない光吸収層31が形成され、光電変換装置21における変換効率の上昇が図られ得る。   In the heat treatment, it is heated to 560 ° C. or more at a temperature rising rate of 20 ° C. or more per minute, and is kept in a temperature range of 560 ° C. or more and 600 ° C. or less for about 1 hour, and then cooled by natural convection (natural cooling ) Should be done. By such heat treatment, the linear depression 31HW extends on one main surface through the change of the state shown in FIGS. 6 to 8, and the light absorption is 1 μm or more and 3 μm or less. Layer 31 is formed. In this heat treatment, promotion of crystal growth using fine particles as nuclei and densification of the light absorption layer 31 can be achieved by the presence of a large number of fine particles and the presence of the raw material solution between the fine particles. Moreover, the crack which generate | occur | produced in the middle of heat processing is filled, and the linear hollow part 31HW is formed. For this reason, the light absorption layer 31 with few defects is formed, and the conversion efficiency in the photoelectric conversion device 21 can be increased.

ところで、微粒子含有溶液中の微粒子の平均粒径が1μm以下であれば、微粒子含有溶液における微粒子の分散性の向上と過度な凝集の低減とが図られ得る。また、この微粒子の平均粒径が500nm以下であれば、光吸収層31におけるボイドの発生が低減され得る。また、この微粒子の平均粒径が10nm以上であれば、熱処理中に前駆体層において線状のクラックを生じさせた後に線状の窪み部31HWを発生させ得る。さらに、この微粒子の平均粒径が50nm以上で且つ300nm以下であれば、微粒子含有溶液の塗布性が向上し得る。   By the way, if the average particle diameter of the fine particles in the fine particle-containing solution is 1 μm or less, the dispersibility of the fine particles in the fine particle-containing solution can be improved and excessive aggregation can be reduced. Further, when the average particle diameter of the fine particles is 500 nm or less, generation of voids in the light absorption layer 31 can be reduced. Further, if the average particle size of the fine particles is 10 nm or more, the linear depression 31HW can be generated after generating a linear crack in the precursor layer during the heat treatment. Furthermore, when the average particle diameter of the fine particles is 50 nm or more and 300 nm or less, the coating property of the fine particle-containing solution can be improved.

バッファ層32は、溶液成長法(CBD法)によって形成され得る。例えば、酢酸カドミウムとチオ尿素とがアンモニア水に溶解させられることで作製された溶液に光吸収層31まで形成された基板1が浸漬されることで、CdSを主に含むバッファ層32が形成され得る。   The buffer layer 32 can be formed by a solution growth method (CBD method). For example, the buffer layer 32 mainly containing CdS is formed by immersing the substrate 1 formed up to the light absorption layer 31 in a solution prepared by dissolving cadmium acetate and thiourea in aqueous ammonia. obtain.

光吸収層31およびバッファ層32が形成された後、バッファ層32の上面のうちのY方向に沿った直線状の形成対象位置からその直下の下部電極層2の上面にかけて、第2溝部P2が形成される。第2溝部P2は、例えば、40μm以上で且つ50μm以下程度のスクライブ幅のスクライブ針を用いたスクライビングが、位置をずらせながら連続して数回行われることで形成される。また、先端形状が第2溝部P2の幅に近い程度にまで広げられたスクライブ針でスクライブされることによって第2溝部P2が形成されても良い。あるいは、2本以上のスクライブ針が相互に当接または近接した状態で固定され、1回から数回のスクライブが行われることによって第2溝部P2が形成されても良い。図12は、第2溝部P2が形成された後の状態を示す図である。第2溝部P2は、第1溝部P1よりも若干X方向(図中では+X方向)にずれた位置に形成される。   After the light absorption layer 31 and the buffer layer 32 are formed, the second groove portion P2 extends from the linear formation target position along the Y direction on the upper surface of the buffer layer 32 to the upper surface of the lower electrode layer 2 immediately below the formation position. It is formed. The second groove portion P2 is formed, for example, by performing scribing using a scribe needle having a scribe width of about 40 μm or more and about 50 μm or less continuously several times while shifting the position. Further, the second groove portion P2 may be formed by scribing with a scribe needle whose tip shape is expanded to a degree close to the width of the second groove portion P2. Alternatively, the second groove portion P2 may be formed by fixing two or more scribe needles in a state where they are in contact with each other or in close proximity to each other and performing one to several scribes. FIG. 12 is a diagram illustrating a state after the second groove portion P2 is formed. The second groove portion P2 is formed at a position slightly shifted in the X direction (in the drawing, + X direction) from the first groove portion P1.

第2溝部P2が形成された後、バッファ層32の上に、例えば、ITO等を主成分とする透明の上部電極層4が形成される。上部電極層4は、スパッタリング法、蒸着法またはCVD法等で形成され得る。図13は、上部電極層4が形成された後の状態を示す図である。   After the second groove portion P2 is formed, the transparent upper electrode layer 4 mainly composed of ITO or the like is formed on the buffer layer 32, for example. The upper electrode layer 4 can be formed by sputtering, vapor deposition, CVD, or the like. FIG. 13 is a view showing a state after the upper electrode layer 4 is formed.

