JPWO2007037393A1 - Multilayer film manufacturing method, multilayer film, and multilayer film optical element - Google Patents

Multilayer film manufacturing method, multilayer film, and multilayer film optical element Download PDF

Info

Publication number
JPWO2007037393A1
JPWO2007037393A1 JP2007513517A JP2007513517A JPWO2007037393A1 JP WO2007037393 A1 JPWO2007037393 A1 JP WO2007037393A1 JP 2007513517 A JP2007513517 A JP 2007513517A JP 2007513517 A JP2007513517 A JP 2007513517A JP WO2007037393 A1 JPWO2007037393 A1 JP WO2007037393A1
Authority
JP
Japan
Prior art keywords
multilayer film
laminated
thickness
film
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007513517A
Other languages
Japanese (ja)
Inventor
浩代 岡村
浩代 岡村
岩下 徹幸
徹幸 岩下
松井 正和
正和 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2007037393A1 publication Critical patent/JPWO2007037393A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/342Preventing air-inclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7334General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being glossy or matt, reflective or refractive
    • B29C66/73343General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being glossy or matt, reflective or refractive at least one of the parts to be joined being matt or refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • B29C66/92441Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time
    • B29C66/92443Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile
    • B29C66/92445Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91935Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined lower than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0039Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/004Semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material

Abstract

2つの保護層の間に屈折率の異なる2種類の透明な熱可塑性樹脂フィルムを厚み方向に交互に配列してなる積層フィルムをプレス又は圧延する、多層膜の製造方法を提供する。屈折率の異なる2種類の透明な熱可塑性樹脂フィルムが厚み方向に交互に積層された積層フィルムを、透明な熱可塑性樹脂からなる2つの保護層間に配置して積層体を形成し、(i)積層体を熱圧着しない温度条件下に、積層体の両外側面から厚み方向に積層フィルムにひずみ又はその内部の層間でずれの生じない圧力以下で予備圧着して積層体内に残存する気体の除去を行い、(ii)積層体を熱圧着可能な温度に予熱し、かつ積層体の両外側面から厚み方向に前記予備圧着と同じ圧力条件範囲内の圧力を加えた状態で熱圧着することにより一体化した後、(iii)プレス又は圧延により薄膜化する、工程を含む多層膜の製造方法。Provided is a method for producing a multilayer film, in which a laminated film formed by alternately arranging two types of transparent thermoplastic resin films having different refractive indexes between two protective layers is pressed or rolled. A laminated film in which two types of transparent thermoplastic resin films having different refractive indexes are alternately laminated in the thickness direction is disposed between two protective layers made of a transparent thermoplastic resin, and (i) Removal of gas remaining in the laminate by pre-crimping under a temperature that does not cause thermo-compression of the laminate to the laminate film in the thickness direction from both outer side surfaces of the laminate, or at a pressure that does not cause displacement between the inner layers. (Ii) by preheating the laminated body to a temperature at which thermocompression bonding can be performed, and thermocompression bonding in a state in which pressure within the same pressure condition range as the precompression bonding is applied in the thickness direction from both outer side surfaces of the laminated body. (Iii) A method for producing a multilayer film including a step of forming a thin film by pressing or rolling after integration.

Description

本発明は、透明な熱可塑性樹脂からなる2つの保護層間に、屈折率の異なる2種類の透明な熱可塑性樹脂フィルムを交互に積層してなる積層フィルムを配置して得られる積層体を厚み方向にプレス又は圧延して得られる多層膜の製造方法、及び前記製造方法等により得られる多層膜、並びに前記多層膜等を使用して得られる多層膜光学素子に関する。   The present invention provides a laminate obtained by arranging a laminate film obtained by alternately laminating two types of transparent thermoplastic resin films having different refractive indexes between two protective layers made of a transparent thermoplastic resin. The present invention relates to a method for producing a multilayer film obtained by pressing or rolling, a multilayer film obtained by the production method, and a multilayer film optical element obtained by using the multilayer film.

従来、光透過性又は光反射性を有する熱可塑性樹脂からなる多層膜の製造としては、キャスティングによるプロセス、共押出法により直接法、又は共押出法により得られた多層フィルムを積層接着後に引張力により延伸するかもしくは当該多層フィルムをプレス、圧延する等の方法が知られている。
例えば、パソコン・ワープロ等のディスプレイの表面に光の反射を防止することのできる反射防止フィルムの製造方法として、支持基材の上に、屈折率が支持基材より相対的に低い樹脂層を単層あるいは最上層が最も低屈折率になるように複数層積層して積層体とし、得られた積層体を、延伸法あるいはプレス法等の機械的手段で変形して積層体の膜厚を減少させることにより、空気と積層体との界面での反射率を低減することを特徴とする反射防止フィルムの製造方法が知られている(特許文献1)。
また、ある特定の波長の光を選択的に反射することが可能な積層フィルムとして、規則的に配列された構造を有し、かつ20層以上からなる積層フィルムであって、波長100〜100000nmの光に対し反射率が30%以上であるピークが観測され、ピークの半値幅(λw)とピークの波長(λt)の比(λw/λt)が、0.02≦λw/λt≦0.3である積層フィルム(特許文献2)が知られている。
Conventionally, a multilayer film made of a thermoplastic resin having a light transmitting property or a light reflecting property is manufactured by a process by casting, a direct method by a co-extrusion method, or a tensile force after laminating and bonding a multilayer film obtained by a co-extrusion method. There are known methods such as stretching by pressing or pressing and rolling the multilayer film.
For example, as a method for producing an antireflection film capable of preventing light reflection on the surface of a display such as a personal computer or word processor, a resin layer having a refractive index relatively lower than that of the support substrate is simply formed on the support substrate. Multiple layers are laminated so that the layer or uppermost layer has the lowest refractive index, and the resulting laminate is deformed by mechanical means such as stretching or pressing to reduce the thickness of the laminate. Thus, a method for producing an antireflection film characterized by reducing the reflectance at the interface between air and a laminate is known (Patent Document 1).
Moreover, as a laminated film capable of selectively reflecting light of a specific wavelength, it is a laminated film having a regularly arranged structure and comprising 20 or more layers, and having a wavelength of 100 to 100,000 nm A peak having a reflectance of 30% or more with respect to light is observed, and the ratio (λw / λt) of the peak half-value width (λw) to the peak wavelength (λt) is 0.02 ≦ λw / λt ≦ 0.3. A laminated film (Patent Document 2) is known.

特開平6−344487号公報JP-A-6-344487 特開2004−314570号公報JP 2004-314570 A

前記キャスティングによるプロセスはバッチプロセスであるので製造コストが高く実用性に欠けるものである。特許文献1に開示されたフィルム製造方法において、押出成形により成形された単層フィルム、又は共押出により成形された2〜5層の多層フィルムを、支持基材の上に重ねて積層体とし、得られた積層体を、プレス、圧延等の機械的手段で延伸する際に、当該積層体の層間に微量の空気等のガス体が残存していると積層体の膜厚に乱れが生じ、またこれらの積層体の層間における密着性が不十分であると層間にズレ(又はすべり)が生じて延伸後の各層の膜厚が不均一となり、反射型の光干渉発色高分子多層フィルム又は透過型の光干渉発色高分子多層フィルム等の機能フィルムに使用する場合に不都合を生じる。
更に、延伸により多層フィルムの圧下率[(加工前の厚み−加工後の厚み)/加工前の厚み]×100が相当に高くなる場合、又はプレス又は圧延後の積層体の膜厚が数百μm以下に薄くなる場合には、各層の膜厚がほぼ均一になるように薄膜化することは困難であり、特に、多層フィルムの圧下率90%以上で、かつプレス又は圧延後の積層体の膜厚が数百μm以下の場合には、各層の膜厚がほぼ均一になるように薄膜化することは相当に困難である。
Since the casting process is a batch process, the manufacturing cost is high and it is not practical. In the film manufacturing method disclosed in Patent Document 1, a single-layer film formed by extrusion or a multilayer film of 2 to 5 layers formed by co-extrusion is laminated on a support substrate to form a laminate, When the obtained laminate is stretched by mechanical means such as pressing and rolling, if a gas body such as a small amount of air remains between the layers of the laminate, the thickness of the laminate is disturbed, In addition, if the adhesion between the layers of these laminates is insufficient, a gap (or slip) occurs between the layers, and the film thickness of each layer after stretching becomes non-uniform. Inconvenience occurs when used for functional films such as a type of optical interference coloring polymer multilayer film.
Furthermore, when the reduction ratio [(thickness before processing−thickness after processing) / thickness before processing] × 100 of the multilayer film is considerably increased by stretching, or the thickness of the laminate after pressing or rolling is several hundred. When the thickness is less than μm, it is difficult to reduce the thickness of each layer so that the thickness of each layer is almost uniform. Particularly, the reduction ratio of the multilayer film is 90% or more, and the laminate after pressing or rolling is used. When the film thickness is several hundred μm or less, it is considerably difficult to reduce the film thickness so that the thickness of each layer is almost uniform.

特許文献2に開示されている積層フィルムは、ダイから吐出された多界面構造体を有するシートを逐次二軸延伸又は同時に二方向に2〜10倍に延伸した後、熱処理して得られるものである。特許文献2の実施例1では、フィードブロックにて積層した後、コートハンガーダイに供給し、シート状に成形して、200層程度の未延伸積層フィルムを得、次いで逐次延伸して多層フィルムを得たことが記載されている。
しかし、フィードブロック法等の特殊な共押出では商業生産的には10層程度の多層フィルムを同時に押出することが可能であるが、前記200層程度の未延伸積層フィルムを商業的に製造すること、及び多層フィルム材料変更などの設計変更への対応には困難性を伴い、更に相当の設備投資を伴う問題点がある。
The laminated film disclosed in Patent Document 2 is obtained by sequentially biaxially stretching a sheet having a multi-interface structure discharged from a die, or simultaneously stretching it in two directions by 2 to 10 times, and then performing a heat treatment. is there. In Example 1 of Patent Document 2, after laminating with a feed block, it is supplied to a coat hanger die and formed into a sheet shape to obtain an unstretched laminated film of about 200 layers, and then sequentially stretched to form a multilayer film. It is described that it was obtained.
However, special coextrusion such as the feed block method can simultaneously extrude about 10 layers of multilayer film in commercial production, but the unstretched laminated film of about 200 layers should be produced commercially. In addition, it is difficult to cope with a design change such as a multilayer film material change, and there is also a problem that involves considerable capital investment.

本発明は上記課題に鑑みてなされたもので、透明な熱可塑性樹脂からなる2つの保護層間に、屈折率の異なる2種類の透明な熱可塑性樹脂フィルムを交互に積層してなる積層フィルムを配置して得られる積層体を予め予備圧着と熱圧着した後に、厚み方向にプレス又は圧延する多層膜の製造方法、及び前記製造方法等により得られる多層膜、並びに前記多層膜等から得られる多層膜光学素子を提供することを目的とするものである。本発明は、下記の実施形態1ないし3に関する発明である。   The present invention has been made in view of the above problems, and a laminated film in which two types of transparent thermoplastic resin films having different refractive indexes are alternately laminated is disposed between two protective layers made of a transparent thermoplastic resin. The multilayer body obtained in advance is subjected to preliminary pressure bonding and thermocompression bonding, and then pressed or rolled in the thickness direction, the multilayer film obtained by the manufacturing method, etc., and the multilayer film obtained from the multilayer film, etc. An object of the present invention is to provide an optical element. The present invention relates to the following first to third embodiments.

すなわち、本発明は、(1)屈折率の異なる2種類の透明な熱可塑性樹脂フィルム(A、B)が厚み方向に交互に積層された積層フィルム(C)を、透明な熱可塑性樹脂からなる2つの保護層(D)間に配置して積層体(E)を形成し、当該積層体(E)をプレス又は圧延により薄膜化する多層膜(Et)の製造方法であって、少なくとも下記工程(i)ないし(iii)を含む、
(i)積層体(E)を熱圧着しない温度条件下に、積層体(E)の両外側面から厚み方向に積層フィルム(C)にひずみ又はその内部の層間でずれの生じない圧力以下で予備圧着して積層フィルム(C)間、及び積層フィルム(C)と保護層(D)間に残存する気体の除去を行い、
(ii)積層体(E)を熱圧着可能な温度に予熱し、かつ積層体(E)の両外側面から厚み方向に前記予備圧着と同じ圧力条件範囲内の圧力を加えた状態で熱圧着することにより一体化した後、
(iii)プレス又は圧延により薄膜化する、
多層膜の製造方法に関する発明である(以下、「実施形態1」ということがある)。
That is, the present invention comprises (1) a laminated film (C) in which two types of transparent thermoplastic resin films (A, B) having different refractive indexes are alternately laminated in the thickness direction, and is made of a transparent thermoplastic resin. A method for producing a multilayer film (Et) which is disposed between two protective layers (D) to form a laminate (E), and the laminate (E) is thinned by pressing or rolling, and includes at least the following steps Including (i) to (iii),
(I) Under a temperature condition in which the laminated body (E) is not thermocompression bonded, the pressure is less than the pressure at which the laminated film (C) is strained in the thickness direction from both outer side surfaces of the laminated body (E) or does not shift between the inner layers. Preliminary pressure bonding is performed to remove the gas remaining between the laminated films (C) and between the laminated film (C) and the protective layer (D),
(Ii) The thermocompression bonding is performed in a state where the laminate (E) is preheated to a temperature at which thermocompression bonding can be performed, and pressure within the same pressure condition range as the precompression bonding is applied in the thickness direction from both outer side surfaces of the laminate (E). After integrating by
(iii) Thinning by pressing or rolling,
It is an invention relating to a method for producing a multilayer film (hereinafter sometimes referred to as “Embodiment 1”).

実施形態1の「多層膜(Et)の製造方法」においては更に下記(2)ないし(14)に記載の態様とすることができる。
(2)前記予備圧着が2500Pa以上の圧力で行われる。
(3)前記予備圧着がバッチ式プレス又は圧延ローラーを用いて、3000Pa以上でかつ前記プレス又は圧延の際の圧力の2分の1以下で行われる。
(4)前記予備圧着前又は予備圧着中に積層体(E)の予熱を開始し、予備圧着による積層フィルム(C)間、及び積層フィルム(C)と保護層(D)間に残存する気体の除去が熱圧着可能な温度に到達する前に行われる。
(5)前記熱圧着可能な温度が、(i)2種類の熱可塑性樹脂フィルム(A、B)が共に非晶性樹脂である場合には積層体(E)の中心部が前記2種類の熱可塑性樹脂の双方のガラス転移温度(Tg)よりも40〜80°C高い温度、
(ii)2種類の熱可塑性樹脂フィルム(A、B)の一方が非晶性樹脂で他方が結晶性樹脂である場合には積層体(E)の中心部が前記2種類の熱可塑性樹脂のうちの低い方のガラス転移温度(Tg)よりも50°C高い温度から前記結晶性樹脂の融点(Tm)より30°C低い温度、又は
(iii)2種類の透明な熱可塑性樹脂フィルム(A、B)が結晶性樹脂の場合には積層体(E)中心部が前記2種類の熱可塑性樹脂の双方の融点(Tm)より30〜50°C低い温度
である。
(6)前記2種類の熱可塑性樹脂フィルム(A、B)の屈折率差が0.05以上である。
(7)前記積層フィルム(C)が、屈折率の異なる2種類の透明な熱可塑性樹脂フィルム(A、B)を厚み方向に交互に積層されるように共押出して成形された積層フィルム(C1)、又は前記積層フィルム(C1)を更に厚み方向に交互に積層されるように複数重ね合わせた積層フィルム(C2)である。
(8)前記予備圧着前の積層フィルム(C)における各熱可塑性樹脂フィルム(A、B)の厚みがそれぞれ5〜100μmの範囲にあり、かつ積層フィルム(C)の全層数が10層以上である。
In the “production method of multilayer film (Et)” in the first embodiment, the modes described in the following (2) to (14) can be further employed.
(2) The preliminary pressure bonding is performed at a pressure of 2500 Pa or more.
(3) The pre-pressing is performed using a batch press or a rolling roller at 3000 Pa or more and half or less of the pressure during the pressing or rolling.
(4) Preheating of the laminate (E) before or during the pre-compression, and the gas remaining between the laminate films (C) and between the laminate film (C) and the protective layer (D) by pre-compression Is removed before reaching a temperature at which thermocompression bonding is possible.
(5) When the thermocompression bonding temperature is (i) the two types of thermoplastic resin films (A, B) are both amorphous resins, the center portion of the laminate (E) is the two types 40-80 ° C higher than the glass transition temperature (Tg) of both thermoplastic resins,
(Ii) When one of the two types of thermoplastic resin films (A, B) is an amorphous resin and the other is a crystalline resin, the center portion of the laminate (E) is made of the two types of thermoplastic resins. A temperature that is 50 ° C higher than the lower glass transition temperature (Tg), a temperature that is 30 ° C lower than the melting point (Tm) of the crystalline resin, or (iii) two types of transparent thermoplastic resin films (A In the case where B) is a crystalline resin, the central part of the laminate (E) is at a temperature 30 to 50 ° C. lower than the melting points (Tm) of both of the two types of thermoplastic resins.
(6) The refractive index difference between the two types of thermoplastic resin films (A, B) is 0.05 or more.
(7) The laminated film (C1) formed by co-extrusion so that the laminated film (C) is laminated so that two types of transparent thermoplastic resin films (A, B) having different refractive indexes are alternately laminated in the thickness direction. ) Or a laminated film (C2) in which a plurality of the laminated films (C1) are further laminated so as to be alternately laminated in the thickness direction.
(8) The thickness of each thermoplastic resin film (A, B) in the laminated film (C) before the pre-bonding is in the range of 5 to 100 μm, and the total number of layers of the laminated film (C) is 10 or more. It is.

