JPWO2009107397A1 - R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石 - Google Patents

R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石 Download PDF

Info

Publication number
JPWO2009107397A1
JPWO2009107397A1 JP2010500576A JP2010500576A JPWO2009107397A1 JP WO2009107397 A1 JPWO2009107397 A1 JP WO2009107397A1 JP 2010500576 A JP2010500576 A JP 2010500576A JP 2010500576 A JP2010500576 A JP 2010500576A JP WO2009107397 A1 JPWO2009107397 A1 JP WO2009107397A1
Authority
JP
Japan
Prior art keywords
rare earth
sintered body
earth element
earth sintered
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010500576A
Other languages
English (en)
Other versions
JP5348124B2 (ja
Inventor
繁 高木
繁 高木
英幸 森本
英幸 森本
智織 小高
智織 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010500576A priority Critical patent/JP5348124B2/ja
Publication of JPWO2009107397A1 publication Critical patent/JPWO2009107397A1/ja
Application granted granted Critical
Publication of JP5348124B2 publication Critical patent/JP5348124B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Abstract

軽希土類元素RL(NdおよびPrの少なくとも1種)および重希土類元素RH(DyおよびTbの少なくとも1種)を含有するR−Fe−B系希土類焼結磁石の製造方法であって、希土類元素、酸素、炭素および窒素の含有量を、それぞれ、X(質量%)、ZO(質量%)、ZC(質量%)、ZN(質量%)とし、ZO+ZC+ZNをY(質量%)とするとき、(0.114X−3.17)≦Y≦(0.157X−4.27)、0<ZO≦0.5、0<ZC≦0.1、0<ZN≦0.1の関係式を満たすR−Fe−B系希土類焼結磁石を準備する。次に、上記のR−Fe−B系希土類焼結磁石の表面に重希土類元素RHの濃化層を形成し、支持部材によって前記R−Fe−B系希土類焼結磁石を支持しながら700℃以上1100℃以下の温度で熱処理を行う。