上部電極層4が形成された後に、グリッド電極5が形成される。例えば、Ag等の金属粉が樹脂バインダー等に分散している導電性を有するペースト(導電ペーストとも言う)が所望のパターンを描くように印刷され、これが乾燥によって固化されることで、グリッド電極5が形成される。なお、固化された状態は、導電ペーストに用いられるバインダーが熱可塑性樹脂である場合の熔融後の固化状態およびバインダーが熱硬化性樹脂または光硬化性樹脂等の硬化性樹脂である場合の硬化後の状態の双方を含む。図14は、グリッド電極5が形成された後の状態を示す図である。   After the upper electrode layer 4 is formed, the grid electrode 5 is formed. For example, a conductive paste (also referred to as a conductive paste) in which a metal powder such as Ag is dispersed in a resin binder or the like is printed so as to draw a desired pattern, and this is solidified by drying, whereby the grid electrode 5 Is formed. The solidified state is the solidified state after melting when the binder used in the conductive paste is a thermoplastic resin, and after curing when the binder is a curable resin such as a thermosetting resin or a photocurable resin. Including both states. FIG. 14 is a diagram illustrating a state after the grid electrode 5 is formed.

グリッド電極5が形成された後、上部電極層4の上面のうちの直線状の形成対象位置からその直下の下部電極層2の上面にかけて、第3溝部P3が形成される。これにより、図1および図2で示された光電変換装置21が得られる。第3溝部P3の幅は、例えば、40μm以上で且つ1000μm以下程度であれば良い。また、第3溝部P3は、第2溝部P2と同様に、メカニカルスクライビングによって形成され得る。   After the grid electrode 5 is formed, a third groove portion P3 is formed from the linear formation target position on the upper surface of the upper electrode layer 4 to the upper surface of the lower electrode layer 2 immediately below the formation position. Thereby, the photoelectric conversion device 21 shown in FIGS. 1 and 2 is obtained. The width of the third groove portion P3 may be, for example, about 40 μm or more and about 1000 μm or less. Moreover, the 3rd groove part P3 can be formed by mechanical scribing similarly to the 2nd groove part P2.

<(3)具体例>
次に、製造条件と線状の窪み部31HWの発生との関係、ならびに線状の窪み部31HWの発生による光電変換装置21の変換効率の向上について、具体例を示して説明する。
<(3) Specific example>
Next, the relationship between the manufacturing conditions and the generation of the linear depression 31HW and the improvement of the conversion efficiency of the photoelectric conversion device 21 due to the generation of the linear depression 31HW will be described with specific examples.

ここでは、I−B族元素、III−B族元素およびVI−B族元素の含有比率がそれぞれ等しい原料溶液と微粒子とが用いられた。そして、原料溶液と微粒子との混合比率が異なる微粒子含有溶液が用いられてCIGSを主に含む半導体層が形成されることで、光電変換装置21と同様な構造を有する5つの光電変換装置(具体的には実施例1〜5)が作製された。また、微粒子が含まれていない原料溶液が用いられてCIGSを主に含む半導体層が形成されることで、光電変換装置21と同様な構造を有する光電変換装置(具体的には比較例)が作製された。   Here, a raw material solution and fine particles having the same content ratios of the IB group element, the III-B group element, and the VI-B group element were used. Then, five photoelectric conversion devices (specifically) having the same structure as the photoelectric conversion device 21 are formed by using a fine particle-containing solution in which the mixing ratio of the raw material solution and the fine particles is different to form a semiconductor layer mainly containing CIGS. Specifically, Examples 1 to 5) were produced. Moreover, the photoelectric conversion apparatus (specifically comparative example) which has the same structure as the photoelectric conversion apparatus 21 is formed by using the raw material solution which does not contain fine particles, and forming the semiconductor layer which mainly contains CIGS. It was made.

詳細には、まず、ルイス塩基性有機化合物であるアニリンに対して、100mol%のカルコゲン元素含有有機化合物であるフェニルセレノールが溶解されることで、混合溶媒Sが調製された。次に、地金のCu、地金のIn、地金のGaおよび地金のSeが、上記混合溶媒Sに直接溶解させられて、第1の原料溶液が調製された。この第1の原料溶液では、Cuの含有量が2.3質量%、Inの含有量が3.2質量%、Gaの含有量が1.3質量%およびSeの含有量が7.2質量%とされた。そして、この第1の原料溶液が攪拌されながら、155℃で20時間加熱されることで、CIGSの微粒子が分散している微粒子含有溶液が得られた。さらに、遠心分離器によって、微粒子含有溶液から多数の微粒子が得られた。この多数の微粒子の平均粒径は、走査型電子顕微鏡(SEM)で得られる画像の解析によって測定され、約50nmであった。   Specifically, first, a mixed solvent S was prepared by dissolving 100 mol% of a phenyl selenol, which is a chalcogen element-containing organic compound, in aniline, which is a Lewis basic organic compound. Next, the ingot Cu, the indium In, the ingot Ga and the ingot Se were directly dissolved in the mixed solvent S to prepare a first raw material solution. In the first raw material solution, the Cu content is 2.3 mass%, the In content is 3.2 mass%, the Ga content is 1.3 mass%, and the Se content is 7.2 mass%. %. The first raw material solution was stirred and heated at 155 ° C. for 20 hours to obtain a fine particle-containing solution in which CIGS fine particles were dispersed. Furthermore, a large number of microparticles were obtained from the microparticle-containing solution by a centrifuge. The average particle diameter of the large number of fine particles was measured by analysis of an image obtained with a scanning electron microscope (SEM), and was about 50 nm.