(9)前記予備圧着前の積層体(E)中の2つの保護層(D)の厚みがそれぞれ40〜800μmで、かつ積層フィルム(C)の厚みの0.04倍以上である。
(10)前記積層体(E)中の2種類の熱可塑性樹脂フィルム(A、B)、及び保護層(D)に使用した樹脂のガラス転移温度(Tg)が結晶性樹脂と非晶性樹脂の組合せの場合には20〜150°Cの範囲にあり、又は前記以外の組合せの場合には50ないし120°Cの範囲にある。
(11)前記積層体(E)中の積層フィルム(C)部を1度のプレス又は圧延により1/10ないし1/90の厚みに薄膜化する。
(12)前記プレスにより薄膜化して得た多層体の両外側面に新たに保護層(D)を設けて更にプレスにより薄膜化する操作を少なくとも2度以上行うことにより、又は前記圧延ローラーを複数組合せて多段で圧延することにより、プレス又は圧延前の積層体(E)中の積層フィルム(C)部の厚みを1/20ないし1/300に薄膜化する。
(13)前記1度もしくは複数回のプレス又は1段もしくは多段の圧延により薄膜化した多層体を、更に引張力による延伸を行うことにより、プレス又は圧延前の積層体(E)中の積層フィルム(C)部の厚みを1/150ないし1/2000に薄膜化させる。
(14)前記(i)予備圧着、(ii)熱圧着、及び(iii)1段又は多段の圧延を複数のローラーを用いて行うことにより、前記(i)予備圧着ないし(iii)圧延を連続的に行う。
(15)前記(i)予備圧着、(ii)熱圧着、及び(iii)1段又は多段の圧延を複数のローラー手段を用いて行い、更に(iv)引張力による延伸を行うことにより、前記(i)予備圧着ないし(iv)延伸を連続的に行う。
(9) The thickness of the two protective layers (D) in the laminate (E) before the pre-pressing is 40 to 800 μm, respectively, and 0.04 times or more the thickness of the laminated film (C).
(10) The two types of thermoplastic resin films (A, B) in the laminate (E) and the glass transition temperature (Tg) of the resin used for the protective layer (D) are crystalline resin and amorphous resin. In the case of a combination of the above, it is in the range of 20 to 150 ° C, or in the case of a combination other than the above, it is in the range of 50 to 120 ° C.
(11) The laminated film (C) in the laminate (E) is thinned to a thickness of 1/10 to 1/90 by one press or rolling.
(12) By performing the operation of newly providing a protective layer (D) on both outer side surfaces of the multilayer body obtained by thinning with the press and further thinning with the press at least twice, or a plurality of the rolling rollers By combining and rolling in multiple stages, the thickness of the laminated film (C) portion in the laminate (E) before pressing or rolling is reduced to 1/20 to 1/300.
(13) The laminated film in the laminated body (E) before pressing or rolling by further stretching the multilayer body thinned by the press once or a plurality of times or by one-stage or multi-stage rolling. The thickness of part (C) is reduced to 1/150 to 1/2000.
(14) (i) Pre-crimping, (ii) thermo-compression, and (iii) one-stage or multi-stage rolling is performed using a plurality of rollers, so that (i) pre-crimping or (iii) rolling is continuously performed. Do it.
(15) The (i) pre-compression, (ii) thermocompression, and (iii) one-stage or multi-stage rolling using a plurality of roller means, and (iv) stretching by tensile force, (i) Pre-compression or (iv) Continuous stretching.

また、本発明は、(16)屈折率の差が0.05以上である2種類の透明な熱可塑性樹脂フィルム(A、B)が厚み方向に交互に10層以上積層された積層フィルム(C)を、透明な熱可塑性樹脂からなる2つの保護層(D)間に配置して形成された積層体(E)をプレス又は圧延により薄膜化して得られた、2つの保護膜(Dt)部と、当該2つの保護膜(Dt)間に位置する積層膜(Ct)部とからなる多層膜(Et)であって、
積層膜(Ct)部の全厚みが500nm〜100μmで、その厚みが中心方向に向かって薄くなる傾向にあり、かつ積層膜(Ct)部の積層配列に乱れがない、多層膜に関する発明である(以下、「実施形態2」ということがある)。
実施形態2の「多層膜(Et)」においては更に以下の(17)ないし(20)に記載の態様とすることができる。
(17)前記積層膜(Ct)部が厚み方向に20〜500層積層されてなる。
(18)前記積層膜(Ct)部における積層精度([(最大層厚み−最小層厚み)/最小層厚み]×100(%))が300%ないし1500%である。
(19)前記積層膜部(Ct)における積層厚み比(積層方向の異なる樹脂層の最大値と最小値の比)が1ないし25である。
(20)赤、青、又は緑の光の波長におけるが60%以上である。
The present invention also provides (16) a laminated film (C) in which two or more transparent thermoplastic resin films (A, B) having a refractive index difference of 0.05 or more are alternately laminated in the thickness direction. ) Are disposed between two protective layers (D) made of a transparent thermoplastic resin, and the two protective film (Dt) portions obtained by thinning the laminate (E) formed by pressing or rolling And a multilayer film (Et) composed of a laminated film (Ct) portion located between the two protective films (Dt),
The invention relates to a multilayer film in which the total thickness of the multilayer film (Ct) part is 500 nm to 100 μm, the thickness tends to decrease toward the center, and the multilayer arrangement of the multilayer film (Ct) part is not disturbed. (Hereinafter, it may be referred to as “Embodiment 2”).
In the “multilayer film (Et)” of the second embodiment, the following aspects (17) to (20) can be further adopted.
(17) The stacked film (Ct) portion is formed by stacking 20 to 500 layers in the thickness direction.
(18) The lamination accuracy ([(maximum layer thickness−minimum layer thickness) / minimum layer thickness] × 100 (%)) in the laminated film (Ct) portion is 300% to 1500%.
(19) A lamination thickness ratio (a ratio between a maximum value and a minimum value of resin layers having different lamination directions) in the laminated film portion (Ct) is 1 to 25.
(20) It is 60% or more at the wavelength of red, blue, or green light.

更に、本発明は、(21)前記(16)ないし(20)のいずれかに記載の多層膜(Et)の両面に帯電層を設けてなる、粒子状の多層膜光学素子であって、当該多層膜光学素子が一対の透明電極間に収容され、かつ当該透明電極への印加により回転又は移動制御可能とされていることにより、特定色の光の反射又は透過を利用して画像表示を行うことが可能な画像表示装置の画素を構成する、多層膜光学素子関する発明である(以下、「実施形態3」ということがある)。
実施形態3の「多層膜光学素子」においては更に以下の(22)ないし(25)に記載の態様とすることができる。
(22)赤、緑、青、シアン、マゼンダ、又はイエローのうち何れか一色を表示する。
(23)前記(22)に規定する何れか一色の光を反射すると共に当該色に対する補色を透過する非光吸収型で干渉型の光構造発色体である。
(24)外形の最大寸法が2μmないし200μmの範囲にある。
(25)外形が平面体、立方体、凸レンズ形状、又は球体である。
Furthermore, the present invention provides (21) a particulate multilayer optical element in which charged layers are provided on both sides of the multilayer film (Et) according to any one of (16) to (20), The multilayer optical element is accommodated between a pair of transparent electrodes and can be rotated or moved by application to the transparent electrodes, thereby displaying an image using reflection or transmission of light of a specific color. The present invention relates to a multilayer optical element that constitutes a pixel of an image display device that can be used (hereinafter, may be referred to as “Embodiment 3”).
In the “multilayer optical element” of the third embodiment, the following aspects (22) to (25) can be further adopted.
(22) One of red, green, blue, cyan, magenta, and yellow is displayed.
(23) A non-light-absorbing and interference-type optical structural color body that reflects light of any one of the colors defined in (22) and transmits a complementary color for the color.
(24) The maximum outer dimension is in the range of 2 μm to 200 μm.
(25) The outer shape is a plane, a cube, a convex lens, or a sphere.

本発明の多層膜(Et)の製造方法によれば、2つの保護層(D)間に、種類の透明な熱可塑性樹脂フィルム(A、B)が交互に積層された積層フィルム(C)を配置してなる積層体(E)をプレス又は圧延する際に、各層間に気泡の巻き込み及び層間にズレが生じるのを防止して、高い圧下率においても各層に乱れの極めて少ない多層膜(Et)を安定的に製造することができる。
また、本発明の製造方法等により得られる多層膜(Et)には、10層以上、特に20〜500層を含む薄肉化された多層膜が含まれ、可視光領域内におけるある特定の波長の光を選択的に強く反射する等の優れた光学的機能を有している。
更に、本発明の多層膜(Et)を画像表示シート用画像表示素子に使用すると薄肉化されていてかつ反射率が高いので光の利用率が高く、コントラストの低下を防止でき光のロスが最小限に抑えられているので、明るく、高コントラストな反射型の電子ペーパーが実現できる。
According to the method for producing a multilayer film (Et) of the present invention, a laminated film (C) in which kinds of transparent thermoplastic resin films (A, B) are alternately laminated between two protective layers (D). When pressing or rolling the laminated body (E) arranged, it is possible to prevent bubbles from being entrained between the layers and to prevent displacement between the layers, and to prevent the layers from being disturbed even at a high reduction rate (Et ) Can be stably produced.
In addition, the multilayer film (Et) obtained by the production method of the present invention includes a thin multilayer film including 10 layers or more, particularly 20 to 500 layers, and has a specific wavelength in the visible light region. It has excellent optical functions such as selective and strong reflection of light.
Furthermore, when the multilayer film (Et) of the present invention is used for an image display element for an image display sheet, it is thin and has a high reflectance, so that the light utilization rate is high, and a decrease in contrast can be prevented and the light loss is minimized. Because it is limited to the limit, it is possible to realize a bright, high-contrast reflective electronic paper.

実施例1において薄膜化された多層膜断面の光学顕微鏡写真Optical micrograph of cross section of multilayer film thinned in Example 1 実施例6において薄膜化された多層膜断面の光学顕微鏡写真Optical micrograph of cross section of multilayer film thinned in Example 6 実施例7において熱圧着された積層体断面の光学顕微鏡写真Optical micrograph of laminate cross section thermocompression bonded in Example 7 実施例8において熱圧着された積層体断面の光学顕微鏡写真Optical micrograph of laminate cross section thermocompression bonded in Example 8 比較例2において熱圧着された積層体断面の光学顕微鏡写真Optical micrograph of laminate cross section thermocompression bonded in Comparative Example 2 比較例3において熱圧着された積層体断面の光学顕微鏡写真Optical micrograph of laminate cross section thermocompression bonded in Comparative Example 3 比較例4において熱圧着された積層体断面の光学顕微鏡写真Optical micrograph of the cross section of the laminate that was thermocompression bonded in Comparative Example 4 比較例5において熱圧着された積層体断面の光学顕微鏡写真Optical micrograph of laminate cross section thermocompression bonded in Comparative Example 5 スペーサー中のシリコーンオイル内に多層膜光学素子を配置して、スペーサーの相対する内面に存在する電極に印加電圧をかけることが可能な装置の概念図Conceptual diagram of a device that can place a multilayer optical element in silicone oil in the spacer and apply an applied voltage to the electrodes on the opposite inner surfaces of the spacer

以下、本発明の実施形態1、2、及び3について説明する。
尚、前記プレス又は圧延前において、積層フィルム(C)とは、2種類の透明な熱可塑性樹脂フィルム(A、B)が厚み方向に交互に積層されたものをいい、積層体(E)とは、2つの保護層(D)間に積層フィルム(C)が配置されているものをいう。
尚、比較例の記載においては、積層フィルム(C)の一方の外側面にのみ保護層(D)が設けられているものも積層体(E)ということがある。
前記積層体(E)は、前記プレス又は圧延により薄膜化されて多層膜(Et)になる。
前記積層体(E)を構成する積層フィルム(C)部、保護層(D)部に相当する部分は、前記プレスもしくは圧延による薄膜化、又は当該薄膜化と延伸によりそれぞれ積層膜(Ct)部、保護膜(Dt)部となる。
前記プレスにより薄膜化する操作を2度以上行う場合、1度薄膜化された構造体(以下多層体ということがある)に新たに追加される保護層(D)は、プレス後に最初のプレス前に使用した保護層(D)と熱圧着により一体化されて保護膜(Dt)部を形成する。
Hereinafter, Embodiments 1, 2, and 3 of the present invention will be described.
In addition, before the said press or rolling, a laminated film (C) means what laminated | stacked two types of transparent thermoplastic resin films (A, B) alternately by the thickness direction, and laminated body (E) and Means that a laminated film (C) is disposed between two protective layers (D).
In addition, in description of a comparative example, what provided the protective layer (D) only in one outer surface of laminated | multilayer film (C) may be called laminated body (E).
The laminate (E) is thinned by the pressing or rolling to become a multilayer film (Et).
The laminated film (C) part and the part corresponding to the protective layer (D) part constituting the laminated body (E) are thinned by the pressing or rolling, or the laminated film (Ct) part by thinning and stretching, respectively. , A protective film (Dt) portion.
When the thinning operation by the press is performed twice or more, the protective layer (D) newly added to the structure thinned once (hereinafter sometimes referred to as a multilayer body) The protective layer (D) used in the above is integrated by thermocompression bonding to form a protective film (Dt) portion.

[1] 実施形態1
実施形態1は、屈折率の異なる2種類の透明な熱可塑性樹脂フィルム(A、B)が厚み方向に交互に積層された積層フィルム(C)を、透明な熱可塑性樹脂からなる2つの保護層(D)間に配置して積層体(E)を形成し、当該積層体(E)をプレス又は圧延により薄膜化する多層膜(Et)の製造方法であって、少なくとも下記工程(i)ないし(iii)を含む、
(i)積層体(E)を熱圧着しない温度条件下に、積層体(E)の両外側面から厚み方向に積層フィルム(C)にひずみ又はその内部の層間でずれの生じない圧力以下で予備圧着して積層フィルム(C)間、及び積層フィルム(C)と保護層(D)間に残存する気体の除去を行い、
(ii)積層体(E)を熱圧着可能な温度に予熱し、かつ積層体(E)の両外側面から厚み方向に前記予備圧着と同じ圧力条件範囲内の圧力を加えた状態で熱圧着することにより一体化した後、
(iii)プレス又は圧延により薄膜化する、
多層膜の製造方法に関する発明である。
すなわち、本発明における多層膜(Et)の製造方法は、積層フィルム(C)と保護層(D)からなる積層体(E)の形成、予備圧着、熱圧着、及びプレス又は圧延により薄膜化する、工程よりなる。
また、前記薄膜化で得られる多層膜(多層体)は更に引張力による延伸加工することができる。
実施形態1におけるプレス及び圧延による薄膜化では延伸を伴っていることも想定されるが、本明細書ではプレス又は圧延による加工を薄膜化、チャッキング手段等を用いた引張力による加工を延伸という。
以下に実施形態1における(1)積層フィルム(C)、(2)保護層(D)、及び(3)積層体(E)、並びに(4)予備圧着、(5)熱圧着、(6)薄膜化、(7)延伸、及び(8)多層膜(Et)ついて説明する。
[1] Embodiment 1
In Embodiment 1, two types of transparent thermoplastic resin films (A, B) having different refractive indexes are alternately laminated in the thickness direction to form a laminated film (C) with two protective layers made of a transparent thermoplastic resin. (D) A method for producing a multilayer film (Et) which is arranged between (D) to form a laminated body (E) and thins the laminated body (E) by pressing or rolling, and includes at least the following steps (i) to Including (iii),
(I) Under a temperature condition in which the laminated body (E) is not thermocompression bonded, the pressure is less than the pressure at which the laminated film (C) is strained in the thickness direction from both outer side surfaces of the laminated body (E) or does not shift between the inner layers. Preliminary pressure bonding is performed to remove the gas remaining between the laminated films (C) and between the laminated film (C) and the protective layer (D),
(Ii) The thermocompression bonding is performed in a state where the laminate (E) is preheated to a temperature at which thermocompression bonding can be performed, and pressure within the same pressure condition range as the precompression bonding is applied in the thickness direction from both outer side surfaces of the laminate (E) After integrating by
(iii) Thinning by pressing or rolling,
The invention relates to a method for producing a multilayer film.
That is, in the method for producing a multilayer film (Et) in the present invention, a thin film is formed by forming a laminate (E) composed of a laminated film (C) and a protective layer (D), pre-compression bonding, thermocompression bonding, and pressing or rolling. , Consisting of processes.
Further, the multilayer film (multilayer body) obtained by the thinning can be further stretched by a tensile force.
Although it is assumed that the thinning by pressing and rolling in Embodiment 1 is accompanied by stretching, in this specification, the processing by pressing or rolling is thinned, and the processing by tensile force using chucking means is called stretching. .
(1) Laminated film (C), (2) Protective layer (D), and (3) Laminated body (E), and (4) Precompression bonding, (5) Thermocompression bonding, and (6) in Embodiment 1 below The thinning, (7) stretching, and (8) multilayer film (Et) will be described.

(1)積層フィルム(C)
本発明の積層フィルム(C)及び保護層(D)に使用する熱可塑性樹脂の具体例は後述するが、積層フィルム(C)とは、屈折率の異なる2種類の透明な熱可塑性樹脂フィルム(A、B)を厚み方向に交互に配列したものである。
積層フィルム(C)は、好ましくは熱可塑性樹脂フィルム(A、B)を厚み方向に交互に積層されるように共押出して成形された積層フィルム(C1)、又は当該積層フィルム(C1)を更に厚み方向に交互に積層されるように複数重ね合わせた積層フィルム(C2)である。
積層フィルム(C)の全層数は、光学特性等から好ましくは10層以上、より好ましくは20〜500層である。特に、多層膜(Et)に要求される光反射特性は2種類の樹脂屈折率差、多層膜中の各層の厚み及び層数により決定されるので、実用的には前記層数もこのような要求性能からの設計値から決定することができる。
(1) Laminated film (C)
Although the specific example of the thermoplastic resin used for the laminated | multilayer film (C) and protective layer (D) of this invention is mentioned later, two types of transparent thermoplastic resin films (with different refractive indexes from laminated | multilayer film (C) ( A, B) are alternately arranged in the thickness direction.
The laminated film (C) is preferably a laminated film (C1) formed by co-extrusion so that the thermoplastic resin films (A, B) are alternately laminated in the thickness direction, or the laminated film (C1). It is a laminated film (C2) in which a plurality of layers are laminated so as to be alternately laminated in the thickness direction.
The total number of layers of the laminated film (C) is preferably 10 layers or more, more preferably 20 to 500 layers from the viewpoint of optical characteristics. In particular, the light reflection characteristics required for the multilayer film (Et) are determined by two types of resin refractive index differences, the thickness of each layer in the multilayer film, and the number of layers. It can be determined from the design value from the required performance.