Description

本発明は、R2Fe14B型化合物(Rは希土類元素)を主相として有するR−Fe−B系希土類焼結磁石およびその製造方法に関し、特に、軽希土類元素RLを主たる希土類元素Rとして含有し、かつ、希土類元素Rの一部が重希土類元素RHによって置換されているR−Fe−B系希土類焼結磁石に関している。
2Fe14B型化合物を主相とするR−Fe−B系希土類焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。R−Fe−B系希土類焼結磁石は残留磁束密度Br、保磁力HcJともに高温減磁(温度が上昇すると特性が低下する現象)することがわかっている。そのため、モータ用途等に使用する場合、不可逆減磁を抑えるため、高温下でも高い保磁力が要求されている。これを満足するためには、常温での保磁力を高めるか、もしくは要求温度までの保磁力変化率(=保磁力の温度係数)を小さくする必要がある。
従来、R2Fe14B相中の希土類元素Rを重希土類元素RH(Dy、Tb)で置換すると保磁力が向上することが知られている。この場合、保磁力の温度係数も重希土類元素RHの置換量に比例して向上する。よって、高温で高い保磁力を得るためには、重希土類元素RHを多く添加する方法が有効と考えられてきた。
しかし、R2Fe14B相中における重希土類元素RHの磁気モーメントは、Feの磁気モーメントと反対であるため、軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、残留磁束密度Brが低下してしまうことになる。更に現在、重希土類元素RHは希少資源であるためその使用量の削減が望まれている。そこで、より少ない重希土類元素RHにて希土類磁石の保磁力を向上させることが必要となっている。
従来、比較的少ない量の重希土類元素RHを添加することにより、重希土類元素RHによる保磁力向上効果を発現させるため、重希土類元素RHを多く含む合金・化合物などの粉末を、軽希土類元素RLを多く含む主相系母合金粉末に添加し、成形・焼結させることが提案されている。この方法によると、重希土類元素RHがR2Fe14B相の粒界近傍に多く分布することになるため、主相外殻部におけるR2Fe14B相の結晶磁気異方性を効率良く向上させることが可能になる。R−Fe−B系希土類焼結磁石の保磁力発生機構は核生成型(ニュークリエーション型)であるため、主相外殻部(粒界近傍)に重希土類元素RHが多く分布することにより、結晶粒全体の結晶磁気異方性が高められ、逆磁区の核生成が妨げられ、その結果、保磁力が向上する。また、保磁力向上に寄与しない結晶粒の中心部では、重希土類元素RHによる置換が生じないため、残留磁束密度Brの低下を抑制することもできる。
しかしながら、実際にこの方法を実施してみると、焼結工程(工業規模で1000℃から1200℃で実行される)で重希土類元素RHの拡散速度が大きくなるため、重希土類元素RHが結晶粒の中心部にも拡散してしまう結果、期待していた組織構造を得ることは容易でない。
さらにR−Fe−B系希土類焼結磁石の別の保磁力向上手段として、焼結体の段階で重希土類元素RHを含む金属、合金、化合物等を磁石表面に被着後、熱処理、拡散させることによって、残留磁束密度をそれほど低下させずに保磁力を回復または向上させることが検討されている(特許文献1、特許文献2、および特許文献3)。
特許文献1は、R(Rは、Nd、Pr、Dy、Ho、Tbのうち少なくとも1種あるいはさらに、La、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種からなる)10原子%〜30原子%、B2原子%〜28原子%、Fe65原子%〜80原子%を主成分とし、主相が正方晶相からなる体積が2.5cm3以下あるいは厚みが5.0mm以下の焼結磁石体の被研削加工面に、Nd薄膜層またはNdを主成分とし残部Ndを除きYを含む希土類元素のうち少なくとも1種からなる薄膜層を有することを開示している。
特許文献2は、磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に希土類金属元素R(このRは、YおよびNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種または2種以上)を拡散させ、それによって加工変質損傷部を改質して(BH)maxを向上させることを開示している。
特許文献3は、厚さ2mm以下の磁石素体の表面に希土類元素を主体とする化学気相成長膜を形成し、磁石特性を回復させることを開示している。
特許文献4は、重希土類元素(Dy、Ho、およびTbからなる群から選ばれる希土類元素の少なくとも1種)と金属(Al、Cu、Co、Fe、およびAgから選ばれる金属元素の少なくとも1種)とを含有する合金層で表面を被覆した後、熱処理を行うことを開示している。この熱処理によりR2Fe14B主相結晶粒に含まれる軽希土類元素RLの一部を、焼結体表面から拡散した重希土類元素RHで置換し、R2Fe14B主相の外殻部に重希土類元素RHが相対的に濃縮した層(厚さは例えば数nm)を形成する。
特許文献5は、R−Fe−B系希土類焼結体の表面に金属元素M(Al、Ga、In、Sn、Pb、Bi、Zn、およびAgからなる群から選択された少なくとも1種)を含有する層(以下、「M層」と称する。)と、重希土類元素RHを含有する層(以下、「RH層」と称する。)を順次堆積した後、粒界を通って焼結体の表面から焼結体内部へ金属元素Mおよび重希土類元素RHを拡散させることを開示している。
特許文献1から5に記載の技術は、主相外殻部に重希土類元素RHの濃縮層を形成する際、熱処理による拡散反応を利用する。このとき、重希土類元素RHが焼結体表面から焼結体内部に拡散すると、元々焼結体中に含まれていた軽希土類元素RLを主体とする液相成分が相互に磁石表面に向かって拡散し、磁石表面に重希土類元素RHまたは軽希土類元素RLメタルを含む薄い層を形成する現象(溶出)が生じた。この層は、R−Fe−B系希土類焼結磁石を支持する支持部材と反応を起こし、R−Fe−B系希土類焼結磁石と治具は強固に固着(以下、「溶着」と称する)していた。
特開昭61−264157号公報 特開2004−304038号公報 特開2005−285859号公報 国際公開WO2006/112403号パンフレット 国際公開WO2007/88718号パンフレット
本発明は、DyまたはTbの少なくとも1種からなる重希土類元素RHを焼結体表面から焼結体内部へと拡散導入する際に焼結体と治具との間で発生する溶着を抑制し、なおかつ重希土類元素RHの拡散や高保磁力化の効果も失うことなく、上記の問題を解決することを目的とする。
本発明のR−Fe−B系希土類焼結磁石の製造方法は、軽希土類元素RL(NdおよびPrの少なくとも1種)および重希土類元素RH(DyおよびTbの少なくとも1種)を含有するR−Fe−B系希土類焼結磁石の製造方法であって、希土類元素、酸素、炭素および窒素の含有量を、それぞれ、X(質量%)、ZO(質量%)、ZC(質量%)、ZN(質量%)とし、ZO+ZC+ZNをY(質量%)とするとき、25≦X≦40、(0.114X−3.17)≦Y≦(0.157X−4.27)の関係式を満足し、かつ、0<ZO≦0.5、0<ZC≦0.1、0<ZN≦0.1の関係式を満足するR−Fe−B系希土類焼結体を準備する工程と、支持部材によって前記R−Fe−B系希土類焼結体を支持した状態で前記R−Fe−B系希土類焼結体の表面から内部に重希土類元素RHを拡散する拡散工程とを含む。
好ましい実施形態において、前記関係式のXは28≦X≦30.5である。