次に、第1の原料溶液と同一の成分を有する第2の原料溶液が調製された。具体的には、まず、ルイス塩基性有機化合物であるアニリンに対して、100mol%のカルコゲン元素含有有機化合物であるフェニルセレノールが溶解されることで、混合溶媒Sが調製された。次に、地金のCu、地金のIn、地金のGaおよび地金のSeが、上記混合溶媒Sに直接溶解させられて、第2の原料溶液が調製された。この第2の原料溶液では、Cuの含有量が2.3質量%、Inの含有量が3.2質量%、Gaの含有量が1.3質量%およびSeの含有量が7.2質量%とされた。   Next, a second raw material solution having the same components as the first raw material solution was prepared. Specifically, first, mixed solvent S was prepared by dissolving 100 mol% of phenylselenol, which is a chalcogen element-containing organic compound, in aniline, which is a Lewis basic organic compound. Next, the ingot Cu, the indium In, the ingot Ga and the ingot Se were directly dissolved in the mixed solvent S to prepare a second raw material solution. In this second raw material solution, the Cu content is 2.3 mass%, the In content is 3.2 mass%, the Ga content is 1.3 mass%, and the Se content is 7.2 mass%. %.

そして、遠心分離によって得られた多数の微粒子と第2の原料溶液とが混合されて、微粒子含有溶液が作製された。ここでは、実施例1〜5としての光電変換装置を形成するために、多数の微粒子に含まれるCuの物質量の合計と、第2の原料溶液に含まれるCuの物質量の合計との比(混合比とも言う)が、表1の関係を有する5種類の微粒子含有溶液が作製された。換言すれば、実施例1〜5に係る各微粒子含有溶液では、多数の微粒子に含まれているCuの物質量の合計値を、第2の原料溶液に含まれているCuの物質量の合計値で除した値(以下、微粒子含有倍率とも言う)が、表1の値を示す。具体的には、微粒子含有倍率が、実施例1に係る微粒子含有溶液では20、実施例2に係る微粒子含有溶液では10、実施例3に係る微粒子含有溶液では6、実施例4に係る微粒子含有溶液では4、実施例5に係る微粒子含有溶液では2とされた。また、比較例としての光電変換装置を形成するために、第2の原料溶液がそのまま採用された。そして、各実施例1〜5に係る第2の原料溶液と微粒子含有溶液との間におけるIn、Ga、Seの各含有量の関係は、Cuの含有量の関係と略同一とされた。   And many fine particles obtained by centrifugation and the 2nd raw material solution were mixed, and the fine particle content solution was produced. Here, in order to form the photoelectric conversion devices as Examples 1 to 5, the ratio of the total amount of Cu contained in a large number of fine particles to the total amount of Cu contained in the second raw material solution Five types of fine particle-containing solutions having a relationship shown in Table 1 (also referred to as mixing ratio) were prepared. In other words, in each of the fine particle-containing solutions according to Examples 1 to 5, the total value of the amount of Cu contained in a large number of fine particles is set to the total amount of the substance of Cu contained in the second raw material solution. The value divided by the value (hereinafter also referred to as the fine particle content magnification) shows the values in Table 1. Specifically, the microparticle content ratio is 20 for the microparticle-containing solution according to Example 1, 10 for the microparticle-containing solution according to Example 2, 6 for the microparticle-containing solution according to Example 3, and microparticle-containing according to Example 4. It was 4 for the solution and 2 for the fine particle-containing solution according to Example 5. Further, the second raw material solution was employed as it was to form a photoelectric conversion device as a comparative example. And the relationship of each content of In, Ga, and Se between the second raw material solution and the fine particle-containing solution according to each of Examples 1 to 5 was made substantially the same as the relationship of the Cu content.

次に、ガラスを主に含む基板1の表面にMo等を主に含む下部電極層2が形成されたものが用意された。そして、この下部電極層2の上に、微粒子含有溶液(比較例については第2の原料溶液)がブレード法によって塗布された後に乾燥されることで、前駆体層としての皮膜が形成された。ここでは、この前駆体層は、ブレード法による塗布とその後の乾燥とが行われる処理が順に2回実施されることで形成された。その後、水素ガスとセレン蒸気ガスとの混合気体の雰囲気下で熱処理が実施された。この熱処理では、室温付近から560℃まで5分間で昇温され、560℃で1時間保持された後に、自然冷却が行われることで、厚さが約2μmのCIGSを主に含む半導体層が形成された。この半導体層が光吸収層に相当する。   Next, a substrate in which a lower electrode layer 2 mainly containing Mo or the like was formed on the surface of a substrate 1 mainly containing glass was prepared. Then, a fine particle-containing solution (second raw material solution in the comparative example) was applied on the lower electrode layer 2 by a blade method and then dried to form a film as a precursor layer. Here, this precursor layer was formed by carrying out the treatment in which application by the blade method and subsequent drying were performed twice in order. Thereafter, heat treatment was performed in an atmosphere of a mixed gas of hydrogen gas and selenium vapor gas. In this heat treatment, the temperature is raised from near room temperature to 560 ° C. over 5 minutes, and after holding at 560 ° C. for 1 hour, natural cooling is performed to form a semiconductor layer mainly containing CIGS having a thickness of about 2 μm. It was done. This semiconductor layer corresponds to a light absorption layer.