積層フィルム(C)に使用する2種類の透明な熱可塑性樹脂フィルム(A、B)は、屈折率差が好ましくは0.05以上、より好ましくは0.1以上である。本発明の製造法で得られる多層膜(Et)が光反射、干渉作用等の機能を有するには屈折率差を0.05以上が好ましく、屈折率差が0.05以上であるとプレス又は圧延により薄膜化して得られる多層膜(Et)で、積層枚数が500層以下でも、高い反射率を得ることができる。
また、本発明における共押出性、予備圧着及び熱圧着、並びに薄膜化における加工性、多層膜(Et)の耐熱性等を考慮すると、上記2種類の樹脂のガラス転移温度(Tg)は、前記積層体(E)中の2種類の熱可塑性樹脂フィルム(A、B)、及び保護層(D)に使用した樹脂のガラス転移温度(Tg)が結晶性樹脂と非晶性樹脂の組合せの場合には20〜150°Cの範囲にあり、又は前記以外の組合せの場合には50ないし120°Cの範囲にあるのが望ましい。また上記加工における加工性の点から、2種類の樹脂の溶融粘度比は1〜6、特に1〜3が望ましい。
また、使用する2種類の熱可塑性樹脂フィルム(A、B)は、共押出性、予備圧着及び熱圧着、並びに薄膜化における加工条件で相互に溶解しないものを選択することが望ましい。相互に溶解すると積層フィルム(C)間で新たな溶融層が出現し、その新たな層の両側の界面で光屈折が生ずるようになり好ましくない。
The two types of transparent thermoplastic resin films (A, B) used for the laminated film (C) preferably have a refractive index difference of 0.05 or more, more preferably 0.1 or more. In order for the multilayer film (Et) obtained by the production method of the present invention to have functions such as light reflection and interference, the refractive index difference is preferably 0.05 or more, and if the refractive index difference is 0.05 or more, press or A multilayer film (Et) obtained by thinning by rolling can obtain a high reflectance even when the number of laminated layers is 500 or less.
In consideration of coextrusion, pre-compression bonding and thermocompression bonding in the present invention, processability in thinning, heat resistance of the multilayer film (Et), etc., the glass transition temperatures (Tg) of the two types of resins are When the glass transition temperature (Tg) of the resin used for the two types of thermoplastic resin films (A, B) and protective layer (D) in the laminate (E) is a combination of a crystalline resin and an amorphous resin Is preferably in the range of 20 to 150 ° C., or in the range of 50 to 120 ° C. in the case of other combinations. From the viewpoint of workability in the above processing, the melt viscosity ratio of the two types of resins is preferably 1 to 6, particularly 1 to 3.
In addition, it is desirable to select two types of thermoplastic resin films (A, B) to be used that do not dissolve each other under the processing conditions in coextrusion, pre-compression bonding, thermocompression bonding, and thinning. If they are dissolved, a new molten layer appears between the laminated films (C), and light refraction occurs at the interfaces on both sides of the new layer, which is not preferable.

積層体(E)中の積層フィルム(C)の各層の厚みは、特に制限はないが熱圧着、薄膜化の加工性、薄膜化(又は延伸)後の多層膜の厚み等を考慮すると、5〜100μm、更に20〜50μmの範囲にあるのが望ましい。このような熱可塑性フィルムは、押出成形又は共押出成形により、単層又は多層フィルムとして得られたものを任意に積層して積層フィルム(C)とすることができる。
積層体(E)の全厚みは、上記積層フィルム(C)部の厚みに前記した保護層(D)の厚みを合計した厚みになる。
The thickness of each layer of the laminated film (C) in the laminated body (E) is not particularly limited, but considering the thermocompression bonding, the processability of thinning, the thickness of the multilayer film after thinning (or stretching), etc., 5 It is desirable that it is in the range of ˜100 μm, more preferably 20˜50 μm. Such a thermoplastic film can be laminated by arbitrarily laminating one obtained as a single layer or a multilayer film by extrusion molding or coextrusion molding to obtain a laminated film (C).
The total thickness of the laminate (E) is a thickness obtained by adding the thickness of the protective layer (D) to the thickness of the laminated film (C).

本発明で使用する2種類の熱可塑性樹脂フィルム(A、B)の樹脂は多層膜(Et)に要求される性能に応じて適宜選択され、非晶性の樹脂及び結晶性の樹脂のいずれも使用することができる。好ましい組み合わせは、非晶性樹脂同士又は結晶性樹脂同士の組み合わせであり、屈折率の差、及び相溶性の悪い樹脂の組み合わせを考慮すると非晶性樹脂の組み合わせがより好ましい。
積層フィルム(C)用の透明な熱可塑性樹脂を例示すると下記のものが挙げられるが、本発明においてはこれらの樹脂に限定されるものではない。
(i)非晶性樹脂として、ポリスチレン、ポリ塩化ビニル、ABS樹脂、AS樹脂、ポリメタクリル酸メチル、ポリ塩化ビニリデン、ポリカーボネート、変性ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリアミドイミド、ポリエーテリイミド、ポリイミド等が挙げられる。
The resins of the two types of thermoplastic resin films (A, B) used in the present invention are appropriately selected according to the performance required for the multilayer film (Et), and both the amorphous resin and the crystalline resin are used. Can be used. A preferable combination is a combination of amorphous resins or a combination of crystalline resins, and a combination of amorphous resins is more preferable in consideration of a difference in refractive index and a combination of resins having poor compatibility.
Examples of the transparent thermoplastic resin for the laminated film (C) include the following, but the present invention is not limited to these resins.
(I) As an amorphous resin, polystyrene, polyvinyl chloride, ABS resin, AS resin, polymethyl methacrylate, polyvinylidene chloride, polycarbonate, modified polyphenylene ether, polysulfone, polyethersulfone, polyarylate, polyamideimide, polyether Examples include teriimide and polyimide.

また、非晶性であるアクリレート系樹脂として下記のものが挙げられるが、カッコ内の数値は最初の数値は屈折率を示し、最後の数字はガラス転移温度(Tg)(°C)を示す。
ポリ(t〜ブチルメタクリレート)[ 1.464, 60 ]、ポリイソプロピルメタクリレート[ 1.473, 81 ]、ポリイソブチルメタクリレート[ 1.477, 60 ]、ポリビニルブチラール[ 1.485, 49 ]、ポリメチルメタクリレート[ 1.489, 105 ]、ポリビニルアルコール[ 1.51, 85 ]、ポリシクロヘキシルメタクリレート[ 1.507, 83 ]、ポリ(2〜ヒドロキシエチルメタクリレート) [1.512, 55 ]、ポリイソプロピルメタクリレート[ 1.552, 81 ]、ポリ(p−イソプロピルスチレン)[ 1.554, 87 ]、ポリベンジルメタクリレート[ 1.568, 54 ]、ポリフェニルメタクリレート[ 1.571, 110 ]、ポリスチレン[ 1.591, 100 ]
(ii)結晶性樹脂として、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリビニルアルコール、ポリフッ化ビニリデン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリエーテルエーテルケトン等が挙げられる。
(iii)上記した熱可塑性樹脂の中で、屈折率差、融点、ガラス転移温度、溶融粘度比等を考慮すると、種々の組合せが考えられるが、好ましい例として、ポリスチレンとポリメチルメタクリル系樹脂、ポリカーボネートとポリメチルペンテン等が挙げられる。
Examples of the amorphous acrylate resin include the following, and the numerical value in parentheses indicates the refractive index, and the last numerical value indicates the glass transition temperature (Tg) (° C.).
Poly (t-butyl methacrylate) [1.464, 60], polyisopropyl methacrylate [1.473, 81], polyisobutyl methacrylate [1.477, 60], polyvinyl butyral [1.485, 49], polymethyl methacrylate [1.489, 105], polyvinyl alcohol [1.51, 85], polycyclohexyl methacrylate [1.507, 83], poly (2-hydroxyethyl methacrylate) [1.512, 55], polyisopropyl methacrylate [1.552, 81], poly (p-isopropylstyrene) [1.554, 87] , Polybenzyl methacrylate [1.568, 54], polyphenyl methacrylate [1.571, 110], polystyrene [1.591, 100]
(Ii) Examples of the crystalline resin include polyethylene, polypropylene, polymethylpentene, polyvinyl alcohol, polyvinylidene fluoride, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, and polyether ether ketone.
(Iii) Among the above-described thermoplastic resins, various combinations are conceivable in consideration of the difference in refractive index, melting point, glass transition temperature, melt viscosity ratio, etc. As preferred examples, polystyrene and polymethylmethacrylic resin, Examples include polycarbonate and polymethylpentene.

(2)保護層(D)
保護層(D)は、積層フィルム(C)の両外側面に配置されて、予備圧着、熱圧着及び薄膜化する際の積層フィルム(C)を保護する層として機能する。すなわち、保護層(D)を設けることにより、プレス又は圧延により薄膜化する際の積層フィルム(C)部の層の乱れを顕著に少なくでき、薄膜化加工において圧下率を大幅に増加することが可能になる。
このように、積層フィルム(C)の層数が多くそれに対応する厚みがある場合に、積層フィルム(C)の両外側に保護層(D)を設けてプレス又は圧延により薄膜化すると薄膜化加工が極めて容易になるばかりでなく、所望の膜厚にするために圧下率を高めることが可能になる。
積層フィルム(C)を保護するための保護層(D)は、予備圧着と熱圧着するために積層フィルム(C)と同等かそれよりは多少硬い樹脂が望ましい。また、積層フィルム(C)の保護の観点から、保護層(D)のそれぞれの厚みは光干渉機能を有しない程度の厚みが好ましく、より好ましくは40μm以上、特に好ましくは40〜800μmであり、又は積層フィルム(C)の厚みのより好ましくは0.04倍以上であり、特に好ましくは0.05倍以上である。
保護層(D)の厚みが光干渉機能を有しない厚みとすることでその機能が発揮でき、より好ましくは40μm以上、かつ積層フィルム(C)の厚みの0.04倍以上で保護層(D)としての機能がより良好に発揮される。尚、実用性の面からは保護層(D)の厚みは40μm以上がより好ましく、100μm以上が特に好ましい。また、保護層(D)の厚みを800μmを超える厚みとしてもその機能の向上は期待できず、経済性の面から800μmを超える厚みとする必要性は乏しい。
保護層(D)は、積層体(E)として積層フィルム(C)と同時に予熱して熱圧着されるので加工性の点から、ガラス転移温度(Tg)は2種類の熱可塑性樹脂フィルム(A、B)と同程度であるのが望ましい。上記した観点から、保護層(D)に使用する透明な熱可塑性樹脂としては、使用する2種類の熱可塑性樹脂フィルム(A、B)の中から適宜選択することもできる。
(2) Protective layer (D)
A protective layer (D) is arrange | positioned at both the outer side surfaces of a laminated film (C), and functions as a layer which protects the laminated film (C) at the time of pre-compression bonding, thermocompression bonding, and thinning. That is, by providing the protective layer (D), it is possible to remarkably reduce the disturbance of the layer of the laminated film (C) when thinning by pressing or rolling, and to greatly increase the rolling reduction in thinning processing. It becomes possible.
In this way, when the number of layers of the laminated film (C) is large and there is a thickness corresponding thereto, a protective layer (D) is provided on both outer sides of the laminated film (C) and thinned by pressing or rolling to reduce the thickness. Not only becomes extremely easy, but also the reduction ratio can be increased in order to obtain a desired film thickness.
The protective layer (D) for protecting the laminated film (C) is preferably a resin that is equal to or somewhat harder than the laminated film (C) in order to perform pre-compression bonding and thermocompression bonding. In addition, from the viewpoint of protecting the laminated film (C), each thickness of the protective layer (D) is preferably a thickness that does not have a light interference function, more preferably 40 μm or more, and particularly preferably 40 to 800 μm. Alternatively, the thickness of the laminated film (C) is more preferably 0.04 times or more, and particularly preferably 0.05 times or more.
If the thickness of the protective layer (D) is such that it does not have a light interference function, the function can be exerted, more preferably 40 μm or more and 0.04 times or more the thickness of the laminated film (C). ) As a function. In terms of practicality, the thickness of the protective layer (D) is more preferably 40 μm or more, and particularly preferably 100 μm or more. Moreover, even if the thickness of the protective layer (D) exceeds 800 μm, the improvement of the function cannot be expected, and the necessity of setting the thickness exceeding 800 μm is scarce from the economical aspect.
Since the protective layer (D) is preheated and thermocompression bonded as the laminate (E) simultaneously with the laminate film (C), the glass transition temperature (Tg) has two types of thermoplastic resin films (A) from the viewpoint of workability. , B) is desirable. From the above viewpoint, the transparent thermoplastic resin used for the protective layer (D) can be appropriately selected from the two types of thermoplastic resin films (A, B) used.

(3)積層体(E)
2種類の熱可塑性樹脂フィルムをそれぞれA、Bとし、保護層をDと記載すると、積層体(E)の層構成は、D/A/B/・・・・・A/B/A/Dとすることができ、またD/A/B/・・・・A/B/Dとすることもできる。
尚、プレスにより高い圧化率を得る場合には、1度の薄膜化後に得られた多層体の両外側面に新たな保護層(D)を設けて更にプレスにより延伸して薄膜化することも可能である。2度目以降に多層体の両外側面に設けられる保護層(D)は最初に積層フィルム(C)の両外側面に設けられるものと同じ熱可塑性樹脂を使用することができるがその厚みは圧化率等を考慮して決定される。
(3) Laminate (E)
If the two types of thermoplastic resin films are A and B and the protective layer is D, the layer structure of the laminate (E) is D / A / B / ... A / B / A / D. Or D / A / B /... A / B / D.
When a high pressing ratio is obtained by pressing, a new protective layer (D) is provided on both outer side surfaces of the multilayer body obtained after the thinning once, and further thinned by stretching by pressing. Is also possible. The protective layer (D) provided on both outer side surfaces of the multilayer body from the second time can use the same thermoplastic resin as that initially provided on both outer side surfaces of the laminated film (C). It is determined in consideration of the conversion rate.

(4)予備圧着
プレス又は圧延を行う前に、積層体(E)内に残存する気体の除去を行うことにより、プレス又は圧延して得られる多層膜(Et)の層間に気体が巻き込まれて多層膜に乱れが生ずるのを著しく防止することができる。
予備圧着は、積層体(E)を熱圧着しない温度条件下に、積層体(E)の両外側面から厚み方向に積層フィルム(C)にひずみ又はその内部の層間でずれの生じない圧力以下で予備圧着して積層フィルム(C)間、及び積層フィルム(C)と保護層(D)間に残存する気体の除去を行う工程であり、このように積層体(E)等に外部から圧力を加える操作は当該技術分野又は他の技術分野において、与圧又は予圧といわれることもある。
予備圧着を積層フィルム(C)にひずみ又はその内部の層間でずれの生じない圧力以下で積層フィルム(C)間及び積層フィルム(C)と保護層(D)間に残存する気体を除去することにより、所望の多層膜(Et)を安定的に製造することができ、優れた光学的機能を有する多層膜(Et)を得ることが可能になる。
(4) Pre-crimping Before performing pressing or rolling, gas is entrained between the layers of the multilayer film (Et) obtained by pressing or rolling by removing the gas remaining in the laminate (E). It is possible to remarkably prevent the multilayer film from being disturbed.
The pre-compression is a pressure that does not cause strain or displacement between the inner layers of the laminate (E) in the thickness direction from both outer side surfaces of the laminate (E) under temperature conditions where the laminate (E) is not thermocompression bonded. Is a step of removing the gas remaining between the laminated film (C) and between the laminated film (C) and the protective layer (D) by pre-compression with the pressure applied to the laminated body (E) and the like from the outside. The operation of adding is sometimes referred to as pressurization or preload in the technical field or other technical fields.
Remove the gas remaining between the laminated films (C) and between the laminated films (C) and the protective layer (D) under a pressure that does not cause pre-crimping to the laminated film (C) or cause a shift between the inner layers. Thus, a desired multilayer film (Et) can be stably produced, and a multilayer film (Et) having an excellent optical function can be obtained.

予備圧着の条件は、実用的な面からは厚み方向に2500Pa以上でかつ前記プレス又は圧延の圧力の2分の1以下で、好ましくは2500〜10000Pa、より好ましくは2500〜8000Pa、特に好ましくは3000〜6000Paである。
尚、予備圧着における積層体(E)の温度は、熱圧着が進行しない程度の温度であればよく、室温(25°C)程度で行うのが効率的である。また、予備圧着において積層体(E)の温度は、変形を防止する意味からも使用する2種類の樹脂のそれぞれのガラス転移温度Tg以下に維持するのが好ましい。
予備圧着する時間は、積層体(E)の形状(その長さ、幅及び層数等)とその材料物性(積層フィルム(C)と保護層(D)の硬さ等)にもよるので一概に決めることができないが、残存する気体の除去に必要な時間より多少長めの時間を設定しておけば特に問題はない。
予備圧着で予備圧着手段に使用する装置に特に制限はないが、バッチ式プレス又は圧延ローラー等を使用することができる。熱圧着のための予熱をも考慮すれば、予備圧着と予熱の双方が可能な装置が望ましい。
Pre-bonding conditions are 2500 Pa or more in the thickness direction from a practical aspect and 1/2 or less of the pressure of the press or rolling, preferably 2500 to 10000 Pa, more preferably 2500 to 8000 Pa, particularly preferably 3000. -6000 Pa.
In addition, the temperature of the laminated body (E) in the pre-compression may be a temperature at which thermocompression bonding does not proceed, and it is efficient to carry out at a room temperature (25 ° C.). Moreover, it is preferable to maintain the temperature of a laminated body (E) in pre-crimping below below each glass transition temperature Tg of two types of resin used also from the meaning which prevents a deformation | transformation.
The pre-compression time depends on the shape of the laminate (E) (its length, width, number of layers, etc.) and its material properties (hardness of the laminate film (C) and protective layer (D), etc.). However, there is no particular problem if a time slightly longer than the time required for removing the remaining gas is set.
Although there is no restriction | limiting in particular in the apparatus used for a precompression bonding means by precompression, A batch type press or a rolling roller etc. can be used. In consideration of preheating for thermocompression bonding, an apparatus capable of both precompression bonding and preheating is desirable.