好ましい実施形態において、前記拡散工程は、重希土類元素RHを含有するバルク体を加熱することにより、重希土類元素RHを前記バルク体から前記R−Fe−B系希土類焼結体の表面に供給しつつ内部に拡散させる工程を含む。
好ましい実施形態において、前記拡散工程は、重希土類元素RHを含有する前記バルク体を、前記R−Fe−B系希土類焼結体とともに処理室内に配置する工程と、前記処理室内を700℃以上1000℃以下に加熱する工程とを含む。
好ましい実施形態において、前記拡散工程では、重希土類元素RHの膜を前記R−Fe−B系希土類焼結体の表面に形成することなく、重希土類元素RHを前記R−Fe−B系希土類焼結体の内部に拡散させる。
好ましい実施形態において、前記拡散工程は、前記R−Fe−B系希土類焼結体の表面に重希土類元素RHの濃化層を形成する工程と、前記支持部材によって前記R−Fe−B系希土類焼結体を支持しながら700℃以上1100℃以下の温度で熱処理を行う工程とを含む。
好ましい実施形態において、前記R−Fe−B系希土類焼結体は、0.01≦Y≦0.3の関係式を満足する。
本発明のR−Fe−B系希土類焼結磁石は、上記のいずれかの製造方法によって作製されたものである。
本発明によれば、重希土類元素RHを焼結体表面から内部に拡散させる工程でR−Fe−B系希土類焼結体と支持部材(治具)との間に形成される溶着層の接合強度(以下、「溶着強度」と称する)を120kN/m2以下に低減することができる。このため、生産に支障をきたすことなく、重希土類元素RHを拡散させた焼結磁石を提供することができる。
本発明によるR−Fe−B系希土類焼結磁石の製造方法に好適に用いられる処理容器の構成と、処理容器内におけるRHバルク体と焼結体との配置関係の一例を模式的に示す断面図である。 溶着強度を測定する方法を示す図である。 試料1〜19の保磁力HcJおよび残留磁束密度Brをプロットしたグラフである。 試料1〜19におけるXおよびYを示すグラフである。
符号の説明
1 焼結体
2、6 熱処理台板
3 バネ秤
4 滑車
5 RHバルク体
10 処理容器(処理室)
本発明では、まず、軽希土類元素RL(NdおよびPrの少なくとも1種)を含有するR−Fe−B系希土類焼結体を準備する。そして、支持部材によってR−Fe−B系希土類焼結体を支持した状態でR−Fe−B系希土類焼結体の表面から内部に重希土類元素RHを拡散させる拡散工程を実行する。ここで、重希土類元素RHは、DyおよびTbの少なくとも1種である。
このような拡散工程は、ある実施形態では、重希土類元素RHを含有するバルク体を加熱することにより、重希土類元素RHをバルク体からR−Fe−B系希土類焼結体の表面に供給しつつ内部に拡散させる工程である。また他の実施形態では、R−Fe−B系希土類焼結体の表面に重希土類元素RHの濃化層を形成する工程と、支持部材によってR−Fe−B系希土類焼結体を支持しながら700℃以上1100℃以下の温度で熱処理を行う工程とを実施することによって行われても良い。
なお、本明細書中で、同一の「焼結体」を重希土類元素RHの拡散前後で区別し、別々の用語で表現することとする。具体的には、「希土類焼結体」、「焼結体」は、重希土類元素RHを焼結体の表面から内部に拡散させる前の状態に用い、「希土類焼結磁石」、「磁石」は、重希土類元素RHを焼結体の表面から内部に拡散させた後の状態に用いる。
本発明において特徴的な点は、重希土類元素RHの拡散を行う前に、特定の組成範囲にあるR−Fe−B系希土類焼結体を準備する点にある。具体的には、希土類元素、酸素、炭素および窒素の含有量を、それぞれ、X(質量%)、ZO(質量%)、ZC(質量%)、ZN(質量%)とし、ZO+ZC+ZNをY(質量%)としたとき、本発明では、以下の関係式を満たすR−Fe−B系希土類焼結体を用意する。
25≦X≦40、
(0.114X−3.17)≦Y≦(0.157X−4.27)
0<ZO≦0.5
0<ZC≦0.1
0<ZN≦0.1
重希土類元素RHの拡散前における上記焼結体は、希土類元素Rとして軽希土類元素RL(NdおよびPrの少なくとも1種)を主成分としているが、その一部が重希土類元素RH(DyおよびTbの少なくとも1種)によって置換されていてもよい。
本発明者の実験によると、上記組成範囲の焼結体の内部に焼結体表面から重希土類元素RHを拡散させると、元々焼結体中に含まれていた軽希土類元素RLを主体とする液相成分が焼結体表面に向かって拡散する現象が生じる。このような相互拡散によって焼結体表面に出た液相成分は、焼結体表面に層を形成する。この層は、活性な希土類元素を主体としているため、拡散処理工程中に焼結体を支持していた治具との間で溶着反応を起こしやすい。よって、あらかじめ焼結体中に含まれる軽希土類元素RLを減らすことは、支持部材との溶着反応を軽減させることへ繋がる。
一方、焼結体中に含まれる酸化物相、窒化物相、炭化物相は、溶着強度を低下させる効果がある。これらは、軽希土類元素RLを主体とする液相成分の粘性を高めて、磁石表面に溶出する層の形成を阻害し、磁石表面に形成される層の反応性を低下させ、支持部材との溶着を起こしにくくすると考えられる。
本発明では、R−Fe−B系希土類焼結体の表面に重希土類元素RHを濃縮させ、熱処理によって重希土類元素RHを焼結体内部に拡散させる工程において、焼結体の総希土類元素量Xと、酸化物相ZO、窒化物相ZN、および炭化物相ZCの総量とが上述した関係式を満足するように制御することで溶着を抑制する。
ここで、(0.114X−3.17)は、Y(=ZO+ZC+ZN)の下限値であり、Yの値がこれより低くなると、焼結体中に酸化物相などの非磁性構成相が減る一方で、軽希土類元素RLを主体とする液相成分が相対して多くなり、なおかつ粘性が低下する。その結果、焼結体表面に形成されるRL層の量が増し、また、焼結体表面に形成されるRL層と支持部材との反応性が高まるため、溶着しやすくなる。
一方、(0.157X−4.27)は、Yの上限値であり、Yの値がこれを超えると、焼結体中に酸化物などの非磁性構成相が増えることになり、残留磁束密度の低下を招く。また、Yが上記の上限値を超えると、軽希土類元素RLが酸化物や窒化物などの非磁性構成相に過度に消費されてしまい、焼結に十分な液相成分が失われるため、焼結時の緻密化が進行しない。更に、異常粒成長が生じ、急激な保磁力低下も起こり得る。 焼結体表面からの重希土類元素RHの導入量を増やすと、(0.114X−3.17)≦Y≦(0.157X−4.27)の範囲を満たす焼結体であっても、120kN/m2以上の強度の溶着を起こす場合がある。このときの重希土類元素RHの導入量は過剰であり、結晶粒界や主相外殻部のみならず主相の中心部へ拡散が進行するため、磁気特性の上で好適な条件とならない。希土類は主相を構成する他、液相成分として焼結時の緻密化を促す効果がある。希土類元素の含有量(X)が28.0質量%よりも少ないと、主相が生成されにくくなり、余ったホウ素や鉄が非磁性相(Bリッチ相)を形成するため、磁石から取り出せる磁力が減少する。逆に、希土類元素の含有量(X)が30.5質量%よりも多いと、非磁性相(Rリッチ相)が形成されるため、磁石の特性が低下することになる。
一方、酸素、炭素および窒素の総含有量Y(=ZO+ZC+ZN)が0.3質量%よりも多くなると、非磁性相が増加し、磁石から取り出せる磁力が減少する。ただし、総含有量Yを低減することは、容易ではなく、0.01質量%よりも小さくすることは不可能と考えられる。
以下、本発明によるR−Fe−B系希土類焼結磁石を製造する方法の好ましい実施形態を説明する。