その次に、アンモニア水に酢酸亜鉛とチオ尿素が溶解させられた溶液に、CIGSを主に含む半導体層までが形成された基板1が浸漬されることで、半導体層の上に厚さが約50nmのZnSを主に含むバッファ層が形成された。さらに、このバッファ層の上に、スパッタリング法によってAlがドープされたZnOを主に含む透明の導電膜が形成された。そして、最後に蒸着によってAlを含むグリッド電極が形成されて、実施例1〜5および比較例としての光電変換装置がそれぞれ作製された。   Next, the substrate 1 on which the semiconductor layer mainly containing CIGS is formed is immersed in a solution in which zinc acetate and thiourea are dissolved in aqueous ammonia, so that the thickness of the substrate 1 is approximately about the semiconductor layer. A buffer layer mainly containing 50 nm of ZnS was formed. Further, a transparent conductive film mainly containing ZnO doped with Al was formed on the buffer layer by sputtering. Finally, grid electrodes containing Al were formed by vapor deposition, and Examples 1 to 5 and a photoelectric conversion device as a comparative example were produced.

このようにして作製された実施例1〜5および比較例としての各光電変換装置が対象とされて、CIGSを主に含む半導体層のうちのバッファ層側の一主面に、線状のクラックおよび線状の窪み部が存在しているか否かがそれぞれ調査された。この調査は、実施例1〜5および比較例としての各光電変換装置の作製過程においてCIGSを主に含む半導体層が形成された時点で、この半導体層の表面が走査型電子顕微鏡(SEM)で観察されることによって行われた。また、実施例1〜5および比較例としての光電変換装置における変換効率は、いわゆる定常光ソーラシミュレーターが用いられて、光電変換装置の受光面に対する光の照射強度が100mW/cm2であり且つAM(エアマス)が1.5である条件下で測定された。In this way, each of the photoelectric conversion devices as Examples 1 to 5 and the comparative example is targeted, and a linear crack is formed on one main surface of the buffer layer side of the semiconductor layer mainly including CIGS. Whether or not a linear depression exists is investigated. In this investigation, when a semiconductor layer mainly containing CIGS was formed in the manufacturing process of each of the photoelectric conversion devices as Examples 1 to 5 and the comparative example, the surface of the semiconductor layer was scanned with a scanning electron microscope (SEM). Made by being observed. The conversion efficiencies in the photoelectric conversion devices of Examples 1 to 5 and the comparative example are such that a so-called stationary light solar simulator is used, the light irradiation intensity on the light receiving surface of the photoelectric conversion device is 100 mW / cm 2 , and AM It was measured under the condition that (air mass) is 1.5.

実施例1〜5および比較例としての光電変換装置が対象とされた、線状のクラックおよび線状の窪み部の有無についての調査結果、ならびに変換効率の測定結果は、表1にそれぞれ示されている。   Table 1 shows the results of the investigation on the presence or absence of linear cracks and linear depressions, and the measurement results of conversion efficiency, which were targeted for Examples 1 to 5 and the photoelectric conversion device as a comparative example. ing.

表1で示されるように、実施例1〜5については、線状の窪み部31HWの延在が確認された。そして、微粒子含有溶液において多数の微粒子が占める割合(例えば、微粒子含有倍率)が高くなれば高くなるほど、窪み部31HWの幅が広くなり、窪み部31HWの深さが深くなる傾向が認められた。また、実施例1〜4については、線状のクラックの発生が全く確認されなかった。実施例5については、線状のクラックが若干確認された。その一方で、比較例については、線状の窪み部31HWの延在が全く確認されず、線状のクラックの存在が確認された。また、実施例1〜5では、9.2%以上で且つ12.8%以下(具体的には10.2%、12.5%、12.8%、11.9%、9.2%)の変換効率が得られた。これに対して、比較例では、6.8%の変換効率しか得られなかった。   As shown in Table 1, in Examples 1 to 5, the extension of the linear depression 31HW was confirmed. And the tendency that the width of the hollow part 31HW becomes wide and the depth of the hollow part 31HW becomes deep, so that the ratio (for example, fine particle content magnification) which many fine particles occupy in a fine particle containing solution becomes high. Moreover, about Examples 1-4, generation | occurrence | production of the linear crack was not confirmed at all. About Example 5, some linear cracks were confirmed. On the other hand, about the comparative example, extension of the linear hollow part 31HW was not confirmed at all, but existence of the linear crack was confirmed. Moreover, in Examples 1-5, it is 9.2% or more and 12.8% or less (specifically 10.2%, 12.5%, 12.8%, 11.9%, 9.2%). ) Conversion efficiency was obtained. On the other hand, in the comparative example, only a conversion efficiency of 6.8% was obtained.