(5)熱圧着
実施形態1において熱圧着を行う目的は、プレス又は圧延により薄膜化する際に、積層フィルム(C)間及び積層フィルム(C)と保護層(D)間において、ずれが発生して層間に乱れが生ずるのを防止するためである。
熱圧着は、積層体(E)を熱圧着可能な温度に予熱し、かつ積層体(E)の両外側面から厚み方向に前記予備圧着と同じ圧力条件範囲内の圧力を加えた状態で熱圧着することにより行われ、積層体(E)は熱圧着により一体化される。
この場合における「熱圧着」とは、積層フィルム(C)間及び積層フィルム(C)と保護層(D)間の界面で圧着と前記予熱により、各樹脂層が溶融して相互に高分子が移動し合う融着現象には至らないで熱圧着された状態、すなわち、プレスもしくは圧延により薄膜化、又は延伸する際に、積層フィルム(C)間及び積層フィルム(C)と保護層(D)間においてずれが殆ど生じないようになっている状態をいう。
熱圧着のための予熱開始は、予備圧着後に行うことができるが、積層体(E)内の残存気体の除去が熱圧着可能な温度に到達する前に行われれば前記予備圧着前又は予備圧着中に積層体(E)の予熱を開始してもよい。
(5) Thermocompression bonding The purpose of performing thermocompression bonding in Embodiment 1 is that deviation occurs between the laminated film (C) and between the laminated film (C) and the protective layer (D) when thinning by pressing or rolling. This is to prevent disturbance between the layers.
In thermocompression bonding, the laminate (E) is preheated to a temperature at which thermocompression bonding can be performed, and heat is applied in a state where pressure in the same pressure condition range as the precompression bonding is applied in the thickness direction from both outer side surfaces of the laminate (E). The laminated body (E) is integrated by thermocompression bonding.
In this case, “thermocompression bonding” means that the resin layers are melted by the pressure bonding and the preheating at the interfaces between the laminated films (C) and between the laminated films (C) and the protective layer (D), so that the polymer is mutually In the state of being thermocompression bonded without reaching the moving fusion phenomenon, that is, when thinned or stretched by pressing or rolling, between the laminated films (C) and the laminated film (C) and the protective layer (D) It means a state where there is almost no deviation between them.
The preheating start for the thermocompression bonding can be performed after the precompression bonding, but if the removal of the residual gas in the laminate (E) is performed before reaching the temperature at which the thermocompression bonding is possible, the precompression bonding or the precompression bonding is performed. You may start preheating of a laminated body (E) in it.

前記熱圧着可能な温度は、下記の(i)ないし(iii)とするのが望ましいが、前記圧力条件範囲と同様に使用する熱可塑性樹脂の物性と積層体(E)の構成により異なるので一律に決定することは困難な場合があるので、薄膜化する積層体(E)を想定した実験による確認が必要な場合がある。
(i)2種類の熱可塑性樹脂フィルム(A、B)が共に非晶性樹脂である場合には積層体(E)の中心部が前記2種類の熱可塑性樹脂の双方のガラス転移温度(Tg)よりも40〜80°C高い温度
(ii)2種類の熱可塑性樹脂フィルム(A、B)の一方が非晶性樹脂で他方が結晶性樹脂である場合には積層体(E)の中心部が前記2種類の熱可塑性樹脂のうちの低い方のガラス転移温度(Tg)よりも50°C高い温度から前記結晶性樹脂の融点(Tm)より30°C低い温度
(iii)2種類の透明な熱可塑性樹脂フィルム(A、B)が結晶性樹脂の場合には積層体(E)中心部が前記2種類の熱可塑性樹脂の双方の融点(Tm)より30〜50°C低い温度
上記(i)〜(iii)の条件において、それぞれの温度範囲の前記下限以上の温度で加工性を維持でき、一方、前記上限以下の温度であれば熱圧着時に変形することなく、層構造を維持することができる。
The temperature at which the thermocompression bonding can be performed is desirably the following (i) to (iii), but is uniform because it varies depending on the physical properties of the thermoplastic resin used and the configuration of the laminate (E) as in the pressure condition range. In some cases, it may be difficult to determine the thickness of the laminated body (E).
(I) When the two types of thermoplastic resin films (A, B) are both amorphous resins, the center of the laminate (E) is the glass transition temperature (Tg) of both of the two types of thermoplastic resins. ) Higher than 40) to 80 ° C. (ii) When one of the two thermoplastic resin films (A, B) is an amorphous resin and the other is a crystalline resin, the center of the laminate (E) The temperature of the part is 50 ° C higher than the lower glass transition temperature (Tg) of the two types of thermoplastic resins, and 30 ° C lower than the melting point (Tm) of the crystalline resin (iii) When the transparent thermoplastic resin film (A, B) is a crystalline resin, the temperature at which the central part of the laminate (E) is 30 to 50 ° C. lower than the melting points (Tm) of both of the two types of thermoplastic resins. In the conditions (i) to (iii), the temperature is increased at a temperature equal to or higher than the lower limit of each temperature range. It can maintain gender, whereas, without deforming at the time of thermocompression bonding, if the upper limit or less of the temperature, it is possible to maintain laminar structure.

本発明において、ガラス転移温度(Tg)(°C)とは、DSC法(示差走査熱量測定法、昇温速度10°C/min)により測定される中間点ガラス転移温度(Tmg)をいい、融点(Tm)(°C)とは、同様にDSC法(示差走査熱量測定法、昇温速度10°C/min)により測定される融点をいう。これらの値は、例えば、マック・サイエンス(株)製、DSC(3100型)等を用いて測定することが可能である。
尚、代表的な結晶性プラスチックのガラス転移温度(Tg)と融点(Tm)の温度差は約175〜210°Cであるので、Tgよりも50〜100°C高い温度範囲では融着現象は一般に生じない。また、2種類の熱可塑性樹脂フィルム(A、B)が結晶性樹脂の場合には前記2種類の熱可塑性樹脂の双方の融点(Tm)より30〜50°C低い温度では融着現象は一般に生じない。
In the present invention, the glass transition temperature (Tg) (° C) refers to the midpoint glass transition temperature (Tmg) measured by the DSC method (differential scanning calorimetry, heating rate 10 ° C / min), The melting point (Tm) (° C.) refers to the melting point similarly measured by the DSC method (differential scanning calorimetry, heating rate 10 ° C./min). These values can be measured using, for example, DSC (model 3100) manufactured by Mac Science Co., Ltd.
Since the temperature difference between the glass transition temperature (Tg) and the melting point (Tm) of typical crystalline plastics is about 175 to 210 ° C., the fusing phenomenon does not occur in the temperature range 50 to 100 ° C. higher than Tg. Generally does not occur. In the case where the two types of thermoplastic resin films (A, B) are crystalline resins, the fusion phenomenon generally occurs at a temperature 30 to 50 ° C. lower than the melting points (Tm) of the two types of thermoplastic resins. Does not occur.

予熱温度を前記した温度範囲を超えて融点近くまでに上昇させると、積層フィルム(C)間で新たな溶融層が出現し、その新たな層の両側の界面で光屈折が生ずるおそれがあり好ましくない。
熱圧着における圧力条件は、予備圧着と同じ程度の圧力であれば良く、予備圧着の圧力をそのまま維持してもよい。
熱圧着の好ましい圧力条件範囲は、使用する熱可塑性樹脂の物性と積層体(E)の構成により異なるので一律に決定することは困難であるが、予備圧着が高めの圧力で圧着される場合に、そのままの圧力で熱圧着可能な温度に予熱される場合に、光学的機能を損なうひずみ又は層間でのずれを生ずるおそれがあるので、熱圧着のための圧力上限は予備圧着時よりは低めに設定する方が安全な場合がある。
予熱時間は、使用する樹脂の組み合わせ、積層体(E)の厚みにもよるが積層体(E)の中心部温度が所定の温度に到達して、プレスを用いる場合には数分間以上、1〜30分程度、圧延の場合には更に短時間でもよい。プレスを用いる場合、例えば積層体(E)の厚みが1000μmでは20分間程度が好ましい。
熱圧着のための予熱における予熱手段に特に制限はないが、熱板、熱プレス板、恒温槽、非接触の赤外線ヒータ等が例示できる。
If the preheating temperature is raised to near the melting point beyond the above-mentioned temperature range, a new molten layer appears between the laminated films (C), and there is a possibility that light refraction may occur at the interfaces on both sides of the new layer. Absent.
The pressure condition in the thermocompression bonding may be the same pressure as the precompression bonding, and the precompression bonding pressure may be maintained as it is.
The preferred pressure condition range for thermocompression bonding is difficult to determine uniformly because it varies depending on the physical properties of the thermoplastic resin used and the configuration of the laminate (E). When preheated to a temperature that allows thermocompression bonding under the same pressure, there is a risk of distortion that impairs the optical function or displacement between layers, so the upper pressure limit for thermocompression should be lower than that during precompression. It may be safer to set.
The preheating time depends on the combination of the resins used and the thickness of the laminate (E), but when the center temperature of the laminate (E) reaches a predetermined temperature and a press is used, it is several minutes or more. In the case of rolling for about 30 minutes, a shorter time may be used. When using a press, for example, when the thickness of the laminate (E) is 1000 μm, about 20 minutes is preferable.
There are no particular restrictions on the preheating means for preheating for thermocompression bonding, and examples include a hot plate, a hot press plate, a thermostatic bath, a non-contact infrared heater, and the like.

(6)薄膜化
薄膜化は、熱圧着後の積層フィルム(C)を公知の方法等を使用してプレス又は圧延により薄膜化する工程である。実施形態1の薄膜化では、前記予備工程である、予備圧着と熱圧着の採用により薄膜化しても積層体(E)内の各層に乱れが生じないので圧下率を高めに設定することができ、1度のプレス又は圧延による延伸で積層フィルム(C)を1/10ないし1/90の厚みに薄膜化することが可能である。
特に実施形態1の薄膜化においては、前記プレスにより薄膜化して得た多層体の両外側面に新たに保護層(D)を設けて更にプレスにより薄膜化する操作を少なくとも2度以上行うことにより、又は前記圧延ローラーを複数組合せて多段で圧延することにより、プレス又は圧延前の積層体(E)中の積層フィルム(C)部の厚みを1/20ないし1/300に薄膜化することが可能である。
薄膜化は、熱圧着における予熱温度条件範囲内で行われるのが望ましく、プレス又は圧延の圧力は3〜200MPa程度が望ましい。
薄膜化においてプレス装置を使用する場合には熱圧着後に圧力を開放しないで連続してプレスによる延伸を行ってもよく、一方、圧力を一旦開放してからプレスによる延伸を行ってもよい。
前記(i)予備圧着、(ii)熱圧着、及び(iii)1段又は多段の圧延を複数のローラーを用いて行うことにより、前記(i)予備圧着ないし(iii)圧延を連続的に行うことが可能である。
(6) Thinning Thinning is a step of thinning the laminated film (C) after thermocompression bonding by pressing or rolling using a known method or the like. In the thin film formation of the first embodiment, even if the thin film is formed by adopting the pre-bonding and thermocompression bonding, which are the preliminary steps, no disturbance occurs in each layer in the laminate (E), so the reduction ratio can be set high. The laminated film (C) can be thinned to a thickness of 1/10 to 1/90 by one-time pressing or stretching by rolling.
In particular, in the thinning of the first embodiment, the protective layer (D) is newly provided on both outer side surfaces of the multilayer body obtained by thinning by the press, and the thinning by press is further performed at least twice. Alternatively, the thickness of the laminated film (C) portion in the laminate (E) before pressing or rolling can be reduced to 1/20 to 1/300 by rolling a plurality of rolling rollers in combination. Is possible.
The thinning is desirably performed within a preheating temperature condition range in thermocompression bonding, and the pressing or rolling pressure is preferably about 3 to 200 MPa.
When a press apparatus is used for thinning, stretching by pressing may be performed continuously without releasing the pressure after thermocompression bonding. On the other hand, stretching by pressing may be performed after releasing the pressure once.
The (i) pre-compression, (ii) thermocompression, and (iii) one-stage or multi-stage rolling are performed by using a plurality of rollers, so that the (i) pre-compression or (iii) rolling is performed continuously. It is possible.

(7)延伸
本発明においては、上記薄膜化の後に更にチャッキング手段等の引張力による延伸を行うことができる。
例えば、前記(i)予備圧着、(ii)熱圧着、及び(iii)1段又は多段の圧延を複数のローラー手段を用いて行い、更に(iv) チャッキング手段等の引張力による延伸を行うことにより、前記(i)予備圧着ないし(iv)延伸を連続的に行うことができる。特に、連続して延伸薄膜化を行う工程においては発色を確認しながら延伸倍率をインラインでコントロールできるという利点がある。
また、引張力による延伸は、連続工程でなくバッチ式工程で行うこともできる。バッチ式工程での延伸は、1回でも良いし、複数回行って良く、その際の延伸方向と延伸回数の選定は必要に応じて自由に選択できる。また、バッチ式工程での延伸は、同時2軸延伸を行ってもよい。
延伸倍率として1度の延伸でそれぞれの方向に2〜4倍の範囲で行うことができる。
前記1度もしくは複数回のプレス又は1段もしくは多段の圧延により薄膜化した多層体を、更に引張力による延伸を行うことにより、プレス又は圧延前の積層体(E)中の積層フィルム(C)部の厚みを1/150ないし1/2000に薄膜化させることが可能である。
(7) Stretching In the present invention, after the thinning, stretching by a tensile force such as chucking means can be performed.
For example, (i) pre-compression, (ii) thermocompression, and (iii) one-stage or multi-stage rolling is performed using a plurality of roller means, and (iv) stretching is performed by a tensile force such as chucking means. Thus, the (i) pre-compression or (iv) stretching can be continuously performed. In particular, in the process of continuously forming a stretched thin film, there is an advantage that the stretch ratio can be controlled in-line while confirming color development.
In addition, stretching by a tensile force can be performed not by a continuous process but by a batch process. The stretching in the batch process may be performed once or may be performed a plurality of times, and the selection of the stretching direction and the number of stretching at that time can be freely selected as necessary. In addition, the stretching in the batch process may be performed by simultaneous biaxial stretching.
The stretching ratio can be 2 to 4 times in each direction by one stretching.
The multilayered film (C) in the laminated body (E) before pressing or rolling by further stretching the multilayered body formed by the one-time or multiple-time pressing or one-stage or multi-stage rolling with a tensile force. The thickness of the part can be reduced to 1/150 to 1/2000.

(8)多層膜(Et)
かくして得られた多層膜(Et)は、2つの保護膜(Dt)部と、前記2つの保護膜(Dt)間に位置する積層膜(Ct)部とからなる多層膜(Et)である。
薄膜化に使用する積層フィルム(C)、及び薄膜化の割合は、目的物である多層膜(Et)の用途に対応して適宜選択されうる。
薄膜化により得られる多層膜(Et)は、厚み方向に10層以上、特に20〜500層配列され、多層膜の全厚みが500nm〜500μmとすることが可能である。
積層膜における積層厚み比(積層方向の異なる樹脂層の最大値と最小値の比)は通常、1〜5であるが、本発明の多層膜(Et)の製造方法においては1ないし25としても発色体等の用途に十分使用することが可能である。
積層膜における積層精度([(最大層厚み〜最小層厚み)/最小層厚み]×100(%))は小さいほう好ましいが、本発明の多層膜(Et)の製造方法においては300%ないし1500%の範囲の積層精度でも発色等の機能を有している。また、赤、青、又は緑の光の波長における反射率が60%以上である多層膜(Et)を得ることも可能である。
また、実施形態1に記載する積層体の両外側面に保護層(D)を設けて薄膜化する、製造方法を採用すると、多層膜(Et)の厚みが中心方向に向かって薄くなり(特に保護層(D)の厚みを大きくするとこの傾向は顕著になる)かつ積層膜(Ct)部における各層の配列に乱れがないものを得ることが可能である。このような多層膜(Et)はこれまで知られていない、新規かつ有用な多層膜である。
(8) Multilayer film (Et)
The multilayer film (Et) thus obtained is a multilayer film (Et) composed of two protective film (Dt) parts and a laminated film (Ct) part positioned between the two protective films (Dt).
The laminated film (C) used for thinning and the ratio of thinning can be appropriately selected according to the use of the multilayer film (Et) which is the target product.
The multilayer film (Et) obtained by thinning is arranged in a thickness direction of 10 layers or more, particularly 20 to 500 layers, and the total thickness of the multilayer film can be 500 nm to 500 μm.
The lamination thickness ratio in the laminated film (ratio between the maximum value and the minimum value of resin layers having different lamination directions) is usually 1 to 5, but may be 1 to 25 in the method for producing a multilayer film (Et) of the present invention. It can be used sufficiently for applications such as color bodies.
The lamination accuracy ([(maximum layer thickness-minimum layer thickness) / minimum layer thickness] × 100 (%)) in the laminated film is preferably small, but in the method for producing a multilayer film (Et) of the present invention, 300% to 1500%. Even with a stacking accuracy in the range of%, it has functions such as coloring. It is also possible to obtain a multilayer film (Et) having a reflectance of 60% or more at the wavelength of red, blue, or green light.
In addition, when a manufacturing method is adopted in which the protective layer (D) is provided on both outer side surfaces of the laminate described in the first embodiment to reduce the thickness, the thickness of the multilayer film (Et) becomes thinner toward the center direction (particularly, When the thickness of the protective layer (D) is increased, this tendency becomes remarkable), and it is possible to obtain a layer in which the arrangement of each layer in the laminated film (Ct) portion is not disturbed. Such a multilayer film (Et) is a new and useful multilayer film that has not been known so far.

[2] 実施形態2
実施形態2に係る多層膜(Et)は、屈折率の差が0.05以上である2種類の透明な熱可塑性樹脂フィルム(A、B)が厚み方向に交互に10層以上積層された積層フィルム(C)を、透明な熱可塑性樹脂からなる2つの保護層(D)間に配置して形成された積層体(E)をプレス又は圧延により薄膜化して得られた、2つの保護膜(Dt)部と、当該2つの保護膜(Dt)間に位置する積層膜(Ct)部とからなる多層膜(Et)であって、
積層膜(Ct)部の全厚みが500nm〜100μmで、その厚みが中心方向に向かって薄くなる傾向にあり、かつ積層膜(Ct)部の積層配列に乱れがない、ことを特徴とする。
実施形態2に係る多層膜(Et)は、例えば、実施形態1に記載した、屈折率の異なる2種類の透明な熱可塑性樹脂フィルム(A、B)が厚み方向に交互に積層された積層フィルム(C)を、透明な熱可塑性樹脂からなる2つの保護層(D)間に配置して積層体(E)を形成し、この積層体(E)をプレス又は圧延により薄膜化して得られる多層膜(Et)である。
従って、実施形態1における前記積層体(E)を構成する積層フィルム(C)部、保護層(D)部に相当する部分は、前記プレス又は圧延により薄膜化されてそれぞれ実施形態2における積層膜(Ct)部、保護膜(Dt)部となる。
[2] Embodiment 2
The multilayer film (Et) according to Embodiment 2 is a laminate in which two or more transparent thermoplastic resin films (A, B) having a refractive index difference of 0.05 or more are alternately laminated in the thickness direction. Two protective films obtained by thinning a laminate (E) formed by placing the film (C) between two protective layers (D) made of a transparent thermoplastic resin by pressing or rolling ( Dt) part and a multilayer film (Et) composed of a laminated film (Ct) part located between the two protective films (Dt),
The total thickness of the laminated film (Ct) part is 500 nm to 100 μm, the thickness tends to decrease toward the center direction, and the laminated arrangement of the laminated film (Ct) part is not disturbed.
The multilayer film (Et) according to the second embodiment is, for example, a laminated film in which two types of transparent thermoplastic resin films (A, B) having different refractive indexes described in the first embodiment are alternately laminated in the thickness direction. A multilayer obtained by arranging (C) between two protective layers (D) made of a transparent thermoplastic resin to form a laminate (E) and thinning the laminate (E) by pressing or rolling. It is a membrane (Et).
Therefore, the portions corresponding to the laminated film (C) portion and the protective layer (D) portion constituting the laminated body (E) in Embodiment 1 are thinned by the pressing or rolling, and the laminated film in Embodiment 2 respectively. A (Ct) part and a protective film (Dt) part are formed.