なお、特に記載していないが、各工程への移動時も希土類焼結磁石の酸素、炭素および窒素が増えないように制御している。
[磁石組成]
25質量%以上40質量%以下(好ましくは28.0質量%以上30.5質量%以下)の希土類元素Rと、0.6質量%〜1.6質量%のB(硼素)と、残部Feおよび不可避不純物とを包含する合金を用意する。ここで、Rの一部(10質量%以下)は重希土類元素RHで置換されていてもよい。Feの一部(50質量%以下)は、他の遷移金属元素(例えば、CoまたはNi)によって置換されていてもよい。この合金は、種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種の添加元素を0.01〜1.0質量%程度含有していてもよい。
上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷して好適に作製され得る。以下、ストリップキャスト法による急冷凝固合金の作製を説明する。
まず、上記組成を有する原料合金をアルゴン雰囲気中において高周波溶解によって溶解し、原料合金の溶湯を形成する。次に、この溶湯を1350℃程度に保持した後、単ロール法によって急冷し、例えば厚さ約0.3mmのフレーク状合金鋳塊を得る。こうして作製した合金鋳片を、次の水素粉砕前に例えば1〜10mmのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製造方法は、例えば、米国特許第5,383,978号明細書に開示されている。
[粗粉砕工程]
上記のフレーク状に粗く粉砕された合金鋳片を水素炉の内部へ収容する。具体的には、例えば所定の大きさに破断した鋳片を原料ケースに挿入した後、原料ケースを密封可能な水素炉に装入し、その水素炉を密閉する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」と称する場合がある)工程を行う。水素脆化工程は、水素炉内を十分に真空引きした後、圧力が30kPa〜1.0MPaの水素ガスを水素炉内に供給し、鋳片に水素を吸蔵させることによって行う。水素の吸収吸蔵によって鋳片は自然崩壊して脆化(一部は粉化)する。
次に、水素粉砕後の粗粉砕粉合金粉末を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行する。そうすることで、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性の低下が抑制できるからである。水素粉砕によって、希土類合金は0.1mm〜数mm程度の大きさに粉砕され、その平均粒径は500μm以下となる。水素粉砕後、脆化した原料合金をより細かく解砕するとともに冷却することが好ましい。比較的高い温度状態のまま原料を取り出す場合は、冷却処理の時間を相対的に長くすればよい。
[微粉砕工程]
次に、ジェットミル粉砕装置などにより微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1〜20μm程度(典型的には3〜5μm)の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。
ここで、ステアリン酸亜鉛などの潤滑剤にはCが含まれているので、焼結工程後の希土類焼結磁石中のCが1000ppmを超えないように添加量を調整する。また、本工程で、粉砕後の原料が酸素量2000〜2500ppm以下となるように、また窒素量500〜600ppm以下になるように制御するため、希土類合金の微粉砕は不活性ガス雰囲気中で行う。
[プレス成形]
本実施形態では、上記方法で作製された微粉末に対し、例えばロッキングミキサー内で潤滑剤を、例えば0.3wt%添加・混合し、潤滑剤で微粉末粒子の表面を被覆する。次に、上述の方法で作製した微粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1.5〜1.7テスラ(T)である。また、成形圧力は、成形体のグリーン密度が例えば4〜4.5g/cm3程度になるように設定される。
[焼結工程]
上記の粉末成形体に対して、650〜1000℃の範囲内の温度で10〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(950〜1200℃ 好ましくは1000〜1150℃)で焼結を更に進める工程とを順次行うことが好ましい。焼結時、特に液相が生成されるとき(温度が900〜1200℃の範囲内にあるとき)、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結体が形成される。前述の通り、焼結体の表面が酸化された状態でも蒸着拡散処理を施すことができるため、焼結工程の後、時効処理(400〜700℃)や寸法調整のための研削を行ってもよい。
ここで、R−Fe−B系希土類焼結体の炭素含有量を低減するため熱処理工程をさらに加えてもよい。脱炭素のためには、40〜500℃の熱処理を焼結前後に行う。
[拡散工程]
本発明の好ましい実施形態では、種々の方法により焼結体表面から重希土類元素RHを内部に拡散させる。以下、拡散工程を「蒸着拡散工程」および「膜付拡散工程」の各々について説明する。
(蒸着拡散工程)
本実施形態の蒸着拡散工程では、図1に示す処理室10の内部に重希土類元素RHを含むRHバルク体5(以下「RHバルク体」)と焼結体1とを配置する。図1は、焼結体1とRHバルク体5との配置例を示している。
図1に示す例では、高融点金属材料からなる処理室10の内部において、焼結体1とRHバルク体5とが所定間隔をあけて対向配置されている。図1の処理室10には、複数の焼結体1を保持する部材(熱処理台板2)と、RHバルク体5を保持する支持部材(熱処理台板6)とが配置される。焼結体1およびRHバルク体5を保持する構成は、上記の例に限定されず、任意である。ただし、焼結体1とRHバルク体5との間を完全に遮断するような構成は採用されるべきではない。本願における「対向」とは焼結体とRHバルク体が間を遮断されることなく向かい合っていることを意味する。また、「対向配置」とは、主たる表面どうしが平行となるように配置されていることを必要としない。図1の構成で使用する熱処理台板2、6は、多数の開口部(例えば直径が約5mmの孔)が設けられた構造を有しており、RHバルク体5から焼結体1への重希土類元素RHの供給を妨げない。
次に、不図示のヒータから焼結体1およびRHバルク体5の両方を加熱することにより、RHバルク体5から重希土類元素RHを焼結体1の表面に供給しつつ、焼結体1の内部に拡散させる。なお、蒸着拡散工程後には、必要に応じて時効処理(400〜700℃)を行ってもよい。
本実施形態における拡散工程では、焼結体の温度をバルク体の温度と同じかそれ以上にすることが好ましい。具体的には700℃以上1100℃以下、より好ましくは700℃以上1000℃以下に設定する。ここで、焼結体の温度がバルク体の温度と同じとは、両者の温度差が20℃以内にあることを意味するものとする。また、焼結体とRHバルク体の間隔は、0.1mm〜300mm、好ましくは3mm〜100mm、より好ましくは4mm〜50mmに設定する。
焼結体およびバルク体の両方を略同じ温度に加熱するためには、処理室を不図示のヒータによって加熱すればよい。