以上の調査結果および測定結果から、微粒子含有溶液が採用されることで、CIGSを主に含む半導体層では、一主面において線状の窪み部31HWの発生に伴って線状のクラックが減少し、変換効率が顕著に向上することが確認された。そして、線状の窪み部31HWが延在すれば、光電変換装置に対して外力が付与されても線状の窪み部31HWにおける応力の緩和によって光吸収層にクラックが生じ難く、変換効率が維持されるものと推定された。また、微粒子含有溶液における微粒子含有倍率が4以上で且つ10以下であれば、光電変換装置の実用化レベルで要求される11%以上の変換効率が得られることが分かった。そして、微粒子含有溶液における微粒子含有倍率が4以上で且つ10以下であれば、線状の窪み部31HWが適度な幅および深さを有することが判った。そして、このような適度な幅および深さの線状の窪み部31HWの延在により、光電変換装置に対して外力が付与されても線状の窪み部31HWにおける応力の緩和によって光吸収層でさらにクラックが生じ難いものと推定された。   From the above investigation results and measurement results, by using the fine particle-containing solution, in the semiconductor layer mainly including CIGS, linear cracks are reduced along with the generation of the linear depression 31HW on one main surface. It was confirmed that the conversion efficiency was remarkably improved. And if linear hollow part 31HW is extended, even if an external force is provided with respect to a photoelectric conversion apparatus, a crack will not easily arise in a light absorption layer by relaxation of the stress in linear hollow part 31HW, and conversion efficiency is maintained. It was estimated that Further, it was found that if the fine particle content ratio in the fine particle-containing solution is 4 or more and 10 or less, the conversion efficiency of 11% or more required at the practical use level of the photoelectric conversion device can be obtained. And when the fine particle content ratio in the fine particle-containing solution is 4 or more and 10 or less, it was found that the linear depression 31HW has an appropriate width and depth. And by extension of the linear hollow part 31HW of such moderate width and depth, even if an external force is applied to the photoelectric conversion device, the light absorption layer is formed by relaxation of the stress in the linear hollow part 31HW. Further, it was presumed that cracks hardly occur.

<(4)変形例>
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
<(4) Modification>
It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the gist of the present invention.

例えば、上記一実施形態では、光吸収層31が、I−B族元素とIII−B族元素とVI−B族元素とを含むI−III−VI族化合物半導体の層であったが、これに限られない。例えば、光吸収層31が、II−B族元素とVI−B族元素とを主に含むII−VI族化合物半導体の層であっても良いし、2以上の元素を含むその他の化合物半導体の層であっても良い。なお、II−VI族化合物半導体は、II−B族元素(12族元素とも言う)とVI−B族元素とを主に含む化合物半導体である。このII−VI族化合物半導体としては、例えば、ZnS、ZnSe、ZnTe、CdS,CdSeおよびCdTe等が採用され得る。光吸収層31がII−VI族化合物半導体の層である場合には、微粒子含有溶液に含有される原料金属元素にII−B族元素が含まれる態様が考えられる。   For example, in the above-described embodiment, the light absorption layer 31 is a layer of an I-III-VI group compound semiconductor containing a group I-B element, a group III-B element, and a group VI-B element. Not limited to. For example, the light absorption layer 31 may be a layer of a II-VI group compound semiconductor mainly containing a II-B group element and a VI-B group element, or other compound semiconductors containing two or more elements. It may be a layer. Note that the II-VI group compound semiconductor is a compound semiconductor mainly including a group II-B element (also referred to as a group 12 element) and a group VI-B element. As this II-VI group compound semiconductor, for example, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe and the like can be adopted. In the case where the light absorption layer 31 is a II-VI group compound semiconductor layer, an embodiment in which a II-B group element is included in the raw metal element contained in the fine particle-containing solution is conceivable.

また、上記一実施形態では、複数の線状の窪み部31HWが、相互に異なる方向に延在していたが、これに限られない。例えば、少なくとも1本の線状の窪み部31HWが存在しているだけでも良く、複数の線状の窪み部31HWが、略同一の方向に延在していても良い。   Moreover, in the said one Embodiment, although the some linear hollow part 31HW extended in the mutually different direction, it is not restricted to this. For example, at least one linear depression 31HW may be present, and a plurality of linear depressions 31HW may extend in substantially the same direction.

複数の線状の窪み部31HWが略同一の方向に延在する態様は、例えば、次の工程によって実現され得る。まず、下部電極層2の上に微粒子含有溶液が1回塗布された後に、加熱処理が施されてCIGSの結晶を主に含む皮膜が形成される。次に、該皮膜が形成された基板1に対して曲げ応力が加えられることで該皮膜において略同一方向に延在する複数本のクラックが発生させられる。次に、複数本のクラックが延在している皮膜の上に原料溶液が塗布されて、熱処理が施される。これにより、複数の線状の窪み部31HWが略同一の方向に延在している光吸収層31が形成され得る。但し、複数の線状の窪み部31HWが相互に異なる方向に延在していれば、光吸収層31の種々の方向に付与される応力が緩和され易い。   A mode in which the plurality of linear depressions 31HW extend in substantially the same direction can be realized, for example, by the following process. First, after the fine particle-containing solution is applied once on the lower electrode layer 2, heat treatment is performed to form a film mainly containing CIGS crystals. Next, a bending stress is applied to the substrate 1 on which the coating is formed, whereby a plurality of cracks extending in substantially the same direction are generated in the coating. Next, a raw material solution is applied on the film in which a plurality of cracks extend, and heat treatment is performed. Thereby, the light absorption layer 31 in which the plurality of linear depressions 31HW extend in substantially the same direction can be formed. However, if the plurality of linear depressions 31 </ b> HW extend in different directions, stress applied in various directions of the light absorption layer 31 is easily relaxed.