上記から、実施形態2における積層膜(Ct)部と、保護膜(Dt)部は、実施形態1で記載した積層フィルム(C)部、保護層(D)部に使用する材料と同様である。
これまで、2つの保護層(D)の間に屈折率の異なる2種類の熱可塑性樹脂フィルム(A、B)、又はこれらが積層されたフィルムを厚み方向に交互に20〜500層程度配列してなる積層膜(Ct)部の全厚みが500nm〜100μm程度の多層の構造体としては、例えば特開2004−122764号公報に包装材料用としてフィードブロックにて9層に積層した後、スクエアーミキサーを用いて129層で厚みが50μmの積層フィルムが開示され、また、前記特許文献2には、2種類の熱可塑性樹脂をフィードブロックにて201層に合流させた後コートハンガーダイに供給してシート状に成形した後、予熱下に3倍に縦延伸し、3.5倍に横延伸して厚み18μmのフィルムを得たことが記載されている。
From the above, the laminated film (Ct) part and protective film (Dt) part in Embodiment 2 are the same as the materials used for the laminated film (C) part and protective layer (D) part described in Embodiment 1. .
Up to now, two types of thermoplastic resin films (A, B) having different refractive indexes between two protective layers (D) or a film in which these are laminated are alternately arranged in the thickness direction by about 20 to 500 layers. As a multilayered structure having a total thickness of the laminated film (Ct) portion of about 500 nm to 100 μm, for example, Japanese Patent Application Laid-Open No. 2004-122864 uses a feed block for laminating nine layers with a square mixer. A laminated film having a thickness of 129 layers and a thickness of 50 μm is disclosed, and in Patent Document 2, two types of thermoplastic resins are merged into 201 layers by a feed block, and then supplied to a coat hanger die. It is described that after forming into a sheet shape, the film was stretched longitudinally 3 times under preheating and transversely stretched 3.5 times to obtain a film having a thickness of 18 μm.

しかしながら、公知の共押出法、積層体(E)を引張力による延伸法、又は積層体(E)をプレス又は圧延による延伸法では厚み方向に交互に20〜500層配列して積層膜(Ct)部の全厚みが500nm〜100μmであって、かつ各層の配列に乱れがないものは知られていない。
また、公知の共押出法、積層体(E)を引張力による延伸法では保護層(D)間に積層されている膜の厚みが中心方向に向かって薄くなる傾向のもので、かつ各層の配列に乱れがないものはこれまで知られていなかった。
尚、本発明の多層膜(Et)における保護層(D)間に「積層されている膜の厚みが中心方向に向かって薄くなる傾向」とは、膜の厚みが中心に向かって一様に薄くなるほどの厳密さは要求されず、本実施例1の図1の断面写真で示す程度の傾向が認められる程度のものであればよい。
However, in the known coextrusion method, the laminate (E) is stretched by a tensile force, or the laminate (E) is stretched by pressing or rolling, 20 to 500 layers are alternately arranged in the thickness direction to form a laminated film (Ct It is not known that the total thickness of the part) is 500 nm to 100 μm and the arrangement of each layer is not disturbed.
Further, in the known coextrusion method, the laminate (E) is stretched by a tensile force, and the thickness of the film laminated between the protective layers (D) tends to decrease toward the center direction, and Nothing has been known so far that the arrangement is not disturbed.
In addition, “the tendency that the thickness of the laminated film becomes thinner toward the center” between the protective layers (D) in the multilayer film (Et) of the present invention means that the thickness of the film is uniform toward the center. The strictness is not required to be thin, and it is sufficient that the tendency as shown in the sectional photograph of FIG.

薄膜化で使用する積層フィルム(C)、及び薄膜化の割合は、目的物である多層膜(Et)の用途に対応して適宜選択される。本発明の薄膜化で得られる多層膜(Et)は、厚み方向に10層以上、特に20〜500層配列され、積層膜(Ct)部の全厚みが500nm〜100μmとすることが可能である。
積層膜における積層厚み比(積層方向の異なる樹脂層の最大値と最小値の比)は通常、1〜5であるが、本発明の多層膜(Et)の製造方法においては1〜25としても発色体等の用途に十分使用することが可能である。
積層膜における積層精度([(最大層厚み〜最小層厚み)/最小層厚み]×100(%))は小さい方が好ましいが、本発明においては300%以上1500%以下の積層精度であっても十分に発色等の機能を有している。
The laminated film (C) used for thinning and the ratio of thinning are appropriately selected in accordance with the intended use of the multilayer film (Et). The multilayer film (Et) obtained by the thinning of the present invention has 10 or more layers, particularly 20 to 500 layers arranged in the thickness direction, and the total thickness of the laminated film (Ct) part can be 500 nm to 100 μm. .
The lamination thickness ratio in the laminated film (ratio between the maximum value and the minimum value of the resin layers having different lamination directions) is usually 1 to 5, but may be 1 to 25 in the method for producing the multilayer film (Et) of the present invention. It can be used sufficiently for applications such as color bodies.
The lamination accuracy ([(maximum layer thickness-minimum layer thickness) / minimum layer thickness] × 100 (%)) in the laminated film is preferably small, but in the present invention, the lamination accuracy is 300% to 1500%. Has sufficient functions such as coloring.

多層膜(Et)を特定の色に発色させる構造体に使用する場合には、赤、緑、青等のいずれを発色させるかは、各層の厚み、及び各層の屈折率を選択して容易に設計することができ、多層膜の層数を多くすることにより、その強度を強くすることができる。従って、このような設計に合わせて積層体(E)の1層あたりの厚み、プレス又は圧延による延伸での圧下率を任意に選択すればよい。このようにして得られる多層膜(Et)は、赤、青、緑等の光の波長における反射率を60%以上とすることが可能である。   When the multilayer film (Et) is used for a structure that develops a specific color, it is easy to select which of red, green, blue, etc. to develop by selecting the thickness of each layer and the refractive index of each layer. The strength of the multilayer film can be increased by increasing the number of layers of the multilayer film. Therefore, what is necessary is just to select arbitrarily the reduction | decrease rate by extending | stretching by the thickness per layer of a laminated body (E), a press, or rolling according to such a design. The multilayer film (Et) thus obtained can have a reflectance of 60% or more at the wavelength of light such as red, blue, and green.

[3] 実施形態3
実施形態3に係る多層膜光学素子は、前記(15)ないし(19)に記載の多層膜(Et)の両面に帯電層を設けてなる、粒子状の多層膜光学素子であって、当該多層膜光学素子が一対の透明電極間に収容され、かつ当該透明電極への印加により回転又は移動制御可能とされていることにより、特定色の光の反射又は透過を利用して画像表示を行うことが可能な画像表示装置の画素を構成する、ことを特徴とする。
本発明者らは先に、「画像表示素子、画像表示シート、画像表示装置及び画像表示方法」に関する特許出願(特願2004−111548、以下「先の出願」という)を行った。本発明の多層膜(Et)は、先の出願の画像表示素子に好適に使用することが可能である。
すなわち、上記実施形態2に記載の多層膜(Et)の両外側面に帯電層を設けてなる多層膜光学素子は光反射性に優れているので、画像表示シート用画像表示素子として優れた機能を有するものである。
[3] Embodiment 3
The multilayer optical element according to Embodiment 3 is a particulate multilayer optical element in which charged layers are provided on both sides of the multilayer film (Et) described in (15) to (19). The film optical element is housed between a pair of transparent electrodes and can be rotated or moved by application to the transparent electrodes, thereby displaying an image using reflection or transmission of light of a specific color. The pixel of the image display apparatus which can do is comprised.
The inventors previously filed a patent application (Japanese Patent Application No. 2004-111548, hereinafter referred to as “prior application”) relating to “image display element, image display sheet, image display apparatus and image display method”. The multilayer film (Et) of the present invention can be suitably used for the image display element of the previous application.
That is, since the multilayer optical element in which the charge layers are provided on both outer side surfaces of the multilayer film (Et) described in the second embodiment is excellent in light reflectivity, it has an excellent function as an image display element for an image display sheet. It is what has.

本発明の多層膜光学素子は、2種類の熱可塑性樹脂の屈折率差と多層膜中の各層の厚みを任意に設計することにより、赤、緑、青、シアン、マゼンダ、又はイエローの発色が設計でき、多層膜中の積層数を増やすことでその発色強度を高めることが可能であるので、本発明の多層膜(Et)を使用して形成される多層光学素子は、赤、緑、青、シアン、マゼンダ、又はイエローのうち何れか一色を表示することが容易に可能である。
本発明の多層膜光学素子は前記色の何れか一色の光を反射すると共に当該色に対する補色を透過する非光吸収型で干渉型の光学素子とすることが可能であり、画像表示シート用画像表示素子として使用する場合には、その外形の最大寸法が2μmから200μmまでの範囲にあることが好ましく、外形を平面体、立方体、球体又は凸レンズ形状(凸レンズの中心近傍が平面形状で形成されているものも含む)として使用することが好ましい。
The multilayer optical element of the present invention can develop red, green, blue, cyan, magenta, or yellow color by arbitrarily designing the refractive index difference between two types of thermoplastic resins and the thickness of each layer in the multilayer film. Since the color development intensity can be increased by increasing the number of layers in the multilayer film, the multilayer optical element formed using the multilayer film (Et) of the present invention can be red, green, blue Any one of cyan, magenta, and yellow can be easily displayed.
The multilayer optical element of the present invention can be a non-light-absorbing and interference-type optical element that reflects light of any one of the colors and transmits a complementary color to the color, and is an image for an image display sheet. When used as a display element, the maximum dimension of the outer shape is preferably in the range of 2 μm to 200 μm, and the outer shape is a plane, cube, sphere, or convex lens shape (the vicinity of the center of the convex lens is formed in a plane shape) It is preferable to use as the above.

以下に本発明を実施例によって説明する。
尚、本発明は以下の実施例に限定されるものではない。
(1)使用した材料
(i)ポリスチレン
PSジャパン(株)製、商品名:PSJ-ポリスチレン、屈折率:1.59、Tg:100°C
(ii)ポリメチルメタクリレート樹脂
三菱レイヨン(株)製、商品名:アクリペット、屈折率:1.49、Tg:105°C
(iii)ポリカーボネート
帝人化成(株)製、商品名:パンライト、屈折率:1.585、Tg:145°C
(iv)ポリメチルペンテン
三井化学(株)製、商品名:TPX、屈折率:1.463、Tg:25°C、Tm:235°C
Hereinafter, the present invention will be described by way of examples.
In addition, this invention is not limited to a following example.
(1) Materials used (i) Polystyrene Made by PS Japan, trade name: PSJ-polystyrene, refractive index: 1.59, Tg: 100 ° C
(Ii) Polymethylmethacrylate resin, manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acrypet, refractive index: 1.49, Tg: 105 ° C
(Iii) Polycarbonate, manufactured by Teijin Chemicals Ltd., trade name: Panlite, refractive index: 1.585, Tg: 145 ° C
(Iv) Polymethylpentene, manufactured by Mitsui Chemicals, Inc., trade name: TPX, refractive index: 1.463, Tg: 25 ° C, Tm: 235 ° C

(2)評価方法
(i)ガラス転移温度(Tg)、融点(Tm)
ガラス転移温度(Tg)(°C)は、DSC法(示差走査熱量測定法、昇温速度10°C/min)により測定した。融点(Tm)は、同様にDSC法(示差走査熱量測定法、昇温速度10°C/min)により測定した。
(ii)圧下率による評価
圧下率は、加工の前後の厚みから下記式より求められる。
圧下率の定義:[(加工前の厚み−加工後の厚み)/加工前の厚み]×100
(iii)積層精度による評価
積層精度は、多層膜中の最大層厚みと最小層厚みから、下記式より求められる。
積層精度の定義:[(最大層厚み−最小層厚み)/最小層厚み]×100(%)
(iv)積層体と多層膜の断面構造の観察
走査電子顕微鏡(SEM)による撮影を行った。
積層体と多層膜の断面処理を行う際に包埋樹脂として透明なエポキシ樹脂でコートした。
(2) Evaluation method (i) Glass transition temperature (Tg), melting point (Tm)
The glass transition temperature (Tg) (° C.) was measured by a DSC method (differential scanning calorimetry, heating rate 10 ° C./min). The melting point (Tm) was similarly measured by the DSC method (differential scanning calorimetry, heating rate 10 ° C./min).
(Ii) Evaluation by reduction ratio The reduction ratio is obtained from the following formula from the thickness before and after the processing.
Definition of rolling reduction: [(thickness before processing−thickness after processing) / thickness before processing] × 100
(Iii) Evaluation by Lamination Accuracy Lamination accuracy is determined from the following formula from the maximum layer thickness and the minimum layer thickness in the multilayer film.
Definition of lamination accuracy: [(maximum layer thickness−minimum layer thickness) / minimum layer thickness] × 100 (%)
(Iv) Observation of cross-sectional structure of laminate and multilayer film Photographing with a scanning electron microscope (SEM) was performed.
When the cross section of the laminate and the multilayer film was processed, it was coated with a transparent epoxy resin as an embedding resin.

[実施例1]
(1)多層膜の製造
(i)積層体の形成
熱可塑性樹脂フィルムの材料として、ポリスチレン及びポリメチルメタクリレート樹脂を使用した。共押出機を使用して、これらの熱可塑性樹脂から各層の厚みがそれぞれ約38μmの2層フィルムを得た。得られた2層フィルムを50層になるように交互に積層した積層フィルムに、更に両外層側に厚み100μmのポリスチレン(熱可塑性樹脂フィルムに使用したポリスチレンと同じ樹脂)を保護層として配置して積層体を得た。
(ii)予備圧着
前記積層体にバッチ式プレス機で温度25°C、5600Paの荷重をかけて30秒間維持することにより予備圧着して、積層体の層間に残存する空気を除去した。
(iii)熱圧着
予備圧着での5600Paの荷重を維持して、電気ヒータにより両面側から積層体を予熱して積層体中心部が160°Cに到達してから20分間維持し、積層体の各樹脂層の界面を熱圧着させて一体化した。
[Example 1]
(1) Production of Multilayer Film (i) Formation of Laminate Polystyrene and polymethyl methacrylate resin were used as materials for the thermoplastic resin film. Using a co-extruder, a two-layer film having a thickness of about 38 μm was obtained from these thermoplastic resins. On the laminated film obtained by alternately laminating the obtained two-layer film so as to be 50 layers, polystyrene having a thickness of 100 μm (the same resin as the polystyrene used for the thermoplastic resin film) is further disposed as a protective layer on both outer layer sides. A laminate was obtained.
(Ii) Pre-crimping The laminate was pre-crimped by applying a load of 25 ° C. and 5600 Pa for 30 seconds with a batch press to remove air remaining between the layers of the laminate.
(Iii) Thermocompression Bonding of 5600 Pa in pre-compression is maintained, the laminate is preheated from both sides by an electric heater and maintained for 20 minutes after the center of the laminate reaches 160 ° C. The interface of each resin layer was integrated by thermocompression bonding.

(iv)プレス工程
前記一体化した積層体をバッチ式プレス装置を用いて、温度160°Cで圧力19.4MPaで1分間1回目のプレスを行った。次に2回目のプレスを行うために、1回目のプレスで得た多層体(厚み:185μm)を、それぞれの厚みが400μmである2つの保護層(1回目の保護層に使用したポリスチレンと同じもの)の間に配置させて厚み985μmとした。前記多層体に保護層を設けたものを、上記と同じ条件で2回目のプレスをして、厚み90μmの多層膜を得た。
1回目のプレスで積層体の全体の厚みは2165μmから185μmに減少し、圧下率は91.5%で、1回目の圧延により1/11.7の厚みに薄膜化された。
このとき、積層フィルム部については、1層当りの厚みが約38μm(平均厚み)から約3μm(平均厚み)に減少し、圧下率は92.1%で、1/12.7の厚みに薄膜化された。
2回目のプレスで多層体と保護層の厚みは985μmから90μmに減少し、圧下率は90.9%で、2回目の圧延により1/10.9の厚みに薄膜化された。
このとき、積層フィルム部については、1層当りの厚みが約3μm(平均厚み)から約130nm(平均厚み)に減少し、圧下率は、95.7%で、更に1/23の厚みに薄膜化された。
上記2回の薄膜化により積層体の積層フィルム部の1層当りの厚みは約38μm(平均厚み)から約130nm(平均厚み)に減少し、1/292の厚みに薄膜化された。
(Iv) Pressing process The integrated laminate was pressed for the first time at a temperature of 160 ° C. and a pressure of 19.4 MPa for 1 minute using a batch type pressing device. Next, in order to perform the second press, the multilayer body (thickness: 185 μm) obtained by the first press is used for two protective layers each having a thickness of 400 μm (the same as the polystyrene used for the first protective layer). And a thickness of 985 μm. The multilayer body provided with a protective layer was pressed a second time under the same conditions as above to obtain a multilayer film having a thickness of 90 μm.
The total thickness of the laminate was reduced from 2165 μm to 185 μm by the first press, the rolling reduction was 91.5%, and the thickness was reduced to 1 / 11.7 by the first rolling.
At this time, as for the laminated film portion, the thickness per layer is reduced from about 38 μm (average thickness) to about 3 μm (average thickness), the rolling reduction is 92.1%, and the thickness is 1 / 12.7. It became.
The thickness of the multilayer body and the protective layer was reduced from 985 μm to 90 μm by the second press, the rolling reduction was 90.9%, and the thickness was reduced to 1 / 10.9 by the second rolling.
At this time, with respect to the laminated film portion, the thickness per layer is reduced from about 3 μm (average thickness) to about 130 nm (average thickness), the rolling reduction is 95.7%, and the thickness is reduced to 1/23. It became.
As a result of the thinning twice, the thickness per layer of the laminated film portion of the laminate was reduced from about 38 μm (average thickness) to about 130 nm (average thickness), and the thickness was reduced to 1/292.