また、蒸着拡散工程時における雰囲気ガスの圧力は、10-5〜500Paであれば、RHバルク体の気化(昇華)が適切に進行し、蒸着拡散処理を行うことができる。効率的に蒸着拡散処理を行うためには、雰囲気ガスの圧力を10-3〜1Paの範囲内に設定することが好ましい。また、RHバルク体および焼結体の温度を700℃以上1100℃以下の範囲内に保持する時間は、10分〜600分の範囲に設定されるのが好ましい。ただし、保持時間は、RHバルク体および焼結体の温度が700℃以上1100℃以下および圧力が10-5Pa以上500Pa以下にある時間を意味し、必ずしも特定の温度、圧力に一定に保持される時間のみを表すのではない。
なお、RHバルク体は、1種類の元素から構成されている必要はなく、重希土類元素RHおよび元素X(Nd、Pr、La、Ce、Al、Zn、Sn、Cu、Co、Fe、Ag、およびInからなる群から選択された少なくとも1種)を含有していてもよい。このような元素Xは、粒界相の融点を下げるため、重希土類元素RHの粒界拡散を促進する効果が期待できる。
上記の蒸着拡散工程では、重希土類元素RHの膜がR−Fe−B系希土類焼結体の表面に形成されることなく、重希土類元素RHがR−Fe−B系希土類焼結体の内部に拡散される。これは、Dy、Tbなどの重希土類元素RHが、前記温度範囲において蒸気圧が低く、気化しにくいからである。このため、R−Fe−B系希土類焼結体の表面に飛来した重希土類元素RHが膜を形成する前に速やかにR−Fe−B系希土類焼結体の粒界を介して焼結体内部に移動するためである。
実用上、蒸着拡散後の焼結磁石に表面処理を施すことが好ましい。表面処理は公知の表面処理でよく、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。表面処理を行う前にはサンドブラスト処理、バレル処理、エッチング処理、機械研削等公知の前処理を行っても良い。また、拡散処理の後に寸法調整のための研削を行ってもよい。このような工程を経ても、保磁力向上効果はほとんど変わらない。
以下、膜付拡散工程によって重希土類元素RHの膜を磁石表面に形成した後、その膜から重希土類元素RHを磁石内部に拡散する工程の例を説明する。
(膜付拡散工程1)
本発明の膜付拡散工程では、特許文献1に記載のように重希土類元素RH(RHはDyおよびTbのうち少なくとも1種)からなる合金薄膜層を焼結体の被研削加工面に形成し、450℃〜650℃の熱処理を行う。
上記金属層の成膜法は、特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、蒸着薄膜形成(IVD)法、プラズマ蒸着薄膜形成(EVD)法、ディッピング法などの薄膜堆積技術を用いることができる。
(膜付拡散工程2)
本実施形態の別の膜付拡散工程では、特許文献5に記載のようにR−Fe−B系希土類焼結体の表面に金属元素M(Al、Ga、In、Sn、Pb、Bi、Zn、およびAgからなる群から選択された少なくとも1種)を含有する層(以下、「M層」と称する。)と、重希土類元素RHを含有する層(以下、「RH層」と称する。)を順次堆積した後、粒界を通って焼結体の表面から焼結体内部へ金属元素Mおよび重希土類元素RHを拡散させる。
本実施形態における拡散工程は、RH層が形成されたM層を内部に含む焼結体またはM層およびRH層が形成された焼結体を加熱することによって実行される。この加熱により、融点が相対的に低い金属元素Mが粒界を介して速やかに焼結体内部に拡散し、その後、重希土類元素RHが粒界を介して焼結体内部に拡散する。金属Mが先に拡散することにより、粒界相(Rリッチ粒界相)の融点が低下するため、MまたはM層を堆積しなかった場合に比べて重希土類元素RHの主相外殻部と接する粒界相で拡散が促進されると考えられる。その結果、MまたはM層を堆積しない場合に比べ、より低い温度でも重希土類元素RHを焼結磁石の内部に効率的に拡散させることが可能になる。
このように金属Mの働きによって重希土類元素RHの拡散が促進されると、焼結体表面の近傍に位置する主相の内部に重希土類元素RHが拡散するよりも速いレートで重希土類元素RHが焼結体の粒界相に拡散し、焼結体内部へと侵入する。重希土類元素RHが主相の内部を拡散することを「体積拡散」と称することにすると、M層の存在は、「体積拡散」よりも優先的に主相外殻部と接する粒界相で拡散を生じさせるため、結果的に「体積拡散」を抑制する機能を発揮することになる。本発明では、主相外殻部と接する粒界層での拡散の結果、粒界相における金属元素Mおよび重希土類元素RHの濃度は、主相結晶粒内における濃度よりも高い。本発明では、重希土類元素RHが磁石表面から0.5mm以上の深さまで容易に拡散する。
本発明において、金属元素Mの拡散を行うための熱処理の温度は、金属Mの融点以上1100℃未満の値に設定することが好ましい。金属Mの拡散を充分に進行させた後、重希土類元素RHの拡散を更に促進するため、熱処理温度を更に高い値(例えば800℃〜1000℃未満)に上昇させてもよい。
本発明者の実験によると、焼結体の表面に形成するM層の重量とRH層の重量比(M/RH)は、1/100以上5/1以下の範囲に設定することが好ましい。この重量比(M/RH)は1/20以上2/1以下の範囲に設定することが更に好ましい。重量比を、このような範囲内に設定することにより、金属Mが重希土類元素RHの拡散促進の役割を有効に果たすことができ、重希土類元素RHが焼結体の内部へ効率良く拡散し、保磁力向上効果を得ることができるようになる。
(膜付拡散工程3)
また別の膜付拡散工程では、特許文献4に記載のように重希土類元素RH(ただし、RHは、DyおよびTbからなる群から選ばれる希土類元素の1種または2種以上)と金属M(ただし、MはAl、Cu、Co、Fe、およびAgから選ばれる金属元素の1種または2種以上)とを含有するRHM合金層で表面を被覆する。
RHM合金層の拡散を行うための熱処理の温度は、金属Mの融点以上1000℃未満の値に設定することが好ましい。この方法でも重希土類元素RHが磁石表面から0.5mm以上の深さまで容易に拡散する。
このような熱処理により、R2Fe14B主相結晶粒に含まれる軽希土類元素RLの一部を、焼結体表面から拡散した重希土類元素RHで置換し、R2Fe14B主相の外殻部に重希土類元素RHが相対的に濃縮した層(厚さは例えば数nm)を形成することができる。
[支持部材]
重希土類元素RHの拡散に際して使用する支持部材は、希土類元素(Nd、Pr、Tb、Dy等)との反応性が低い金属またはセラミックスから形成される治具を用いることが好ましい。好適に使用される金属またはセラミックスの具体例は、Mo、Y、W、Zrなどからなる金属、Al23、BN、AlNなどからなるセラミックスである。
また、図1に例示する配置では、RHバルク体5と焼結体1との間に熱処理台板2が位置する構成を採用している。このため、RHバルク体5から気化・蒸発した重希土類元素RHが焼結体1の表面に達し得るように、熱処理台板2には少なくとも1つの開口部(典型的には複数の開口部)が設けられている。
以下、本発明の実施例および比較例を具体的に説明する。本発明は、これらの実施例に限定されるものではない。
(実施例1)
まず、表1(単位は質量%)の組成を有する焼結体を作製した。
Figure 2009107397
表1に示す数値は、得られた焼結体の組成(単位:質量%)を示している。なお、表1における(TRE)とは、希土類元素の総量(Total of Rare Earth)を意味している。また、表1の右側の欄に記載されているO、C、Nの各濃度は、ZO、ZC、ZNの値であり、ZO+ZC+ZN=Y(質量%)の関係にある。これらの事項は、後に説明する他の表3、5において同様である。以下、上記焼結体の作製手順を説明する。