また、上記一実施形態では、下部電極層2の上に微粒子含有溶液が塗布されることで、光吸収層31が形成されたが、これに限られない。例えば、下部電極層2の上に微粒子含有溶液が塗布された後に乾燥されることで皮膜が形成され、その皮膜の上に原料溶液が塗布された後に熱処理が施されることで、一主面に少なくとも1本の線状の窪み部31HWが延在している光吸収層31が形成されても良い。   Moreover, in the said one Embodiment, although the light absorption layer 31 was formed by apply | coating the microparticles | fine-particles containing solution on the lower electrode layer 2, it is not restricted to this. For example, a film is formed by applying a fine particle-containing solution on the lower electrode layer 2 and then drying, and a heat treatment is applied after a raw material solution is applied on the film. The light absorption layer 31 in which at least one linear hollow portion 31HW extends may be formed.

また、上記一実施形態では、カルコゲン元素としてSeが採用されたが、これに限られない。例えば、カルコゲン元素としてSが採用される場合、カルコゲン元素含有有機化合物としては、例えば、チオール、スルフィド、ジスルフィド、チオフェン、スルホキシド、スルホン、チオケトン、スルホン酸、スルホン酸エステルおよびスルホン酸アミド等が採用され得る。そして、カルコゲン元素含有有機化合物が、チオール、スルフィドおよびジスルフィド等であれば、金属と錯体を形成するため、金属溶液が良好に生成され得る。特に、カルコゲン元素含有有機化合物として、フェニル基を有するものが採用されれば、微粒子含有溶液の塗布性が高められる。フェニル基を有するカルコゲン元素含有有機化合物としては、例えば、チオフェノール、ジフェニルスルフィド等およびこれらの誘導体が採用され得る。また、カルコゲン元素としてTeが採用される場合、カルコゲン元素含有有機化合物としては、例えば、テルロール、テルリドおよびジテルリド等が採用され得る。   Moreover, in the said one Embodiment, Se was employ | adopted as a chalcogen element, However, It is not restricted to this. For example, when S is employed as the chalcogen element, examples of the chalcogen element-containing organic compound include thiol, sulfide, disulfide, thiophene, sulfoxide, sulfone, thioketone, sulfonic acid, sulfonic acid ester, and sulfonic acid amide. obtain. If the chalcogen element-containing organic compound is thiol, sulfide, disulfide or the like, a metal solution can be formed satisfactorily because a complex is formed with the metal. In particular, if a chalcogen element-containing organic compound having a phenyl group is employed, the coating property of the fine particle-containing solution is improved. As the chalcogen element-containing organic compound having a phenyl group, for example, thiophenol, diphenyl sulfide and the like and derivatives thereof can be employed. When Te is employed as the chalcogen element, examples of the chalcogen element-containing organic compound include tellurol, telluride, and ditelluride.

なお、上記一実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。   Needless to say, all or a part of each of the above-described embodiment and various modifications can be combined as appropriate within a consistent range.

1 基板
2 下部電極層
3 光電変換層
4 上部電極層
5 グリッド電極
10 光電変換セル
21 光電変換装置
31 光吸収層
31CL クラック
31HW 窪み部
31LC 大結晶
31LQ 原料溶液
31PA 微粒子
31SC 結晶
31SF 基準面
32 バッファ層
45 接続部
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode layer 3 Photoelectric conversion layer 4 Upper electrode layer 5 Grid electrode 10 Photoelectric conversion cell 21 Photoelectric conversion device 31 Light absorption layer 31CL Crack 31HW hollow part 31LC Large crystal 31LQ Raw material solution 31PA Fine particle 31SC Crystal 31SF Reference plane 32 Buffer layer 45 connections

上記課題を解決するために、第1の態様に係る光電変換装置は、一主面において平坦な面の中に複数の線状の窪み部が相互に異なる方向に延在し且つ第1の導電型を有している第1半導体層と、前記一主面の上に配されている第2の導電型を有する第2半導体層と、を備える。 In order to solve the above problems, a photoelectric conversion device according to the first aspect, and the recessed portion of the plurality of linear in Oite flat surface on one main surface extends in different directions to each other first And a second semiconductor layer having a second conductivity type disposed on the one main surface.

また、第2の態様に係る光電変換装置の製造方法は、原料溶液および化合物半導体の微粒子を含有する微粒子含有溶液を準備する工程と、前記微粒子含有溶液を電極層の上に塗布して皮膜を形成する工程と、前記皮膜に対して熱処理を施すことで、前記化合物半導体を含むとともに一主面に線状の窪み部が延在している半導体層を形成する工程と、を備え、前記原料溶液に、ルイス塩基性有機化合物、カルコゲン元素を含有する有機化合物および金属元素をそれぞれ溶解した状態で含ませ、前記化合物半導体の微粒子に前記金属元素を含ませ、該化合物半導体の微粒子を前記原料溶液中に分散させる。 In addition, a method for manufacturing a photoelectric conversion device according to the second aspect includes a step of preparing a raw material solution and a fine particle-containing solution containing fine particles of a compound semiconductor, and applying the fine particle-containing solution onto an electrode layer to form a film. And a step of forming a semiconductor layer including the compound semiconductor and having a linear depression extending on one main surface by applying a heat treatment to the coating, and the raw material solution, Lewis base organic compound, an organic compound containing a chalcogen element and contained a metal element in a state of being dissolved, respectively, the compound moistened with pre Symbol metal element in the semiconductor fine particles, the raw material particles of the compound semiconductor Ru is dispersed in the solution.