(2)多層膜の評価
(i)2回目のプレス後に得られた多層膜の断面構造を走査電子顕微鏡(SEM)により撮影した、その断面写真を図1に示す。多層膜中の積層膜部の厚みが中心方向に向かって薄くなる傾向にありかつ各層の積層配列に乱れは極めて少ないことが確認できた。
その積層精度は1000%以上で、積層厚み比は20であった。
(ii)得られた多層膜の反射光は青色の波長にピークを示し、反射率は60%以上であった。
(2) Evaluation of multilayer film (i) FIG. 1 shows a cross-sectional photograph of a cross-sectional structure of the multilayer film obtained after the second pressing, taken with a scanning electron microscope (SEM). It was confirmed that the thickness of the laminated film portion in the multilayer film tends to become thinner toward the center direction, and the disorder of the laminated arrangement of each layer is extremely small.
The lamination accuracy was 1000% or more, and the lamination thickness ratio was 20.
(Ii) The reflected light of the obtained multilayer film had a peak at a blue wavelength, and the reflectance was 60% or more.

[実施例2]
(1)多層膜の製造
(i)予備圧着、熱圧着
実施例2において、実施例1で得た積層体を使用して、その予備圧着での荷重を3000Paとし、熱圧着する際に予備圧着での荷重をそのまま維持した以外は実施例1と同様にして熱圧着した。
(ii)プレス
前記熱圧着後、バッチ式プレス機により薄膜化して多層膜を得た。
実施例2において、最初のプレスで積層体の全厚みは2267μmから165μmに減少し、圧下率は92.7%で、1回目の圧延により1/13.7の厚みに薄膜化された。
このとき、積層フィルム部については、1層当りの厚みが約38μm(平均厚み)から約2μm(平均厚み)に減少し、圧下率は94.7%で、1/19の厚みに薄膜化された。
2回目のプレスを行う際に両面に厚み400μmの保護層を更に追加した。2回目のプレスのより、1回目のプレスで得た多層体と追加した保護層の合計厚み965μmから78μmに減少し、圧下率は91.9%で、2回目の圧延により1/12.4の厚みに薄膜化された。
このとき、積層フィルム部については、1層当りの厚みが約2μm(平均厚み)から約160nm(平均厚み)に減少し、圧下率は92%で、更に1/12.5の厚みに薄膜化された。
上記2回の薄膜化により積層体の積層フィルム部の1層当りの厚みは約38μm(平均厚み)から約160nm(平均厚み)に減少し、1/237.5の厚みに薄膜化された。
(2)多層膜の評価
実施例1で行ったと同様に、2度のプレス後に得られた多層膜の断面構造を走査電子顕微鏡(SEM)で観察した。実施例2で得られた多層膜中の積層膜部の厚みが中心方向に向かって薄くなる傾向にあり、かつ各層の積層配列に乱れは極めて少ないことが確認できた。
[Example 2]
(1) Manufacture of multilayer film (i) Pre-compression bonding, thermocompression bonding In Example 2, using the laminate obtained in Example 1, the pre-compression bonding load is set to 3000 Pa, and pre-compression bonding is performed. Thermocompression bonding was carried out in the same manner as in Example 1 except that the load was maintained as it was.
(Ii) Press After the thermocompression bonding, the film was thinned by a batch press to obtain a multilayer film.
In Example 2, the total thickness of the laminate was reduced from 2267 μm to 165 μm by the first press, the rolling reduction was 92.7%, and the thickness was reduced to 1 / 13.7 by the first rolling.
At this time, the thickness per layer of the laminated film portion is reduced from about 38 μm (average thickness) to about 2 μm (average thickness), the rolling reduction is 94.7%, and the thickness is reduced to 1/19 thickness. It was.
When performing the second press, a protective layer having a thickness of 400 μm was further added to both sides. From the second press, the total thickness of the multilayer body obtained in the first press and the added protective layer is reduced from 965 μm to 78 μm, the rolling reduction is 91.9%, and the first rolling is 1 / 12.4. It was thinned to a thickness of.
At this time, the thickness per layer of the laminated film portion is reduced from about 2 μm (average thickness) to about 160 nm (average thickness), the rolling reduction is 92%, and the thickness is further reduced to 1 / 12.5. It was done.
As a result of the thinning twice, the thickness of the laminated film portion of the laminate was reduced from about 38 μm (average thickness) to about 160 nm (average thickness), and the thickness was reduced to 1 / 237.5.
(2) Evaluation of multilayer film As in Example 1, the cross-sectional structure of the multilayer film obtained after pressing twice was observed with a scanning electron microscope (SEM). It was confirmed that the thickness of the laminated film portion in the multilayer film obtained in Example 2 tends to become thinner toward the center direction, and the disorder of the laminated arrangement of each layer is extremely small.

[実施例3]
(1)多層膜の製造
実施例3において、実施例1で得た積層体を使用して、予備圧着での荷重を4500Paとし、熱圧着する際に予備圧着での荷重をそのまま維持した以外は実施例1と同様にして、多層膜を製造した。
(2)多層膜の評価
実施例1で行ったと同様に、2度のプレス後に得られた多層膜の断面構造を走査電子顕微鏡(SEM)で観察した。実施例3で得られた多層膜中の積層膜部の厚みが中心方向に向かって薄くなる傾向にあり、かつ各層の積層配列に乱れは極めて少ないことが確認できた。
[Example 3]
(1) Manufacture of multilayer film In Example 3, the laminate obtained in Example 1 was used, the load in the pre-compression was set to 4500 Pa, and the load in the pre-compression was maintained as it was when thermocompression bonding was performed. A multilayer film was produced in the same manner as in Example 1.
(2) Evaluation of multilayer film As in Example 1, the cross-sectional structure of the multilayer film obtained after pressing twice was observed with a scanning electron microscope (SEM). It was confirmed that the thickness of the laminated film portion in the multilayer film obtained in Example 3 tends to become thinner toward the center direction, and the disorder of the laminated arrangement of each layer is extremely small.

[実施例4]
(1)多層膜の製造
実施例4において、実施例1で得た積層体を使用して、予熱の際の電気ヒータによる積層フィルムの予熱を175°Cとした以外は実施例1と同様にして、予備圧着、熱圧着、及びプレス工程により多層膜を得た。
(2)多層膜の評価
実施例1で行ったと同様に、2度のプレス後に得られた多層膜の断面構造を走査電子顕微鏡(SEM)で観察した。得られた多層膜積中の積層膜部の厚みが中心方向に向かって薄くなる傾向にあり、かつ各層の積層配列に乱れは極めて少ないことが確認できた。
[Example 4]
(1) Production of Multilayer Film In Example 4, the same procedure as in Example 1 was used except that the laminate obtained in Example 1 was used and the preheating of the laminated film by the electric heater during preheating was set to 175 ° C. Thus, a multilayer film was obtained by pre-compression bonding, thermocompression bonding, and pressing processes.
(2) Evaluation of multilayer film As in Example 1, the cross-sectional structure of the multilayer film obtained after pressing twice was observed with a scanning electron microscope (SEM). It was confirmed that the thickness of the laminated film portion in the obtained multilayer film product tends to become thinner toward the center direction, and the disorder of the laminated arrangement of each layer is extremely small.

[実施例5]
(1)多層膜の製造
下記積層体をローラーを用いて、予備圧着、熱圧着及び圧延を連続的に行い、多層膜を得た。
(i)積層体の形成
ポリスチレンとポリメチルメタクリレート樹脂を共押出して成形した、各層の厚さがそれぞれ約20μmの2層フィルムを30層になるように交互に積層した積層フィルムに、更に両外層側に厚み40μmのポリスチレン(熱可塑性樹脂フィルムに使用したポリスチレンと同じ樹脂)を保護層として配置して積層体を得た。
(ii)予備圧着
前記積層体をローラーを用いて、温度25°Cで3000Paの荷重を約15秒間かけることにより予備圧着して、積層体の層間に残存する空気を除去した。
[Example 5]
(1) Production of multilayer film Preliminary pressure bonding, thermocompression bonding and rolling were successively performed on the following laminate using a roller to obtain a multilayer film.
(I) Formation of laminated body Coaxially extruded with polystyrene and polymethylmethacrylate resin, and each outer layer is further laminated on a laminated film obtained by alternately laminating two layers each having a thickness of about 20 μm to 30 layers. On the side, polystyrene having a thickness of 40 μm (the same resin as polystyrene used for the thermoplastic resin film) was disposed as a protective layer to obtain a laminate.
(Ii) Preliminary pressure bonding The laminated body was preliminarily pressure-bonded by applying a load of 3000 Pa at a temperature of 25 ° C. for about 15 seconds to remove air remaining between the layers of the laminated body.

(iii)熱圧着
予備圧着での3000Paの荷重を維持して、熱風炉内で積層体を予熱して積層体中心部が160°Cに到達してから15分間維持し、積層体の各樹脂層の界面を熱圧着させて一体化した。
(iv)圧延
ローラー間の圧力が制御可能でピッチ間隔の設定が5%の増減の範囲内で設定可能な圧延ローラー(ロール径:55mm、ローラー回転速度:4mm/sec)を用いた。熱風炉内で積層体が160°Cとなる温度で、圧延ローラーにより圧延した。
前記圧延により、積層体の全体の厚みは680μmから27.2μmに減少し、圧下率は96%で、圧延により1/25の厚みに薄膜化された。
(2)多層膜の評価
得られた多層膜中の積層膜部の厚みが中心方向に向かって薄くなる傾向にあり、かつ各層の積層配列に乱れは極めて少ないことが確認できた。また、保護膜の乱れも少ないことが確認された。
(Iii) Thermocompression Bonding of 3000 Pa in pre-compression is performed, and the laminate is preheated in a hot stove and maintained for 15 minutes after the central portion of the laminate reaches 160 ° C. The interface of the layers was integrated by thermocompression bonding.
(Iv) Rolling A rolling roller (roll diameter: 55 mm, roller rotation speed: 4 mm / sec) capable of controlling the pressure between the rollers and setting the pitch interval within a range of 5% increase / decrease was used. It rolled with the rolling roller at the temperature which a laminated body becomes 160 degreeC within a hot stove.
By the rolling, the total thickness of the laminate was reduced from 680 μm to 27.2 μm, the rolling reduction was 96%, and the thickness was reduced to 1/25 by rolling.
(2) Evaluation of Multilayer Film It was confirmed that the thickness of the laminated film portion in the obtained multilayer film tends to become thinner toward the central direction, and that the lamination arrangement of each layer is very little disturbed. It was also confirmed that there was little disturbance of the protective film.

[実施例6]
(1)多層膜の製造
(i)積層体の形成
熱可塑性樹脂フィルムの材料として、ポリカーボネート及びポリメチルペンテンを使用した。共押出機を使用して、これらの熱可塑性樹脂から各層の厚さがそれぞれ約25μmの2層フィルムを得た。得られた2層フィルムを80層になるように交互に積層した積層フィルムに、更に両外側面に厚み100μmのポリカーボネート(上記積層フィルム材料に使用したのと同じもの)を保護層として配置して積層体を得た。
(ii)予備圧着

前記積層フィルムにバッチ式プレス機で、温度25°Cで5600Paの荷重をかけて30秒間維持して、積層フィルムの各層間に残存する空気を除去した。

(iii)熱圧着

予備圧着でのプレス圧5600Paを維持して、電気ヒータにより積層フィルムを予熱して中心部が210°Cになってから20分間維持し、積層体の各樹脂層の界面を熱圧着させた。
[Example 6]
(1) Production of multilayer film (i) Formation of laminated body Polycarbonate and polymethylpentene were used as materials for the thermoplastic resin film. Using a co-extruder, a two-layer film having a thickness of about 25 μm was obtained from these thermoplastic resins. On the laminated film obtained by alternately laminating the obtained two-layer film so as to be 80 layers, a polycarbonate having the thickness of 100 μm (same as that used for the laminated film material) is further disposed as a protective layer on both outer side surfaces. A laminate was obtained.
(Ii) Pre-crimping

The laminated film was maintained for 30 seconds by applying a load of 5600 Pa at a temperature of 25 ° C. with a batch press to remove air remaining between the layers of the laminated film.

(Iii) Thermocompression bonding

While maintaining the press pressure of 5600 Pa in the pre-compression, the laminated film was pre-heated with an electric heater and maintained for 20 minutes after the central portion reached 210 ° C., and the interface of each resin layer of the laminate was thermo-compressed.

(iv)プレス

バッチ式プレス装置を用い、温度210°Cで圧力19.4MPaで1分間のプレスを行って厚み194μmの多層体を得た。次に得られた多層体の両外側面に更に厚み400μmの保護層(1回目の保護層に使用したポリカーボネートと同じもの)を配置させて、上記と同じ(温度とプレス圧)条件で2度目のプレスをして、厚み90μmの多層膜を得た。
最初のプレスで積層体の全厚みは2200μmから194μmに減少し、圧下率は91.2%で、1回目の圧延により1/11.3の厚みに薄膜化された。
2回目のプレスで多層体と保護層の厚みは994μmから151μmに減少し、圧下率は84.8%で、2回目の圧延により更に1/6.6の厚みに薄膜化された。
2回目の圧延において、積層フィルム部については、薄膜化された積層膜が1層当り約2.3μm(平均厚み)から約644nm(平均厚み)に減少し、圧下率は72%で、更に1/3.6の厚みに薄膜化された。
上記2回の薄膜化により積層体の積層フィルム部の1層当りの厚みは約25μm(平均厚み)から約644nm(平均厚み)に減少し、1/38.8の厚みに薄膜化された。
(2)多層膜の評価
得られた多層膜の断面構造を走査電子顕微鏡(SEM)により撮影した、その断面写真を図2に示す。積層されている積層膜の厚みが中心方向に向かって薄くなる傾向にありかつ各層の積層配列に乱れは極めて少ないことが確認できた。
(Iv) Press

Using a batch type press, pressing was performed at a temperature of 210 ° C. and a pressure of 19.4 MPa for 1 minute to obtain a multilayer body having a thickness of 194 μm. Next, a protective layer having a thickness of 400 μm (same as the polycarbonate used for the first protective layer) is further disposed on both outer side surfaces of the obtained multilayer body, and the second time under the same conditions (temperature and pressing pressure) as above. A multilayer film having a thickness of 90 μm was obtained.
In the first press, the total thickness of the laminate was reduced from 2200 μm to 194 μm, the rolling reduction was 91.2%, and the thickness was reduced to 1 / 11.3 by the first rolling.
In the second press, the thickness of the multilayer body and the protective layer was reduced from 994 μm to 151 μm, the rolling reduction was 84.8%, and the thickness was further reduced to 1 / 6.6 by the second rolling.
In the second rolling, for the laminated film portion, the thinned laminated film was reduced from about 2.3 μm (average thickness) to about 644 nm (average thickness) per layer, the rolling reduction was 72%, and 1 The film was thinned to a thickness of /3.6.
As a result of the thinning twice, the thickness of the laminated film portion of the laminate was reduced from about 25 μm (average thickness) to about 644 nm (average thickness), and the thickness was reduced to 1 / 38.8.
(2) Evaluation of Multilayer Film FIG. 2 shows a cross-sectional photograph of a cross-sectional structure of the obtained multilayer film taken with a scanning electron microscope (SEM). It has been confirmed that the thickness of the laminated film tends to become thinner toward the central direction, and the disorder of the laminated arrangement of each layer is extremely small.

[実施例7]
(1)積層体の熱圧着
(i)積層体の形成
ポリスチレンとポリメチルメタクリレートを使用して、各層の厚みがそれぞれ25μmのフィルムを26層になるように交互に積層し、更に両外側面に厚み100μmのポリスチレン(熱可塑性樹脂フィルムに使用したポリスチレンと同じ樹脂)を保護層として配置して積層体を得た。
(ii)予備圧着と熱圧着
前記積層体にバッチ式プレス機を用いて、温度25°Cで3000Paの荷重をかけて30秒間維持することにより予備圧着して、積層体の層間に残存する空気を除去した。
前記予備圧着での3000Paの荷重を維持して、電気ヒータにより両面側から積層体を予熱して積層体中心部が160°Cに到達してから15分間維持し、積層体の各樹脂層の界面を熱圧着させて一体化した。
(2)熱圧着した積層体の評価
前記熱圧着した積層体の断面構造を走査電子顕微鏡(SEM)で観察した結果を図3に示す。
各層の界面は熱圧着され、層間に乱れと気体の残存は観察されなかった。
[Example 7]
(1) Thermocompression bonding of the laminate (i) Formation of the laminate Using polystyrene and polymethylmethacrylate, each film having a thickness of 25 μm is alternately laminated so that there are 26 layers, and further on both outer surfaces. A laminate having a thickness of 100 μm (the same resin as the polystyrene used for the thermoplastic resin film) was disposed as a protective layer.
(Ii) Pre-crimping and thermo-compression Using a batch-type press to the laminate, pre-press-bonding by maintaining a load of 3000 Pa at a temperature of 25 ° C. for 30 seconds, air remaining between the layers of the laminate Was removed.
Maintaining a load of 3000 Pa in the pre-bonding, preheating the laminate from both sides with an electric heater and maintaining for 15 minutes after the center of the laminate reaches 160 ° C., each resin layer of the laminate The interface was integrated by thermocompression bonding.
(2) Evaluation of laminated body subjected to thermocompression bonding FIG. 3 shows the result of observing the cross-sectional structure of the laminated body subjected to thermocompression bonding with a scanning electron microscope (SEM).
The interface of each layer was thermocompression bonded, and no turbulence or gas residue was observed between the layers.