まず、上記組成となるよう組成調整を行い、ストリップキャスト法により厚み0.2〜0.3mmの合金薄片を作製した。次に、この合金薄片を容器に充填し、水素処理装置内に収容した。そして、水素処理装置内を圧力500kPaの水素ガスで満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15〜0.2mmの不定形粉末を作製した。
上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.05wt%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、粉末粒径が約3μmの微粉末を作製した。このとき、粉砕に用いる窒素ガスと導入酸素量を制御することで酸素量、窒素量が異なる微粉末を作成した。
こうして作製された微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1080℃で4時間の焼結工程を行った。こうして、焼結体を作製した。このとき得られた焼結体の一部を、酸素濃度1ppm以下のチャンバー内で粉砕し、これを用いてガス量と成分値(ICP)を測定した。得られた分析結果が表1である。
この焼結体を機械的に加工することにより、厚さ3mm×縦10mm×横10mmの焼結体を得た。これを0.3%硝酸水溶液で酸洗し、乾燥させた後、図1に示す構成を有する処理容器内に配置した。本実施例で使用する処理容器10および熱処理台板2はアルミナを主体とするセラミックスから形成されている。焼結体1とRHバルク体5との間隔は5〜9mm程度に設定した。RHバルク体5は、純度99.9%のDyから形成され、厚さ5mm×縦30mm×横30mmのサイズを有している。
次に、図1の処理容器10に対して真空熱処理炉内で蒸着拡散処理を行った。具体的には、1×10-2Paの圧力下で昇温し、900℃で4時間保持した。蒸着拡散処理を行った後、図2に示すようにバネ秤3および滑車4を用いて、熱処理台板2の上に並べられた各焼結磁石のサンプル(焼結体1)を水平に引き剥がし、溶着強度αを測定した。溶着強度αは、図2に示す焼結体1が熱処理台板2から剥れたときのバネ秤3の値から求められる。具体的には、焼結体1と熱処理台板2との接触面積(単位:m2)によってバネ秤3の上記値(単位:N)を除算することによってαが算出される。ただし、ここでの「接触面積」とは、焼結体1と熱処理台板2とが物理的に接触している部位の実際の面積を測定したものではなく、焼結体1を熱処理台板2の上面に対して垂直に投影した領域の面積(見かけ上の接触面積)である。焼結磁石の分析値から得られたX、Y、および溶着強度αの測定結果を表2に示す。
Figure 2009107397
表2は、試料1〜5の各々に関するX、Y、溶着強度α、磁気特性を示している。なお、αの単位は[kN/m2]、Brの単位は[T]、HcJの単位は[kA/m]である。
また、焼結磁石を熱処理台板から引き剥がす際、熱処理台板および焼結磁石のいずれにも破損が生じなかった試料については、表2におけるαの欄の数値の右横に○を付している。一方、焼結磁石を熱処理台板から引き剥がす際、熱処理台板および焼結磁石の少なくとも一方に破損が生じた試料については、表2におけるαの欄の数値の右横に×を付している。
表2に示すように、試料1〜3では、XおよびYの値が(0.114X−3.17)≦Y≦(0.157X−4.27)の関係を満たしており、溶着強度αは120kN/m2以下であった。溶着強度αが120kN/m2以下であると、焼結磁石を熱処理台板から引き剥がす際に、熱処理台板や焼結磁石に破損を生じさせずに容易に引き剥がすことができる。逆に溶着強度αが120kN/m2を超えて大きくなると、熱処理台板から磁石を容易に引き剥がすことができず、熱処理台板や焼結磁石に破損が生じてしまいやすい。
一方、酸素量を減らしてYの値を下げた試料4、5では、XおよびYは上記の関係式を満たしておらず、溶着強度αの値は120kN/m2を超えた。すなわち、磁石を熱処理台板から容易に剥がしとることができず、熱処理台板や焼結磁石に破損が生じた。
次いで、時効処理(圧力2Pa、500℃で120分)を行い、3MA/mのパルス着磁を行った後、室温における磁石特性(残留磁束密度:Br、保磁力:HcJ)を測定した。測定結果は表2に示している。
(実施例2)
まず、表3(単位は質量%)の組成を有する焼結体を作製した。本実施例では、ジェットミル粉砕工程での酸素導入量を変えることにより、Yが極めて少ない焼結磁石を作製した。それ以外の工程は、実施例1における工程と同じである。
Figure 2009107397
以下の表4は、X、Y、溶着強度α、磁気特性を示している。なお、溶着強度αの単位は[kN/m2]、Brの単位は[T]、HcJの単位は[kA/m]である。
Figure 2009107397
表3および表4からわかるように、TRE量が少ない試料6〜9および14〜16では、XおよびYの値が(0.114X−3.17)≦Y≦(0.157X−4.27)の関係を満たしている。また、溶着強度αは120kN/m2以下であり、支障なく焼結磁石を熱処理台板から剥がすことができた。
試料6〜9を比べてわかるように、Co量が0wt%の焼結磁石と2.0wt%の焼結磁石に大きな違いはない。更に試料14〜16を比べてわかるように、TRE量が一定であれば、Ndの10wt%をDyに置換しても、溶着の強度に影響しない。
時効処理(圧力2Pa、500℃で120分)を行い、3MA/mのパルス着磁を行った後、室温における磁石特性(残留磁束密度:Br、保磁力:HcJ)を測定した。参考として結果を表4に示す。
(実施例3)
本実施例では、表5(単位は質量%)の組成を有する焼結体を作製した。本実施例における焼結体の主成分の組成は、試料8、14、15とほぼ同じであるが、焼結体の酸素量(ZO)は試料8、14、15に比べてやや高い。
Figure 2009107397
以下の表6は、X、Y、溶着強度α、磁気特性を示している。なお、溶着強度αの単位は[kN/m2]、Brの単位は[T]、HcJの単位は[kA/m]である。
Figure 2009107397
表6からわかるように、試料17〜19では、XおよびYの値がY≦(0.157X−4.27)の関係を満たしていない。この場合、溶着は起こらないが、室温における磁石特性(残留磁束密度:Br、保磁力:HcJ)の値が、表2および表4に示した各実施例および各比較例の磁気特性値に比べて大幅に低くなる。
図3は、試料1〜19の保磁力HcJおよび残留磁束密度Brをプロットしたグラフであり、図4は、試料1〜19におけるXおよびYを示すグラフである。白丸で示した試料はいずれも溶着強度αが120kN/m2を超えており、逆に黒丸で示した試料は、いずれも溶着強度αが120kN/m2以下である。白丸と黒丸の領域は直線Y=0.114X−3.17で隔てることができる。更に黒丸で示された試料の中でも、特に破線で囲まれた試料は極めて磁石特性が低い。これらの磁石の領域も直線Y=0.157X−4.27で隔てることができる。
なお、上記の実施例および比較例では、熱処理台板2としてアルミナから形成された支持部材を使用したが、他の材料からなる支持部材を用いた場合でも、同様の結果が得られた。また、支持部材の構成も、図1に例示する熱処理台板2の構成を有している必要はない。
本発明は、重希土類元素RHを焼結体表面から内部に拡散させる工程でR−Fe−B系希土類焼結体と支持部材(治具)との間に形成される溶着層の溶着強度を充分に低い値に低減できるため、生産に支障をきたすことなく、重希土類元素RHを拡散させた焼結磁石を提供することが可能になる。