上記課題を解決するために、第1の態様に係る光電変換装置は、一主面において平坦な面の中に複数の線状の窪み部が相互に異なる方向に延在し且つ第1の導電型を有している第1半導体層と、前記一主面の上に配されている第2の導電型を有する第2半導体層と、を備える。この光電変換装置では、前記第2半導体層は、前記一主面に垂直な方向に厚さを有し、前記線状の窪み部が前記一主面に垂直な方向に窪んでいる前記一主面からの深さの値は、前記第2半導体層の前記厚さの値よりも大きく、前記第1半導体層は、I−III−VI族化合物半導体を含む。そして、前記第1半導体層において、前記線状の窪み部を基準として前記一主面に垂直な方向に位置する結晶の平均粒径である第1平均粒径が、残余の結晶の平均粒径である第2平均粒径よりも大きいIn order to solve the above-described problem, the photoelectric conversion device according to the first aspect includes a plurality of linear depressions extending in different directions in a flat surface on one main surface, and the first conductive A first semiconductor layer having a mold, and a second semiconductor layer having a second conductivity type disposed on the one main surface. In this photoelectric conversion device, the second semiconductor layer has a thickness in a direction perpendicular to the one principal surface, and the linear depression is recessed in a direction perpendicular to the one principal surface. The depth value from the surface is larger than the thickness value of the second semiconductor layer, and the first semiconductor layer includes an I-III-VI group compound semiconductor. In the first semiconductor layer, the first average grain size which is an average grain size of crystals located in a direction perpendicular to the one main surface with respect to the linear depression is an average grain size of the remaining crystals. Is larger than the second average particle diameter .

Claims (9)

一主面に線状の窪み部が延在し且つ第1の導電型を有している第1半導体層と、
前記一主面の上に配されている第2の導電型を有する第2半導体層と、を備える光電変換装置。
A first semiconductor layer having a linear depression extending on one main surface and having a first conductivity type;
And a second semiconductor layer having a second conductivity type disposed on the one main surface.
前記第2半導体層は、前記一主面に垂直な方向に厚さを有し、
前記線状の窪み部が前記一主面に垂直な方向に窪んでいる前記一主面からの深さの値は、前記第2半導体層の前記厚さの値よりも大きい請求項1に記載の光電変換装置。
The second semiconductor layer has a thickness in a direction perpendicular to the one main surface,
2. The depth value from the one principal surface in which the linear depression is recessed in a direction perpendicular to the one principal surface is greater than the thickness value of the second semiconductor layer. Photoelectric conversion device.
前記第1半導体層は、I−III−VI族化合物半導体を含む請求項1または請求項2に記載の光電変換装置。   The photoelectric conversion device according to claim 1, wherein the first semiconductor layer includes an I-III-VI group compound semiconductor. 前記第1半導体層には、複数の前記線状の窪み部が配され、
前記複数の線状の窪み部は、前記一主面において相互に異なる方向に延在している請求項1から請求項3の何れか1つの請求項に記載の光電変換装置。
The first semiconductor layer is provided with a plurality of the linear depressions,
4. The photoelectric conversion device according to claim 1, wherein the plurality of linear depressions extend in different directions on the one main surface. 5.
前記第1半導体層において、前記線状の窪み部を基準として前記一主面に垂直な方向に位置する結晶の平均粒径である第1平均粒径が、残余の結晶の平均粒径である第2平均粒径よりも大きい請求項1から請求項4の何れか1つの請求項に記載の光電変換装置。   In the first semiconductor layer, a first average grain size that is an average grain size of crystals located in a direction perpendicular to the one principal surface with respect to the linear depression is an average grain size of the remaining crystals. The photoelectric conversion device according to any one of claims 1 to 4, wherein the photoelectric conversion device is larger than the second average particle diameter. 原料溶液および化合物半導体の微粒子を含有する微粒子含有溶液を準備する工程と、
前記微粒子含有溶液を電極層の上に塗布して皮膜を形成する工程と、
前記皮膜に対して熱処理を施すことで、一主面に線状の窪み部が延在している半導体層を形成する工程と、を備え、
前記原料溶液に、ルイス塩基性有機化合物、カルコゲン元素を含有する有機化合物および金属元素を含ませ、
前記化合物半導体の微粒子に、前記金属元素を含ませる光電変換装置の製造方法。
Preparing a fine particle-containing solution containing a raw material solution and fine particles of a compound semiconductor;
Applying the fine particle-containing solution on the electrode layer to form a film;
Forming a semiconductor layer in which a linear depression extends on one main surface by applying a heat treatment to the film, and
The raw material solution contains a Lewis basic organic compound, an organic compound containing a chalcogen element, and a metal element,
A method of manufacturing a photoelectric conversion device, wherein the metal element is contained in the compound semiconductor fine particles.
前記金属元素として、I−B族元素およびIII−B族元素を含ませ、
前記化合物半導体として、I−III−VI族化合物半導体を含ませる請求項6に記載の光電変換装置の製造方法。
As the metal element, an IB group element and an III-B group element are included,
The method for producing a photoelectric conversion device according to claim 6, wherein an I-III-VI group compound semiconductor is included as the compound semiconductor.
前記微粒子として、10nm以上で且つ500nm以下の平均粒径を有するものを用いる請求項6または請求項7に記載の光電変換装置の製造方法。   The method for producing a photoelectric conversion device according to claim 6 or 7, wherein the fine particles having an average particle diameter of 10 nm or more and 500 nm or less are used. 前記熱処理は、毎秒20℃以上の昇温速度で560℃以上まで前記皮膜を加熱する処理を含む請求項6から請求項8の何れか1つの請求項に記載の光電変換装置の製造方法。   The method for manufacturing a photoelectric conversion device according to any one of claims 6 to 8, wherein the heat treatment includes a process of heating the film to 560 ° C or higher at a temperature rising rate of 20 ° C or higher per second.
JP2012507064A 2010-03-25 2011-03-24 Photoelectric conversion device Expired - Fee Related JP5318281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012507064A JP5318281B2 (en) 2010-03-25 2011-03-24 Photoelectric conversion device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010069504 2010-03-25
JP2010069504 2010-03-25
JP2012507064A JP5318281B2 (en) 2010-03-25 2011-03-24 Photoelectric conversion device
PCT/JP2011/057202 WO2011118716A1 (en) 2010-03-25 2011-03-24 Photoelectric conversion device, and method for producing photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPWO2011118716A1 true JPWO2011118716A1 (en) 2013-07-04
JP5318281B2 JP5318281B2 (en) 2013-10-16