[実施例8]
(1)積層体の熱圧着
ポリスチレンとポリメチルメタクリレートを使用して、各層の厚みがそれぞれ25μmのフィルムを70層になるように交互に積層し、更に両外層側に厚み300μmのポリスチレン(熱可塑性樹脂フィルムに使用したポリスチレンと同じ樹脂)を保護層として配置して積層体を得た。
前記積層体にバッチ式プレス機で、温度25°Cで5600Paの荷重をかけて30秒間維持することにより予備圧着して、積層体の層間に残存する空気を除去した。
前記予備圧着での5600Paの荷重を維持して、電気ヒータにより両面側から積層体を予熱して積層体中心部が160°Cに到達してから15分間維持し、積層体の各樹脂層の界面を熱圧着させて一体化した。
(2)熱圧着した積層体の評価
前記熱圧着した積層体の断面構造を走査電子顕微鏡(SEM)で観察した結果を図4に示す。
各層の界面は熱圧着され、層間に乱れと気体の残存は観察されなかった。
[Example 8]
(1) Thermocompression bonding of the laminate Using polystyrene and polymethylmethacrylate, films each having a thickness of 25 μm are laminated alternately so as to be 70 layers, and further, polystyrene having a thickness of 300 μm (thermoplastic) on both outer layers. The same resin as polystyrene used for the resin film) was disposed as a protective layer to obtain a laminate.
The laminate was pre-pressed with a batch press to maintain a load of 5600 Pa at a temperature of 25 ° C. for 30 seconds to remove air remaining between the layers of the laminate.
The load of 5600 Pa in the pre-bonding is maintained, the laminate is preheated from both sides by an electric heater and maintained for 15 minutes after the center of the laminate reaches 160 ° C., and the resin layers of the laminate are maintained. The interface was integrated by thermocompression bonding.
(2) Evaluation of thermocompression-bonded laminate The results of observing the cross-sectional structure of the thermocompression-bonded laminate with a scanning electron microscope (SEM) are shown in FIG.
The interface of each layer was thermocompression bonded, and no turbulence or gas residue was observed between the layers.

[比較例1]
積層フィルムの両外側面に保護層を用いない以外は、実施例1に記載したと同様に、1回目のプレスで多層膜を製造した。
得られた多層膜の断面構造を光学顕微鏡または走査電子顕微鏡(SEM)により観察した。両面に保護層が存在しない場合の熱圧延時の積層膜層構造は、保護層が存在する場合と比べて、積層膜が直接圧延の応力を受けるため、最外層に乱れが生じていた。またこのような積層膜は発色せず、透明性が低く、白濁していることを肉眼で確認した。
[Comparative Example 1]
A multilayer film was produced by the first press in the same manner as described in Example 1 except that the protective layer was not used on both outer side surfaces of the laminated film.
The cross-sectional structure of the obtained multilayer film was observed with an optical microscope or a scanning electron microscope (SEM). In the laminated film layer structure at the time of hot rolling when the protective layer is not present on both surfaces, the outermost layer is disturbed because the laminated film is directly subjected to the stress of rolling as compared with the case where the protective layer is present. Further, it was confirmed with the naked eye that such a laminated film did not develop color, had low transparency and was cloudy.

[比較例2、3、4]
(1)積層体の熱圧着
(i)積層体の用意
実施例1で作成した2層フィルムを24層になるように交互に積層して積層フィルムを得た。次に、前記積層フィルムの一方の外側面のみに厚み100μmのポリスチレン保護層を設けた積層体を用意した。
(ii)予備圧着、熱圧着
予備圧着において、比較例2、3、4におけるプレス圧をそれぞれ温度25°Cで0Pa、170Pa、1800Paとして予備圧着した。前記予備圧着での荷重をそれぞれ維持して、電気ヒータにより両外側面から積層体を予熱して積層体中心部が160°Cに到達してから20分間維持し、積層体の各樹脂層の界面を熱圧着させて一体化した。
[Comparative Examples 2, 3, 4]
(1) Thermocompression bonding of laminated body (i) Preparation of laminated body The laminated film obtained in Example 1 was laminated | stacked alternately so that it might become 24 layers, and the laminated film was obtained. Next, the laminated body which provided the 100-micrometer-thick polystyrene protective layer only in the one outer surface of the said laminated | multilayer film was prepared.
(Ii) Pre-compression bonding and thermocompression bonding In the pre-compression bonding, the press pressures in Comparative Examples 2, 3, and 4 were pre-compression bonding at temperatures of 25 ° C. to 0 Pa, 170 Pa, and 1800 Pa, respectively. Each of the pre-bonding loads is maintained, and the laminate is preheated from both outer surfaces by an electric heater and maintained for 20 minutes after the center of the laminate reaches 160 ° C. The interface was integrated by thermocompression bonding.

(2)熱圧着した積層体の評価
比較例2、3、4で得られた積層体の断面を光学顕微鏡で撮影した、その写真を図5、6、7にそれぞれ示す。比較例2、3、4においては、積層体の層間に気体の残存と、積層体の層の一部に明らかな乱れが観察される。
すなわち、比較例2の図5においては、保護層から下方の6層と7層間の右側部分に気体が残存しており(黒色部分)、同8層〜9層間、10層〜11層間、及び14層〜15層間に存在する不規則な形状部分は気体が残存していた個所(灰色部分)で断面処理を行う際に透明なエポキシ樹脂でコートした際に当該樹脂が入り込んで灰色を示している。
右下側部の変形は、熱圧着の際に気体の残存が原因で熱変形したものと思われる。
比較例3の図6においては、熱圧着が十分に進行していなかったために、熱圧着により積層フィルムの界面で明らかなズレが生じている。
比較例4の図7においては、保護層から下方の10層〜11層間に気体(黒色部分)が残存している。尚、2層〜3層間、及び10層〜11層間に存在する灰色部分は断面処理を行う際に薄い割れが生じ、コートに使用した透明なエポキシ樹脂が入り込んだ部分である。
(2) Evaluation of thermocompression-bonded laminate The cross-sections of the laminates obtained in Comparative Examples 2, 3, and 4 were photographed with an optical microscope, and photographs thereof are shown in FIGS. In Comparative Examples 2, 3, and 4, residual gas is observed between the layers of the stacked body, and obvious disturbance is observed in a part of the layers of the stacked body.
That is, in FIG. 5 of Comparative Example 2, gas remains in the right part between the lower 6 layers and the 7th layer from the protective layer (black portion), the 8th layer to the 9th layer, the 10th layer to the 11th layer, and The irregularly shaped portions existing between the 14th layer and the 15th layer show gray when the resin enters and is coated with a transparent epoxy resin when the cross section is processed at the place where the gas remains (gray portion). Yes.
The deformation on the lower right side seems to have been caused by thermal deformation due to residual gas during thermocompression bonding.
In FIG. 6 of Comparative Example 3, since thermocompression bonding has not progressed sufficiently, a clear shift occurs at the interface of the laminated film due to thermocompression bonding.
In FIG. 7 of the comparative example 4, gas (black part) remains between the 10th to 11th layers below the protective layer. In addition, the gray part which exists between 2nd layer-3rd layer and 10th layer-11th layer is a part which the thin crack generate | occur | produced when performing cross-section processing, and the transparent epoxy resin used for the coating entered.

[比較例5]
(1)積層体の熱圧着
(i)積層体の形成
比較例5に記載したと同様に積層体を得た。
(ii)予備圧着
前記積層体にバッチ式プレス機で、温度25°Cで3600Paの荷重をかけて15秒間維持することにより予備圧着して、積層体の層間に残存する空気を除去した。
(iii)熱圧着
予備圧着での3600Paのプレス圧を維持して、電気ヒータにより両外側面から積層体を予熱して積層体中心部が160°Cに到達してから15分間維持し、積層体の各樹脂層の界面を熱圧着させて一体化した。
(2)熱圧着した積層体の評価
熱圧着された積層体を図8に示す。保護層を設けなかった側の積層部に層の乱れが生じていることが確認される。一度乱れた層は、その後のプレス又は圧延においてどのような条件を選択しても、層の乱れを解消することは困難であった。
[Comparative Example 5]
(1) Thermocompression bonding of laminate (i) Formation of laminate A laminate was obtained in the same manner as described in Comparative Example 5.
(Ii) Preliminary pressure bonding The laminated body was preliminarily pressure-bonded by applying a load of 3600 Pa at a temperature of 25 ° C. for 15 seconds with a batch press to remove air remaining between the layers of the laminated body.
(Iii) Thermocompression The press pressure of 3600 Pa in pre-compression is maintained, and the laminate is preheated from both outer surfaces by an electric heater and maintained for 15 minutes after the center of the laminate reaches 160 ° C. The interface of each resin layer of the body was integrated by thermocompression bonding.
(2) Evaluation of thermocompression-bonded laminate The thermocompression-bonded laminate is shown in FIG. It is confirmed that the disorder of the layer has occurred in the laminated portion on the side where the protective layer is not provided. Once a layer has been disturbed, it has been difficult to eliminate the disorder of the layer no matter what conditions are selected in subsequent pressing or rolling.

[実施例9]
(1)多層膜の製造
下記積層体を連続的に、予備圧着、熱圧着、圧延、及び延伸を行って、多層膜を得た。
(i)積層体の形成
ポリスチレンとポリメチルメタクリレート樹脂を共押出して成形した、各層の厚さがそれぞれ約25μmの2層フィルムを70層になるように交互に積層して積層フィルムに、更に当該積層フィルムの両側外層側に厚み300μmのポリスチレン(熱可塑性樹脂フィルムに使用したポリスチレンと同じ樹脂)を保護層として配置して積層体を得た。
(ii)予備圧着
前記積層体に温度25°Cでローラーにより7200Paの荷重を約30秒間維持することにより予備圧着して、積層体の層間に残存する空気を除去した。
(iii)熱圧着
熱風炉内で、ローラーにより、予備圧着での7200Paの荷重下に積層体を予熱して積層体中心部が160°Cに到達してから15分間維持し、積層体の各樹脂層の界面を熱圧着させて一体化した。
[Example 9]
(1) Production of Multilayer Film The following laminate was continuously subjected to pre-compression bonding, thermocompression bonding, rolling, and stretching to obtain a multilayer film.
(I) Formation of a laminate A polystyrene and polymethylmethacrylate resin are co-extruded and molded, and each layer has a thickness of about 25 μm and is alternately laminated so that it becomes 70 layers. 300 μm thick polystyrene (the same resin as the polystyrene used for the thermoplastic resin film) was placed as a protective layer on both outer layer sides of the laminated film to obtain a laminate.
(Ii) Pre-crimping The laminate was pre-crimped by maintaining a load of 7200 Pa with a roller at a temperature of 25 ° C. for about 30 seconds to remove air remaining between the layers of the laminate.
(Iii) In a thermocompression hot stove, with a roller, the laminate is preheated under a load of 7200 Pa in pre-compression and maintained for 15 minutes after the center of the laminate reaches 160 ° C. The interface of the resin layer was integrated by thermocompression bonding.

(iv)圧延
ローラー間の圧力が制御可能でピッチ間隔の設定が5%の増減の範囲内で設定可能な圧延ローラー(ロール径:55mm、ローラー回転速度:4mm/sec)を用いた。熱風炉内で積層体が160°Cとなる温度で、圧延ローラーにより圧延した。
前記圧延により、積層体の全体の厚みは2350μmから106μmに減少し、圧下率は95.5%で、圧延により1/22.2の厚みに薄膜化された。
このとき、積層体中の積層フィルム部については、積層フィルム部の厚みが1750μmから24.5μmに減少し、圧下率は98.6%で、1/71.4の厚みに薄膜化された。
(v)延伸
次に、前記圧延ローラーで圧延された多層体をチャッキング手段による引張力で2軸延伸を行った。延伸条件は温度120°Cで、引張り速度10mm/minで延伸した。
前記延伸により、多層体の全体の厚みは106μmから46μmに減少し、圧下率は56.6%で、延伸により1/2.3の厚みに延伸された。
このとき、積層体中の積層フィルム部については、積層膜部の厚みが24.5μmから8.8μmに減少し、圧下率は64.1%で、1/2.8の厚みに延伸された。
(Iv) Rolling A rolling roller (roll diameter: 55 mm, roller rotation speed: 4 mm / sec) capable of controlling the pressure between the rollers and setting the pitch interval within a range of 5% increase / decrease was used. It rolled with the rolling roller at the temperature which a laminated body becomes 160 degreeC within a hot stove.
By the rolling, the total thickness of the laminate was reduced from 2350 μm to 106 μm, the rolling reduction was 95.5%, and the thickness was reduced to 1 / 22.2 by rolling.
At this time, about the laminated | multilayer film part in a laminated body, the thickness of the laminated | multilayer film part decreased from 1750 micrometers to 24.5 micrometers, the rolling reduction was 98.6%, and it was thinned to the thickness of 1 / 71.4.
(V) Stretching Next, the multilayer body rolled by the rolling roller was biaxially stretched with a tensile force by chucking means. The stretching conditions were a temperature of 120 ° C. and a stretching speed of 10 mm / min.
As a result of the stretching, the entire thickness of the multilayer body was reduced from 106 μm to 46 μm, the rolling reduction was 56.6%, and the film was stretched to a thickness of 1 / 2.3 by stretching.
At this time, for the laminated film portion in the laminated body, the thickness of the laminated film portion was reduced from 24.5 μm to 8.8 μm, the rolling reduction was 64.1%, and the film was stretched to a thickness of 1 / 2.8. .

(vi)圧延と延伸による圧下率等
前記圧延と延伸により、積層体の全体の厚みは2350μmから46μmに減少したので、圧下率は98.0%で、1/51.1の厚みに薄膜化された。
このとき、積層体中の積層フィルム部については、積層フィルム部の厚みが1750μmから8.8μmに減少したので、圧下率は99.5%で、1/199の厚みに薄膜化された。
(2)多層膜の評価
前記圧延と延伸で得られた多層膜の断面構造を走査電子顕微鏡(SEM)により観察すると、多層膜中の保護膜の間に存在する積層膜は厚みが中心方向に向かって薄くなる傾向にありかつ積層膜の各層の積層配列に乱れは極めて少ないことが確認できた。
(Vi) Reduction ratio due to rolling and stretching, etc. The overall thickness of the laminate was reduced from 2350 μm to 46 μm by the rolling and stretching, so the reduction ratio was 98.0% and the thickness was reduced to 1 / 51.1. It was done.
At this time, since the thickness of the laminated film portion in the laminated body was reduced from 1750 μm to 8.8 μm, the rolling reduction was 99.5%, and the thickness was reduced to 1/199.
(2) Evaluation of multilayer film When the cross-sectional structure of the multilayer film obtained by rolling and stretching is observed with a scanning electron microscope (SEM), the thickness of the multilayer film existing between the protective films in the multilayer film is in the central direction. It was confirmed that there was a tendency for the film to become thinner and the disorder of the laminated arrangement of each layer of the laminated film was extremely small.

[実施例10]
(1)図9に示すように、画像表示シートを想定して、対向する2枚の電極パターンを描いた支持フィルムの間隔を調整するためにスペーサーを入れた中に積層膜を多層膜光学素子として配置した場合、電源からこれらの電極にそれぞれに電圧が印加されると電極間に電界が発生して帯電している多層膜光学素子(多層膜)が回転することを確認するために以下の実験を行った。
尚、このような印加電圧により、多層膜光学素子(多層膜)が回転すると印加電圧の制御により、画像表示シートにおける表示制御が可能となる.
(2)図9は、スペーサー中にシリコーンオイル(多層膜光学素子とほぼ同じ比重である)と多層膜光学素子とを配置して、スペーサーの相対する内面に存在する電極に印加電圧をかけて、多層膜を回転させることが可能な画像表示装置の概念図である。
多層膜を実際の光学表示素子として利用する場合に、そのサイズは相当に小さくなることから、実施例10においてはビーカ規模実験として、サイズを大きくした光学表示素子を使用した。
[Example 10]
(1) As shown in FIG. 9, assuming an image display sheet, a multilayer film optical element is formed by placing a laminated film in a spacer in order to adjust the distance between support films on which two opposing electrode patterns are drawn. In order to confirm that when a voltage is applied to each of these electrodes from a power source, an electric field is generated between the electrodes and the charged multilayer optical element (multilayer film) rotates to confirm that The experiment was conducted.
When the multilayer optical element (multilayer film) rotates with such an applied voltage, display control on the image display sheet becomes possible by controlling the applied voltage.
(2) FIG. 9 shows that a silicone oil (having substantially the same specific gravity as the multilayer optical element) and the multilayer optical element are arranged in the spacer, and an applied voltage is applied to the electrodes existing on the opposite inner surfaces of the spacer. FIG. 2 is a conceptual diagram of an image display device capable of rotating a multilayer film.
When the multilayer film is used as an actual optical display element, the size is considerably reduced. Therefore, in Example 10, an optical display element with an increased size was used as a beaker scale experiment.

(3)実施例1で作成した多層膜を3mm×3mmのサイズに切り取り、同じサイズのエポキシ樹脂の片側に張り合わせて多層膜光学素子を作製した。
図9に示す装置を使用して以下の確認実験を行った。
すなわち、電極間距離10mmに設定してあるスペーサー中に、シリコーンオイル(粘度22mm2/sec(at25°C))と前記多層膜光学素子を配置した。多層膜光学素子には、異なる樹脂が片側に張り合わされているので、樹脂間の電位差により帯電して帯電層が形成されている。両電極における印加電圧が700V/cmに達すると、多層膜が回転した。また電圧解放後も回転後の状態を維持されていることを確認した。
尚、上記ビーカ実験における印加電圧は700V/cmであったが、表示画素サイズを実製品レベルの大きさにすると、表示画素サイズは1mmないし100μmで電極間距離が前記1cmから0.3〜1mmとなるために、印加電圧は1〜10V/cm程度となる。
(3) The multilayer film prepared in Example 1 was cut to a size of 3 mm × 3 mm and bonded to one side of the epoxy resin of the same size to prepare a multilayer film optical element.
The following confirmation experiment was conducted using the apparatus shown in FIG.
That is, silicone oil (viscosity 22 mm 2 / sec (at 25 ° C.)) and the multilayer optical element were placed in a spacer set to a distance between electrodes of 10 mm. In the multilayer optical element, since different resins are bonded to one side, a charged layer is formed by charging due to a potential difference between the resins. When the applied voltage at both electrodes reached 700 V / cm, the multilayer film rotated. It was also confirmed that the state after rotation was maintained after the voltage was released.
The applied voltage in the beaker experiment was 700 V / cm. However, when the display pixel size is set to the actual product level, the display pixel size is 1 mm to 100 μm, and the distance between the electrodes is from 1 cm to 0.3 to 1 mm. Therefore, the applied voltage is about 1 to 10 V / cm.

本発明の多層膜は、パソコン等のディスプレイ、反射フィルム、光干渉発色性フィルム等の光学材料に広く使用でき、また、本発明の多層膜光学素子は、電子ペーパー表示粒子(部材)に適用可能である。   The multilayer film of the present invention can be widely used in optical materials such as displays for personal computers, reflection films, and light interference coloring films, and the multilayer film optical element of the present invention can be applied to electronic paper display particles (members). It is.

Claims (25)

屈折率の異なる2種類の透明な熱可塑性樹脂フィルム(A、B)が厚み方向に交互に積層された積層フィルム(C)を、透明な熱可塑性樹脂からなる2つの保護層(D)間に配置して積層体(E)を形成し、当該積層体(E)をプレス又は圧延により薄膜化する多層膜(Et)の製造方法であって、少なくとも下記工程(i)ないし(iii)を含む、
(i)積層体(E)を熱圧着しない温度条件下に、積層体(E)の両外側面から厚み方向に積層フィルム(C)にひずみ又はその内部の層間でずれの生じない圧力以下で予備圧着して積層フィルム(C)間、及び積層フィルム(C)と保護層(D)間に残存する気体の除去を行い、
(ii)積層体(E)を熱圧着可能な温度に予熱し、かつ積層体(E)の両外側面から厚み方向に前記予備圧着と同じ圧力条件範囲内の圧力を加えた状態で熱圧着することにより一体化した後、
(iii)プレス又は圧延により薄膜化する、
多層膜の製造方法。
A laminated film (C) in which two types of transparent thermoplastic resin films (A, B) having different refractive indexes are alternately laminated in a thickness direction is formed between two protective layers (D) made of a transparent thermoplastic resin. A method for producing a multilayer film (Et) that is arranged to form a laminate (E) and thins the laminate (E) by pressing or rolling, and includes at least the following steps (i) to (iii): ,
(I) Under a temperature condition in which the laminated body (E) is not thermocompression bonded, the pressure is less than the pressure at which the laminated film (C) is strained in the thickness direction from both outer side surfaces of the laminated body (E) or does not shift between the inner layers. Preliminary pressure bonding is performed to remove the gas remaining between the laminated films (C) and between the laminated film (C) and the protective layer (D),
(Ii) The thermocompression bonding is performed in a state where the laminate (E) is preheated to a temperature at which thermocompression bonding can be performed, and pressure within the same pressure condition range as the precompression bonding is applied in the thickness direction from both outer side surfaces of the laminate (E). After integrating by
(iii) Thinning by pressing or rolling,
A method for producing a multilayer film.
前記予備圧着が2500Pa以上の圧力で行われる、請求項1に記載の多層膜の製造方法。   The method for producing a multilayer film according to claim 1, wherein the pre-bonding is performed at a pressure of 2500 Pa or more. 前記予備圧着がバッチ式プレス又は圧延ローラーを用いて、3000Pa以上でかつ前記プレス又は圧延の際の圧力の2分の1以下で行われる、請求項1又は2記載の多層膜の製造方法。   3. The method for producing a multilayer film according to claim 1, wherein the pre-pressing is performed by using a batch press or a rolling roller at 3000 Pa or more and half or less of a pressure at the time of the pressing or rolling. 前記予備圧着前又は予備圧着中に積層体(E)の予熱を開始し、予備圧着による積層フィルム(C)間、及び積層フィルム(C)と保護層(D)間に残存する気体の除去が熱圧着可能な温度に到達する前に行われる、請求項1ないし3のいずれか1項に記載の多層膜の製造方法。   Preheating of the laminate (E) is started before or during the pre-compression, and the gas remaining between the laminated films (C) and between the laminated film (C) and the protective layer (D) is removed by pre-compression. The method for producing a multilayer film according to any one of claims 1 to 3, which is performed before reaching a temperature at which thermocompression bonding is possible. 前記熱圧着可能な温度が、(i)2種類の熱可塑性樹脂フィルム(A、B)が共に非晶性樹脂である場合には積層体(E)の中心部が前記2種類の熱可塑性樹脂の双方のガラス転移温度(Tg)よりも40〜80°C高い温度、
(ii)2種類の熱可塑性樹脂フィルム(A、B)の一方が非晶性樹脂で他方が結晶性樹脂である場合には積層体(E)の中心部が前記2種類の熱可塑性樹脂のうちの低い方のガラス転移温度(Tg)よりも50°C高い温度から前記結晶性樹脂の融点(Tm)より30°C低い温度、又は
(iii)2種類の透明な熱可塑性樹脂フィルム(A、B)が結晶性樹脂の場合には積層体(E)中心部が前記2種類の熱可塑性樹脂の双方の融点(Tm)より30〜50°C低い温度
である、請求項1ないし4のいずれか1項に記載の多層膜の製造方法。
When the thermocompression bonding temperature is (i) the two types of thermoplastic resin films (A, B) are both amorphous resins, the center of the laminate (E) is the two types of thermoplastic resins. 40 to 80 ° C. higher than both glass transition temperatures (Tg),
(Ii) When one of the two types of thermoplastic resin films (A, B) is an amorphous resin and the other is a crystalline resin, the center portion of the laminate (E) is made of the two types of thermoplastic resins. A temperature that is 50 ° C higher than the lower glass transition temperature (Tg), a temperature that is 30 ° C lower than the melting point (Tm) of the crystalline resin, or (iii) two types of transparent thermoplastic resin films (A In the case where B) is a crystalline resin, the center of the laminate (E) is at a temperature 30 to 50 ° C. lower than the melting points (Tm) of both of the two types of thermoplastic resins. The manufacturing method of the multilayer film of any one of Claims 1.
前記2種類の熱可塑性樹脂フィルム(A、B)の屈折率差が0.05以上である、請求項1ないし5のいずれか1項に記載の多層膜の製造方法。   The method for producing a multilayer film according to any one of claims 1 to 5, wherein a difference in refractive index between the two types of thermoplastic resin films (A, B) is 0.05 or more. 前記積層フィルム(C)が、屈折率の異なる2種類の透明な熱可塑性樹脂フィルム(A、B)を厚み方向に交互に積層されるように共押出して成形された積層フィルム(C1)、又は前記積層フィルム(C1)を更に厚み方向に交互に積層されるように複数重ね合わせた積層フィルム(C2)である、請求項1ないし6のいずれか1項に記載の多層膜の製造方法。   The laminated film (C1) is formed by coextrusion so that two types of transparent thermoplastic resin films (A, B) having different refractive indexes are alternately laminated in the thickness direction, or The manufacturing method of the multilayer film of any one of Claim 1 thru | or 6 which is a laminated film (C2) which laminated | stacked two or more so that the said laminated | multilayer film (C1) might be laminated | stacked alternately further in the thickness direction. 前記予備圧着前の積層フィルム(C)における各熱可塑性樹脂フィルム(A、B)の厚みがそれぞれ5〜100μmの範囲にあり、かつ積層フィルム(C)の全層数が10層以上である、請求項1ないし7のいずれか1項に記載の多層膜の製造方法。   The thickness of each thermoplastic resin film (A, B) in the laminated film (C) before the pre-bonding is in the range of 5 to 100 μm, respectively, and the total number of layers of the laminated film (C) is 10 or more. The method for producing a multilayer film according to any one of claims 1 to 7. 前記予備圧着前の積層体(E)中の2つの保護層(D)の厚みがそれぞれ40〜800μmで、かつ積層フィルム(C)の厚みの0.04倍以上である、請求項1ないし8のいずれか1項に記載の多層膜の製造方法。   The thickness of the two protective layers (D) in the laminate (E) before the pre-bonding is 40 to 800 µm, respectively, and 0.04 times or more the thickness of the laminate film (C). The manufacturing method of the multilayer film of any one of these. 前記積層体(E)中の2種類の熱可塑性樹脂フィルム(A、B)、及び保護層(D)に使用した樹脂のガラス転移温度(Tg)が結晶性樹脂と非晶性樹脂の組合せの場合には20〜150°Cの範囲にあり、又は前記以外の組合せの場合には50ないし120°Cの範囲にある、請求項1ないし9のいずれか1項に記載の多層膜の製造方法。   The glass transition temperature (Tg) of the resin used for the two types of thermoplastic resin films (A, B) and the protective layer (D) in the laminate (E) is a combination of a crystalline resin and an amorphous resin. The method for producing a multilayer film according to any one of claims 1 to 9, wherein the method is in the range of 20 to 150 ° C, or in the case of a combination other than the above, in the range of 50 to 120 ° C. . 前記積層体(E)中の積層フィルム(C)部を1度のプレス又は圧延により1/10ないし1/90の厚みに薄膜化する、請求項1ないし10のいずれか1項に記載の多層膜の製造方法。   The multilayer film according to any one of claims 1 to 10, wherein the multilayer film (C) in the laminate (E) is thinned to a thickness of 1/10 to 1/90 by one press or rolling. A method for producing a membrane. 前記プレスにより薄膜化して得た多層体の両外側面に新たに保護層(D)を設けて更にプレスにより薄膜化する操作を少なくとも2度以上行うことにより、又は前記圧延ローラーを複数組合せて多段で圧延することにより、プレス又は圧延前の積層体(E)中の積層フィルム(C)部の厚みを1/20ないし1/300に薄膜化する、請求項1ないし11のいずれか1項に記載の多層膜の製造方法。   A multi-stage operation in which a protective layer (D) is newly provided on both outer side surfaces of the multilayer body obtained by thinning by pressing and further thinning by pressing is performed at least twice, or a plurality of rolling rollers are combined. The thickness of the laminated film (C) part in the laminated body (E) before pressing or rolling is reduced to 1/20 to 1/300 by rolling at a thickness of 1 to 11, according to any one of claims 1 to 11. The manufacturing method of the multilayer film as described. 前記1度もしくは複数回のプレス又は1段もしくは多段の圧延により薄膜化した多層体を、更に引張力による延伸を行うことにより、プレス又は圧延前の積層体(E)中の積層フィルム(C)部の厚みを1/150ないし1/2000に薄膜化させる、請求項1ないし12のいずれか1項に記載の多層膜の製造方法。   The multilayered film (C) in the laminated body (E) before pressing or rolling by further stretching the multilayered body formed by the one-time or multiple-time pressing or one-stage or multi-stage rolling with a tensile force. The method for producing a multilayer film according to any one of claims 1 to 12, wherein the thickness of the portion is reduced to 1/150 to 1/2000. 前記(i)予備圧着、(ii)熱圧着、及び(iii)1段又は多段の圧延を複数のローラーを用いて行うことにより、前記(i)予備圧着ないし(iii)圧延を連続的に行う、請求項1ないし13のいずれか1項に記載の多層膜の製造方法。   The (i) pre-compression, (ii) thermocompression, and (iii) one-stage or multi-stage rolling are performed by using a plurality of rollers, so that the (i) pre-compression or (iii) rolling is performed continuously. The method for producing a multilayer film according to any one of claims 1 to 13. 前記(i)予備圧着、(ii)熱圧着、及び(iii)1段又は多段の圧延を複数のローラー手段を用いて行い、更に(iv)引張力による延伸を行うことにより、前記(i)予備圧着ないし(iv)延伸を連続的に行う、請求項1ないし14のいずれか1項に記載の多層膜の製造方法。   (I) Pre-crimping, (ii) thermocompression bonding, and (iii) one-stage or multi-stage rolling using a plurality of roller means, and (iv) stretching by tensile force, The method for producing a multilayer film according to any one of claims 1 to 14, wherein the precompression bonding or (iv) stretching is continuously performed. 屈折率の差が0.05以上である2種類の透明な熱可塑性樹脂フィルム(A、B)が厚み方向に交互に10層以上積層された積層フィルム(C)を、透明な熱可塑性樹脂からなる2つの保護層(D)間に配置して形成された積層体(E)をプレス又は圧延により薄膜化して得られた、2つの保護膜(Dt)部と、当該2つの保護膜(Dt)間に位置する積層膜(Ct)部とからなる多層膜(Et)であって、
積層膜(Ct)部の全厚みが500nm〜100μmで、その厚みが中心方向に向かって薄くなる傾向にあり、かつ積層膜(Ct)部の積層配列に乱れがない、多層膜。
A laminated film (C) in which two or more types of transparent thermoplastic resin films (A, B) having a refractive index difference of 0.05 or more are alternately laminated in the thickness direction is obtained from a transparent thermoplastic resin. Two protective film (Dt) parts obtained by thinning a laminate (E) formed between two protective layers (D) formed by pressing or rolling, and the two protective films (Dt) A multilayer film (Et) composed of a laminated film (Ct) portion positioned between
A multilayer film in which the total thickness of the multilayer film (Ct) part is 500 nm to 100 μm, the thickness tends to decrease toward the center, and the multilayer arrangement of the multilayer film (Ct) part is not disturbed.
前記積層膜(Ct)部が厚み方向に20〜500層積層されてなる、請求項16に記載の多層膜。   The multilayer film according to claim 16, wherein the multilayer film (Ct) portion is formed by stacking 20 to 500 layers in the thickness direction. 前記積層膜(Ct)部における積層精度([(最大層厚み−最小層厚み)/最小層厚み]×100(%))が300%ないし1500%である、請求項16又は17に記載の多層膜。   The multilayer according to claim 16 or 17, wherein a lamination accuracy ([(maximum layer thickness−minimum layer thickness) / minimum layer thickness] × 100 (%)) in the laminated film (Ct) portion is 300% to 1500%. film. 前記積層膜部(Ct)における積層厚み比(積層方向の異なる樹脂層の最大値と最小値の比)が1ないし25である、請求項16ないし18のいずれか1項に記載の多層膜。   The multilayer film according to any one of claims 16 to 18, wherein a lamination thickness ratio (a ratio between a maximum value and a minimum value of resin layers having different lamination directions) in the laminated film portion (Ct) is 1 to 25. 赤、青、又は緑の光の波長における反射率が60%以上である、請求項16ないし19のいずれか1項に記載の多層膜。   The multilayer film according to any one of claims 16 to 19, wherein the reflectance at a wavelength of red, blue, or green light is 60% or more. 請求項16ないし20のいずれか1項に記載の多層膜の両面に帯電層を設けてなる、粒子状の多層膜光学素子であって、当該多層膜光学素子が一対の透明電極間に収容され、かつ当該透明電極への印加により回転又は移動制御可能とされていることにより、特定色の光の反射又は透過を利用して画像表示を行うことが可能な画像表示装置の画素を構成する、多層膜光学素子。   21. A particulate multilayer optical element in which a charge layer is provided on both surfaces of the multilayer film according to claim 16, wherein the multilayer optical element is accommodated between a pair of transparent electrodes. And, it is possible to control rotation or movement by applying to the transparent electrode, thereby constituting a pixel of an image display device capable of displaying an image using reflection or transmission of light of a specific color. Multilayer optical element. 赤、緑、青、シアン、マゼンダ、又はイエローのうち何れか一色を表示する、請求項21に記載の多層膜光学素子。   The multilayer optical element according to claim 21, which displays any one of red, green, blue, cyan, magenta, and yellow. 請求項22に規定する何れか一色の光を反射すると共に当該色に対する補色を透過する非光吸収型で干渉型の光構造発色体である、請求項21又は22に記載の多層膜光学素子。   23. The multilayer optical element according to claim 21, wherein the multilayer optical element is a non-light-absorbing and interference-type optical structural color body that reflects light of any one color defined in claim 22 and transmits a complementary color for the color. 外形の最大寸法が2μmないし200μmの範囲にある、請求項21ないし23のいずれか1項に記載の多層膜光学素子。   The multilayer optical element according to any one of claims 21 to 23, wherein a maximum outer dimension is in a range of 2 µm to 200 µm. 外形が平面体、立方体、凸レンズ形状、又は球体である、請求項21ないし24のいずれか1項に記載の多層膜光学素子。   The multilayer optical element according to any one of claims 21 to 24, wherein the outer shape is a planar body, a cube, a convex lens shape, or a sphere.
JP2007513517A 2005-09-29 2006-09-29 Multilayer film manufacturing method, multilayer film, and multilayer film optical element Pending JPWO2007037393A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005284155 2005-09-29
JP2005284155 2005-09-29
PCT/JP2006/319503 WO2007037393A1 (en) 2005-09-29 2006-09-29 Process for production of multilayer films, multilayer films, and multilayer film optical elements

Publications (1)

Publication Number Publication Date
JPWO2007037393A1 true JPWO2007037393A1 (en) 2009-04-16

Family

ID=37899813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007513517A Pending JPWO2007037393A1 (en) 2005-09-29 2006-09-29 Multilayer film manufacturing method, multilayer film, and multilayer film optical element

Country Status (2)

Country Link
JP (1) JPWO2007037393A1 (en)
WO (1) WO2007037393A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202002889TA (en) * 2017-09-29 2020-04-29 Nike Innovate Cv Structurally-colored articles and methods of making and using structurally-colored articles
EP3940038B1 (en) * 2019-06-17 2024-01-31 Avantama AG Luminescent component
EP3969947A1 (en) 2019-06-26 2022-03-23 Nike Innovate C.V. Structurally-colored articles and methods for making and using structurally-colored articles
US20210022444A1 (en) 2019-07-26 2021-01-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152475A (en) * 1974-11-01 1976-05-10 Yoshizaki Kozo Kairyosareta tasofuirumuno seizohoho
JP3332482B2 (en) * 1993-06-08 2002-10-07 大日本印刷株式会社 Manufacturing method of antireflection film
JPH1016143A (en) * 1996-07-03 1998-01-20 Kanegafuchi Chem Ind Co Ltd Manufacture of optical transparent plastic sheet

Also Published As

Publication number Publication date
WO2007037393A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JPWO2007037393A1 (en) Multilayer film manufacturing method, multilayer film, and multilayer film optical element
CN103921509B (en) There is the multiple layer polymer intermediate layer of embossed surface
US8728360B2 (en) Apparatus and method for producing optical sheeting
JP4816419B2 (en) Laminated film
TW200907428A (en) Optical article and method of making
WO2016208548A1 (en) Optical film and optical laminate containing same
JP5819930B2 (en) Non-flattened film and manufacturing process thereof
TW201803922A (en) Thermoplastic resin film and its manufacturing method, and laminated body
JP4804193B2 (en) Biaxially stretched multilayer laminated film
TWI517964B (en) A manufacturing apparatus for an optical diaphragm and a method for manufacturing an optical film
KR20080084723A (en) Polyester film for reflecting plate
KR20120140679A (en) Metallic decoration sheet, method of making the same, and resin molded product
JPH04299329A (en) Production of both-side lenticular sheet
EP4105021A1 (en) Resin film and method for producing same
JP2009012187A (en) Laminated film and its manufacturing method
JP2005246891A (en) Metallic tone molded sheet and method for manufacturing it
JP2008246862A (en) Resin laminate film and its manufacturing method
US20070240813A1 (en) Process for forming a multilayer film and the film formed therefrom
JPH0371018B2 (en)
JP2010191113A (en) Reflecting sheet
KR20120108216A (en) A manufacturing method of optical multilayer sheet for display
JPH10138340A (en) Manufacture of embossed thermoplastic resin sheet
KR100912497B1 (en) Intermediate Film for Laminated Glass and a Method of manufacturing the same
CN116801525A (en) Colorful base layer, decorative film, shell, processing method of shell and electronic equipment
US20220317514A1 (en) Light reflective resin film and method of manufacturing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070515

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070517