Claims (8)

  1. 軽希土類元素RL(NdおよびPrの少なくとも1種)および重希土類元素RH(DyおよびTbの少なくとも1種)を含有するR−Fe−B系希土類焼結磁石の製造方法であって、
    希土類元素、酸素、炭素および窒素の含有量を、それぞれ、X(質量%)、ZO(質量%)、ZC(質量%)、ZN(質量%)とし、ZO+ZC+ZNをY(質量%)とするとき、
    25≦X≦40、
    (0.114X−3.17)≦Y≦(0.157X−4.27)の関係式を満足し、かつ、
    0<ZO≦0.5、
    0<ZC≦0.1、
    0<ZN≦0.1
    の関係式を満足するR−Fe−B系希土類焼結体を準備する工程と、
    支持部材によって前記R−Fe−B系希土類焼結体を支持した状態で前記R−Fe−B系希土類焼結体の表面から内部に重希土類元素RHを拡散する拡散工程と、
    を含むR−Fe−B系希土類焼結磁石の製造方法。
  2. 前記関係式において、希土類元素の含有量X(質量%)が、28≦X≦30.5である請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。
  3. 前記拡散工程は、
    重希土類元素RHを含有するバルク体を加熱することにより、重希土類元素RHを前記バルク体から前記R−Fe−B系希土類焼結体の表面に供給しつつ内部に拡散させる工程を含む請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。
  4. 前記拡散工程は、
    重希土類元素RHを含有する前記バルク体を、前記R−Fe−B系希土類焼結体とともに処理室内に配置する工程と、
    前記処理室内を700℃以上1000℃以下に加熱する工程と、
    を含む請求項3に記載のR−Fe−B系希土類焼結磁石の製造方法。
  5. 前記拡散工程では、
    重希土類元素RHの膜を前記R−Fe−B系希土類焼結体の表面に形成することなく、重希土類元素RHを前記R−Fe−B系希土類焼結体の内部に拡散させる、請求項4に記載のR−Fe−B系希土類焼結磁石の製造方法。
  6. 前記拡散工程は、
    前記R−Fe−B系希土類焼結体の表面に重希土類元素RHの濃化層を形成する工程と、
    前記支持部材によって前記R−Fe−B系希土類焼結体を支持しながら700℃以上1100℃以下の温度で熱処理を行う工程と、
    を含む請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。
  7. 前記R−Fe−B系希土類焼結体は、
    0.01≦Y≦0.3
    の関係式を満足する請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。
  8. 請求項1から7のいずれかに記載の製造方法によって作製されたR−Fe−B系希土類焼結磁石。
JP2010500576A 2008-02-28 2009-02-27 R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石 Active JP5348124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010500576A JP5348124B2 (ja) 2008-02-28 2009-02-27 R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008048375 2008-02-28
JP2008048375 2008-02-28
PCT/JP2009/000901 WO2009107397A1 (ja) 2008-02-28 2009-02-27 R-Fe-B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石
JP2010500576A JP5348124B2 (ja) 2008-02-28 2009-02-27 R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石

Publications (2)

Publication Number Publication Date
JPWO2009107397A1 true JPWO2009107397A1 (ja) 2011-06-30
JP5348124B2 JP5348124B2 (ja) 2013-11-20

Family

ID=41015804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010500576A Active JP5348124B2 (ja) 2008-02-28 2009-02-27 R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石

Country Status (2)

Country Link
JP (1) JP5348124B2 (ja)
WO (1) WO2009107397A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004867A1 (ja) * 2009-07-10 2011-01-13 日立金属株式会社 R-Fe-B系希土類焼結磁石の製造方法および蒸気制御部材
JP5760400B2 (ja) * 2010-11-17 2015-08-12 日立金属株式会社 R−Fe−B系焼結磁石の製造方法
WO2012099188A1 (ja) * 2011-01-19 2012-07-26 日立金属株式会社 R-t-b系焼結磁石
JP5742012B2 (ja) * 2011-03-30 2015-07-01 日立金属株式会社 蒸着拡散処理用ケース及びr−t−b系焼結磁石の製造方法
JP5874951B2 (ja) * 2011-05-02 2016-03-02 日立金属株式会社 R−t−b系焼結磁石の製造方法
US9478332B2 (en) 2012-01-19 2016-10-25 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
KR20150132507A (ko) * 2013-03-18 2015-11-25 인터메탈릭스 가부시키가이샤 입계 확산 처리용 치구 및 상기 입계 확산 처리용 치구의 수용구
JP6249275B2 (ja) * 2013-09-30 2017-12-20 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP7167673B2 (ja) * 2018-12-03 2022-11-09 Tdk株式会社 R‐t‐b系永久磁石の製造方法
CN110942878B (zh) * 2019-12-24 2021-03-26 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
JP7439610B2 (ja) 2020-03-26 2024-02-28 株式会社プロテリアル R-t-b系焼結磁石の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187310A (ja) * 1984-10-05 1986-05-02 Matsushita Electric Works Ltd 希土類磁石の製造方法
JP3586577B2 (ja) * 1999-02-01 2004-11-10 株式会社Neomax 焼結型永久磁石
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
JP2005285859A (ja) * 2004-03-26 2005-10-13 Tdk Corp 希土類磁石及びその製造方法
MY181243A (en) * 2006-03-03 2020-12-21 Hitachi Metals Ltd R-fe-b rare earth sintered magnet
JP4613186B2 (ja) * 2007-05-31 2011-01-12 日立金属株式会社 希土類永久磁石の製造方法

Also Published As

Publication number Publication date
WO2009107397A1 (ja) 2009-09-03
JP5348124B2 (ja) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5348124B2 (ja) R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石
TWI509642B (zh) Rare earth permanent magnet and its manufacturing method
JP4241890B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP5509850B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP5477282B2 (ja) R−t−b系焼結磁石およびその製造方法
JP5532922B2 (ja) R−Fe−B系希土類焼結磁石
JP4788427B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP4748163B2 (ja) 希土類焼結磁石とその製造方法
JP4811143B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP4677942B2 (ja) R−Fe−B系希土類焼結磁石の製造方法
JP4962198B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP4788690B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
WO2011004867A1 (ja) R-Fe-B系希土類焼結磁石の製造方法および蒸気制御部材
JP2011223007A (ja) R−Fe−B系希土類焼結磁石およびその製造方法
WO2010113465A1 (ja) R-t-b-m系焼結磁石用合金及びその製造方法
JPWO2009031292A1 (ja) R−Fe−B系異方性焼結磁石
JP2012079726A (ja) R−t−b−m系焼結磁石用合金の製造方法およびr−t−b−m系焼結磁石の製造方法
JP5146552B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP2009224413A (ja) NdFeB焼結磁石の製造方法
JP2020155634A (ja) R−t−b系永久磁石
JP2011049440A (ja) R−t−b系永久磁石の製造方法
CN113593882A (zh) 2-17型钐钴永磁材料及其制备方法和应用
JP2011233554A (ja) R−t−b系焼結磁石の製造方法
JP2011205117A (ja) R−Fe−B系希土類焼結磁石の製造方法
WO2012029748A1 (ja) R-Fe-B系希土類焼結磁石とその製造方法、製造装置、モータ又は発電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5348124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350