Family

ID=44673262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012507064A Expired - Fee Related JP5318281B2 (en) 2010-03-25 2011-03-24 Photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP5318281B2 (en)
WO (1) WO2011118716A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222762A (en) * 2012-04-13 2013-10-28 Sharp Corp Compound semiconductor layer and manufacturing method of the same, and compound thin film solar cell and manufacturing method of the same
CN104471679B (en) * 2012-07-20 2020-11-03 旭化成株式会社 Semiconductor film and semiconductor element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646953B2 (en) * 1996-10-15 2005-05-11 松下電器産業株式会社 Solar cell
JP2003128411A (en) * 2001-10-18 2003-05-08 Sharp Corp Silicon plate, method for producing silicon plate and solar cell
US20050126620A1 (en) * 2002-03-06 2005-06-16 Sharp Kabushiki Kaisha Photoelectric converting device and its production method
AU2003218304C1 (en) * 2002-03-19 2009-03-26 The Regents Of The University Of California Semiconductor-nanocrystal/conjugated polymer thin films
KR101144807B1 (en) * 2007-09-18 2012-05-11 엘지전자 주식회사 Ink For Solar Cell And Manufacturing Method Of The Ink, And CIGS Film Solar Cell Using The Ink And Manufacturing Method Therof
WO2010027031A1 (en) * 2008-09-05 2010-03-11 富士フイルム株式会社 Solar cell and method for manufacturing same
JP2011091251A (en) * 2009-10-23 2011-05-06 Nichia Corp Nitride semiconductor light-emitting device

Also Published As

Publication number Publication date
WO2011118716A1 (en) 2011-09-29
JP5318281B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5052697B2 (en) Photoelectric conversion device
WO2011013657A1 (en) Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
JP5490226B2 (en) Photoelectric conversion device
JP5362100B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP2011176204A (en) Method of manufacturing semiconductor layer, and method of manufacturing photoelectric conversion device
US9935219B2 (en) Photoelectric conversion device
JP5430748B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5383826B2 (en) Manufacturing method of semiconductor layer and manufacturing method of photoelectric conversion device
JP5318281B2 (en) Photoelectric conversion device
JP5623311B2 (en) Photoelectric conversion device
JP5451899B2 (en) Photoelectric conversion device
JP6039695B2 (en) Photoelectric conversion device
JP2011091229A (en) Methods for manufacturing photoelectric converter and photoelectric conversion apparatus
JP2012114250A (en) Manufacturing method of photoelectric conversion device
JP2015142001A (en) Method for manufacturing photoelectric conversion device
JP2011249560A (en) Semiconductor layer manufacturing method and photoelectric conversion device manufacturing method
JP2012160514A (en) Method for producing metal chalcogenide layer and method for manufacturing photoelectric conversion device
US20140224333A1 (en) Photoelectric conversion device
JP2011151182A (en) Photoelectric conversion apparatus, and method of manufacturing the same
JP2012138477A (en) Semiconductor layer manufacturing method and photoelectric conversion device manufacturing method
JP2013098314A (en) Method for manufacturing semiconductor layer and method for manufacturing photoelectric conversion device
JP2015070020A (en) Method of manufacturing photoelectric conversion device
JP2015115454A (en) Manufacturing method of photoelectric conversion device
JP2013247178A (en) Method of manufacturing photoelectric conversion device
JP2012231070A (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5318281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees